©2007 IEEE. Personal use of this material is permitted. However,
permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or
redistribution to servers or lists, or to reuse any copyrighted
component of this work in other works must be obtained from the IEEE.



1624

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 55, NO. 5, MAY 2007

A Nonlinear M -Estimation Approach to Robust
Asynchronous Multiuser Detection 1n
Non-Gaussian Noise

Duc Son Pham, Member, IEEE, Abdelhak M. Zoubir, Senior Member, IEEE, Ramon F. Brcic, Member, IEEE, and
Yee Hong Leung, Member, IEEE

Abstract—A nonlinear M -estimation approach is proposed to
solve the multiuser detection problem in asynchronous code-divi-
sion multiple-access (CDMA) systems where the ambient noise is
impulsive and the delays are not known. We treat the unknown
delays as nuisance parameters and the transmitted symbols as pa-
rameters of interest. We also analyze the asymptotic performance
of the proposed estimator and propose suboptimal but computa-
tionally efficient procedures for solving the nonlinear optimization
function. Simulation results show considerable improvements over
the conventional approaches.

Index Terms—Multiuser detection, nonlinear M -estimation,
nuisance parameters, robust detection.

1. INTRODUCTION

ULTIPLE-ACCESS techniques have been studied ex-
Mtensively over the last decade due to their improved
system capacity over single access techniques in nonorthogonal
signalling schemes. By exploiting the special structure of the
system, the effects of both multiple-access interference (MAI)
and ambient noise can be significantly mitigated, bringing the
achievable performance bound close to that of the single access
case.

In the context of up-link code-division-multiple-access
(CDMA) multiuser detection, signal processing techniques
have been limited mainly to the synchronous case [6], [21],
[25], [28], [35]. The real issue here is that as the chip duration
in later CDMA specifications is shortened [12], one can no
longer ignore the asynchronous nature of the different users’
received signals. The general asynchronous case is a very
difficult problem and so attempts to solve subproblems have
been made under certain assumptions, e.g., 1) the delays are as-
sumed to be perfectly known [14], or at least chip synchronous
[16], [34] and 2) the focus is to estimate the delays rather than
signal detection, which is the ultimate goal [19], [20], [24].
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Other suboptimum alternatives to the exponentially complex
sequence maximum-likelihood (ML) estimator, which tackles
the computational complexity issue, were presented in [8], [9],
and [32].

Another limitation of many multiple-access techniques is the
assumption of additive white Gaussian noise (AWGN). Prac-
tical measurements have indicated that in many cases both man-
made and natural noise appear to be impulsive [1], [17], [18].
Non-Gaussian ambient noise is a major impairment to signal
processing techniques that are based on a Gaussian assump-
tion [29], [35]. Very little effort has been made in solving the
problem of asynchronous multiuser detection in non-Gaussian
noise. Recently, an approach based on robust statistics was for-
mulated to tackle the non-Gaussian problem, and the method
was extended to the asynchronous case, but the delays were as-
sumed to be known a priori [29]. One can argue that a simple
approach would be to first estimate the delays using standard
techniques, for example [24], followed by robust demodulation
of the received signal. However, there are two issues associ-
ated with this approach, namely, the requirement of very high
signal-to-noise ratio (SNR) and a sufficiently large sample size,
and the high sensitivity of the performance measures with re-
spect to a model mis-specification. For practical sample sizes
and low to moderate SNRs, as will be shown later, this approach
may suffer from considerable performance loss.

We propose a nonlinear M -estimation approach to perform
asynchronous CDMA multiuser detection in non-Gaussian im-
pulsive noise. It can be shown that our approach is more gen-
eral than the separable nonlinear least-squares method [15], and
it allows for contamination in the noise density function. No-
tably, for the aforementioned multiuser detection problem, spe-
cial computational procedures are proposed to solve the non-
linear M -estimation equations and very general asymptotic re-
sults are obtained.

The paper is organized as follows. In Section II, we present
the signal model for asynchronous CDMA. Upon showing that
the detection problem is a special nonlinear regression problem
where the nuisance parameters lie in the design matrix, we for-
mulate the optimization function under the framework of robust
statistics in Section III. We then propose some modifications to
the iteratively reweighted least-squares (IRLS) algorithm sug-
gested in the robust statistics literature. In Section IV, we present
some analysis of the estimators. Simulation results are given in
Section V to illustrate the robustness and near—far resistance of
the proposed approach. Section VI concludes the paper.
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II. SIGNAL MODEL

Consider a CDMA system with K users transmitting simulta-
neously. The received signal is the sum of the delayed versions
of the transmitted signals and the channel noise

