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Abstract—Exact convergence analysis of the recursive least
square and least mean square (LMS) algorithms in adaptive
filtering is presented for the case of sinusoidal signal cancellation
without the persistently exciting condition. This situation occurs
when the number of tap coefficients of the adaptive filter exceeds
that of the complex sinusoids in the input signal. The convergent
point of both algorithms is shown to be the one determined by the
pseudo inverse of the deterministic covariance matrix. The con-
vergence proof for the LMS algorithm is based on the Lyapunov
function method. Finally, the validity of the obtained results is
supported by simulation results.

Index Terms—Adaptive filter algorithms, exact conver-
gence analysis, persistently exciting condition, sinusoidal noise
cancellation.

I. INTRODUCTION

ADAPTIVE filters are used in many areas of signal pro-
cessing applications such as noise cancellation, channel

equalization, and system identification. For adaptation the re-
cursive least squares (RLS) and least mean square (LMS) algo-
rithms are often used [1].

For tonal noise generated by periodic systems such as ro-
tating machines, the anti-noise generated by a set of adaptive
weights is used to cancel the noise. A method of eliminating
the multiple sinusoidals or other periodic interference by using
a tapped delay line adaptive filter was proposed in [2]. Applying
the -transform to the adaptive algorithm, it was shown that
under certain conditions the system can be approximated by a
linear time-invariant system whose transfer function has notch
characteristic. In [3] and [4], rigorous results about convergence
of the LMS algorithm have been derived where complex sinu-
soids with unit amplitudes and known frequencies are used as
the input signals.

In this paper, a similar narrowband noise canceling problem
with the one in [2] is considered where the input (reference)
signal to the adaptive filter is a sum of complex sinu-
soids with unknown non-zero amplitudes and un-
known distinct frequencies . For real signals,
frequencies and are paired with the complex conjugate
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amplitude and , where denotes the complex conju-
gate. The desired signal is formed by passing through
a fixed but unknown plant with a stable transfer function
which may be of finite-impulse-response (FIR) or infinite-im-
pulse-response (IIR) type. This looks like a typical system iden-
tification problem but our main aim is not to identify the pa-
rameters of consistently but to cancel by , the
output of the adaptive filter. The FIR adaptive filter has tap
coefficients which are adjusted so as
to let the error signal approach zero by the RLS or LMS
algorithm.

If , the persistently exciting (PE) condition is met and
by the least squares (LS) identification algorithm after time
steps becomes the corresponding tap of , if it has
an th-order FIR structure [5]. But if , then the
deterministic covariance matrix is rank deficient, that is, the PE
condition is not satisfied and the corresponding normal equation
becomes indeterminate (see Appendix I for explanation of the
PE condition). There seems to be no rigorous treatment for this
case in the literature. This case is important in practical appli-
cations, since often we do not know in advance and a larger

should be used for perfect noise cancellation as will be dis-
cussed later.

In this paper, first, we show that the RLS algorithms with and
without the forgetting factor converge to a unique point which
is the minimum norm solution of the above normal equation
with zero error signal. Second, we show that the LMS algo-
rithm converges to the same point and an exact upper limit of
the step size is derived as the stability condition for the LMS
adaptive filter. This limit has not been rigorously discussed in
the literature. This result is used to design an LMS adaptive filter
whose performance depends on the selection of a step size pa-
rameter. Since the LMS algorithm for this case is expressed as a
time-varying linear system, its rigorous convergence analysis is
much more complicated than that for RLS. We use the Lyapunov
function method in [4] with the same argument as in [3]. Finally,
to justify the theoretical assertions some numerical simulation
results are demonstrated.

II. CONDITIONS OF PERFECT NOISE CANCELLATION

The input signal is passed through the adaptive filter
in Fig. 1, where the input vector and the tap weight vector are
defined by

(1)
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Fig. 1. Block diagram of the adaptive noise canceling.

where denotes the transpose and a delay is implicitly in-
cluded in the adaptive algorithm. The input signal is as-
sumed to be a sum of complex sinusoids so that we have

(2)

with

(3)

The output of the adaptive filter is

(4)

where denotes the Hermitian transpose. Since is
stable, is expanded as

so that the steady-state response to is

Hence, the desired signal is expressed by

(5)

where is the frequency response of at .
In the steady state , from (4) and (5) perfect noise

cancellation is possible if

(6)

so that must satisfy

(7)

where

(8)

and are linearly independent for . If
, (7) is an over determined system. In general, does not

lie in the range space of , so there is no solution and perfect
noise cancellation is not attained. One generic exception is the
case where is of th-order FIR, that is,
with the impulse response . For
this case (7) has a unique solution . If , obviously (7)
has a unique solution. If , (7) is an under-determined
system whose solution is not unique. But is of full row rank,
so using the (Moore–Penrose) pseudo inverse of , one so-
lution is

(9)

which is known as the minimum norm solution. In summary,
for the case , perfect noise cancellation is possible for

of any stable plant, if the weight vector is set to (9). In the
following, we will show that both of the two typical RLS and
LMS adaptive algorithms converge to in (9) under some
condition for LMS.

