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Abstract

This paper presents new low-complexity lattice-decoding algorithms for noncoherentblock detection of QAM

and PAM signals over complex-valued fading channels. The algorithms are optimal in terms of the generalized

likelihood ratio test (GLRT). The computational complexity is polynomialin the block length; making GLRT-optimal

noncoherent detection feasible for implementation. We also provide even lower complexity suboptimal algorithms.

Simulations show that the suboptimal algorithms have performance indistinguishable from the optimal algorithms.

Finally, we consider block based transmission, and proposeto use noncoherent detection as an alternative to pilot

assisted transmission (PAT). The new technique is shown to outperform PAT.

Index Terms

Noncoherent detection, lattice decoding, wireless communications.

I. I NTRODUCTION

Noncoherent transmission of digital signals over unknown fading channels has recently received significant

attention especially for the case of the block-fading channel model. Applications include recovery from deep

fades in pilot-symbol assisted modulation based schemes, eavesdropping, and non-data-aided channel estimation.

Noncoherent transmission is particularly applicable to systems exhibiting small coherence intervals where the use of

training signals would result in a significant loss in throughput. Recently, some elegant information-theoretic results

have been derived for noncoherent single and multiple-antenna systems under the assumption of Rayleigh fading, for
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example [1, 2]. Information theoretic aspects of noncoherent transmission were considered in [3] which concluded

that at low SNR and for small coherence intervals there is a significant capacity penalty by using training. Under

this noncoherent detection regime, it has been shown by numerical simulation that standard modulation techniques

such as quadrature amplitude modulation (QAM) can achieve near-capacity in the single-antenna noncoherent block

Rayleigh-fading channel [4].

This paper focuses on noncoherent receiver design for the block fading channel. A great deal of work has been

performed on partially coherent receivers such as pilot-symbol assisted modulation (PSAM) [5, 6], per-survivor

techniques [7], and coupled estimators [8]. However the challenge remains to develop high-performance, low-

complexity, fully noncoherent receivers.

Various suboptimal algorithms have been proposed for block-based noncoherent detection. For slowly fading

channels, a blind phase recovery approach was proposed in [9] for noncoherent detection of differentially encoded

QAM [10] where the attenuation was assumed to be known exactly at the receiver. In [11], a suboptimal technique

for PSK was proposed which involved forming a number of equally spaced channel phase estimates. An extension

to multi-amplitude constellations was also presented, where every sequence of symbol amplitudes is considered,

and then the PSK technique is applied to determine the phase of the symbols. Unfortunately, the complexity of this

suboptimal approach is still exponential in the sequence length, albeit with a smaller base.

Recently, lattice decoding algorithms have been applied tononcoherent and differential detection. For PSK

over temporally-correlated Rayleigh fading channels, a form of lattice decoding (namely sphere-decoding) can be

applied since it turns out that the detection metric is Euclidean [12]. Lattice decoding techniques have also been

used for differential detection of diagonal space-time block codes over Rayleigh fading channels, by approximating

the decision metric with a Euclidean metric [13, 14]. In [15], we presented simulation results for another lattice

projection approach for suboptimal PAM and QAM detection. Unfortunately, each of these algorithms require

complexity exponential with the block length to guarantee that the optimal estimate is found [16, 17]. Practical

implementation considerations demand that low complexityalgorithms be developed.

For the case of the constant envelope PSK constellation, a detection algorithm with complexityO(T logT ) was

developed in [18, 19] (whereT is the block length), which can provide the optimal data estimate over an unknown

noncoherent fading channel, in terms of the Generalized Likelihood Ratio Test (GLRT). The GLRT is equivalent to

joint ML estimation of a continuous valued channel parameter and discrete-valued data parameters. This approach

was generalized in [20], where they outlined a general graph-based approach which involved forming a spanning

tree. Specific details were presented for the cases of QAM over a phase noncoherent channel (i.e. known channel

amplitude) [20, 21], and for PSK over a fading channel with coding [22]. The challenge remains to develop efficient
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algorithms for optimal noncoherent sequence detection of multi-amplitude constellations over fading channels.

In this paper we propose a new GLRT-optimal noncoherent lattice decoding approach for QAM and PAM symbols

which has complexity polynomial in the block length. We start by considering detection ofM -ary PAM over real-

valued fading channels (which we shall term real-PAM). We show that the GLRT-optimal codeword estimate is the

closest codeword (or lattice point)in angle to the line described by the received vector. We propose an algorithm

that searches along the line, and chooses the best codeword estimate from this search. We provide a theorem that

bounds the search to a segment of the line, limiting the number of codewords that need to be considered. We show

how the search can be done in an iterative manner, and that theresulting complexity of the algorithm isO(T logT ).

We then consider the more practical case ofM -ary QAM detection over complex-valued fading channels, and

show that in this case the GLRT-optimal codeword estimate isthe closest codeword in angle to aplanedescribed

by the received vector. We propose an algorithm that searches across the plane, and chooses the best codeword

estimate from this search. We provide a theorem that bounds the search to a segment of the plane. We show how

the extent of the search can be further reduced by exploitingthe rotational symmetry of the constellation. The

resulting plane search algorithm can be performed with complexity of orderO(T 3).

We also present new suboptimal noncoherent QAM detection algorithms with even lower complexity; by com-

bining a channel phase estimator with our fast real-PAM algorithm. We propose usingO(T ) instances of the

real-PAM algorithm. This approach therefore has complexity of orderO(T 2 logT ). Simulations indicate that there

is a negligible performance loss compared to GLRT, when using this suboptimal technique.

Finally, we also propose a pilot-assisted version of our newreduced-search noncoherent lattice-decoding algo-

rithms. The pilot symbol is used to remove the ambiguities inherent with noncoherent detection. Our approach

obtains improved performance compared with standard pilotassisted transmission [6], while maintaining the same

data rate.

II. SYSTEM MODEL

A. Signal Model

We define a codebookC(X , T ) as the set of all possible sequences ofT transmitted symbols,x = [x1, . . . , xT ]
′,

such that eachxt is in some constellationX . For anM -ary PAM constellation,X = {±1,±3, . . . ,±(M − 1)}. For

QAM, X is a subset of the Gaussian (complex) integers with odd real and imaginary components. For example, for an

M2-ary square QAM constellation,X = { x |Re {x} ∈ X ′, Im {x} ∈ X ′} whereX ′ , {±1,±3, . . . ,±(M − 1)}.

Thus each codebookC(X , T ) is a set of lattice points drawn from a subset of the unit lattice ofRT or CT .

We consider block fading channels and assume that the channel h is constant for at leastT symbols as in [1–4,
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11]. We will consider narrowband fading channels whereh is either real-valued and complex-valued channels. Thus

we can write the received codewordy = [ y1, . . . , yT ]′ as follows,

y = hx+ n (1)

wheren = [ n1, . . . , nT ]′ is a vector of additive white Gaussian noise.

B. Detection

The noncoherent detection problem is to estimatex based ony without knowledge of the channel and in the

absence of training data. The log-likelihood function of the maximum likelihood (ML) detector (of both channel

and data) is given by

L(y;x, h) = −‖y − hx‖2 (2)

where constant factors have been discarded and‖·‖ represents the Euclidean norm. For a given codeword hypothesis

x̂, the likelihood function is maximized by choosing

ĥ =
x̂†y

‖x̂‖2
(3)

where(·)† denotes Hermitian transpose.

Hence, the ML estimate ofx conditioned on the corresponding channel estimate, is given by

x̂opt = arg max
x̂∈C(X ,T )

L

(

y; x̂,
x̂†y

‖x̂‖2

)

= arg max
x̂∈C(X ,T )

∣

∣x̂†y
∣

∣

2

‖x̂‖2
(4)

This is the Generalized Likelihood Ratio Test (GLRT) [23] considered in [11, 20].

Note that (4) is equivalently given by

x̂opt = arg max
x̂∈C(X ,T )

∣

∣x̂†y
∣

∣

2

‖x̂‖2 ‖y‖2
(5)

= arg max
x̂∈C(X ,T )

cos2 θ(x̂,y) (6)

whereθ(x,y) is the principal angle betweenx and y [24]. Thus x̂opt can be found by searching the points of

C(X , T ) to find the one closest in angle toy.