K

r(t) =D Abi(D)si(t — 1T — di) +n(t) (1)

k=11=0

where dj, presents the delay of the kth user with respect to the
timing reference of the base station, by (l) denotes the [th infor-
mation bit, A denotes the amplitude of user &, and

M-1

> Bt T @

J=0

sk(t) =

is the normalized signaling waveform, where {c;C €
{+1, —1}}?51 is an M-pseudorandom sequence, ' = MT,
is the period of the spreading sequence, T is the chip duration,
and ((t) is the pulse shaping filter impulse response. Without
loss of generality, the following are assumed:
* [(t) is approximately rectangular and confined within the
chip duration;
* the maximum delay is less than the symbol duration, i.e.,
maxy dy, < T.
The received signal is chip-matched filtered and sampled, which
produces the following output at the jth chip and 2th symbol:

TG+ T,
(i) = /

iT+;5T,

r(O)B(t — il — T, dt

Mw

)+ m;(i 3)
k=1

. iT+(j+1)T. . . .
where n;(i) = fiTﬂ% T B(t — 4T — jT)n(t)dt,j =
0,...,M — 1, are the noise samples that follow the two-term
Gaussian mixture that is usually used to characterize impulsive
noise [29]

f@) = (1 =) fo(x;v?) + efa(a; wr?). )
In (4), € represents the amount of contamination, 12 is the vari-
ance of the Gaussian background noise, and x represents the rel-
ative strength of the impulsive component. Note that this noise
distribution is unknown. The contribution of the kth user in (3)
is

L iT+(j+1)Te io: L
q(I/) = / Akbk(l)c
! iT+35T. 1=0 !

X B(t — IT — jT. — di)B(t — iT — jT.) dt. (5)

Denote

dy. dp.

iL M = 7 — Dk (6)

kaL T

and the signature of the kth user s, = (1/VM)[ck,...,
ek Y =[sk,... sk, _|]T. By making use of the assumption
on (3(t), it can be shown from Fig. 1 that the evaluation of (5)
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Fig. 1. Illustration of three cases in asynchronous CDMA detection.

is, loosely speaking, proportional to the area under the signal
waveform of the kth user during the jth chip-matched filtering
duration. This is dependent of the relative timing between the
arrival of the signal of the kth user and the base station as
follows.
* Case 1: When 57 < pi, only the signal waveform of the
previous symbol by (7 — 1) is present.

q; (i) = meAbr (i — 1)k, 45
+ (1= m) Apbr(i — Dshy_p i (D
* Case 2: When pr, < j < pi + 1, the transition from
bi(i — 1) to by(7) is occurring.

q; (i) = e Abi(i = Dshy + (1= me) Abr ()t (8)

* Case 3: When p; + 1 < 7, only the signal waveform of the

current symbol by, (7) is present.

g5 (i) = meArbr (i)s5_p, + (1= me) Akbi(i)s5_p . (9)
Note that extensions to root-raised cosine pulses can be readily
made with more mathematical complication provided the
integral in (5) can be evaluated as a function of dj. Denote
q*(i) = [g§(@i),...,q%, ,()]T the contribution of user k
during the chip-matched filtering of the bit ¢ as seen by the
base station. Equations (7), (8), and (9) suggest the following
representation:

q"(i) = hEApby(i — 1) + hE Agby(d) (10)

where h’; denotes the coefficient vector due to previous infor-
mation bit, and h’c" denotes the coefficient vector due to current
information bit and they are defined as follows [29]:

hk Opk—l—l Opk
[hZ} =Nk Sk + (1 —m) Sk (11
P On—p,—1 Orr—p,
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where 0,,, denotes an m-size zero vector. From (3), we define
the output vector for the ith bitas r(i) = [ro(4), ..., rar—1(3)]%.
It then follows that

N Ab(i—1) .
r(i)=[H, H.] [ Ab(i) } + n(i) (12)
where H, = [h},h2,... . hX] H, = [h},hZ,... h%], and
A = diag(Ay,.. Ak) which is unknown. To maximize the

information about the transmitted bits, it is appropriate to col-
lect samples over m consecutive bits. Denote y = [r(4)%, r(i +
DT, e +m—1DT)T,0 = Ab,, (i), A=1,, 1 ® Aisa
[K(m+1) x K(m+1)] diagonal matrix, @ denotes the Kro-

necker product, b(i) = [b1(3),...,bx(i)]T, bu(i) = [b(i —
DT b)Y, ..., b(i+m—1)T]T,x = [n(i)...n(i+m—-1)]T,
and
H, H. ... ... 0
0 H, H. ... 0
H(d) = (13)
0 ... .. H, H
where d = [dy,ds, . ..,dg]T is the vector of delays. The value

of m must satisfy m > |(K/M — K)| + 1 so that H(d) will
have full column rank [29]. In this paper, we select m to be the
smallest integer that satisfies this criterion as to minimise the
size of H(d). Hence, we obtain the signal model

y =H(d)f + x. (14)

