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Abstract—This paper proposes an efficient adaptive realization
of the Wiener model for the identification of complex-valued non-
linear systems. Using a two-dimensional simplicial canonical piece-
wise linear filter for the complex-valued nonlinear mapping, we
derive a realization of the Wiener model requiring fewer param-
eters than previous approaches. An adaptive implementation of
the proposed Wiener model is derived, and local convergence anal-
ysis for the updating algorithm is presented. The tradeoff between
computational complexity and modeling performance is discussed.
Simulations of a system identification example show that the pro-
posed algorithm can provide similar or better performance than
other approaches in terms of computational complexity, conver-
gence speed, and final mean-squared error (MSE).

Index Terms—Adaptive estimation, adaptive filters, adaptive
systems, identification, nonlinear filters, nonlinear systems, signal
processing.

I. INTRODUCTION

L INEAR adaptive filtering algorithms are useful in several
applications where the signals can be modeled as Gaussian

noise applied to linear systems [1]. However, requiring strict lin-
earity of all the equipment is costly, and especially problematic
in the power amplifiers of the transmitter, where high linearity
often means low efficiency and thus trouble with power feed and
heat generation [2]. This is a pressing problem in future wide-
band mobile communications systems, which employ the or-
thogonal-frequency-division multiplexing (OFDM) with partic-
ularly large dynamic range for the signal amplitude [3]. Instead,
it may be more advantageous to increase the used dynamic range
of the amplifiers in the nonlinear region. This means that non-
linear system models need to be able to accurately capture the
system performance.

A major drawback of general functional series forms [4],
[5] for describing an input–output nonlinear relation, like the
Volterra and Wiener descriptions [6]–[8], is the excessive
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number of parameters involved due to the memory of the
system and the degree of nonlinearity. Therefore, they are
not very useful for online implementations due to the high
computational demand they imply, especially for the case of
higher order kernels. A simplified form of the general Wiener
representation leads to what is known in literature as the Wiener
model. The use of Wiener models has been treated in the
literature in various contexts like chemical processes [9]–[12],
biomedical engineering [13]–[15], and control [16]–[18]. The
Wiener model is composed of a linear dynamic part followed
by a static nonlinearity. Wiener models have been successfully
used in many applications [7], [19], [20], and it is shown in [21]
that the class of time-invariant systems with fading memory can
be approximated arbitrarily well with a Wiener model.

For the parameterization of the Wiener model, various
alternatives are possible. For example, the linear part can be
represented by finite-impulse-response (FIR), rational [22],
Laguerre [23], Kautz [24], or linear state-space models [25]. As
for the nonlinear static part, power series, Chebyshev polyno-
mials, neural networks, wavelets, and piecewise linear (PWL)
functions have been proposed [22], [26], [27]. An interesting
discussion to justify the tuning of the static nonlinearity was
presented in [28]. The number of parameters used in the two
parts of the Wiener model affects the final modeling capability.
Often, reducing the number of parameters in the linear dynamic
part will cause an increase in the number of parameters in the
nonlinear static part, if similar modeling capability is to be
maintained [25]. A complete characterization of recursive iden-
tification methods for a Wiener model consisting of a rational
model followed by a piecewise linear nonlinearity was reported
in [22], where also local convergence results were established.

In a series of detailed articles, the analysis of stochastic gra-
dient algorithms, with baseband signals, and for different vari-
ants of the Wiener model were considered [29]–[31]. These
results are similar to the analysis of stochastic algorithms for
neural networks (see, for example, [32]–[34]).

In [29], a Wiener model for Gaussian inputs and with input
and output noise was studied. The Wiener model considered was
formed by a FIR linear part and a static nonlinearity with known
shape but unknown input and output gains. Stochastic gradient
adaptive identification algorithms were studied when the non-
linear system operates in a small region in the neighborhood of
a bias point.

One of the alternatives considered there was a two-step
scheme. In the first step of this alternative they obtain estimates
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of the parameters using only the FIR model. The second step
involves a Wiener model, with a linear part with the parameters
obtained in the first step, looking to estimate the parameters
of the static nonlinear part. As demonstrated using a usual
small step-size approximation, the linear part is identified in the
first step except for a time-varying scale factor. The input and
output gains of the nonlinearity of a known shape are obtained
in the second step. An alternative algorithm is to estimate the
parameters of the linear and nonlinear part simultaneously. As
a general result, the input affects both schemes in a similar way.

