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Abstract—Regression level set estimation is an important yet under-
studied learning task. It lies somewhere between regression function
estimation and traditional binary classification, and in many cases is
a more appropriate setting for questions posed in these more common
frameworks. This note explains how estimating the level set of a regression
function from training examples can be reduced to cost-sensitive classifi-
cation. We discuss the theoretical and algorithmic benefits of this learning
reduction, demonstrate several desirable properties of the associated risk,
and report experimental results for histograms, support vector machines,
and nearest neighbor rules on synthetic and real data.

Index Terms—Cost-sensitive classification, learning reduction, regres-
sion level set estimation, supervised learning.

I. INTRODUCTION

Consider a function h : d ! and a fixed value 
 2 . The level
set of h at level 
 is the set

G
� = fx : h(x) � 
g:

In this paper, we consider the problem of estimating G� from a training
sample of noisy input/output pairs (Xi; Yi) 2

d � ; i = 1; . . . ; n.
Our only assumption on the training data is that they are realizations
of (X;Y ) such that h is the regression of Y on X , that is, h(x) =
E[Y jX = x].

The level set problem is relevant in a number of applications. Sup-
pose for example that X represents demographic information of an in-
dividual and Y is income. While it may be instructive to estimate h,
policy decisions often hinge on level sets such as those corresponding
to the poverty line or certain tax brackets.

A second example is taken from medical decision making. Consider
a cancer that is treated by either standard or aggressive chemotherapy,
depending on a variable Y that characterizes the severity of the cancer.
The choice of treatment is made by comparing Y to a threshold 
. This
is the situation for osteosarcoma [1], where Y is the percent necrosis
(cell death) in the tumor after an initial round of treatment, and 
 = 0:9
by convention. The problem is that measuring Y involves an invasive
biopsy. Suppose that X is a feature vector (whose acquisition is less
invasive) collected from the patient, such as gene expression levels de-
rived from an RNA microarray. Knowledge of the regression level set
would allow for accurate treatment planning without a biopsy.

These two examples represent a much larger collection of potential
applications. In a wide range of regression problems, if it is worthwhile
to estimate the regression function h, it is also worthwhile to estimate
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certain level sets. Moreover, these level sets may be of ultimate im-
portance. And in many classification problems, labels are obtained by
thresholding a continuous variable. Thus, estimating regression level
sets may be a more appropriate framework for addressing many prob-
lems that are currently envisioned in other ways.

Two naïve approaches to level set estimation are as follows. One
is to use some method to estimate the regression function h and then
threshold at 
. Another is to apply standard binary classification to
the data (Xi; ~Yi), where ~Yi = IfY �
g 2 f0; 1g. However, both ap-
proaches are unsatisfying. The first violates Vapnik’s maxim: When
solving a given problem, try to avoid solving a more general problem
as an intermediate step [2]. The second approach ignores the informa-
tion conveyed by the distance of the different response values from 
.

In this paper, we pose regression level sets estimation in terms of
cost-sensitive classification. This approach lies somewhere between
these two naïve approaches. It formulates the issue in terms of direct
set estimation and thus bypasses the intermediate step of estimating
h, while still accounting for response magnitudes. We argue that the
cost-sensitive formulation provides a natural performance measure for
the level set learning task.

Our approach can be described as a “learning reduction” from one
supervised learning problem to another which is more fundamental or
better understood. As discussed by Beygelzimer et al. [3], such re-
ductions come with both algorithmic and theoretical benefits. From
an algorithmic standpoint, we can estimate regression level sets using
algorithms for cost-sensitive classification. Furthermore, as discussed
below, cost-sensitive classification can be further reduced to conven-
tional binary classification. Thus, standard methods such as support
vector machines, decision trees, and nearest neighbors can be brought
to bear on the problem. The ability to import and adapt existing classi-
fication algorithms is a principal advantage of our framework.

From a theoretical perspective, the analysis of algorithms for regres-
sion level set estimation can be deduced from well studied results for
classification. For example, if we assume the regression function and
noise are bounded, concentration inequalities like Hoeffding’s can be
applied as they are in the analysis of conventional classification algo-
rithms [4], [5].