Given an estimate  of 6, the estimate of the 7th transmitted bits
is

b(i) = sgn(f[K + 1 : 2K]). (15)

For notational convenience, introduce N = mM, P = (m +
1)K and rewrite (14) as

Yo =hl(d)0+2z,, n=1,...,N (16)

where d € RX § € RP hZ(d) is the nth row of H(d), and
z;,1 = 1,..., N also follow the Gaussian mixture (4).

III. MULTIUSER DETECTION TECHNIQUES

A. Exhaustive Search

Since the noise density is unknown in the model (16), the
maximum-likelihood (ML) solution is not available. A common
approach to estimating @ is to carry out an exhaustive search all
over the parameter space of the quadratic cost function

N
min

min (s — (@)

Ope{+Ap.—Ap} n=1

(6,d) = arg a7

where 0, and .4, denote the pth elements of # and A, respec-
tively. There are several drawbacks to this approach that make
it impractical: the prohibitive computational complexity of ex-
ponential order, lack of robustness in impulsive noise, and the
strict assumption of perfect knowledge of the users’ received
signal amplitudes [24].
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B. Simple Methods

Another common approach is to separate delay estimation
from the signal detection problem. Typically, the preliminary
estimates of the delays, denoted by d© are then obtained from,
for example, MUSIC based on the sample covariance matrix
[24]. Estimates of the transmitted bits are obtained by replacing
the unknown design matrix H(d) with its estimate H(d(?)) and
performing either linear detection, such as least-squares (LS) or
minimum mean-square error (MMSE) techniques, or robust de-
tection, which is described next. Even though this simplifies the
estimation procedure, the performance of the estimator of 8 de-

pends largely on the accuracy of the initial estimate 9(0). Stan-
dard delay estimation techniques often assume sufficiently high
SNR and a very large sample size, over which the sample co-
variance matrix is measured. In conditions such as low to mod-
erate SNRs, time-varying delays, and especially in impulsive
noise, the estimates from these techniques are poor. The critical
issue then is the sensitivity of the final estimate of # with respect
to the error of the design matrix that makes performance mea-
sures such as mean-squared error (MSE) or bit error rate (BER)
worse. It is sensible then to consider joint estimation and de-
tection under a robust framework to account for non-Gaussian
noise. This motivates the approach described next.

C. Nonlinear M -Estimation

In robust statistics, instead of using the quadratic function as
in (17), a less rapidly increasing penalty function p(x) is used to
down-weight outliers. With no nuisance parameters, i.e., when
d is known, h,,(d) = h,,, and the linear M -estimates are found
by minimizing the following cost function [7]:

= ) 18
= arg min Z p (18)
or, equivalently, by solving for 0 the equation
N
> hut(yn —hy0) =0 (19)
n=1

where ¢ (z) = dp(z)/Ox is the location score function, which
is generally odd symmetric, bounded and linear near the origin.
The choice of 1(z) depends on the nature of the robust solution
(see [4] for a comprehensive list). In this paper, we use Huber’s
minimax penalty function due to its simplicity and robustness.
It is described by

2
57, for |z| < knyv?
plz) =4 27 e =l < v (20)
kulz| — 25—, for |z| > kuv?
and its score function is given by
_ &, for |z| < knv?
¥(z) = {kHSign(x)7 for |z| > knv? @h
where ky is dependent on € and v via
T(/{,Hl/) €
— ok = — 22
kuv (kuv) 2(1—¢) @2)
in which T(z) = (1/V2m)e*/2,®(zx) = (1/V27)

[2%e/2dt (71, [29], € and v are defined in (4). As ¢ is
not known, it is possible in practice to use an approximate
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version of the minimax as shown in [29, p. 298] for the value of
ky or nonparametric techniques [10, Ch. 5] to obtain ancillary
estimates of the minimax parameters. Hereinafter, we assume
that the minimax detector is fully specified.

To allow for nuisance parameters, we reformulate the non-
linear optimization problem as follows:

N
S o7
(6,d) = arg min > p(yn —hI(d)6)
derK n=1
= arg min Cc(0,d)

0cRrRP
deRK

(23)

where C(6, d) will be referred to as the minimax cost function.
We have also relaxed # in (23) for computational convenience in
finding a suboptimal but robust solution. However, as the trans-
mitted bits are estimated as in (15), this relaxation does not have
any misleading effect on the final results. Continuing, we make
the following assumptions.