A complete analysis of the mean-squared error (MSE) be-
havior of the two-step scheme using stochastic gradient algo-
rithms was presented in [30] (see also [35]). In that case, a poly-
nomial static nonlinearity was considered and no input noise
was assumed. Although not explicitly discussed there, using
the small step-size approximation, they justify the approximated
statistical independence between the procedure of two estima-
tion steps. Using this assumption for the linear part, convergence
in the mean and in the MSE sense to the minimum can be ob-
tained. These stochastic gradient analysis results were further
extended in [31], considering both the two-step and the simul-
taneous schemes when the static nonlinearity is time varying.

In this paper, we focus on implementations of the Wiener
model for complex-valued signals, rather than the commonly
treated case of real-valued signals. The motivation is that many
recent nonlinear modeling applications, e.g., communications
systems [36], require processing of complex-valued signals.
The goal is to develop a low-complexity realization of the
Wiener model suitable for implementation using efficient
adaptive signal processing algorithms.

Considering an adaptive implementation of the complex
Wiener model, the complex least-mean-square (CLMS) al-
gorithm [37] is a possible choice for identifying the linear
dynamic part. The problem of a suitable complex static nonlin-
earity description has been addressed with diverse techniques.
Considering neural networks, when using the complex back-
propagation algorithm [38], [39], the choice of a suitable fixed
activation function [40] does not seem to have an evident
solution. Recently, a Wiener filter with a fixed static activation
function was proposed in [41]. Together with this structure,
the authors derived a normalized nonlinear complex-valued
gradient descent algorithm.

This paper proposes a novel complex Wiener adaptive filter
consisting of an FIR linear part and a particular PWL represen-
tation of the nonlinearity, referred to as the complex-valued sim-
plicial canonical piecewise linear (CS-CPWL) filter [42]. The
use of CS-CPWL functions allows the representation of any ar-
bitrary continuous memoryless mapping between two variables.
This mapping implies more complete modeling capabilities than
other representations of the static nonlinearity of similar com-
putational complexity (see [43]–[45]). The proposed algorithm
can be seen as an extension of [41] to the case of adaptive non-
linear gain.

The properties and characteristics of the CS-CPWL filter are
presented as follows. General aspects of the piecewise linear
representation are reviewed in Section II. The description of the
CS-CPWL algorithm for complex signals and some modeling
issues are presented in Section III. Section IV presents a local

convergence study and discusses the implementation of the pro-
posed algorithm. In Section V, a numerical simulation example
is provided illustrating the performance of the proposed algo-
rithm in a system identification application. Finally, Section IV
draws the conclusions and makes the final observations.

II. HIGH-LEVEL PWL REPRESENTATION

This section reviews the PWL function which is an attractive
tool for nonlinear modeling. Extensive research has been carried
out in the last three decades to find general, efficient, and com-
plete PWL representations (see, for example, [46]–[52]). The
basic idea of the PWL function is to approximate a nonlinear
function by a series of linear functions defined in properly par-
titioned subregions of the original definition region.

Recently, a systematic way to generate the PWL representa-
tion for arbitrary (continuous) domains in a more compact and
efficient form was introduced in [53] and [42]. This PWL repre-
sentation uses the concept of simplicial partitions (simplex) of
the domain of interest. In the general simplicial canonical piece-
wise linear (SCPWL) representation, the nonlinear mapping of

, , is given by the combination of basis represen-
tations as

(1)

where each component of is defined in a rectangular com-
pact domain for , where is the
number of partition segments and is the grid size. The vectors

with contain the basis vectors
ordered according to their so-called nesting level [53] and the
linear weighting coefficients

An important parameter contributing to the computational
complexity of (1) is the dimension of the basis representation
for the nesting level , i.e., , where (as defined in [53]) ,
and

(2)
In the particular case when all the dimensions in have the
same number of partitions, i.e., , (2) reduces to

(3)

From (3), we see that problems requiring high dimension
and many partitions for the implementation of the simplicial
CPWL mapping result in a huge number of parameters, i.e., a
high computational complexity. This is the main practical limi-
tation of any PWL approximation. To further decrease the com-
putational complexity, reduced-order model techniques can be
used that incorporate knowledge of the nonlinearity to be mod-
eled [42]. These techniques are based on the close relationship
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between the general CPWL model description and a complete
Hilbert space representation. Some simplified alternatives, con-
templating nonlinear prediction, have been proposed in [26].
A solution regarding low computational complexity when only
real-valued signals are involved is discussed in [27].