In previous work on regression level set estimation, Cavalier [6]
demonstrated asymptotic minimax rates of convergence for piecewise
polynomial estimators constructed with an excess mass criterion. Wil-
lett and Nowak [7], [8] also demonstrated minimax rates (for different
smoothness classes) for estimators based on recursive dyadic partitions.
A difference between these works and the present work is in the per-
formance measure used to quantify the quality of an estimate. Our per-
formance measure is the risk given by the expected misclassification
cost, and its connection to the performance measures in the above cited
works is spelled out in Section IV.

The paper is structured as follows. Section II reviews cost-sensitive
classification and discusses the costing algorithm of [9]. Section III for-
mally defines regression level set estimation and formulates a solution
in terms of cost-sensitive classification. Section IV demonstrates sev-
eral desirable properties of the risk proposed in Section III. Section V
describes support vector and nearest neighbor algorithms for regres-
sion level set estimation. Section VI illustrates the proposed ideas with
experiments on synthetic and real-world data. Conclusions and future
work are discussed in Section VII.

II. REVIEW OF COST-SENSITIVE CLASSIFICATION

Cost-sensitive classification problems can be grouped into two
kinds: those with class-dependent costs, and those with example-de-
pendent costs. In binary classification with class-dependent costs, for
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example, false positives and false negatives incur fixed costs c0 and c1.
The goal is to learn, from training data, a classifier with low expected
misclassification cost (Bayes risk). This framework is appropriate
when false positives and false negatives carry different penalties and
was the subject of most early research on cost-sensitive classification
(see [10], [11], [12], and references therein).

The second variant, example-dependent cost-sensitive classification
is a generalization of the class-dependent cost problem and is the rele-
vant framework for this paper. Consider random variables (X; Y; C) 2
d � f0; 1g � , where X represents a pattern, Y a class label, and

C is the cost associated with misclassifying X when the true label is
Y . Cost-sensitive classification seeks to minimize the expected cost (or
risk)

R(G) = E[CIfG(X) 6=Y g]:

Here, we overload the notationG to refer to both a subset of d and the
classifier G(x) = Ifx2Gg. Clearly, this formulation of cost-sensitive
classification is more general than simply assigning fixed costs c0 and
c1 to errors from the respective classes.

By casting level set estimation as example-dependent cost-sensitive
classification, we avoid the need for function estimation and may in-
stead rely on algorithms for direct set estimation. Fortunately, there
are many algorithmic strategies for example-dependent cost-sensitive
classification. In some simple settings, such as the histogram classifier
discussed in Section VI, direct empirical risk minimization is possible.
Many other algorithms for conventional classification can be modified
(in a manner specific to the algorithm) to include example-dependent
costs. Support vector and nearest neighbor methods are described con-
cretely in Section V.

Even when direct modification is not possible, Zadrozny et al. [9]
provide a general “black-box” procedure for reducing cost-sensitive
classification to conventional (cost-insensitive) classification. Their ap-
proach is based on the realization that minimizing the expected cost is
equivalent to minimizing the probability of error for an appropriately
reweighted distribution. The idea is implemented algorithmically by a
strategy termed costing. The label for a test point is based on a majority
vote over a finite number (determined by the user) of classifiers. Each
of these classifiers is obtained by running a conventional classification
algorithm on a data set obtained by resampling the original data set. Re-
sampling is accomplished with cost-proportionate rejection sampling.
The importance of costing for the present work is that it allows a reduc-
tion of regression level set estimation to conventional classification, the
most fundamental and widely studied supervised learning problem.

III. APPLICATION TO REGRESSION LEVEL SET ESTIMATION

The regression level set estimation problem is stated formally as fol-
lows. Let (X;Y ) 2 d� be random variables. Assume that for some
(unknown) function h : d ! we have Y jX = x � h(x) + �,
where � is zero mean noise with Lebesgue density f(�). Although it is
not reflected in the notation, the distribution of � may depend on x. Let

 2 be fixed. The goal is to estimate the level set

G� = fx : h(x) � 
g

using only a training sample (Xi; Yi) 2
d � ; i = 1; . . . ; n of

realizations of (X;Y ).
Our proposal is to estimate G� by reducing to a cost-sensitive clas-

sification problem as follows. Define ~Y = IfY�
g and C = j
 � Y j,
and define the riskR(G) of a setG to be the expected cost for cost-sen-
sitive classification based on (X; ~Y ;C), as follows:

R(G) = E[j
 � Y jIfG(X)6= ~Y g]: (1)

We can now apply cost-sensitive learning algorithms to the training
data (Xi; ~Yi; Ci) and the outcome will be an estimate of the regression
level set G�.