For QAM, we can also obtain a geometric interpretation of (4)by expressing the complex vectors inR2T . We

will use the underscore notationx to denote the mapped version ofx as follows,

x = [ Re {x1} Im {x1} . . . Re {xT } Im {xT }]
′ (7)
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and denote the real-valued codebook asCR(X , T ) = {x | x ∈ C}. For M2-ary square QAM, we therefore have

CR(X , T ) = C(X ′, 2T ) whereX ′ is anM -ary PAM constellation. We also defineY ∈ R2T×2 as a basis for the

subspaceyC mapped into the real spaceR2T ; that is

Y ,







Re {y1} Im {y1} . . . Re {yT } Im {yT }

− Im {y1} Re {y1} . . . − Im {yT } Re {yT }







′

. (8)

Note that the columns ofY are orthogonal. The projection matrixP(y) ∈ R2T×2T is defined as

P(y) ,
YY′

‖y‖2
(9)

such that

P(y)x = arg min
v∈YR2

‖x− v‖ .

That is, the vectorP(y)x is the projection ofx onto the subspaceYR2. Now, it can be easily shown that

x̂
opt = arg max

x̂:x̂∈C(X ,T )
cos2 θ(x̂,P(y)x̂)

Thus the GLRT-optimal data estimatêxopt, corresponds to thêx ∈ CR(X , T ) closest in angle to the planeYR2.

It is important to note that two forms of ambiguity exist for this noncoherent detection problem. The first is

the well-known phase ambiguity which occurs for any constellation that is invariant to a particular phase rotation.

For example, for square QAM constellations the following four optimal channel estimate and codeword pairs have

the same likelihood:(ĥopt, x̂opt), (−ĥopt,−x̂opt), (−iĥopt, ix̂opt) and (iĥopt,−ix̂opt); corresponding to the fourπ/2

rotations of the constellation. We will assume that this type of ambiguity can be resolved, for example, by using

the phase of the last symbol from the previous codeword [4], or by using differential encoding [10]. The second

type of ambiguity we call a divisor ambiguity and arises whenthere are multiple points inC(X , T ) that lie on

the same 1-dimensional (real or complex) subspace e.g.[1, 1, 1] and [3, 3, 3] for 4-ary real-PAM withT = 3. This

produces a lower bound on the noncoherent block detection error rate as discussed and analyzed in [25].

III. R EDUCED SEARCH SPACE

In this section we show that the GLRT-optimal data estimatex̂opt, can be found without testing all the elements of

C(X , T ). In the previous section we established thatx̂opt is the codeword closest in angle to a particular subspace,

so it naturally makes sense to define a ‘nearest neighbor set’of the subspace and search within that set. The

subspace of interest has basis vectory and passes through the origin. We show that the nearest neighbor set for this

subspace containŝxopt. This implies that low complexity decoding algorithms can be developed, based on finding

this particular nearest neighbor set, and searching it.
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Definition 1: We defineNN(v) to be the point, or set of points, inC(X , T ) closest to the arbitrary pointv (i.e.,

the nearest neighbor tov). That is,d is an element ofNN(v) if ‖v − d‖ 6 ‖v − z‖ for all z ∈ C(X , T ).

Of course, usuallyNN(v) will have a single element, and in this case we can writeNN(v) = d.

Definition 2: We defineN (C(X , T ),y) to be the nearest neighbor subset of the codebookC(X , T ), corresponding

to the subspace with basis vectory, passing through the origin. That is,u ∈ N (C(X , T ),y) if and only if there

exists someλ such thatNN(λy) = u.

Note that from a geometrical perspective, it is useful to think of λ as being equivalent to the inverse of a channel

estimate; implying that a pointu is in the nearest neighbor set if there is a channel estimateĥ such that the distance

|y− ĥu| is smaller than for any other point. Consequently we defineλ̂opt , (ĥopt)−1 as the reciprocal of the optimal

channel estimate.

The following property of the GLRT-optimal codeword estimate x̂opt, allows us to reduce the set of codewords

which need to be tested, to a small subset of the|X |T possible codewords (where|·| denotes set cardinality). Note

that an equivalent result was presented in [20], however thegeometrical interpretation of our formulation is more

apparent; and is important when developing our new search algorithms later.

Property 1:

x̂opt ∈ N (C(X , T ),y).

Proof: Consider the case wherêxopt /∈ N (C(X , T ),y). From Definition 2 this implies that there exists some

x̂ ∈ N (C(X , T ),y) such that||λ̂opty−x̂|| < ||λ̂opty−x̂opt|| however this would implyL(y; x̂, ĥopt) > L(y; x̂opt, ĥopt)

from (2) and hence we have a proof by contradiction.

IV. PAM D ETECTION FOR REAL-VALUED FADING CHANNELS

This section presents a low complexity algorithm for GLRT-optimal noncoherent PAM detection over real-valued

channels. Practically, such channels arise in baseband transmission (eg. multi-level PCM), or in certain bandpass

systems where phase and frequency are separately estimatedby a phase-locked loop.

We first present a theorem that we will use to reduce the numberof codewords that need to be examined, even

beyond the limitations imposed by Property 1. Note that in this real-valued channel case, the subspace of interest

(defined byy) actually reduces to a line,yR. The theorem implies that only a limited extent of the line needs to

be searched; and that the extent depends on the largest valueof y. We then propose a fast low-complexity iterative

algorithm to perform the search. In the sequel, we will extend the algorithm to complex-valued channels. Later, we

will directly incorporate the algorithm from this section into an extremely low complexity suboptimal algorithm for

noncoherent detection over the more commonly encountered complex-valued channels.
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A. Limiting the Search Space

Theorem 1:For noncoherent detection ofM -ary PAM codewords of lengthT over a real-valued fading channel

∣

∣λ̂optyt
∣

∣ 6 M + T − 2

for all t = 1, 2, . . . , T .

Proof: Definen , argmaxt {|λ̂optyt|}. Note that if |λ̂optyn| 6 M then the theorem is satisfied.

Now, consider the alternative case when|λ̂optyn| > M . Rearranging the GLRT-optimal channel estimate in (3)

gives(x̂opt)′(y − ĥoptx̂opt) = 0 and hence

(x̂opt)′(λ̂opty − x̂opt) = 0. (10)

We will use this property to bound̂λopt. Using (2) and the fact thatC(X , T ) contains all possible sequences

{ x | xt ∈ X ∀t }, the elements of̂xopt can be determined on an element-wise basis as

x̂
opt
t = argmin

x∈X

∣

∣λ̂optyt − x
∣

∣. (11)

For the case we are considering where|λ̂optyn| > M , it follows that since the largest PAM constellation valuesare

±(M − 1), that x̂opt
n = sgn {yn}(M − 1) wheresgn is the signum function.

We now substitute (11) into (10) to bound̂λopt, which gives

x̂opt
n

(

λ̂optyn − x̂opt
n

)

= −
∑

t6=m

x̂opt
t

(

λ̂optyt − x̂opt
t

)

. (12)

Now (11) and the symmetry of the PAM constellation implies that sgn
{

x̂opt
t

}

= sgn {λ̂optyt}. Moreover, since

x̂opt
t ∈ {±1,±3, . . . ,±(M − 1)} it follows form the definition of̂λopt that−1 < λ̂optyt− x̂opt

t < 1 for all x̂opt
t except

±(M − 1). More generally, for all̂xopt
t , sgn

{

x̂opt
t

}

(λ̂optyt − x̂opt
t ) > −1 and hencêxopt

t

(

λ̂optyt − x̂opt
t

)

> −|x̂opt
t |.

Substituting this into (12) gives

x̂opt
n

(

λ̂optyn − x̂opt
n

)

6
∑

t6=m

∣

∣x̂opt
t

∣

∣

and hence

∣

∣λ̂optyn
∣

∣ =

∣

∣

∣

∣

∣

x̂opt
n +

1

x̂opt
n

∑

t6=n

∣

∣x̂opt
t

∣

∣

∣

∣

∣

∣

∣

6 M − 1 +
(T − 1)(M − 1)

M − 1
= M + T − 2.