Assumption 1: The delays di,k = 1,..., K, must not fall
on multiples of the chip durations, i.e., 0 < m < 1 Vk.

Assumption 2: The delays di, k = 1,..., K, are known up
to p, i.€., the integer part, through some preliminary estimation
procedure.

Assumption 1 avoids the technical difficulty and should not
affect the results derived later. The delays can be as close as pos-
sible to any multiples of the chip durations. With Assumption 1,
the first and second derivatives of the cost function can be evalu-
ated, which will be useful for the asymptotic analysis presented
subsequently. This assumption is reasonable, if we assume that
the delays are uniformly distributed in [0, 7]. With Assumption
2, we implicitly assume that an initial estimate d° is available
from the acquisition phase as in the simple method. The differ-
ence here is that we use this initial estimate for joint parameter
estimation and signal detection under a nonlinear M -estimation
framework. Assumption 2 also means that we only need to up-
date the fractional parts of d. This assumption is reasonable
given the availability of standard delay estimation techniques,
such as the MUSIC method presented in [24]. The motivations
for joint parameter estimation and signal detection here are the
scenarios of low to moderate SNRs, possibly fast time-varying
delays, and non-Gaussian noise, which can significantly affect
performance measures such as BER or MSE. These will be ev-
ident subsequently in the simulations results.

Denote S = {p € RE : |di] < o1 < |di] + 10, k =
1,2,..., K} asubset of the K-dimension Euclidean space over
which the vector of the delays is assumed to exist. With the
above assumptions, we find the estimates from the equivalent
optimization problem

N
(97 &) = arg min p (yn — hf(d)ﬂ) . (24)

9d€§sl n=1
When the penalty function p(x) is not quadratic, which is the
case here, (24) can be solved numerically. A number of non-
linear programming techniques are found in, for example, [13].
For fast convergence, we propose to use the IRLS algorithm.
Briefly speaking, this algorithm sequences through a number
of iterations at which the weights of a weighted least squares
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problem are updated according to the current values of the resid-
uals. (For a historical perspective of the IRLS algorithm, please
see [3].) Many variations of the IRLS algorithm exist with dif-
ferent updating schemes for the weights and the unknown pa-
rameters. In the signal processing context, the IRLS algorithm
has been successfully applied in £, norm optimization appli-
cations [2], [11]. As the optimization (24) is not a £, norm
problem, we will use the scheme frequently employed in ro-
bust statistics [7, Ch. 7], [23]. Under this scheme, the weights
depend on the residuals and the score function (21) in such a
way that the weighted least-squares cost function is the “best”
approximation to the minimax cost function (23). Though (24)
is, strictly speaking, a constrained optimization problem, it is of
common practice to try the unconstrained solution first and only
modify the search procedure if some constraints are violated.
Thus, we shall describe the unconstrained IRLS algorithm then
discuss the necessary modification when the constraint viola-
tion is found. However, we first need the following assumption
before going into details of the IRLS algorithm.

Assumption 3: The solution (8, d) to (24) exists and is the
globally optimum solution of (23). .

1) Unconstrained IRLS Procedure: Denote 9(1_1) and
d=1) the estimates at iteration i — 1. The parameter updates
of the IRLS algorithm at iteration ¢ are generally given by

9(1) _ é('l—l) 400
d® = q=1 4 §®

(25)
(26)

where the search directions are found from minimizing an ap-
. . LoA(i—l) A
proximate local cost function about the point (0( ), d-1)

(T(i)76(i)) — arg 32;11 cl—1) (@(i—l) g (G 6) 27)

where thesetD = {E e R 1 0< &, < T, k=1,2,...,K},
and the approximate local cost function is a quadratic function
that has the same gradient as the minimax cost function at the

point (0(1 Y ,d=D)
i1 (9“_1) +7,d07Y 4+ )

. ( )

- (11

(s —B2(@% +.8) (6 47))

(28)
in which the residuals are
LD T (&@‘*1)) 0 =1 N (29

For notational convenience, we denote the weights at the :th
iteration by

i ¥ Z?(j_l)
w(z( )) - ((i—l) )’
Zn

n=1

...,N. (30)

Definition 1: Define the nth local model by a first-order

approximation
h, (&“—1) + 5) ~h, (&@—1)) +G, (EW-U) 8,

n=12,...,N (3l
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where

ah ( (a 1))

odT
Note that due to the definition of hY, h¥ as in (11), h,,(d) is
linear with respect to 7 where 7 is the vector of the fractional

parts of d as defined in (6). Hence, G,,(d) is fixed for d € S.
With the linearization above, we can rewrite the approximate

local cost function as
- (Wi (a0)

