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Abstract

This paper presents new low-complexity lattice-decoditgprdthms for noncoherentblock detection of QAM
and PAM signals over complex-valued fading channels. Tigerdhms are optimal in terms of the generalized
likelihood ratio test (GLRT). The computational complgxis polynomialin the block length; making GLRT-optimal
noncoherent detection feasible for implementation. We gi®vide even lower complexity suboptimal algorithms.
Simulations show that the suboptimal algorithms have perémce indistinguishable from the optimal algorithms.
Finally, we consider block based transmission, and proposgse noncoherent detection as an alternative to pilot

assisted transmission (PAT). The new technique is showntjgedorm PAT.

Index Terms

Noncoherent detection, lattice decoding, wireless conications.

|. INTRODUCTION

Noncoherent transmission of digital signals over unknowadirfg channels has recently received significant
attention especially for the case of the block-fading clhrmodel. Applications include recovery from deep
fades in pilot-symbol assisted modulation based schena@gsdropping, and non-data-aided channel estimation.
Noncoherent transmission is particularly applicable tstems exhibiting small coherence intervals where the use of
training signals would result in a significant loss in thrbpgt. Recently, some elegant information-theoretic tssul

have been derived for noncoherent single and multiplerauaisystems under the assumption of Rayleigh fading, for
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example [1, 2]. Information theoretic aspects of noncohetansmission were considered in [3] which concluded
that at low SNR and for small coherence intervals there igyaifs¢éant capacity penalty by using training. Under
this noncoherent detection regime, it has been shown by ncahsimulation that standard modulation techniques
such as quadrature amplitude modulation (QAM) can achieag-oapacity in the single-antenna noncoherent block
Rayleigh-fading channel [4].

This paper focuses on noncoherent receiver design for ek fading channel. A great deal of work has been
performed on partially coherent receivers such as pilattsyl assisted modulation (PSAM) [5, 6], per-survivor
techniques [7], and coupled estimators [8]. However thelehge remains to develop high-performance, low-
complexity, fully noncoherent receivers.

Various suboptimal algorithms have been proposed for blmded noncoherent detection. For slowly fading
channels, a blind phase recovery approach was proposed fior[doncoherent detection of differentially encoded
QAM [10] where the attenuation was assumed to be known gxatthe receiver. In [11], a suboptimal technique
for PSK was proposed which involved forming a number of elgusdaced channel phase estimates. An extension
to multi-amplitude constellations was also presented,revievery sequence of symbol amplitudes is considered,
and then the PSK technique is applied to determine the pHake symbols. Unfortunately, the complexity of this
suboptimal approach is still exponential in the sequenagtle albeit with a smaller base.

Recently, lattice decoding algorithms have been applieshdncoherent and differential detection. For PSK
over temporally-correlated Rayleigh fading channels, ranfof lattice decoding (hamely sphere-decoding) can be
applied since it turns out that the detection metric is Elgadin [12]. Lattice decoding techniques have also been
used for differential detection of diagonal space-timeckloodes over Rayleigh fading channels, by approximating
the decision metric with a Euclidean metric [13, 14]. In [1Ble presented simulation results for another lattice
projection approach for suboptimal PAM and QAM detectiomfdstunately, each of these algorithms require
complexity exponential with the block length to guaranteat tthe optimal estimate is found [16,17]. Practical
implementation considerations demand that low complexdiyprithms be developed.

For the case of the constant envelope PSK constellationtegtéen algorithm with complexity) (T log T') was
developed in [18,19] (wher# is the block length), which can provide the optimal dataneate over an unknown
noncoherent fading channel, in terms of the Generalizedlihikod Ratio Test (GLRT). The GLRT is equivalent to
joint ML estimation of a continuous valued channel paramatel discrete-valued data parameters. This approach
was generalized in [20], where they outlined a general gitzgded approach which involved forming a spanning
tree. Specific details were presented for the cases of QAM ayEhase noncoherent channied.(known channel

amplitude) [20, 21], and for PSK over a fading channel witling [22]. The challenge remains to develop efficient
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algorithms for optimal noncoherent sequence detection wfitamplitude constellations over fading channels.