Therefore, since|λ̂optyt| 6 |λ̂optyn| for all t the theorem is proved.
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B. PAM Algorithm

In this Section we use Property 1 and Theorem 1 to develop a low-complexity algorithm for real-PAM detection.

This algorithm reduces the number of codewords for which thedecision metric is evaluated to orderMT , which

is much smaller than the set of all possibleMT codewords that would be considered by an exhaustive search.

Furthermore, we demonstrate how the algorithm can be implemented in an iterative manner so that the complexity

is O(T logT ).

Property 1 implies that̂xopt can be found by calculating the metric in (4) for only thosex̂ ∈ N (C(X , T ),y),

i.e. for only thosex̂ ∈ C for which the lineyR passes through its Euclidean nearest neighbor region. Furthermore,

Theorem 1 implies that only a finite segment of the line need beconsidered. We have demonstrated such a search in

Figure 1, which shows the positive axes for 8-ary PAM withT = 2, where the shaded regions indicate the nearest

neighbor regions of the points which need to be searched. Thespecifics of the algorithm are as follows.

First, for ease of notation we modify the received codewordy by changing the signs of all negative elements in

y. This will mean that the corresponding (modified)x̂opt will now have all positive elements. The true (original)

GLRT estimate ofx can be obtained by applying the reverse sign changes tox̂opt. Observe that we can do this

without loss of generality since the PAM constellation is symmetric around zero.

Definition 3: We defineP (x̂) to be the range ofλ such thatx̂ is the nearest neighbor toλy, within the limits

0 < λ < λmax , (M + T − 2)/maxt {yt} (where the limits are due to Theorem 1 and the fact that allxt are

greater than zero for the modified received codeword). Formally,

P (x̂) , {λ | x̂ ∈ NN(λy), λ ∈ (0, λmax)}.

Note that each non-emptyP (x̂) corresponds to a distinct interval of the lineyR. The proposed algorithm proceeds

by enumerating these non-emptyP (x̂)’s, by first enumerating their boundary points along the lineyR. We then sort

the boundary points so that the decision metrics for the correspondinĝx can be calculated in an iterative manner.

For real-PAM, the boundary values ofλ can be shown to be given byνt,b = b
yt

for all t = 1, . . . , T and

b = 2, 4, . . . ,M − 2 such that0 < νt,b < λmax (where the values ofb come from the regular boundaries in the

positive half of the PAM constellationX ). We useV0 to denote the set of all(νt,b, t) pairs.

We then sort the elements ofV0 in ascending order of theirνt,b value, and append the value(λmax, 0) to the

end of the ordered set (since this is the outer boundary of thesegment of the lineyR which needs to be searched,

according to Theorem 1; where the second element of the pair is arbitrarily set to 0 since it is not needed in the

algorithm). We denote the newly ordered set byV , and index it byk, (i.e. we denote itskth element by(νk , tk)).

These ordered values are shown on the example case of Figure 1, where the values ofνk denote the distance along

the lineyR where the line crosses from one nearest neighbor region intothe next.



IEEE TRANSACTIONS ON SIGNAL PROCESSING, ACCEPTED TO APPEAR(ACCEPTED NOV. 2006) 9

We now show howV can be used to enumerate the codewords which need to be searched, and show how to

calculate the corresponding decision metrics in an iterative manner. The algorithm can be visualized geometrically

as searching along a segment of the lineyR, by iterating ink. Whenever the line crosses from the nearest neighbor

region of one lattice point (codeword) to the nearest neighbor region of another, we calculate the metric for the

new lattice point. Note that in this context, the value oftk indicates the dimension of the boundary that is going

to be crossed (in theT -dimensional space) whenleaving the kth segment of the line.

The iterative search starts with the codewordx̂(1) = 1 , [ 1, 1, . . . , 1]′; which has a corresponding decision

metricL(1) = (1′y)2/ ‖1‖2, whereL(x̂) , (x̂′y)2/ ‖x̂‖2 is the likelihood function in (4). We will use the symbol

λ̂ as a marker for the most likely codeword, and we initially setit to λ̂ = ν1/2 (i.e. during the iteration process,̂λ

will be updated whenever a codeword is found to have a higher likelihood than any previously searched codeword,

and the value of̂λ will be chosen such thatNN(λ̂) gives the new codeword).

The iteration proceeds by noting that each time a nearest neighbor boundary is crossed, only one element of the

T -dimensional nearest neighbor codeword vector changes (since for real-PAM, the boundaries are straight lines,

orthogonal to one of the dimensions, and parallel to all the others). Therefore thekth codeword which needs to be

considered, is calculated from the(k − 1)th codeword, on an element-wise basis as follows:

x̂(k)
p =











x̂
(k−1)
p , for p 6= tk−1

x̂
(k)
p + 1, for p = tk−1.

(13)

We defineαk , (x̂(k))′y and βk ,
∥

∥x̂(k)
∥

∥

2
, and henceL(x̂(k)) = α2

k/βk is the decision metric for thekth

codeword considered. The valuesαk andβk are calculated iteratively as follows,

αk = αk−1 + 2ytk−1
(14)

βk = βk−1 + 4x̂tk−1
+ 4. (15)

If L(x̂(k)) improves on the previous best codeword estimate then we update λ̂ in the interior ofP (x̂(k)), by

settingλ̂ = (νk + νk−1)/2.

Once all segments of the line have been searched, we havex̂opt = NN(λ̂y). Pseudo-code for the algorithm is

given in Table III.

The complexity of the algorithm is a function of the number ofintersection pointsνt,b, i.e., NI , |V0|, where

|·| denotes set cardinality.NI is upper bounded by(M/2− 1)T , however in general it will be much less than this

due to the restricted line search implied by Theorem 1, as shown by simulation in Section VII. The sorting ofV0

can be performed using standard sorting techniques inO(NI logNI) [26]. The updates (13), (14) and (15) have

complexityO(1), and the final calculation of̂xopt is of orderT . Thus the overall complexity is dominated by the
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sorting operation, and hence the complexity of the algorithm is of orderO(T logT ); a significant improvement

compared with an exhaustive search over allMT possible codewords in the codebookC(X , T ).

V. GLRT-OPTIMAL QAM DETECTION FOR COMPLEX-VALUED FADING CHANNELS

This section presents a low complexity algorithm for GLRT-optimal noncoherent QAM detection over complex-

valued fading channels. Similarly to the the real-PAM case,we first present a theorem that we will use to reduce

the number of codewords that need to be examined, beyond the limitations imposed by Property 1. In the complex-

valued channel case, the subspace of interest is the planeYR2, whereY was defined in (8). The theorem implies

that only a limited extent of the plane needs to be searched; and that the extent depends on the largest element

in y. We then propose a fast low-complexity algorithm to performthe search for QAM. We also show how PAM

detection over complex-valued channels can be viewed as a special case of the QAM algorithm.

A. Limiting the Search Space

Theorem 2:For noncoherent detection ofM2-ary QAM codewords of lengthT over a complex-valued fading

channel

∣

∣Re
{

λ̂optyt
}∣

∣ 6 M + 2T − 2, and

∣

∣Im
{

λ̂optyt
}
∣

∣ 6 M + 2T − 2,

for all t = 1, 2, . . . , T .

Proof: Define the pointv , λ̂opty, along with its corresponding real-valued representationv, as in (7). Also

definen , argmaxt {|vt|}. Note that if |vn| 6 M then |Re {λ̂optyt}| 6 M and |Im {λ̂optyt}| 6 M for all t and

the theorem is satisfied.

Now, consider the alternative case when|vn| > M . Similarly to the real-PAM case, rearranging the GLRT-optimal

channel estimate in (3) gives(x̂opt)†(y − ĥoptx̂opt) = 0 and hence

(x̂opt)†(λ̂opty − x̂opt) = 0. (16)

It follows that

λ̂opt =
‖x̂opt‖

2

|y†x̂opt|
2y

†x̂opt.

Combining this with the the fact that for any vectoru ∈ CT , the real-valued representation of the complex scalar

y†u is Y′u, we obtain the real-valued representation ofλ̂opt as

λ̂opt =
‖x‖2
∥

∥Y′x
∥

∥

2Y
′x
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and therefore

v = Yλ̂opt =
‖x‖2
∥

∥Y′x
∥

∥

2YY′x.