The rest of this paper is devoted to the particular PWL repre-
sentation obtained in [42] for the domain in order to derive
an efficient realization of the Wiener model for complex-valued
systems. We assume that each dimension has an equal number
of partitions . In this case, the number of parameters in is

(4)

The interested reader is referred to [53] and [42] for a more
detailed description of the general PWL mapping.

III. REDUCED-COMPLEXITY WIENER MODEL

This section considers a reduced-complexity Wiener model
consisting of an FIR linear part and a PWL description for
the static nonlinearity. For this purpose, we first extend the
work in [27] to the case of complex-valued signals and derive
a CS-CPWL realization. Thereafter, a low-complexity adaptive
implementation is derived for the considered Wiener model.
The section ends discussing some issues concerning the pro-
posed realization.

A. CS-CPWL Filter

For the derivation of the CS-CPWL filter representation, we
need to express the input and output signals to the model as com-
plex-valued quantities. For this purpose, we employ the repre-
sentation frequently used for deriving complex Wiener filters,
where and are
the complex-valued input and output signals, respectively.1

The proposed Wiener model consists of a complex-coeffi-
cient linear FIR filter cascaded with a two-dimensional piece-
wise linear function. The complex-valued output of the FIR
filter is given by

(5)

where is the input-signal
vector and denotes the Hermitian (transpose with complex
conjugation). Since the complex-valued output from the linear
dynamic filter can be expressed using its in-phase and quadra-
ture components, i.e., , we can form
the complex-valued output from our Wiener model using
a two-dimensional simplicial CPWL function [42] (one dimen-
sion for and one for ). Using (1), we can build the
mapping as

(6)

where is a vector containing the parameters associated
with the nonlinear static representation and is
a vector function depending on the partition of the output
from the linear part of the Wiener model.

1R and I represent the real and imaginary parts, respectively

Each sector of the simplicial partition [42] is given by

for . In this form, divides each component
of the domain in partitions, with .

Based on this description, is defined by

(7)

where is the zero-order basis (nesting level)

(8)

is the first-order basis with whose th entry is
given by

if
if

(9)

and is the second-order basis,
whose th entry is defined by

if
if

(10)

for . Thus, (7) and the terms (9) and (10) define
a second-order simplicial canonical PWL suitable for complex
filtering.

Using this definition, each element of the basis will be
bounded. To see this, note that tends to 0 when
and to when . Similarly, is also bounded
since it is defined in terms of . From (7)–(10), note that if
only and are used for the mapping, we obtain a solution
that considers separate filtering of the real and imaginary parts,
i.e., one real-valued SCPWL function for and one for

. This split complex approach will not provide the best
solution [41]. It is therefore necessary to include to yield a
fully complex mapping.

Fig. 1 illustrates the approximation capabilities of each
nesting level. From this picture, it is clear that nesting level 0
enables the representation of constant functions. Nesting level 1
allows the description of continuous functions that are linear on
each squared partition of the domain. If we want to have higher
resolution (approximation on each triangle), it is necessary to
use the nesting-level-2 terms.

Obviously, the number of parameters increases with the
nesting levels. Because the in-phase and quadrature compo-
nents are divided in sectors, the number of coefficients
in is given by (see (4)). In
this way, the number of coefficients related with nesting level
0 is one, the number of terms for the nesting level 1 is ,
and the level two requires coefficients. For example, with

5 partitions we will have 36 coefficients.
Note that in this approach we used a basis in to describe

a complex function. Therefore, the real and imaginary compo-
nents of the filter are obtained by taking the real and imaginary
components of , respectively.
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Fig. 1. Different nesting levels for the piecewise linear representation.

In addition and different from the case of the split complex
approach where an entire region has no well-defined gradient
[41], [60], the proposed fully complex PWL model has only a
finite number of such points.

B. Adaptive Wiener Model Implementation

For the adaptive implementation, we need to derive updating
recursions for both the nonlinear static part and the linear dy-
namic part of the Wiener model, i.e., for and . In order to
keep the computational complexity of the implementation low,
a complex-valued stochastic gradient algorithm is derived that
minimizes the mean-squared error given by

(11)

where is the nonlinear filter output,
estimating the desired model output .