IV. PROPERTIES OF THE RISK

In this section, we give credence to the proposed reduction by
demonstrating certain desirable properties of the risk and relating it to
the classification risk and other metrics for the level set problem. Let �G
denote the complement of G, and let G�G0 := (G\ �G0)[ (G0 \ �G)
denote the symmetric difference of G and G0. Let FX denote the
distribution of X . The following is proven in the Appendix.

Proposition 1: The excess risk can be expressed as

R(G)�R(G�) =
G�G

jh(x)� 
jdFX : (2)

Corollary 1: The risk R(G) is minimized by the level set G� =
fx : h(x) � 
g.

Proposition 1 establishes that the error associated with a misidenti-
fied point is proportional to the distance from the regression function at
that point to the target level. This makes sense because points for which
jh(x) � 
j is large should be easier to classify, and any estimate that
errs on such a point should be penalized more heavily than if it erred
where jh(x)�
j is small. If we think of a classification problem where
the labels are obtained by thresholding a continuous response variable,
then points for which jh(x)�
j is small are “almost” in the other class
anyway, so it is not as problematic to misclassify them.

The excess risk here is similar to the excess risk in conventional
classification. Let (X; ~Y ) 2 d�f0; 1g and denote �(x) = E[ ~Y jX =
x]. Recall that we identify subsets G � d with classifiers G(x) =
Ifx2Gg. In conventional classification, the risk of a classifier is defined
to be ~R(G) = E[IfG(X)6= ~Y g]. The Bayes classifier is a level set of �:
G�(x) = If�(x)�1=2g. Furthermore, we have the formula [4]

~R(G)� ~R(G�) = 2
G�G

j�(x)� 1=2jdFX :

Conceptually, we may view conventional binary classification as a spe-
cial regression level set estimation problem where the response vari-
ables have been “binarized” to 0 or 1. Conversely, from the discussion
of the costing algorithm in Section II, we can think of regression level
set estimation as a binary classification problem where the labels are
obtained by thresholding the continuous responses and the probability
mass of X has been reweighted in proportion to jh(x)� 
j.

Further theoretical guarantees are possible for certain cost-sensitive
classification algorithms. For example, [9] relates the performance of
their costing algorithm to the performance of the underlying conven-
tional (cost-insensitive) classification algorithm. Translating their re-
sult to our setting gives the following.

Corollary 2: LetB = E[jY �
j]. Let S be a training sample drawn
from (X;Y;C) and let S0 be a sample derived from S by cost-propor-
tionate rejection sampling as described in [9]. Let Ĝ be a classification
algorithm based on S0. If the expected1 probability of error of Ĝ is no
more than �, then the expected2 value of R(Ĝ) is no more than B�.

Let us now consider the connection between the excess risk R(G)�
R(G�) and the performance measures studied in [6] and [7], [8]. We
consider in particular the following two questions: 1) When does con-
vergence to zero of one performance measure imply convergence of
another? and 2) How useful from a practical standpoint are the various
performance measures?

1This expectation is with respect to the random draw of .
2This expectation is with respect to the random draw of .
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The performance measures studied in [6] are i) the volume of the
symmetric difference of the estimate and G� and ii) the Hausdorff dis-
tance between the estimate and G�. In general, it is not possible to
answer question 1) without imposing some conditions on the under-
lying distribution. A complete characterization of such conditions is
beyond the scope of this paper. Roughly speaking, however, let us sup-
pose the distribution is reasonably well-behaved in the sense that a) the
boundary of G� is not too irregular, b) the distribution of X is mutually
bounded by Lebesgue measure on some compact set, and c) h does not
“flatten out” near the level 
. By a), if the Hausdorff distance tends to
zero, so does the volume of the symmetric difference. By b) and equa-
tion (2), the volume of the symmetric difference tends to zero, so does
our excess risk. Conversely, by c), if the excess risk tends to zero, then
the volume of the symmetric difference also tends to zero. Also by c),
it can be seen that convergence of the symmetric difference to zero im-
plies convergence of the Hausdorff distance to zero. Thus, the different
performance measures are asymptotically equivalent (under the stated
assumptions) in the sense that an estimator that is consistent for one is
consistent for the other.