It follows thatv′x = ‖x‖2, i.e.

(x̂opt)′(v − x̂
opt) = 0. (17)

Using (2) and the fact thatC(X , T ) contains all possible sequences{ x | xt ∈ X ∀t }, the elements of̂xopt can be

determined on an element-wise basis as

x̂opt
t = arg min

x∈X ′
|vt − x| (18)

for all t = 1, . . . , 2T where we recall from Section II-A thatX ′ = {±1,±3, . . . ,±(M − 1)}. We now substitute

(18) into (17) which gives

x̂opt
n

(

vn − x̂opt
n

)

= −
∑

t6=n

x̂opt
t

(

vt − x̂opt
t

)

. (19)

This is similar to (12) in the proof of Theorem 1. By followingthrough the subsequent steps in the proof of Theorem

1, and keeping in mind that the dimensions of the vectors are now of dimension2T , we obtain|vn| 6 M +2T − 2

which implies that|Re {λ̂optyt}| < M + 2T − 2 and |Im {λ̂optyt}| < M + 2T − 2 for all t = 1, . . . , T .

B. QAM Algorithm

In this Section we use Property 1 and Theorem 2 to develop a low-complexity algorithm for QAM detection.

Property 1 implies that̂xopt can be found by calculating the metric in (4) for only thosex̂ ∈ N (C(X , T ),Y), i.e. for

only thosex̂ ∈ C for which the planeYR2 passes through its Euclidean nearest neighbor region. Furthermore,

Theorem 2 implies that only a finite region of the plane need beconsidered. Conceptually, this is a direct extension

of the real-PAM case shown in Figure 1 (considered previously). The difference being that Figure 1 shows the

line yR, but we now have a planeYR
2. Also the number of orthogonal dimensions doubles when considering

complex-valued channels. We demonstrated this complex-valued channel QAM case in Figure 2 which is a two

dimensional plot in the planeYR2. The parallel lines (at various angles) are the boundaries arising from the QAM

constellation, and the shaded region indicates the nearestneighbor regions of codewords which need to be searched.

The QAM search algorithm we present here, follows the same principles as the real-PAM algorithm of Section

IV-B, where instead of working with boundary points of line segments, we need to work with boundary edges of

planar regions. The specifics of the algorithm are as follows.

First, for ease of notation we modify the received codewordy by multiplying it by the complex scalary∗m/|ym|,

wherem = argmaxt |yt|. This will mean that themth element ofy will be real-valued and positive. The true
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(original) GLRT-optimal estimate of the channel can be be obtained by applying the reverse phase rotation toĥopt,

while the optimality of the new GLRT-optimal codeword estimate is unaffected.

Hence Theorem 2 implies that the search over the planeYλ is reduced to the segment of the plane for which

|λ1|, |λ2| < λmax whereλmax , (M +2T − 2)/|ym|. Furthermore, as discussed in Section II-B because of theπ/2

phase ambiguity in square QAM constellations, there are four GLRT-optimal inverse channel estimates±λ̂opt,±iλ̂opt

(with corresponding phase ambiguous GLRT-optimal codeword estimates). Hence, we only need to consider the

square region of the plane

S = { λ | λ1 ∈ (0, λmax), λ2 ∈ [0, λmax) } (20)

since exactly one of±λ̂opt,±iλ̂opt will exist in this region of the plane. Note thatS is the shaded region in Figure

2 (mentioned previously).

Similarly to the real-PAM case we make the following definition.

Definition 4: We defineP (x̂) to be the range ofλ ∈ S such that̂x is the nearest neighbor toYλ. Formally,

P (x̂) , {λ | x̂ ∈ NN(Yλ), λ ∈ S }.

Note that each non-emptyP (x̂) corresponds to a distinct region of the planeYR2. The proposed algorithm

proceeds by enumerating these non-emptyP (x̂)’s, by first enumerating their boundary vertices in the plane. These

vertices are found by calculating the intersection of all the constellation-point boundary lines in the plane (e.g. as

shown in Figure 2). The vertices are then used to calculate aninterior-point inside each of the nearest neighbor

regions in the shaded squareS. The respective nearest neighbor codeword is calculated for each interior-point, and

then it is only these points for which the likelihood metricsare calculated. Clearly, this is a significantly reduced

search space compared with the space of all possible codewords.

For QAM the vertices of the nearest-neighbor regions in the planeYR2 can be found by first noting that, since

x̂opt
t can be given in on an element-wise basis as in (18),P (x̂) can be written as

P (x̂) ,

2T
⋂

t=1

{ λ | xt = arg min
x∈X ′

|(Yλ)t − x|, λ ∈ S}

where(Yλ)t is the tth element ofYλ and we recall thatX ′ = {±1,±3, . . . ,±(M − 1)}. This can be written as

the feasible region for the set of linear inequalities corresponding to the nearest neighbor region boundaries inX ′

for each element of̂xt, as

P (x̂) =

2T
⋂

t=1

{ λ | l(x̂t) 6 (Yλ)t 6 u(x̂t), λ ∈ S}

where l(x̂t) and u(x̂t) are the upper and lower nearest neighbor boundaries in the constellationX ′. For t /∈

{2m, 2m− 1} they take on values in the set{0,±2, . . . ,±(M − 2),±∞}. For t ∈ {2m, 2m− 1} we must
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consider intersections with the boundary ofS, and therefore in this casel(x̂t) andu(x̂t) take on values in the set

{0,±2, . . . ,±(M − 2),±(M + 2T − 2)}.

By including the square boundary of the regionS, all non-emptyP (x̂) are closed simply connected sets on the

planeR2. Therefore, sinceP (x̂) is formed from linear inequalities it is a convex polygon inR2. For eachP (x̂),

denoteB(x̂) as its polygonal boundary andV (x̂) as the vertices of the polygon.

We now propose a method that enumerates all the verticesV (x̂) for all non-emptyP (x̂), and then uses these

vertices to generate a point in the interior of allP (x̂), which is then used to obtain a unique codeword via finding

the nearest neighbor codeword to that point. Consider the set of points{ ν ± ǫµ |ν ∈ V (x̂)}. If µ is some vector

that is not parallel to any side of the polygonP (x̂), and if ǫ is chosen sufficiently small, then at least one point in

this set will be in the interior ofP (x). Since the received symbol is subject to AWGN, and is therefore irrational

with probability one, it follows that the arbitrary choice of µ , [ 1 1 ]′ will almost surely guarantee this, given that

ǫ > 0 is chosen sufficiently small. In practice, simply settingǫ to some small positive constant will be sufficient

to ensure that a point in the interior ofP (x̂) is enumerated. However, in Appendix A we present a techniqueto

perform this in a strictly optimal fashion with complexity per vertex ofO(T ).

Since the vertices are shared by adjacentP (x̂), each vertex is only required to be enumerated once. We define

the set of all vertices within or on the boundary ofS as V = { ν | ν ∈ V (x̂), P (x̂) 6= ∅ }. The setV can be

enumerated as the the intersections of the linesY t,1ν1 + Y t,2ν2 = b andY t′,1ν1 + Y t′,2ν2 = b′, for all pairs of

t, t′ and for all nearest neighbor boundariesb, b′ in X ′. That is






ν1

ν2






=







Y t,1 Y t,1

Y t,2 Y t,2







−1





b

b′






(21)

for all t = 1, 2, . . . , 2T − 1, t′ = t + 1, t + 2, . . . , 2T , and b, b′ ∈ B(t), whereB(t) , {0,±2, . . . ,±(M − 2)}

if t /∈ {2m, 2m− 1} and for symbol indicest ∈ {2m, 2m− 1} where we consider the square boundaryB(t) ,

{0,±2, . . . ,±(M − 2),±(M + 2T − 2)}.

To enumerate a point in eachP (x̂), for each vertexν enumerated we calculate the points on the planeλ
+ ,

ν+ǫµ, andλ− , ν+ǫµ. Then for each of these two points, if it is in the squareS, we calculate the corresponding

codewordsNN(λ+Y) and/orNN(λ−Y) and the decision metrics in (4).