In order to minimize of (11), it is possible to imple-
ment a steepest-descent algorithm to reduce the instantaneous
error , yielding the following update equations:

(12)

(13)

where and are the step sizes controlling the convergence
and final error of and , respectively, and and
represent the gradient estimates of the error function with re-
spect to and , respectively. Using differentiation techniques
for complex-valued vectors [54], we get

(14)

(15)

where

and

(16)

with the following:
• is the gradient of the first-order basis whose

th entry is defined by

if
if

(17)

• is the gradient of the second-order basis
with respect to the in-phase component whose
th entry is given by

if
if

(18)

for ;
• is the gradient of the second-order basis

with respect to the quadrature component whose
th entry is given by

if
if

(19)

for .
In (17)–(19), is defined as

(20)

such that the gradient value at the edges of the partitions equals
to zero.

To summarize, Tables I and II present the complete
CS-CPWL algorithm. The simplest initial condition for
the linear parameters can be assumed to be a null vector. The
nonlinear parameters can be chosen to define a unit gain at
the static nonlinearity, i.e., , , ,
and for 0, 1, , for sectors.

C. CS-CPWL Modeling Issues

Some aspects of the CS-CPWL algorithm modeling capabil-
ities are discussed in the following.

• Filter realization: user-defined segments. The simplicial
partition used in this paper differs from other PWL descrip-
tions (e.g., [44] and [51]), since the parameters are spec-
ified a priori. This user-defined specification leads to a re-
duction in the number of parameters to be estimated and
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obviously simplifies the adaptation algorithm as the error
function becomes linear in the set of parameters describing
the nonlinearity.

• Fixed nonlinear mapping (known a priori) is not neces-
sarily invertible. An important point in the identification
of the nonlinear block of the Wiener structure is the exis-
tence of the inverse of the nonlinear function. This is an
important limitation of most of the identification methods.
However, if the nonlinear function is known a priori, and
we need to identify only the linear block, the inverse of the
nonlinear mapping can be relaxed [25]. Moreover, in some
applications the inversion of the nonlinearity can lead to
severe amplification of measurement noise.

• CS-CPWL mapping versus other alternatives. There are
alternatives for the PWL mapping to describe the nonlinear
block. The use of power series has the drawback that the
approximation at points not included in the data set may
be poor [25]. Another alternative is to use neural networks,
but this choice makes the parameter estimation harder. We
can also use hinging hyperplanes [55]. In fact, the PWL
approach used here can be interpreted as a generalization
of hinging hyperplanes.

IV. CONVERGENCE ANALYSIS

In this section, a convergence analysis of the proposed al-
gorithm is carried out using the ordinary differential equation
(ODE) method [56].

Also other approaches for the study of convergence are pos-
sible. As referenced in the Introduction, several algorithms for
a real-valued Wiener model were studied in detail in [29], [30]
with an analysis of convergence in the mean and mean square
error. Even when the results are limited to an FIR filter for the
linear part of the Wiener model, convergence of parameters in
the mean and MSE is characterized. To this purpose, two basic
assumptions are used: the independence theory (not always re-
alistic but useful in terms of theoretical analysis) and also the
small step-size approximation.

Considering applications where the linear part of the Wiener
model could be more general than an FIR filter (i.e., a filter
with orthogonal rational transfer functions), we follow the ODE
approach. The ODE approach, in addition to being a general
proved analysis tool, gives results that seem to be easier to ex-
tend for future study. The cost of this extension possibility is that
we can only prove local properties of the algorithms involved.

A. Static Gain Requirement

In order to proceed with the characterization of convergence
properties of the CS-CPWL algorithm, we need to discuss the
nonlinear Wiener model parameterization. Due to the cascade
form of the Wiener filter, one specific partition of the PWL de-
scription of the static (differential) gain must be fixed for either
the linear filter part or the static nonlinearity2 [7]. In general,
fixing the static gain avoids the existence of an infinite number
of minima.

2Note that we can multiply the linear block by a constant � without changing
the complete model if the nonlinear block is multiplied by a constant 1=�.