III. ANALYSIS OF RLS ALGORITHM

In this section, we present an analysis of the RLS algorithm
for the case with and without the forgetting factor. It is
well-known that the LS estimate at time is given by the normal
equation

(10)

where the deterministic covariance matrix and cross co-
variance vector are defined by

(11)

for , where for simplicity, we assume that
are available and the forgetting factor is used

with , so that from (2), (5), and (11)

(12)

(13)

where

(14)

Defining the matrix whose th element is
, (12) and (13) can be expressed as

(15)

where

(16)
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From (14) the following quadratic form:

with is nonnegative and for be-
comes zero only for , since

means for distinct frequencies . Hence,
is positive definite for and is expressed as

(17)

where is a nonsingular matrix. Thus, from (15)
and (17) we have

(18)
where is nonsingular. From (18), we note that

is rank deficient and (10) is indeterminate, that is, the PE
condition is not satisfied. So it is unclear to which point the LS
estimate is approaching.

Now, we consider the conventional RLS algorithm

(19)

with

(20)

and the initialization

(21)

where is the identity matrix and is updated by using
the matrix inversion lemma [1]. From (11), (20), and (21), we
note that

(22)

First, we treat the case for . Since is nonsingular,
in the RLS algorithm, (10) is replaced by

(23)

Let the eigenspace decomposition of be

(24)

where for notational simplicity, we omit the dependence on
in the RHS of (24) and and

with eigenvectors and ,
the corresponding eigenvalues, respectively. From (12) and
(13), it is obvious that corresponding to zero

eigenvalues are orthogonal to and, hence, .
So, from (23) and (24), we have

(25)

As , the matrix in the RHS of (25) tends to
. This ar-

gument is adopted from [6, Th. 3.4] within our RLS case.
Hence, as . Using the identity

for general matrix in [6, Th. 3.8] and
noting that in (18) is of full row rank, we have

(26)

That is, converges to in (9).
Next, we consider the case . In this case, the diagonal

elements of are so that we replace (22) by
and (23) by ,

respectively. Applying the same argument after (24) to ,
we see that and
from (18) we conclude that converge to in this case,
too. If the observation noise is added to , its effect
does not change the convergence property. This can be seen as
follows. From

(27)

is still in the space spanned by and
the covariance matrix of the second term in (27) is given by

for white noise with zero mean

and variance . Since is bounded
by some constant, this covariance matrix converges to zero and
the effect of the observation noise fades out. But, of course,
taking to 1 means a loss of tracking ability for nonstationary
situations such as time variation of signal characteristics.

IV. ANALYSIS OF LMS ALGORITHM

In this section, we give a rigorous convergence analysis of the
LMS algorithm for the case . Though it is simpler than
the RLS algorithm, the analysis is much harder. It is given by

(28)

where is a positive step size [7], [8]. Here, we assume that
are available. The region guaranteeing the
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convergence will be discussed later. If the initial vector is
taken to , from (28) is written as

(29)

This may be regarded as a kind of discrete Fourier expansion
though ’s are not orthogonal. From (2), (5), and (29), we have

(30)

The derivation of this equation is given in Appendix II. This is a
time-varying multivariable linear system with sinusoidal driving
signals. If is any vector, the component in the range space
of can be absorbed in (29). The component in the orthog-
onal compliment of remains unchanged in but this
component is orthogonal to so that the error signal is
not affected by this component. From (9), we note that

(31)

with . Defining the new variable

(32)

(30) is written as

(33)

The derivation is given in Appendix III. Defining the vec-
tors and

, (33) can be expressed as

(34)

with

(35)

... (36)

It is interesting to note that for the case treated in [4], where
complex sinusoids with known frequencies and unit amplitudes
are used for input signals, the relevant linear system is time-
invariant and is described by the same form as (34) with ,
replaced by and , respectively.

Then, we note that

(37)

To show that converges to under a certain condition, we
use the following Lyapunov function

(38)

From (36), we see that is positive definite, so that
and means . From (34) and (37), it can be

shown that

(39)

where

(40)

The derivation is given in Appendix IV. Thus, under the
condition

for all (41)

decreases for . From (2) and (36), (41) is
written as

(42)

If it happens that , that is

then from (34) it follows that

(43)

so that . Hence, from this and (40) we
have

...
(44)

From (37), we note . Substituting this
into (44), we readily see that

...

This is rewritten as

But this means that , so implies at least one
of is nonzero. Hence,

as long as . This shows that
converges to , that is, converges to under the

condition (42).
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Fig. 2. Plots of tap weights and squared magnitude of error signals of LMS
algorithm with � = 0:0005.