Pseudo-code is provided in Table IV.

The complexity of the algorithm is a function of the number ofcodewords examined,NC , which is in turn

a function of the number of vertices calculated. The number of vertices calculated in (21) corresponding to the

intersections between lines in whereb, b′ is a boundary ofX ′ and bothb andb′ are non-zero isT (2T − 1)[(M −

1)2 − 1]; for which at most two codewords are generated for a quarter of these intersections. For the intersections
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of the boundaries ofX ′ and the squareS there are2(2T − 2)(M − 1)2 intersections, which for one quarter of

these intersections one codeword is generated. For the vertices at(0, 0) and(λmax, λmax) one codeword is generated.

Hence the total number of codewords examined is at most

NC 6
T (2T − 1)

2
[(M − 1)2 − 1] + (2T − 2)(M − 1)2 + 2. (22)

Since the complexity of each codeword and decision metric calculation is of orderT then the overall complexity is

of orderM2T 3 (which is linear in the constellation sizeM2) a significant improvement over an exhaustive search

over allM2T possible codewords in the codebookC(X , T ).

A further reduction in computational expense, without any loss in optimality, can be achieved by enumerating

only one out of each set of four phase ambiguous vertices. Thetechnique is not presented here due to space

constraints, however the number of non-zero vertices examined is reduced by a factor of 4 and1/3 of the matrix

inverse calculations in (21) are avoided.

C. PAM Over Complex Channels

PAM detection over complex fading channels can be viewed as aspecial case of complex-channel QAM,

where there is zero imaginary component in the constellation. In this case, the search over the planeYR2 can

be restricted by extending the proof of Theorem 2. To do this,we note that the condition in (16) holds, which

implies that(x̂opt)′(Re {λ̂opty} − x̂opt) = 0 sincex̂opt is always real-valued. The rest of the proof follows to give

the result that|Re {λ̂optyt}| 6 M + T − 2. This fact combined with Property 1 and theπ phase ambiguity

of PAM constellations, implies that we only consider codewords x̂ = NN(Yλ) for λ in the regionS =

{ λ | 0 < λ1 < λmax = (M + T − 2)/|ym| }.

The specifics of theM -ary PAM algorithm are the same as for theM2-ary QAM case, with the exception that

the calculation of (21) to obtain the vertices in the interior of the (21) is only performed for allt = 1, 3, . . . , 2T −1,

t′ = t + 2, t+ 4, . . . , 2T , andb, b′ ∈ B(t), whereB(t) , {0,±2, . . . ,±(M − 2)} if t 6= 2m− 1 and forB(t) ,

{0,±2, . . . ,±(M − 2),M + T − 2} if t = 2m− 1.

The total number of codewords searched can be shown to be at most

NC 6
T (T − 1)

2
[(M − 1)2 − 1] + (T − 1)(M − 1) + 1. (23)

Since the complexity of each codeword and decision metric calculation is of orderT then the overall complexity is

O(T 3). In the following section, we will see that a simple suboptimal approach can achieve even lower complexity

with near-optimal performance.
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VI. SUBOPTIMAL ALGORITHMS FORCOMPLEX-VALUED FADING CHANNELS

In this section, we propose even lower complexity suboptimal algorithms for detection of QAM and PAM over

complex-valued fading channels. We directly use the GLRT-optimal algorithm for real-PAM from Section IV as

the basis for the algorithms.

A. Suboptimal PAM algorithm

Since for PAM constellations, all constellation points liealong the real line in the complex plane, a suboptimal

phase estimation technique combined with our GLRT-optimalalgorithm for real-valued fading channels should be

sufficient to provide near-optimal performance. This effectively reduces the search over the whole planeYR2 for

the GLRT-optimal case, to a search over a single line at the given estimated phase angle.

We use the power-law estimator [27] which, for constellations exhibiting a rotational symmetry ofπ radians, is

simply

φ̂PL ,
1

2
∠

T
∑

t=1

y2t (24)

where∠ refers to the complex argument. Detection is performed by first rotating the received codewordy according

to this estimate, and then detectingRe{e−jφ̂PLy} using the GLRT-optimal algorithm of PAM over a real-valued

fading channel.

B. Suboptimal QAM algorithm

Here we propose a suboptimal algorithm, which reduces the overall algorithmic complexity toO(T 2 logT )

by usingO(T ) instances of the PAM detection algorithm presented in Section IV. Instead of enumerating the

intersections of lines on the(λ1, λ2)-plane, as we did in Section V-B, here we propose to use a modified version of

the nearest-neighbor real-PAM line-search algorithm forL lines of the type presented in Section IV. We generate

these lines emanating from the origin intoS (the shaded region in Figure 2), evenly spaced in angle. Of course, this

does not guarantee that we fully enumerateN (C(X ), T ) since a finite number of radiating lines can not completely

cover a plane, however, we will see by simulation in Section V-B that the performance is close to the optimal.

As in the optimal case, we multiplyy by y∗m/|ym| so thatym will be real-valued and positive. In this suboptimal

QAM case, this implies that we only examine points on the planeYλ for λ = [ λ1 λ2 ]′ satisfying0 < |λ1|, |λ2| <

λmax
0 , whereλmax

0 , (M + 2T − 2)/|ym|.

The L directions of the lines with respect to the direction of positive λ1 have anglesΦ , {φ1, . . . , φL} where

φℓ = (ℓ − 1)π/(2L). For each angleφℓ, we perform a nearest neighbor line search for the line with basis vector

y
ℓ
[ cosφℓ sinφℓ ], as proposed in the suboptimal PAM algorithm in Section VI-A. The search is performed for
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the segment of the lineλy
ℓ

whereλ ∈ R and0 < λ < λmax
ℓ whereλmax

l , λmax
0 /max{cosφℓ, sinφℓ}. In this case

the lines searches are performed for blocks of length2T .

There is of course a modification required to update the codeword metrics in terms of complex numbers. The

first line search performed is forφ1 = 0, and hence the line search is overλy
1
= λy. In this case the intervals of

the lineP (x̂) are defined as,

P (x̂) ,
{

λ | x̂ ∈ NN(λy
l
), λ ∈ (0, λmax

l )
}

.

Hence the algorithm works by enumerating and calculating the metric for all x̂ ∈ C(X ′, 2T ) for which P (x̂) is

non-empty.

In this case the setV0 of boundary points of the regionsP (x̂) is enumerated by calculatingνt,b = b/|y
t
| for

all t = 1, . . . , 2T and b = 2, 4, . . . ,M − 2, (which are the nearest neighbor boundaries in the positivehalf of the

constellationX ′), and storing only those values of(νt,b, t) such thatνt,b < λmax
ℓ . The set of ordered boundary

pointsV is again obtained by sorting, and(λmax
ℓ , 0) is appended toV as the extent of the search. Recall that(νk, tk)

are thekth elements ofV .

The search through the codewords is initialized to the first codeword for the which the line segment passes through,

which is given byx̂(1) = s wheres , sgn
{

y
}

. The likelihood update variables are initialized toα = (x̂(1))†y

and β = ‖x̂(1)‖2. To regenerate the optimal codeword, the values ofλ and φ are initialized toλ = ν1/2 and

φ = φ1 = 0.

The (k + 1)th codeword considered,̂x(k+1), is calculated from thekth codeword as

x̂
(k+1)
tk

= x̂
(k)
tk

+ 2stk . (25)

To update the decision metric we defineαk , (x̂(k))†y andβk , ‖x̂(k)‖2, and henceL(x̂(k)) = |αk|
2/βk is the

decision metric for thekth codeword considered. The valuesαk are updated as follows, Iftk is odd, thenαk is

updated as

αk =















αk−1 + 2stk−1
y(tk−1+1)/2, tk−1 odd

αk−1 − 2istk−1
ytk−1/2, tk−1even.

(26)

The values ofβk are updated according to

βk = βk−1 + 4stk−1
x̂tk−1

+ 4. (27)

If L(x̂(k)) = |αk|2/βk improves on the best codeword estimate then we storeλ = (νk + νk−1)/2 andφ = φℓ.