Since the information to solve this problem is generally not
available with input-output data, additional knowledge is re-
quired to fix the static gain. As discussed in [7] (see also [22]),
anchoring the static gain of the linear part is not a good solu-
tion because the range of the output of the linear part is not
known a priori. As a consequence, with an inappropriate dy-
namic range for , the estimation of the static nonlinearity
will not work properly. In addition, if a closed-loop application
is considered, the behavior of the Wiener model is not adequate
[6]. Therefore, we assume that the static gain is fixed at the static
nonlinear part of the nonlinear filter for a particular simplex .

B. Main Result

The ODE for the stochastic gradient-based algorithm pro-
posed in this paper is related to the one obtained in [22], which
also studied local parameter convergence for nonlinear Wiener
models. Here, we extend the results of [22] to the case of com-
plex-valued parameters and the particular case of a CS-CPWL
description of the static nonlinearity.

A basic extension of the ODE analysis to complex-valued sig-
nals was presented in [57]. The extension can be summarized as
basic regularity conditions that can be verified for the proposed
CS-CPWL algorithm. These conditions are related to the dif-
ferentiability and boundedness of the criterion and the average
direction used. They are easily verified in general, since the only
difference from the approach in [22] is the bounded static com-
plex nonlinearity that is differentiable everywhere except at the
partition limits. Due to space limitations, we refer the reader to
[57] and [22] for the technical details of the ODE analysis.

By defining and , the ODE
associated with the CS-CPWL filter is

(21)

Assuming that the true nonlinear model is described by the
CS-CPWL filter except for the bounded zero-mean measure-
ment noise (assumed to be a stationary stochastic process
not correlated with input ), it can be easily verified that
a stationary point of the proposed algorithm corresponds
to the solution of . This rather restrictive
assumption is usually made [44], [58].

With local convergence properties in mind, a linearization of
(21) in the neighborhood of a stationary point leads to the
following expression:

(22)

In this way, using the definitions from (14) and (15), we
obtain

(23)
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Convergence can be guaranteed if the eigenvalues of
have positive real part. Note that, by construction, is
Hermitian and positive semidefinite. Therefore, convergence is
automatically assured if is positive definite.

In order to guarantee the positive definiteness of , the
static (differential) gain is fixed at some sector (simplex) of the
static nonlinearity. Using the CS-CPWL description of the static
nonlinearity, this means fixing an element of for some partition
interval such that

(24)

for some positive constant .
Following the convergence analysis, we can extract the con-

tribution of in the interval . This can be performed
using the gate function defined by

if
otherwise

(25)

where is the output of the linear part.
Convergence results related to the CS-CPWL algorithm are

summarized in the following theorem.
Theorem 1: Consider the CS-CPWL algorithm described in

Tables I and II. Assume the following.
1) is a bounded, zero-mean stationary stochastic process

persistently exciting of order .
2) The bounded, zero-mean measurement noise is a sta-

tionary stochastic process not correlated with input .
3) is such that the probability density function of

(the output of the linear part of the Wiener model at a sta-
tionary point) fulfills in at least one parti-
tion .

4) , for some constant
.

5) The Wiener system to be identified corresponds to the
model set, i.e., the linear part is an FIR filter of order
and the static nonlinearity of the system is contained in
the complex PWL model set.

6) , for some posi-
tive constant and for .

Then, the proposed algorithm is locally convergent to a sta-
tionary point .

Proof: See the Appendix.
Some comments regarding the convergence assumptions and

properties are as follows.
• Assumptions 3 and 4 imply that the input signal

should have sufficient energy located at any arbitrary sim-
plex (Assumption 3) and also at the particular simplex

, where the static gain is fixed. This implies conditions
for the amplitude distribution of the input signal.

• Different from other criteria than the mean-squared output
error, no positive real condition is needed. This is coherent
with the results of [22].

• Global convergence can be verified for real-valued signals
using a simplified two-step scheme with a known static
nonlinearity [29].

TABLE I
COMPLEX-VALUED SIMPLICIAL CPWL ADAPTIVE FILTER ALGORITHM

• The essential characteristic of the CS-CPWL algorithm
is the improved modeling capability of the high-level
representation of the complex static nonlinearity, i.e., the
second-order nesting level of the CS-CPWL algorithm.