¢V (r,§) = i“’ ( (i— 1>) (
(G (a00)8)") (5 +T))2

G, (d() = (32)

(33)

To simplify the notation, denote
hib =, (51@*1)) (34)
G- = @G, (a@—l)) (35)
HO-D = H (4 (36)
2G-D = [z{i‘”,zy‘ll...,z(i‘l)]T 37)
WD — diag (w (zY‘l)) W ( (i~ 1>) (zj(;““)) .
(38)

The approximate local cost function can be then written as

¢i=D(r,8) Zw( G0) (-

— pIGDp 9T(i_1)G§f*1)6)2

hg(ifl)é(i_l)

(39)
N
O) (20 —hpeh
7’2::1 ( 1)( 1 hz: Dr
__ézxziw(;g44J§)2 (40)

where we have ignored the term TGS Y6 as T and § are as-

sumed to be small. Now, introduce
AT (i—1
) (i-1)

pli-1) _ éT(i—l)

i—1
GV

i—1
G( ) @n

AT (i— 1)

0 G(L 1)

and to further simplify the notation, we shall drop the super-
script “=1) where applicable. The approximate cost function at
iteration ¢ can be expressed in a more compact form

C(r,8)

~ (z — Hr — P§)TW(z — Hr — P§). (42)

It is then straightforward to show that if we assume D = [H P]
is of full column rank, then the solution of (42) is found at

[T] = (D'WD) ' D"Wz (43)

6
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or, equivalently, by using the matrix inversion lemma

6=P"WP -P"WHH"WH) 'H'WP)!

x (PTW - PTWHHTWH) 'HT W)z, (44)
r=(H'WH -H'WP(PTWP) 'PTWH) !
(H'W - H'WP(PT"WP)'PTW)z. (45)

To further simplify (44) and (45), we start from the assumption
that the diagonal elements of W' are nonnegative because of the
monotonic nature of the score function so that it is possible to
introduce

vV =w2 (46)
Furthermore, denote
P=VP (47)
H=VH (48)
so that
PTWP - PTWHHWH) 'H'WP = PP4P (49

where PIJi = I-H(HTH) 'H denotes the orthogonal projec-
tion onto the subspace of H. Using a similar argument for the
other terms, it is easy to show that (44) and (45) are equivalent
to

- ~\—1 .
5= (PTP4P) PPLVz (50)

r= (fITPI%)fI) 1fIPl%)Vz. (51)
We have the following result regarding the convergence be-
haviour of the extended IRLS algorithm.

Proposition 1: With the extended IRLS update scheme as
described above and the fact that 1)(z) /2 is monotonically de-
creasing for x > 0, the minimax cost function decreases at a
rate that

A(i-1)

clo )

A=y — (6, da9)
> L-)wi-np-1 (Dw—l)W(i—l)D@—l))
5%

w DTGE-DWi-1),-1)

-1

(52)

The proof of this result can be found in Appendix A.

2) Practical Considerations: In the preceding derivations,
we have made relaxation when solving partially constrained op-
timization problem (24) because of Assumptions 1, 2, and 3.
Even though it may happen in practice that during the con-
vergence to the global solution, the searching path may fall
outside the constrained set S. In practice, one should always
try an unconstrained IRLS procedure. However, if one or more
constraints are violated, necessary modifications are needed to
remedy this problem and ensure that the global cost function
is always decreased. In what follows, we follow standard non-
linear programming techniques [13] to derive a procedure for
doing so.
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Definition 2: Define the active set Q, (d) and its complemen-
tary (inactive) set Q;(d) as follows:

(53)

Qa(a)Z{k:dAkde—Feordkde-i-Tc—e}
d (54)

Qi(d) = {k :dy, + e < dy, < di + T, — €}

where € is arbitrarily small, i.e., 0 < ¢/7T. < 1.

The active set refers to the delay estimates that are deemed
to be on the boundary whilst the inactive set refers to the delay
estimates that are well within the constraints, i.e., d € S, which
can be practically rewritten as follows:

I d“
c(f.d) = {_{{;XKR} d- |:_dl:| < 02

where d* = [|d1| +T. —¢,..., |dg] + T. — €]¥ and d! =
[ldi|+e€...,|dr]+¢€T. Itis noted that if in (55) the equality
occurs for the kth constraint ¢ (6, d), then it will not happen
for the (k + K)th constraint cx x (0, d) and vice versa, where
k < K. Denote V(d) the subset of row indexes of constraints ¢
where the equalities occur. Suppose at iteration ¢ — 1 the active
set is nonempty. The solution at iteration ¢ — 1 should satisfy
the Kuhn—Tucker conditions [13, p. 328]

vei-n@t Y

(55)