To start the next line search,y is multiplied by e
jπ
2L and the line search is then performed again for the new

value ofy. When all line searches have been performed, we calculatex̂opt = NN(λejφy) for the originaly.
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Pseudo-code is provided in Table V.

The significantly reduced algorithmic complexity comparedto the GLRT-optimal algorithm is governed by the

number of line searches and the complexity of each line search. Since there areL phases, each performing a

version of the real-PAM line-search algorithm of Section IVfor the caseM -ary PAM detection of2T symbols.

ThusNC 6 L(2T (M/2−1)+1). From Section V-B we have noted that the number of codewords in N (C(X , T ),y)

is of orderM2T 2 and thusL must beO(T ) for it to be possible that the majority ofN (C(X , T ),y) is enumerated.

Hence, ifL is increased proportionally toT , the overall complexity of the algorithm isO(T 2 log T ). Note that

however, the improved computational performance of the algorithm is largely due to being able to chooseL small,

which corresponds to avoiding examining a significant number of the x̂ with associatedP (x̂) being so small as to

imply that x̂ is not relatively close in angle to the planeYR2. We will see via simulation in Section VII that small

L (e.g.L = 4 for T = 7 16-QAM detection) can achieve near-optimal performance.

VII. S IMULATION RESULTS

We now present simulation results to demonstrate the performance of the new PAM and QAM noncoherent

reduced search lattice-decoding algorithms. Simulationsare performed to obtain the codeword error rate (CER) as

a function of SNR for noncoherent detection of 8-ary PAM and 16-ary square QAM. For both case, the simulations

are performed for codeword lengths ofT = 3 and7 over a block Rayleigh fading channel whereh is i.i.d. circularly

symmetric complex Gaussian with unit variance. We have assumed that the phase ambiguities have been removed

within each codeword, (for example, by the use of differential encoding [10]).

Figure 3 presents results for 8-ary PAM for the GLRT-optimalplane search algorithm from Section V-C and the

suboptimal phase-estimator plus line-search algorithm from Section VI-A. We also compare with the suboptimal

grid-search algorithm proposed in [20] and the quantization based receiver proposed in [11]. For the grid-search

algorithm we use uniformly spaced channel phase estimates and the channel attenuation estimates are chosen

uniformly from the CDF of the Rayleigh fading channel distribution. For fairness the number of channel attenuation

estimates is adjusted so that the total number of channel estimates was kept equal to the maximum number of

codeword estimates that potentially could be produced by our GLRT-optimal algorithm. Best results are obtained

for choosing the channel phase estimates as0 and π/2, and hence thekth channel amplitude estimate is given

by |ĥ(k)|2 = − log(1 − k/(1 + ⌈NC/L⌉)). For the quantization-based receiver (QBR) considered in [11], all

possible sequences of (positive) amplitude levels are produced, and the sign of each symbol is then determined by

symbol-wise coherent detection using uniformly spaced channel phase estimates (a channel amplitude estimate is

not required since the signal amplitude is assumed known). For QBR, we again use the channel phase estimates0
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andπ/2.

Figure 4 presents the CER as a function of SNR, for 16-QAM transmission. Results are shown for the GLRT-

optimal QAM algorithm given in Section V-B and the suboptimal algorithm given in Section VI-B. We also compare

with the grid-based algorithm, where best performance for afixed number of codeword estimates was obtained using

L = 4 channel phase estimates, which we also use for QBR.

For both the PAM and QAM cases we see that the suboptimal line-search algorithms provide negligible per-

formance loss compared to the GLRT-optimal algorithm. For the case ofT = 3, where QBR is computationally

possible, there is a noticeable performance loss. As discussed in Section II-B, divisor ambiguities result in a lower

bound on the CER. Expressions for these lower bounds were provided in [25] and are also shown in the figure.

Clearly, for high SNR, both of our GLRT-optimal algorithms and both suboptimal algorithms detection achieve these

bounds for both PAM and QAM. As noted in [11], there is an inherent suboptimality introduced by quantizing

the unbounded channel attenuation by employing a grid-search approach, and hence the performance is clearly

inferior. Also, although QBR achieves near-optimal performance forT = 3, since the complexity of QBR increases

exponentially withT is not possible to produce curves forT = 7.

In Table I we present the relative computational complexities of the algorithms for the simulations in terms of the

average number of codewords examined. The numbers in brackets indicate the number of codewords examined by

the search if the restrictions on the search region providedby Theorems 1 and 2 are not applied (and are therefore

slightly greater than the worst case values given in (22) and(23)). We see that the suboptimal phase-estimator plus

line-search approaches examine far fewer codewords yet obtains near-optimal performance, and that the complexity

of QBR quickly becomes infeasible with increasingT .

GLRT-Optimal Phase Estimator QBR Grid

Reduced Search + Line Search Search

8-PAM T = 3 132.3 (173) 7.3 (10) 128 174

8-PAM T = 7 772.6 (1093) 16.4 (22) 32768 1094

16-QAM T = 3 52.6 (87) 22.9 (28) 108 88

16-QAM T = 7 311.8 (439) 52.9 (60) 8748 440

TABLE I

NUMBER OF CODEWORDS EXAMINED FOR NONCOHERENTPAM AND QAM DETECTION

VIII. R EDUCED AMBIGUITY TRANSMISSION

In this section we extend our new noncoherent detection algorithm to pilot assisted transmission (PAT) systems

[6]. Unlike, standard PAT we propose to use the pilot symbol for noncoherent ambiguity resolution, rather than
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simply for channel estimation. We propose to replace the pilot symbol of PAT with a symbol generated in the

following way. Two bits are allocated for resolving theπ/2 phase ambiguity of square QAM, and the remaining

bits in the symbol are allocated to parity, remove divisor ambiguities and improve error performance. Therefore,

this scheme has the same data rate as PAT and can be compared directly.

With parity check bits in the codeword, we can now even further reduce the search space of our reduced search

GLRT lattice-decoding algorithm by only considering codewords which satisfy a parity check. This significantly

reduces the ambiguity problem. We will denote this parity-aided transmission scheme as reduced ambiguity (RA)

transmission.

An arbitrarily chosen parity check scheme might reduce the number of divisor ambiguities, however since the

metric (4) has a geometric interpretation it may be possibleto design other parity-check schemes which both

resolve ambiguities and optimize performance by providinga minimum angular separation between codewords.

The resolution of ambiguities can be achieved, at least for 16-QAM, by using the following parity-check scheme.

Two parity bitsp1, p2 are calculated from the data bits{d1, d2, . . . , d2(T−1)} as follows,

p1 ≡ 1 +

4(T−1)
∑

t=1

dt (28)

p2 ≡ 1 +

2(T−1)
∑

t=1

d2t (29)

where ≡ denotes equality inGF (2). They are then mapped to the upper right-hand quadrant of theQAM

constellation of the first (pilot) symbol in the codeword as follows: (00) ֌ 1 + j, (01) ֌ 1 + 3j, (11) ֌ 3 + 3j

and (10) ֌ 3 + j. Effectively this means the first two bits of the first symbol of each codeword is chosen such

thatx1, x2 > 0, which removes theπ/2 phase ambiguity, and the other two bits are parity bits, which in this case

can be shown to completely remove the divisor ambiguities (see Appendix B).

Figure 5 presents the bit error rate (BER) as a function of SNRfor detection of 16-QAM transmitted over a

block independent phase-noncoherent AWGN channel. Again we have assumed that the phase ambiguities have

been removed within each codeword. Results are shown for three codeword lengthsT = 3, 5, 7. The figure shows

curves for our new RA reduced-search GLRT-optimal algorithm, and compares them to standard PAT. Both schemes

use a single pilot symbol per codeword; which for the RA scheme is generated as described above, and for PAT it

is a symbol which has energy equal to the average energy per symbol. For PAT, the GLRT estimate of the channel

(based on the pilot symbol) is used to perform GLRT-optimal data detection, while for RA lattice decoding we use

our reduced search GLRT-optimal algorithm. Note that for PAT, the BER is independent of the codeword length

T since it is a symbol-by-symbol detection scheme, whereas for RA lattice decoding the BER decreases asT

increases since it is a sequence detection scheme. Clearly our scheme outperforms PAT increasingly withT .
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Figure 6 shows the CER for the scenario of Figure 5. This serves to highlight even further the benefit from

our lattice (sequence) decoding approach compared with PAT. For PAT, since bit errors occur independently on a

symbol-by-symbol basis, the CER increases withT . However, for RA lattice decoding the CER decreases. Also the

figure highlights the advantage of using pilot symbols, compared with fully noncoherent transmission, by observing

that the SNR range is significantly lower than for Figures 3 and 4.