V. COMPUTATIONAL COMPLEXITY AND

IMPLEMENTATION ISSUES

The steps of the CS-CPWL filter implementation are sum-
marized in Tables I and II. The only nonstandard feature in the
implementation is the evaluation of absolute values. It involves
fewer parameters than necessary in [44] (which was presented
for the real domain case). The main difference between the im-
plementations is that for the CS-CPWL realization we only need
a single FIR filter. Other adaptive filtering algorithms than a
stochastic gradient-based algorithm can be used for estimating
the parameters of proposed the CS-CPWL realization. The sto-
chastic gradient version was used mostly to illustrate the char-
acteristics and convergence of the CS-CPWL description.

Implementation issues of the CS-CPWL algorithm are dis-
cussed below.

A. Selection of PWL Segments

A key aspect of the proposed algorithm is the selection of the
partition for . The CS-CPWL algorithm uses
a fixed set of grid points, which is the same for the in-phase
and quadrature components. The interval must coincide
with the range of the signal (and ) keeping in mind
that the linear part of the Wiener model may be time varying.
This is solved by choosing the interval wide enough
with respect to the variation of the linear filter parameters and
the input-signal range. Choosing the interval too small
is not expected to cause any problems for the practical case when
the nonlinearity is bounded. After choosing , the interior
points need to be determined. If we have knowledge of the non-
linearity, a higher density of points can be used in the intervals
where the slope of the nonlinearity changes significantly than in
the intervals where it is close to linear. However, if we do not
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TABLE II
COMPLEX SIMPLICIAL CPWL ADAPTIVE FILTER ALGORITHM (CONT. TABLE I)

know anything about the nonlinearity, it is common practice to
choose a uniform partition.

B. Tradeoff Between Flexibility of the Linear Part (FIR) and
Modeling Capabilities

An FIR model is used for the linear part of the Wiener model.
In general, this involves a large number of parameters. It is pos-
sible to reduce the complexity of this part of the model using
the Kautz basis with fixed poles [59]. In order to improve the
modeling capability of the PWL description, we should increase
the number of sectors. This implies an increased number of pa-
rameters in . For example, if we duplicate the number of sec-
tors (from to ), the number of parameters increases by

(see (4)).

C. Step Sizes and

Following the ideas of [44], it is possible to bound the param-
eters and . In order to guarantee stability of (12), step size

should be chosen as

(26)

where is the maximum eigenvalue of the matrix
. To obtain a useful bound on , it can be

noted that [see the equation at the bottom of the next page].
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TABLE III
COMPUTATIONAL COMPLEXITY COMPARISON.N : DIMENSION OF THE INPUT-SIGNAL VECTOR, P : ORDER (IN THE CASE OF VOLTERRA AND WIENER FILTERS) AND

NUMBER OF SECTORS IN THE CS-CPWL)

In the last step, we use the fact that the entries of
only include terms 0, 1

or . Therefore, a tighter bound for the step size is

(27)

Similarly, to ensure the stability of (13), step size is chosen
as

(28)

where is the maximum eigenvalue of the matrix
. A practical bound for can be obtained

by

In the last step, we used the fact that the first entry of
is bounded by 1, and the rest by . Then

(29)

D. Computational Complexity

The computational complexity in terms of the number of mul-
tiplications (for filtering and coefficient updates) is shown in
Table III for five different adaptive filtering strategies whose per-
formances will be evaluated in the next section.

1) The complex LMS (CLMS) filter [54]. Included here to
provide a benchmark for linear filtering techniques. The

filter proposed in [29] is a CLMS filter followed by a pre/
postscaled normal distribution function (norm cdf).

2) The CLMS filter followed by the elementary activation
function [60] illustrating the capability of such fixed-shape
function to represent nonlinear complex-valued functions.3

3) The Volterra filter approach used, e.g., in [61] for nonlinear
equalization of digital satellite channels.

4) The Wiener model formed by a complex FIR filter and a
polynomial, used, e.g., in [62] in the context of adaptive
precompensation.

5) The Wiener model consisting of a complex FIR and the
proposed CS-CPWL filter.