730—U)

+ Y ave (é“‘”ﬂ“-”):o (56)
key(dii-n)

where ¢ (6,d) is the kth row of ¢(,d) in (55) and V is the
gradient with respect to (7,48) and evaluated at 7 = 0,6 = 0,
i.e.,

vai-1 (9(%1)7&@_1)) — _DTE-DWi-1D,6=1) (57

If any Lagrangian multiplier o, < 0 in (56), we can relax
the constraint & from the active set 9, (&(i’l)). Now introduce
PU=1) consisting of the columns of P(~1) that correspond to
the inactive set, i.e., P(~1) is obtained similarly as in (41) but
the derivatives of G,, as in (32) are only with respect to ele-
ments of d that correspond to the inactive set. This implies that
we will only compute subdirections 5(1) as in (44) with PG—1)
being replaced with P(~1 . Define the selection matrix U®)
consisting of the columns of the identity matrix of size K X K
whose column indexes are found in the inactive set Q(a(i_l)).
The search directions for d are

6 = UM, (58)
Furthermore, instead of using (25) and (26), we introduce the
scale parameter A € [0, 1] for the search directions and propose
the updates as follows:
0" =" 4 a0
d® = g1 L \@O g

(59)
(60)

To find the optimal value for the scale parameter, denoted by
A9 we follow the approach in [22, p. 384]. First, define

; - A
A = sup,, { (d@—l) + ﬁa<l>> € 5} : 61)
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and

(=D Ao ga-v 4 é,;@)) 62)
1 I

gD\ =cC (()
where C(6, d) is the minimax cost function as defined in (23).
By using a quadratic regression over this minimax cost function,
the value of A%) is found from
dg) (A((f))

)\2
oA

)\Sl)inzargmgn g™ ()\gi)) —g® ()\(()i)) _

99 (25"

T

A+g0 (A)  ©3)
where )\(()i) = 0. Now, it can be seen that with this approach, the
convergence property of either Lemma 1 can still be achieved
with P¢~1 being replaced with PC~1 and z~Y being re-
placed with /\](r;)illz('i_l). Itis found in practice that with a reason-

able level of numerical accuracy, the proposed algorithm con-
verges within a few iterations.

IV. ASYMPTOTIC ANALYSIS

In this section, we study the asymptotic behaviour of the non-
linear M-estimates for asynchronous CDMA multiuser detec-
tion in non-Gaussian noise. By “asymptotic” we mean when
the code length becomes large, i.e., M — oo or, equivalently,
N — o0. We shall only focus on consistency of the estimate as
a full treatment is beyond the scope of this paper.

Recall that for the minimax solution used in this work, p(z)
is convex, and v (z) is odd symmetric and bounded. Strictly
speaking, the derivative of 1(z) does not exist at the corner
points. However, this can be relaxed in practice by introducing
a smooth version as shown in [29]. Hence, without loss of gen-
erality, we assume that () is differentiable over the real line.

Proposition 2: For asynchronous CDMA multiuser detection
as described by Equation (16), there exists no strongly consis-
tent estimate under the nonlinear M -estimation approach.

Proof: Note that this result also applies to maximum like-
lihood and least squares estimates of (16). We will prove this
result by assuming the converse is true, that the nonlinear M -es-
timates is strongly consistent. Then, as a direct consequence of
the results in [27], [31], [33], we would require that the min-
imum eigenvalue of D™D approaches infinity

A}im ymin(DTD) — 00 (64)
or, more conveniently, as a special case
Jim Ymin(HTH) — 00 (65)

where both H and D are evaluated at the true parameters, and
Ymin denotes the minimum eigenvalue. Note that following the
arguments in [31] this form is less strict than the form used in
[15]. Hence, it suffices to show that (65) is not met by prac-
tical systems. It follows from a standard result on the norm of
a square matrix (see, e.g., [5, p. 316]) that if a square matrix
A € R™*™ is positive definite, then

1
Ymin(A) < —||A]]? (66)
m
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where || - || denotes the Frobenius norm. Using this result, it re-
mains to show that the norm of H” H, or, equivalently, the norm
of H, is bounded.

For CDMA systems the code matrix is designed such that
Sk = (1/\/_) [ch,ch, ..., ck,]T to satisfy the energy require-
ment s} s, = 1, where {c] € {+1,—1}}}L,. The code cross-
correlation s;fsl € (—1,1) and limp;— 0 s;fsl — ok, Yk #
I. Tt follows that the norm of STS and hence Ypin(ST'S) is
bounded. From the definition of H in (13), the definitions of
H,, and H. after (12), and the definitions of h* and h;f in (11),
it follows that the norm of H is also bounded. ]

Although strong consistency cannot be asserted for the
problem of interest, weak consistency can be asserted under
special circumstances. Following [26], [30], and [31], we
require the following assumptions.