IX. CONCLUSION

In this paper we developed polynomial-time lattice-decoding algorithms for noncoherent block detection of PAM

and QAM. Faster suboptimal algorithms for QAM were also presented which have excellent agreement with the

optimal algorithms. A reduced ambiguity transmission scheme was introduced which was shown to outperform pilot

assisted transmission over the phase noncoherent channel.

APPENDIX

A. Strictly Optimal Calculation of Interior Points

For each non-empty regionP (x̂), there exists a vertexν ∈ V (x̂) and small scalarsν+, ν− > 0, such that either

ν+ , ν + [ ν+ 0 ]′ or ν− , ν + [ ν− 0 ]′ is in the interior ofP (x̂).

Suppose the first case is true. Now, the lineν+ γ[ 1 0 ]′intersects an edge of the boundary ofP (x), and we will

call this intersection pointµ. We propose to chooseν+ = γ > 0 so thatν+ is the midpoint ofν andµ. Defining

ut as thetth element ofu = Y ν, whereY is defined by the original received vectory, we can calculateν+ as

follows,

ν+ =















min
t

2⌈
ut

2 ⌉−ut

2y
t

y
t
< 0,

min
t −

2⌊
ut

2 ⌋−ut

2y
t

y
t
> 0.

Note that almost surelyy
t
6= 0. Similarly, using the lineν − γ[ 1 0 ]′ we calculateν− = γ > 0 as

ν− =















min
t −

2⌊
ut

2 ⌋−ut

2y
t

y
t
< 0,

min
t

2⌈
ut

2 ⌉−ut

2y
t

y
t
> 0.

This process will in general always calculate a point in eachnon-emptyP (x̂). However, to avoid calculation

problems we first rotateν by ym/|ym|, so that the vectors[ ν+ 0 ]′ and [ ν− 0 ]′ are not parallel to any of the

edges ofP (x̂) (e.g.those that are part ofS). This rotation is later reversed, so that the points calculated are in the

original coordinates.
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B. Removal of Ambiguities in 16-ary QAM

In this section we show that the proposed RA pilot symbol approach (using parity checks, as discussed in Section

VIII) totally removes both the phaseand divisor ambiguities otherwise inherent in a noncoherent detection system

(as discussed in Section II-A).

We start by recalling that the proposed parity scheme involves calculating the parity bits from the data bitsdt for

t = 1, . . . , 4T as follows.

p1 ≡ 1 +

4(T−1)
∑

ℓ=1

dt p2 ≡ 1 +

2(T−1)
∑

ℓ=1

d2t (30)

where≡ denotes equality inGF (2).

The data and parity bits are then mapped to the symbols as shown in Table II, where we recall from the definition

in (7) thatx2t−1 = Re {xt} andx2t = Im {xt}.

d2t−1d2t x
t

00 −3

01 −1

11 1

10 3

p1p2 x1 (pilot symbol)

00 1 + i

01 1 + 3i

11 3 + 3i

10 3 + i

TABLE II

MAPPING OF DATA AND PARITY BITS.

Sincex1 is constrained to have positive real and imaginary components, the phase ambiguity has been removed.

It remains to show that all divisor ambiguities have also been removed.

To do this, we first define the associates of a Gaussian integerg to be the elements of the setA(g) =

{g, gi,−g,−gi}. We also denoteA(g)T to be a codeword of lengthT composed of only elements ofA(g).

For 16-QAM, it can be easily shown that a necessary conditionfor a divisor ambiguity to exist is that there exists

codewordsx(1) ∈ A(g1)
T , x(2) ∈ A(g2)

T for someg1, g2 ∈ X , {1 + i, 3 + 3i, 3 + i, 1 + 3i} such thatg1 6= g2.

For a codewordx and someg ∈ X , we defineN1, N2, N3 andN4 as the number of occurrences in a codeword

of each of the four possible rotations ofg in the codeword, that isg, gi,−g and−gi respectively. Noting that the

phase ambiguity has been removed (sincex1 is constrained to have positive real and imaginary components), a

sufficient condition for two codewords to be unambiguous is that there exists somet, such that thetth symbols

from the two codewords are in different quadrants of the complex plane. It follows then, that a sufficient condition

for two codewords to be unambiguous is that they do not have the same values ofN1 to N4.

We now use this property onN1 to N4 to show that for arbitraryT , it is not possible for two ambiguous

codewordsx(1) ∈ A(g1)
T , x(2) ∈ A(g2)

T , to satisfy the parity check (30) for anyg1, g2 ∈ X such thatg1 6= g2.
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We consider eachg ∈ X (where we have previously definedX = {1+ i, 3+ 3i, 3+ i, 1+ 3i}) in turn, showing

that all codewordsx ∈ A(g)T that satisfy the parity check, are distinguishable in phasefrom all parity-satisfying

codewords considered up to that point. For 16-QAM this process involves considering the four Gaussian integers

1 + i, 3 + 3i, 3 + i and1 + 3i in turn, as detailed in the following four cases.

DefinexD to be the data codeword component ofx, i.e. x = [x2 . . . xT ]
′.

• Case xD ∈ A(1 + i)T−1:

In this case, we show that there does not exist anyx ∈ A(1 + i)T that satisfies the parity check. Using

Table II, the bits(d4ℓ−3 . . . d4ℓ) are mapped to the symbolxℓ = x2ℓ−1 + ix2ℓ ∈ xD in the following way:

(1111) ֌ 1 + i, (0111) ֌ −1 + i, (0101) ֌ −1 − i and (1101) ֌ 1 − i. Clearly from (29),p2 ≡ 1, and

therefore the pilot symbolx1 will be either1 + 3i or 3 + 3i. It follows thatx /∈ A(1 + i)T .

• Case xD ∈ A(3 + 3i)T−1:

In this case, we show the conditions under which a codewordx ∈ A(3 + 3i)T satisfies the parity check. The

associated bit mappings are(1010) ֌ 3 + 3i, (0010) ֌ −3 + 3i, (0000) ֌ −3− 3i and (1000) ֌ 3 − 3i.

Clearly,p1 ≡ 1 +N2 +N4 andp2 ≡ 1. Therefore,

x1 =

{

1 + 3i, if (p1p2) = (01) i.e. if N2 6≡ N4,

3 + 3i, if (p1p2) = (11) i.e. if N2 ≡ N4.

Furthermore it follows thatx ∈ A(3 + 3i)T only if N2 ≡ N4.

• Case xD ∈ A(3 + i)T−1:

In this case, we show the conditions under which a codewordx ∈ A(3 + i)T satisfies the parity check, and

show that under these conditions there does not exist any ambiguous codeword fromA(3+3i)T , i.e. from the

previous case. The bit mappings are(1011) ֌ 3+i, (0110) ֌ −1+3i, (0001)֌ −3−i and(1100) ֌ 1−3i.

In this case,p1 ≡ 1 + N1 + N3 and p2 ≡ 1 + N1 + N2 + N3 + N4 ≡ 1 + T − 1 ≡ T . If T is odd, then

p2 ≡ 1 and thereforex1 ∈ {1 + 3i, 3 + 3i} and thereforex /∈ A(3 + i)T . If T is even thenp2 ≡ 0 and

p1 ≡ 1 +N1 +N3 ≡ N2 +N4. Therefore

x1 =

{

3 + i if (p1p2) = (10) i.e. if N2 6≡ N4,

1 + i, if (p1p2) = (00) i.e. if N2 ≡ N4.

It follows that x ∈ A(3 + i)T only if N2 6≡ N4 and T is even. Recall that in the previous case, valid

parity satisifying codewords only occurred ifN2 ≡ N4. Therefore an ambiguity will not occur between two

codewordsx ∈ A(3 + i)T andx(1) ∈ A(3 + 3i)T since they will be distinguishable in phase.