Remark: In [9, Sec. 6.1], it is shown that if ,
that is, in Fig. 1 is of FIR structure, then as

under (42) for general deterministic input signal. More-
over, if the PE condition is met, then converges to . In
our special but important case of sinusoidal input signal with

, for any satisfying (7), we have .
Hence, we can apply the general result in [9]. However, this
is not unique and the PE condition is not satisfied, so that the
limiting behavior of cannot be deduced from [9]. But by
the previous development, we have shown that converges
to in (9).

V. SIMULATION RESULTS

To see the validity of the previous theoretical results, simula-
tions are conducted using the LMS and RLS algorithm, respec-
tively. In all the following simulations, the input signal is
real and is given by the sum of complex sinusoids
with the amplitudes , , ,

, and the frequencies are , ,
, . The desired single is formed

by passing through the stable transfer function
and all the

initial weights are set to zero.
First, we use the LMS algorithm to adjust the weights in the

adaptive process. The FIR adaptive filter is assumed to have
eight tap coefficients , that is, .
From (9), the optimal weight vector is

(45)

and the upper bound of in (42) is .
Figs. 2–4 show the convergence performance of the LMS adap-
tive filter. The step sizes are chosen as 0.0005, 0.0018, and
0.0038, respectively.

It can be seen from Fig. 2 that if the selected step size is too
small, too many iterations are necessary for convergence. On
the other hand, if it exceeds the upper bound, according to our
exact analysis, the LMS algorithm cannot give a convergence

Fig. 3. Plots of tap weights and squared magnitude of error signals of LMS
algorithm with � = 0:0018.

Fig. 4. Plots of tap weights and squared magnitude of error signals of LMS
algorithm with � = 0:0038.

result. We can see in Fig. 4 that the trajectories in this case
are oscillating. If is increased further, the trajectories diverge
exponentially. This is an interesting phenomenon in the linear
time-varying system (34), where the oscillating region for has
an interval of nonzero length whereas for usual linear time in-
variant systems such a region has length zero.

In the following, we simulate the performance of the LMS
adaptive filter with different numbers of tap weights. Here, the
number of coefficients in the transfer function is 6. We as-
sume the tap number of the FIR filter is , , or

, respectively. For each choice of , the corresponding
step size limit given by (42) is 0.00289, 0.00203, and 0.00074,
respectively. Here, we choose the step size to be close to the
limits as , , and , respectively.
It can be seen from Fig. 5 that the number of tap weights influ-
ences the convergence rate of the LMS adaptive filter consider-
ably and the larger tap number produces the higher accuracy in
this case. The explanation for this requires further studies.



2082 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 55, NO. 5, MAY 2007

Fig. 5. Influence of the number of tap weights L on the performance of the
LMS adaptive filter.

Fig. 6. Plots of tap weights and squared magnitude of error signals of RLS
algorithm with the forgetting factor � = 0:9.

Next, we use the RLS algorithm with forgetting factor
to adjust the adaptive filter weights. As we can see from

Fig. 6, the RLS algorithm converges to the same optimal weight
shown in (45).

In Fig. 7, we treat the case where Gaussian white observation
noise with variance 0.1 and mean zero is added to the desired
signal . It is seen that the effect of the noise does not change
the convergence property except that the error signal converges
to the observation noise.

VI. CONCLUSION

In this paper, exact convergence analysis of the RLS and LMS
algorithms has been presented for the case of sinusoidal noise
canceling without the PE condition, where the reference signal
to the adaptive filter is assumed to be a sum of complex sinu-
soids with unknown amplitudes and unknown distinct frequen-
cies. It is a future task to extend the present result to the case of
the filtered-X LMS algorithm in active noise control.

Fig. 7. Performance of RLS with observation noise and � = 1.

APPENDIX I

In this appendix, we briefly state the PE condition.
The most general definition of the PE condition is defined in

[9, Sec. 6.1] as follows.
A signal is strongly PE if there are positive constants

and some window span , such that

for all (46)

where .
This means that the deterministic covariance matrix over a

window span is of rank . But for the signal in (2), this
rank is for so that this matrix becomes rank deficient
for .

APPENDIX II

In this appendix, we derive (30).
Substituting (2), (5), and (29) into (28), we obtain

(47)

Since are linearly independent, we have

(48)

which yields (30).
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APPENDIX III

In this appendix, we derive (33).
From (8) and (31), it is easy to see that

(49)

Performing the same operation on both sides of (30), we get

(50)

Substituting the definition of given by (32) and applying
(49) gives

(51)

APPENDIX IV

In this appendix, we derive (39).
By (34), (37), and (38), it follows that

(52)

The third equality follows since . The forth equality
holds by . The last equality follows from the
definition of in (40).
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