Assumption 4: For notational convenience, hereinafter we
denote the true parameters by woy = (6o, dp) and the estimates
by wy = (9N7 &N) There exists a compact set YW C RF+@
and Ny such that VN > Ny and w € W, the eigenvalues of
D7D are positive.

The next assumption concerns the noise distribution and the
choice of the penalty function.

Assumption 5: The penalty function p(z) is symmetric,
convex, and continuous on the real line. The zero mean
non-Gaussian noise has finite variance o2. Denote by
Fn(y,w) the multivariate cumulative distribution func-
tion For any w = (0,d) € ij:oo Cn(w)dFy(y,w) =
S et p(yn — hI(d)8)dF N (y, w) is finite.

Then, we have the following result.

Proposition 3: Suppose that VA > 0 andw € W

lim inf
N—oo|lw-wo|>2A

{Cn(w) = Cn(wo)} >0 (67)

in probablhty, then under Assumptlons 4 and 5, wy il wo,
meaning Oy il 0o, where L denotes convergence in proba-
bility and || - || denotes the Euclidean norm.

Proof: The proof of this result follows the same approach
in [31]. Details are given here for completeness. First of all,
recall that by definition it is @y that minimizes the cost function

N
Cn(w Z —h}(d)f) (68)
not wg. This means
CN(A ) C]\r((d()) < 0. (69)
The assumption in the proposition implies that VA > 0
lim P inf —Cn =0.
Jim r{”wg}opA(CN(w) Cn(wo)) < 0} 0
(70)
Now suppose the converse is true, that
A}im Pr{lloy —wo|| < A} =1 (71)
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Convergence property of estimators with the IRLS algorithm
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Fig. 2. Typical average cost function in non-Gaussian noise.

is not correct for some A > 0. Equivalently
Nlim Pr{/|loy —wo|| > A} > 0. (72)

Consequently, by the definition of wy, that is to minimize
Cn(w), it follows that

lim P C —Cn 0 0 73
i r{”w w0|\>A( N(w) = Cn(wo)) <0} >0 (73)
which contradicts (70). Hence, the proof follows. [ |

V. SIMULATION RESULTS

In this section, we present some simulation results to assess
the proposed approach in solving the asynchronous CDMA
multiuser detection problem in non-Gaussian noise. The
noise parameter settings for non-Gaussian noise described
in (4) are ¢ = 0.1,k = 100 and the total noise variance is
0? = (1 — e)v? + k2. We consider a CDMA system with
K = 4 users and a code length M = 31. The delays are
randomly generated d”' = [4.897, 23.247, 3.641, 24.231,].
User 1 is assumed to be the user of interest. We will compare
the proposed approach using the extended IRLS algorithm
(Section III-C) with the following:

* the method with perfect knowledge of the delays followed

by robust detection (Section III-A);

* the simple method (Section III-B) followed by linear LS

detection;

* the simple method (Section III-B) followed by robust de-

tection.

In the first simulation, we compare the proposed numerical
procedures for solving the nonlinear M -estimation problem. In
the first simulation, we measure the value of the global cost
function at each iteration to assess convergence using the IRLS
algorithm. A typical example for non-Gaussian noise is shown
in Fig. 2. As can be seen, 99% convergence can be reached
within ten iterations. It is noted that since the true parameters
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BER performance in non-Gaussian noise
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Fig. 3. BER performance in non-Gaussian noise, £ = 0.1, x = 100.

are not the solution of the finite sample optimization problem,
the curve for the method with perfect knowledge is above the
proposed nonlinear M -estimation curves.

In the second simulation, we assess the BER performance
for non-Gaussian noise. All users have the same power, and
the SNR ranges from O to 5 dB. Results are given in Fig. 3.
Again, the two numerical procedures yield approximately the
same BER performance. Compared with the simple method fol-
lowed by robust detection, a performance gain of 8 dB can be
achieved at SNR = 5 dB, and this increases with the SNR. The
simple method followed by linear LS detection obviously suf-
fers from a large performance loss.

In the third simulation, we look at the BER performance
when the other users have stronger power than user 1. This is
known as the near—far problem in CDMA systems. We keep
the SNR = 2 dB and vary the near—far ratio (NFR), that is
the power ratio of any other user compared to user 1, from
0 to 10 dB. The simulation is conducted using non-Gaussian
noise. The result is given in Fig. 4. It is observed that the
simple method followed by robust detection is more sensitive
to the near—far problem, while the proposed method is more
near—far resistant. For the simple method followed by linear
LS detection, non-Gaussianity is the dominant problem; hence,
it exhibits less sensitivity to the near—far problem within the
simulation settings.