• Case xD ∈ A(1 + 3i)T−1:

In this case, we show the conditions under which a codewordx ∈ A(1+3i)T satisfies the parity check, and show
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that under these conditions there does not exist any ambiguous codeword from eitherA(3+3i)T or A(3+ i)T ,

i.e. from the previous two cases. The bit mappings are(1110) ֌ 1+3i, (0011)֌ −3+ i, (0100)֌ −1− 3i

and (1001) ֌ 3 − i. Here, p1 ≡ 1 + N1 + N3 and p2 ≡ T . If T is even, thenp2 ≡ 0 and therefore

x1 ∈ {1 + i, 3 + i} and no ambiguity occurs. IfT is odd thenp1 ≡ 1 +N2 +N4 andp2 ≡ 1. Therefore,

x1 =

{

1 + 3i if (p1p2) = (01) i.e. if N2 6≡ N4,

3 + 3i, if (p1p2) = (11) i.e. if N2 ≡ N4.

It follows thatx ∈ A(1 + 3i)T only if N2 6≡ N4 andT is odd. Clearly, these conditions are different to those

to the previous two cases and therefore no ambiguities exist.
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1 begin
2 s := sgn y; // Store sign of eachyt

3 y := s ◦ y; // Make eachyt positive
4 Bmax := M + T − 2;
5 m := argmaxt {yt};
6 λmax := (M + 2T − 2)/|ym|; // Search region:0 < λ < λmax

7 V0 := ∅; // Calculate and storeP (x) boundary points
8 for t := 1 to T do
9 for all b ∈ {2, 4, . . . ,M − 2} do
10 ν := b/yt;
11 if ν < λmax;
12 V0 := {V, (ν, t)};
13 else break;
14 end for all;
15 end for;
16 V := sort(V0); // SortV0 in ascending order ofν
17 V := {V, (λmax, 0)};
18 x̂ := [ 1 1 . . . 1 ]′; // Initialize data estimate
19 α := x̂′y; // Initialize likelihood terms
20 β := ‖x̂‖2;
21 L := α2/β;
22 λ := V(1, 1)/2;
23 for k := 1 to |V| − 1 do // Iteratively examine likelihoods
24 t := V(k, 2);
25 α := α + 2yt; // Update likelihood terms
26 β := β + 4x̂t + 4;
27 x̂t := x̂t + 2; // Updatex
28 if α2/β > L // If betterx found
29 L := α2/β; // Update likelihood
30 λ := (V(k, 1) + V(k + 1, 1))/2; // Store point inP (x̂)

31 end if;
32 end for;
33 return x̂opt := s ◦ NN(λy);

TABLE III

M -ARY REAL-PAM NONCOHERENT LATTICE DECODING ALGORITHM
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1 begin
2 m := arg maxt {|yt|};
3 y := (y∗

m/|ym|)y; // Rotatey so thatym is purely real
4 Bmax := M + 2T − 2;
5 λmax := Bmax/|ym|; // Search boundary (Thm. 2).
6 x̂best := NN((ǫ+ iǫ)y); // Codeword near origin

7 Lmax := L(x̂best); // L’hood L(x) ,
˛

˛

˛x
†y

˛

˛

˛

2
/ ‖x‖2

8 B := {2, 4, . . . ,M − 2}; // Positive NN boundaries
// Calculate only intersection points (i.e. vertices) in
// first quadrant using (21) by reducing number of
// NN boundariesB1,B2 and then rotating.

9 for t := 1 to 2T − 1 do
10 B1 := B;
11 if t ∈ {2m − 1, 2m} then B1 := {B1, B

max};
12 for t′ := t + 1 to 2T do
13 B2 := B;
14 if t′ ∈ {2m − 1, 2m} then B2 := {B2, B

max};

15 S :=

»

Y t,1 Y t,2

Y t′,1 Y t′,2

–−1

; // Matrix in (21)

16 for all b1 ∈ B1

17 for all b2 ∈ B2

// Calculate intersection point;
18 ν := Real-To-Complex(S[ b1 b2 ]′);
19 ν := Rotate-To-First-Quadrant(ν);
20 for all s ∈ {−1, 1}

21 λ := ν + s(ǫ + iǫ); // Point in some partition
// Check thatλ is in reduced search region

22 if 0 < Re {λ} < λmax and
0 6 Im {λ} < λmax then

23 x̂ := NN(λy); // Calculate NN
24 if L(x̂) > Lmax // If betterx found
25 x̂best := x̂; // Update codeword estimate
26 Lmax := L(x̂); // Update likelihood
27 end if;
28 end if;
29 end for all;
30 end for all;
31 end for all;
32 end for;
33 end for;
34 return x̂opt := x̂best;

TABLE IV

M2-ARY SQUARE QAM NONCOHERENT LATTICE DECODING ALGORITHM
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1 begin
2 L := 0; // Initialize likelihood
3 λmax

0 := (M + 2T − 2)/maxt |yt|;
4 for ℓ = 1 to L then
5 // Search region:0 < λ < λmax (Theorem 2)
6 λmax := λmax

0 /min
˘˛

˛cos ℓπ
2L

˛

˛,
˛

˛sin ℓπ
2L

˛

˛

¯

;
7 V0 = ∅; // Calculate and storeP (x) boundary points
8 for t = 1 to 2T then
9 for all b ∈ {2, 4, . . . ,M − 2} then
10 ν := b/|y

t
|;

11 if ν < λmax;
12 V0 := {V0, (ν, t)};
13 else break;
14 end for all;
15 end for;
16 V := sort(V0); // SortV0 in ascending order ofν
17 V := {V, (λmax, 0)};
18 s := sgn{y};
19 x̂ := s; // Initialize data estimate
20 α := x̂†y; // Initialize likelihood terms
21 β := ‖x̂‖2;
22 if α2/β > L // If betterx found
23 L := α2/β; // Update likelihood
24 λ := V(1)/2;
25 φ := ℓπ/(2L);
26 end if;
27 for k := 1 to |V| − 1 do // Iteratively examine likelihoods
28 t := V(k, 2);
29 if t′ is odd then
30 α := α + 2sty(t+1)/2;
31 else
32 α := α − 2istyt/2;
33 end if
34 β := β + 4stx̂t + 4;
35 x̂t := x̂t + 2st;

36 if |α|2/β > L // If betterx found
37 L := |α|2/β; // Update likelihood
38 λ := (V(k, 1) + V(k + 1, 1))/2; // Store point inP (x̂)

39 φ := ℓπ/(2L);
40 end if;
41 end for;

42 y := ye
jπ
2L ; // Rotatey for next line search

43 end for;
44 return x̂opt := NN(λejφy);

TABLE V

SUBOPTIMAL M2-ARY SQUARE QAM MULTIPLE LINE -SEARCH NONCOHERENT DETECTION ALGORITHM
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Fig. 1. Illustration of noncoherent detection of 8-ary PAM for T = 2. The dots are all the (two dimensional) PAM codewords in the positive

quarter-plane, and the angled line isyR, for an example received codewordy. The shaded regions indicate the nearest neighbor regions

of points which need to be searched. That is, they are inN (C(X , T ),y) (from Property 1), and they correspond to values ofλ less than

λmax = (M + T − 2)/maxt |yt| = M/maxt |yt| (from Theorem 1).
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Fig. 2. Plot of partitionsP (x̂) on theR
2 plane for16-ary QAM detection of a sequence of lengthT = 3 for the received vectory =

[ −0.1076 − 0.4728i, −0.7002 − 0.0968i, −1.1228 + 0.4955i ]. The bold square corresponds to the search boundaryS.
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Fig. 3. Plot of Codeword Error Rate (CER) as a function of SNR for an 8-ary PAM system.
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Fig. 4. Plot of Codeword Error Rate (CER) as a function of SNR for a 16-ary square QAM system.
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Fig. 5. Comparison of Bit Error Rate (BER) as a function of SNR for 16-QAM for PAT versus RA transmission.
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Fig. 6. Comparison of Codeword Error Rate (CER) as a function of SNR for 16-QAM for PAT versus RA transmission.
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