In Table III, represents the number of taps at the input of
the filter and represents the order (in the case of Volterra and
Wiener filters) and the number of sectors in the CS-CPWL. The
filter proposed in [29] has a complexity similar to the CLMS al-
gorithm (increased by four parameters in order to prescale and
postscale the nonlinear gain). Note that this filter also requires
the implementation of the normal distribution function. From
this table, the Wiener model with a polynomial nonlinearity has
a lower number of parameters than the proposed CS-CPWL im-
plementation (for the same ). However, for the same level
of approximation, in the Wiener polynomial filter should be
larger than the number of sectors in the CS-CPWL. For the
CS-CPWL implementation, it is necessary to compute , which
only implies computing absolute values of known quantities.

VI. SIMULATION EXAMPLE

In this section, the modeling capability of the CS-CPWL filter
is illustrated by identifying a nonlinear Wiener model whose
linear part is given by [61]

3Other elementary functions were tested (atan, asin, th). The best perfor-
mance for the example in Section IV was with a sin.
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TABLE IV
SIMULATION PARAMETERS FOR DIFFERENT NONLINEAR FILTERS

Fig. 2. Nonlinearity associated to the real and imaginary QAM signal compo-
nents.

where , ,
, and . The static nonlinearity

of the plant to be identified is given by [44]

where is a complex, bounded, and zero-mean noise
sequence and is a non-constant-modulus QAM signal.
Fig. 2 illustrates the nonlinearity for the real and imaginary
components, and Fig. 3 depicts the 16-QAM constellation
before and after passing through the specified nonlinear system.
The signal-to-noise ratio is fixed to 40 dB.

The strategies in Table III were implemented in order to com-
pare their modeling capability. The number of coefficients used
with the linear part and the nonlinear part for each approach
can be found in Table IV. The number of parameters used was
1364 with the Volterra, 24 with the polynomial, and 104 with
the CS-CPWL approach. The number of parameters was se-
lected to obtain a good steady-state error. The step sizes kept
constant during the adaptation and were selected to obtain com-
parable convergence speeds (but ensuring the convergence). The
CS-CPWL has a relatively high number of parameters but the
complexity for their adaptation is low.

Fig. 4 depicts the MSE versus the number of iterations for
the different strategies. The curves were obtained by averaging

Fig. 3. Typical distorted 16-QAM signal constellation.

100 independent realizations. The step sizes for the proposed
CS-CPWL approach were chosen as and

to be in accordance with the bounds in (27) and (29).
In the adaptation of the nonlinear parameters, the value of
(where is the entry associated with the second-order basis
element that contains ) is extracted from the adaptation
procedure and computed at each iteration to obtain the condition
of (24) with . The Wiener polynomial of order 12 was
also adapted using an LMS algorithm, and the step sizes for the
linear and static nonlinear parts were chosen as and

, respectively.4 The fifth-order Volterra filter was
updated using an LMS algorithm with individual step sizes for
each order, where , , ,

, and . The realization in [29] is also
included in the comparison. For that purpose, the simultaneous
adaptation of the linear part and the gains related to the known
shape static nonlinearity is performed. The step sizes used in that
case are for the linear CLMS, and ,
for the adaptation of the prescale and postscale parameters of the
nonlinear gain. Note that since the filter in [29] is real-valued, a

4Simulations (not included) for several polynomial orders, using different
step sizes, were performed. The step size in each case was chosen following
a tradeoff between stability of the corresponding algorithm and mean-squared
error. For orders higher than 30, the algorithm diverges. The best result was ob-
tained for order 12, but the final error is still larger than that of the CS-CPWL.
Modifications on the step sizes cannot reduce the error further.
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Fig. 4. Mean-squared error (MSE) for different nonlinear filtering schemes.

split complex structure is required. Since this structure does not
follow a full complex filtering, as in the case of the CS-CPWL
filter, this result should be considered carefully.

As can be seen from the figure, the performance in terms
of obtainable convergence speed is similar for almost all the
studied structures. In particular, the CS-CPWL algorithm
presents a good speed in the first portion of the curve but slows
down close to steady state.

The linear CLMS filter shows a large final error. This is be-
cause the saturation effect of the nonlinearity is not modeled.
The use of the function as nonlinearity does not improve
this value. This is due to the fact that the function introduces
saturation at the output but this saturation is not adapted to the
real systems. In the original application [60], elementary func-
tions (like ) were used as part of a neural network realization.

The performance of the Volterra filter is inferior to that of
the Wiener model with CS-CPWL and polynomial filters. This
is coherent with the well-known sensitivity of the truncated
Volterra model to the input data which leads to numerical prob-
lems in parameter estimation [4], [5]. To improve the results of
the Volterra filter, more parameters will be required.