With respect to question 2), our excess risk enjoys the clear advan-
tage that it can be minimized without access to the true level set G�,
which is of course unknown in practice. Furthermore, R(G) can be
easily estimated given sufficient data. The two performance measures
of [6], in contrast, cannot be easily estimated from data because of the
dependence on G�.

The performance measure employed in [7] and [8] is very similar
to the cost-sensitive classification risk. In particular, they consider the
risk (ignoring constants)

R2(G) = E[j
 � Y jIfG(X) 6=~Y g � j
 � Y jIfG(X)= ~Y g]:

Conceptually, one may think of this risk as both penalizing errors and
rewarding correct decisions in proportion to the distance to the regres-
sion function, whereas the cost-sensitive classification risk only penal-
izes errors. The two risks are related by

R2(G) = R(G)�R( �G)

= E[j
 � Y jIfG(X)6= ~Y g]

�E[j
 � Y jIf�G(X)6=~Y g]

= E[j
 � Y jIfG(X)6= ~Y g]

�E[j
 � Y j(1� IfG(X)6=~Y g)]

= E[2j
 � Y jIfG(X)6= ~Y g]� E[j
 � Y j]

= 2R(G)�E[j
 � Y j]:

Note the last term does not depend on G. Consequently, the two risks
are effectively the same. The advantage of our risk is the connection
to cost-sensitive classification and the associated algorithmic benefits
discussed earlier.

V. ALGORITHMS

In this section, we describe the algorithms that are later applied in
Section VI. For each class of algorithms, we describe three variants:
cost-insensitive classification based on binarized response values,
direct cost-sensitive classification, and regression function estimation
followed by thresholding.

A. Support Vector Machines

Support vector machines (SVMs) are among the most effective
methods for learning classifiers from training data [13]. Conceptually,
we construct the support vector classifier in a two-step process. In the
first step, we transform the xi 2 d via a mapping � : d ! H

where H is a high (possibly infinite)-dimensional Hilbert space. The
intuition is that we should be able to separate these classes more
easily in H than in d. For algorithmic reasons, we choose � so
that we can compute inner products in H through the kernel operator
k(x;x0) = h�(x);�(x0)iH.

In the second step, we determine a hyperplane in the induced fea-
ture space according to the max-margin principle, which states that, in
the case where we can separate the two classes by a hyperplane, we
should pick the hyperplane that maximizes the margin—the distance
between the decision boundary and the closest point to the boundary.
This hyperplane is then our decision boundary. Thus, if w 2 H and
b 2 are the normal vector and affine shift (or bias) defining the
max-margin hyperplane, then the support vector classifier is given by
fw;b(x) = sgn(hw;�(x)iH + b).

The original formulation of the SVM [14], which we shall call the
cost-insensitive SVM, can be stated as the following quadratic pro-
gram:

min
w;b;���

1

2
kwk2 + C

n

i=1

�i

subject to yi(k(w;xi) + b) � 1� �i for i = 1; . . . ; n

�i � 0 for i = 1; . . . ; n

where C � 0 is a parameter that controls overfitting.
A simple modification to this formulation leads to the cost-sensitive

SVM

min
w;b;���

1

2
kwk2 + C

n

i=1

ci�i

subject to yi(k(w;xi) + b) � 1� �i for i = 1; . . . ; n

�i � 0 for i = 1; . . . ; n

where C � 0 is again a parameter that controls overfitting, and the ci
are weights depending on the individual sample.