Finally, we investigate the case where the noise is Gaussian.
All users have the same power. The result is given in Fig. 5. It
is observed that the proposed method and the simple methods
achieve similar BER performance.

In all simulations, we have not included the maximum like-
lihood estimate, i.e., when p(z) is replaced with — log f(x).
The reason is that the nonmonotonic nature of the score func-
tion —f’(x)/ f () leads to numerical accuracy problems. How-
ever, as noted from the remarks in previous section, in terms of
asymptotic MSE, this can be directly inferred by replacing v ()
with — f'(x)/ f(x). In practice, where some prior knowledge of
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BER performance in Gaussian noise
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Fig. 5. BER performance in Gaussian noise.

the delays might be available and if a strictly constrained opti-
mization problem can be set up, it is possible to get closer to the
perfect knowledge curve.

VI. CONCLUSION

A novel nonlinear M -estimation approach has been proposed
to solve the asynchronous CDMA multiuser detection problem
in non-Gaussian impulsive noise. Even though we only consid-
ered the simple case to simplify the derivation, extensions to
more realistic situations, including fading and multipath chan-
nels are possible. The proposed approach is developed on the
reasonable assumption that some preliminary estimates of the
delays (nuisance parameters) are available through the initial
acquisition phase using standard delay estimation techniques.
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This approach is an extension to linear M -estimation and is suit-
able for detection in non-Gaussian noise. In contrast to many
previous works, we have paid more attention to computational
procedures for solving the nonlinear optimization problem. Ex-
tensions to the IRLS and MR algorithms for linear M -estima-
tion have been presented and shown to achieve convergence.
Simulations demonstrate considerable performance gain can be
achieved over conventional methods. We have also conducted
a brief asymptotic study and established weak consistency and
the asymptotic covariance matrix of the estimator. The proposed
nonlinear M -estimator can be applied to practical applications
other than multiuser detection, for example array signal pro-
cessing, where a similar nonlinear M -estimation problem can
be formulated.

APPENDIX A

PROOF OF PROPOSITION 1
, (@)
Proof: Introduce A() = [;(i) ]. We rewrite the optimiza-

tion problem (33) as
. . ) T
AW = arg mAin (z(z_l) — D(l_l)A)

x WD (z(=D) _pE-DA) (74)
= arg min u (A TWEDu=DA). (75)
Following the approach in [7], we study the function
7(A) = %uT(i—l)(A)W(i—l)u(i—l)(A)
N N
_ Z 0 (ug’l)(A)) + Z P (Znifl))
n=1 n=1
_ %Zumw(z‘fl)z(i*l)_ (76)
It can be verified that
7(0) = 0. (77)
Denote by dg(i_l) the nth row of D1 We have
% — _DTE-DWiE-D (5= _ pl-DA)

N
+3 diVy (zg"—U - dfﬁ—l)A) . (78)
n=1

Due to the definition of W(=1) as in (38), it can easily be ver-
ified that

0Z(A)
i S =0. 79
35 ™
Continuing, we have the second derivatives
0’I(A)
OAOAT

— DT(i—l)w(i—l)D(i—l)
N
R (el G (z,(:’_l) - d,{“—l)A) (80)
n=1
T(i—

I)W('i,—l)D(i—l) _ DT(i—l)v(i—l)D(i—l)
(1)
(82)

=D

— DTGE-1) (W(a',—l) _ V(i—l)) DG-1
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where VO=1 = diag(y/ (""" —d{ “TVA), (25T -
dﬁ(z_l)A)). Since v(z) is odd symmetric, and v (z)/x is
monotonically decreasing for x > 0, it is straightforward to
show that ¢ (z)/x — ¢'(x) > 0,Vx # 0. Hence

9?°I(A) ‘
0AIAT |, _,
()
_ pTG-1) |3 ot [ (i=1) (i—1)
=D diag D ) (zn ) D
(83)

is positive definite. Therefore, Z(A) > 0. Now substituting

A AD_ (DTu—l)W(i—l)D(i—l))’l

XDT(i—l)w(i—l)z(i—l) (84)

as the solution for the search directions at iteration z, we have

7(AGY) > 0. (85)

Finally, noting that the second term of the left-hand side of (76)

is C(@w, &@)), while the third term is C(é(l_l)7 (Al(ifl)), and

after some straight forward manipulations, we obtain the in-
equality in Proposition 1. |
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