The Wiener model with a polynomial static nonlinearity
presents a larger final error than the CS-CPWL. The use of
smaller step sizes cannot reduce the error further (simulations
not included). The problem with the polynomial model is
that it does not provide a good basis for describing general
nonlinearities because a high number of parameters is required.
In order to improve numerical properties for high-order cases,
it is possible to use orthogonal polynomials [63].

The low complexity realization of [29] presents better final
errors than other alternatives that use fixed nonlinear functions.
However, a better performance is obtained when it is possible
to adapt the shape of the nonlinearity (not just the scale), like in
the proposed CS-CPWL algorithm.

Fig. 5 shows the MSE versus the number of iterations for
four different values of the segment size of the CS-CPWL

Fig. 5. Mean-squared error (MSE) for CS-CPWL algorithm with different seg-
ment sizes �.

algorithm. The curve was obtained by averaging 50 realizations.
As can be seen from the figure, a better approximation can be
obtained when the number of parameters increases (the segment
size gets smaller). However, the computational complexity will
increase.

To summarize, the tradeoff that the CS-CPWL realization in-
troduces in terms of computational complexity and MSE per-
formance is better than for the Wiener filter with polynomial
static nonlinearity, or other reduced complexity schemes. This
is due to the increasing modeling capabilities of the CS-CPWL
for high-order approximations.

VII. CONCLUSION

This paper proposed a low-complexity nonlinear Wiener
model consisting of a complex-valued simplicial canonical
piecewise linear (CS-CPWL) filter. The resulting structure
needs fewer parameters than others found in the literature and
converges fast to a low MSE level. An adaptive implementation
was derived and a local convergence analysis was carried out
using the ordinary differential equation (ODE) method. The
low computational complexity is due to the special user-de-
fined partitions of the static nonlinear function of the Wiener
model. Furthermore, the a priori defined partitions make the
error function linear in parameters describing the nonlinearity.
This a priori information can usually be easily extracted in
the modeling and linearization of nonlinear wideband power
amplifiers in communications systems.

The performance of the proposed Wiener model using a
CS-CPWL filter was tested in a system identification setup. The
results show that using the proposed structure, an improvement
in the MSE can be achieved as compared to the widely used
Wiener model with a polynomial static nonlinearity. Further-
more, the polynomial model is also prone to unstable behavior
for high orders.
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APPENDIX

PROOF OF THEOREM 1

The proof follows similar steps as in [6] and [22], with some
differences in the used static nonlinearity. Using the definition
of the function in (25), we can write

where [see the equation at the bottom of the page], where
is the vector which concentrates the entries of the basis related
with the sector . The th entry of this vector is

if for and for the
other entries.

Note that . Before proceeding,
we consider the following.

Lemma A1 [6]: Consider the block matrix

(30)

If the following holds:

then (30) is positive definite.
By invoking Lemma A1, is positive definite and local

convergence of the CS-CPWL algorithm is established if
and , as shown in the following section.

Positive Definiteness of and : Following the definition
of , by fixing the static nonlinearity at the partition interval
means that

Assuming now that

(31)

and assuming a zero mean input, we finally obtain

if the input is persistently exciting of order . The additional as-
sumption (31) is a condition on the amplitude distribution of the
input signal. In other words, the input signal must have enough
energy in the interval in order to guarantee this assumption.

On the other hand, the positive definiteness of is verified
using particular properties of the PWL description used in the
proposed algorithm.

As shown in [42, Lemma 2], the high-level piecewise linear
description used for the CS-CPWL algorithm for an arbitrary
partition can be written at a stationary point as

where is a positive definite upper triangular matrix of suit-
able dimensions, and is a vector
whose nesting level components, in this case of order 0, 1, and
2, are orthonormal. Using this property, we get

where the same property that leads to (30) is used, i.e.,
corresponds to the derivative with respect to coefficients, that
is defined zero at the partition .

Then, if the probability density function of is such
that

in at least one nonzero interval , it follows that
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in at least one nonzero partition . The continuity of fi-
nally allows to conclude the same for any partition, and as a
consequence .

Finally, the positive definiteness of and now implies that
is positive definite. This result is associated to the lin-

earization of the ODE, (22), and implies the local convergence
of the CS-CPWL algorithm.
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