Support vector regression (SVR) solves

min
w;b

1

2
kwk2 + C

n

i=1

jyi � (k(w;xi) + b)j�

where

jyi � (k(w;xi) + b)j� = maxf0; jyi � (k(w;xi) + b)j � �g

is the so-called �-insensitive loss function. This optimization problem
is solved by considering the equivalent formulation

min
w;b;���;���

1

2
kwk2 + C

n

i=1

(�i + �
�
i )

subject to (k(w;xi) + b)� yi � �+ �i for i = 1; . . . ; n

yi � (k(w;xi) + b) � �+ �
�
i for i = 1; . . . ; n

�i; �
�
i � 0 for i = 1; . . . ; n:

See [13] for further details.

B. Nearest Neighbors

The k nearest neighbor (k-NN) decision rule is a classic method for
classification [15]. The rule assigns a label to a test point by taking a
majority vote over the labels of the k training points that are closest ac-
cording to a specified (usually Euclidean) metric. A cost-sensitive ver-
sion is obtained by taking a “weighted” vote, where the weight assigned
to a neighbor is the cost ci = jyi�
j. Finally, k-NN regression assigns
a response value to a test point by averaging the response values of the k
closest training points. Note that for the nearest neighbor methodology,
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Fig. 1. Training sample of size 200 for the histogram experiment, together with
the true regression function and a level set estimate.

the cost-sensitive classifier is identical to the thresholded regression es-
timate. Also note that all methods are equivalent when k = 1.

VI. EXPERIMENTS

We consider first a simple, highly controlled simulation study using
histograms, and second, experiments on real-world data using SVMs
and nearest neighbor methods.

A. Simulation Study With Histograms

We compare three approaches for constructing histogram level set
estimators: cost-sensitive classification, cost-insensitive classification,
and regression function estimation followed by thresholding. Although
histograms are very simple estimators, their simplicity does ensure
a reasonably fair comparison. With more complicated models, con-
founding factors such as the selection of free parameters and differ-
ences in design criteria make it increasingly difficult to isolate the rea-
sons for an algorithm’s performance. Furthermore, synthetic data al-
lows for very precise estimation of performance measures.

For this experiment, we are interested in the 
 = 0 level set of
h(x) = sin(4�x + �=8). The data are generated independently ac-
cording to X � unif[0; 1] and � � N(0; 1). Fig. 1 depicts a typical
realization, as well as the true regression function and a level set esti-
mate.

The three estimates are based on a fixed partition of [0; 1] into 20
equally spaced bins. Each bin is assigned a label of 1 or 0 to indicate
whether the bin does or does not belong to the estimate. For the cost-
sensitive estimate (CS), the labels are determined by minimizing the
empirical risk

R̂n(G) =
1

n

n

i=1

(
 � Yi)IfX 2G;Y <
g + (Yi � 
)IfX =2G;Y �
g:

For the cost-insensitive estimate (CI), the labels are assigned by mini-
mizing the empirical probability of error. For the third method (REG),
the regression function is estimated by a constant on each cell using
an L1 distortion. The constant is thus the median value of the response
variables on the bin. An L2 distortion was also considered, but this in
fact leads to an estimate that is identical to CS, a coincidence stemming
from the simplicity of the histogram estimate.

The experiment consisted of generating a training sample of sizen =
200, computing the three estimates, and estimating their performance
on a test set of size 10 000. The three performance measures are the
cost-sensitive risk, the probability of error, and the Lebesgue measure
of the symmetric difference with respect to the true level set. The results
in Table I represent averages over 10 000 repetitions of the experiment
and are accurate to four digits.

TABLE I
RESULTS FROM THE HISTOGRAM SIMULATION STUDY. THE REPORTED

NUMBERS REPRESENT AVERAGES OVER 10 000 REPETITIONS OF THE

EXPERIMENT AND ARE ACCURATE TO FOUR DIGITS. THE METHODS

COMPARED ARE COST-SENSITIVE (CS), COST-INSENSITIVE (CI),
AND REGRESSION FOLLOWED BY THRESHOLDING (L1)

B. Real-World Data

We ran our algorithms on the benchmark data sets named “pyrim,”
“mpg,” “housing,” and “triazines.” The data sets are available online
with documentation.3 They contain 74, 392, 506, and 186 examples
each, with dimensionalities 27, 7, 14, and 60, respectively. We ran-
domly permuted each data set 100 times. For each permutation, we used
70% for estimating the level set and the remaining 30% for testing the
estimate’s performance. For the SVM methods, 40% of the data were
used for training, and 30% formed a holdout set for setting free param-
eters. The targeted level 
 was taken to be the average of the response
Y across the data set.

On these data sets, we compare eight methods in all. The four
SVM methods are the direct cost-sensitive SVM (SVM-CS-DI-
RECT), the cost-sensitive SVM via costing (SVM-CS-COSTING),
the cost-insensitive SVM (SVM-CI), and SVR followed by thresh-
olding (SVM-REG). Similarly, the four nearest neighbor methods
(using k = 3) are denoted 3-NN-CS-DIRECT, 3-NN-CS-COSTING,
3-NN-CI, and 3-NN-REG. Recall that 3-NN-CS-DIRECT and
3-NN-REG are equivalent. Other values of k were investigated, but
they did not affect our conclusions. For costing, we vote over 25
resamples for the SVM and 100 for 3-NN.

To implement the support vector classifiers we used the SVMlight

package [16], while for support vector regression we employed the
LIBSVM [17]. In all of our SVM experiments, we used a radial basis
function (Gaussian) kernel and searched for the bandwidth parameter
� over a logarithmically spaced grid of 50 points from 10�4 to 104. We
also searched for the regularization parameterC over a logarithmically
spaced grid of 50 points from 10�3 to 103. In addition, for the SVR ex-
periments, we searched for the width of the insensitive loss tube � over
a logarithmically spaced grid of 50 points from 10�3 to 0:5.

Table II reports the estimated cost of each algorithm on each data set,
averaged over all 100 permutations, along with standard deviations.

VII. CONCLUSION AND FUTURE WORK

An interesting conclusion from the synthetic data study is that the
cost-sensitive approach is superior to the naïve approaches with respect
to all three metrics considered: expected misclassification cost, prob-
ability of error, and measure of the symmetric difference. Thus, for
classification problems where the labels are obtained by thresholding a
response variable, even if the design criterion is the probability of error,
it may be advantageous to incorporate cost information.

Our experiments on real-world data suggest that costing is not an
affective algorithm, at least for the sample sizes we considered. This
may be partially explained by the fact that cost-proportionate rejection
sampling leads to sample sizes that are only a fraction of the original
sample size. Furthermore, if a few costs are substantially larger than all

3http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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TABLE II
EXPERIMENTAL RESULTS FOR FOUR REAL-WORLD DATA SETS. THE REPORTED NUMBERS REPRESENT AVERAGE ESTIMATED COSTS AND STANDARD DEVIATIONS

OBTAINED FROM 100 PERMUTATIONS OF THE DATA INTO TRAINING AND TEST SETS

others, then the fraction of points rejected can be quite high, leading to
even smaller sample sizes.

As for the other methods, the 3-NN methods outperform the SVM
methods on the first data set, while the reverse is true on the fourth data
set. Within each methodology (3-NN or SVM), the three competitive
approaches (direct cost-sensitive, cost-insensitive, and regression fol-
lowed by thresholding) do not differ in a statistically significant way
on any of the four data sets. If we look at the average cost (normal-
ized by standard error) across the four data sets and across methodolo-
gies (3-NN and SVM), the results are 2.33, 2.38, and 2.27. Thus, the
cost-sensitive approach appears to have a slight edge over the cost-in-
sensitive method, which is to be expected since it does not throw away
information. On the other hand, the regression/thresholding method
seems to perform at least as well as the cost-sensitive approach.

Although the cost-sensitive and regression-based methods have
comparable performance, there can be a significant difference in terms
of computation time. In particular, the cost-sensitive SVM has two
free parameters while SVR has three. When conducting a grid search
over parameter values and using a holdout or cross-validation error es-
timate, the increased computational complexity of SVR is substantial.
This observation may extend to other algorithmic frameworks because
regression is a harder problem and will often require the specification
of more free parameters than classification.

An interesting problem for future work is to demonstrate a gen-
eral algorithmic framework for estimating multiple level sets (of the
same regression function) simultaneously. One approach is to reduce
the problem to multiclass cost-sensitive classification, but it would be
important to constrain the estimated sets to be nested [8].

APPENDIX I
PROOF OF PROPOSITION 1

Observe

R(G) = E[(
 � Y )IfX2G;Y�
g + (Y � 
)IfX=2G;Y�
g]

=
G




�1

(
 � y)f(yjx)dy dFX

+
�G

1




(y � 
)f(yjx)dy dFX

=
G

 0(x)dFX +
�G

 1(x)dFX

where

 0(x) =



�1

(
 � y)f(yjx)dy

 1(x) =
1




(y � 
)f(yjx)dy:

Therefore

R(G)�R(G�)

=
G

 0(x)dFX +
�G

 1(x)dFX

�
G

 0(x)dFX �
�G

 1(x)dFX

=
G\ �G

 0(x)dFX �
G \�G

 0(x)dFX

+
G \�G

 1(x)dFX �
G\ �G

 1(x)dFX

=
G\ �G

( 0(x)�  1(x))dFX

+
G \�G

( 1(x)�  0(x))dFX :

Now
 1(x)�  0(x)

=
1

�1

(y � 
)f(yjx)dy

=
1

�1

(h(x)� 
 + �)f(�)d�

= h(x)� 


because � is zero mean. Since x 2 G� () h(x)� 
 � 0, we have

R(G)�R(G�) =
G�G

jh(x)� 
jdFX

as desired.
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Comments on “Detection of Distributed Sources
Using Sensor Arrays”

Sridhar Ramakrishnan, Student Member, IEEE, and
Satish Udpa, Fellow, IEEE

Abstract—In the above correspondence (Y. Jin and B. Friedlander,
“Detection of distributed sources using sensor arrays,” IEEE Trans. Signal
Process., vol. 52, no. 6, pp. 1537–1548, June 2004), Jin and Friedlander
develop a GLR-based detector for detecting a random spatially distributed
signal source using an array of sensors. We show that the expression for
required SNR (RSNR) has been incorrectly derived, which has led the au-
thors to draw incorrect conclusions in their work. In this correspondence,
we correct this particular error and a few other typographical errors, and
provide appropriate conclusions to the original work.

Index Terms—Distributed source, sensor array, signal detection.

In the above correspondence, [1, eq. (50)] expresses the required
SNR (RSNR) incorrectly as

� =
P
r

j=1

�2j

r

j=1

��

�� +1

2

r

j=1

��

�� +1

2

 �1M (1� PFA)

 �1M (1� PD)
: (1)

The expression for RSNR when derived correctly should read as
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P
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Fig. 1. Normalized RSNR versus degrees of freedom ( [1 25], = 1)
for different target = [0 95 0 8 0 5 0 3] and = 0 001.

A simplified form of the above expression is obtained when we
consider the case where all the principal eigenvalues of Rs are
approximately equal, i.e., �i � P=r, i = 1; . . . ; r. Defining
v (= 2Tr =M0 =M1) as the degrees of freedom, we, thus, obtain

RSNR �
v

2TP

 �1v (1� PFA)

 �1v (1� PD)
� 1 (3)

instead of

RSNR �
v

2P

 �1v (1� PFA)

 �1v (1� PD)
� 1 (4)

as expressed in [1]. Consequently, the expression for output SNR de-
fined as RSNR � SNRG becomes

RSNR� SNRG �
 �1v (1� PFA)

 �1v (1� PD)
� 1 (5)

as opposed to

RSNR� SNRG � T
 �1v (1� PFA)

 �1v (1� PD)
� 1 (6)

mentioned as [1, eq. (51)] in the original work by Jin and Friedlander.
As a result of the incorrect expression in (4), Fig. 8 in the

original correspondence, i.e., the plot of RSNR versus degrees of
freedom v for different PD , fails to capture the variation in the
RSNR performance for changing T (number of time snapshots)
and changing r (effective rank of Rs, which is a measure of the
angular spread of the signal), independently. The figure would be
correct only under a special case of T = 1 snapshot, and not in
general for all T . The number of degrees of freedom v contains
information of both T and r, but the effect of increasing r on
RSNR (T , being held constant at different values) is markedly
different from the effect of increasing T (r, being held constant
at different values) on RSNR. Figs. 1–4 in this correspondence
depict this variation in the RSNR performance for four different
cases.
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