In this paper we propose a new GLRT-optimal noncohererntéattecoding approach for QAM and PAM symbols
which has complexity polynomial in the block length. We stay considering detection af/-ary PAM over real-
valued fading channels (which we shall term real-PAM). Wevslthat the GLRT-optimal codeword estimate is the
closest codeword (or lattice poinit) angleto theline described by the received vector. We propose an algorithm
that searches along the line, and chooses the best codestorthte from this search. We provide a theorem that
bounds the search to a segment of the line, limiting the nurmbeodewords that need to be considered. We show
how the search can be done in an iterative manner, and thegsh#ing complexity of the algorithm i9(T log T').

We then consider the more practical caseMdfary QAM detection over complex-valued fading channels] an
show that in this case the GLRT-optimal codeword estimatbésclosest codeword in angle toptane described
by the received vector. We propose an algorithm that searabmss the plane, and chooses the best codeword
estimate from this search. We provide a theorem that bourelsaarch to a segment of the plane. We show how
the extent of the search can be further reduced by exploitiegrotational symmetry of the constellation. The
resulting plane search algorithm can be performed with dexity of order O (7).

We also present new suboptimal noncoherent QAM detectigorithms with even lower complexity; by com-
bining a channel phase estimator with our fast real-PAM rigm. We propose usin@(T") instances of the
real-PAM algorithm. This approach therefore has compyesftorder O(7? log T'). Simulations indicate that there
is a negligible performance loss compared to GLRT, whengutiis suboptimal technique.

Finally, we also propose a pilot-assisted version of our nesluced-search noncoherent lattice-decoding algo-
rithms. The pilot symbol is used to remove the ambiguitidsement with noncoherent detection. Our approach
obtains improved performance compared with standard pasisted transmission [6], while maintaining the same

data rate.

Il. SYSTEM MODEL
A. Signal Model

We define a codeboak(X', T) as the set of all possible sequencegdfansmitted symbolsx = [x1, ..., z7],
such that each; is in some constellatio®t’. For an)M -ary PAM constellationt’ = {+1,+3,...,+(M — 1)}. For
QAM, X is a subset of the Gaussian (complex) integers with odd rehilraaginary components. For example, for an
M?2-ary square QAM constellatiotk’ = {  |Re{z} € X', Im {z} € X'} whereX” & {+1,43,...,+£(M — 1)}
Thus each codeboak(X', T is a set of lattice points drawn from a subset of the unitdatofR” or CT'.

We consider block fading channels and assume that the charieeonstant for at least’ symbols as in [1-4,
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11]. We will consider narrowband fading channels whetis either real-valued and complex-valued channels. Thus

we can write the received codewoyd= [ y1,...,yr | as follows,
y=hx+n Q)
wheren = [nq,...,nr | is a vector of additive white Gaussian noise.

B. Detection

The noncoherent detection problem is to estimatased ony without knowledge of the channel and in the
absence of training data. The log-likelihood function of tmaximum likelihood (ML) detector (of both channel
and data) is given by

L(y;x, h) = —|ly — hx]|” 2

where constant factors have been discarded|ahcepresents the Euclidean norm. For a given codeword hygisthe

%, the likelihood function is maximized by choosing

. iTy
h= 2 (3)
1]
where(-)" denotes Hermitian transpose.
Hence, the ML estimate af conditioned on the corresponding channel estimate, isngdye
4
%P = arg max L |y;x%, XY
& xec(x.m) (y [1%]?
xty |’ @
= ar max
& xec(x.m) %%
This is the Generalized Likelihood Ratio Test (GLRT) [23hs@lered in [11, 20].
Note that[(#) is equivalently given by
chy’2
)ACOpt = R ax ST TN (5)
xec(x ) [IX]1” lyll
—arg max cos?0(X,y) (6)

®eC(X,T)
whered(x,y) is the principal angle between andy [24]. Thusx°" can be found by searching the points of
C(X,T) to find the one closest in angle $o
For QAM, we can also obtain a geometric interpretation[ofl{#)expressing the complex vectorst?. We

will use the underscore notationto denote the mapped version »fas follows,

x=[Re{z1} Im{z1} ... Re{zr} Im{ar}) (7
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and denote the real-valued codebookCag X', T) = {x | x € C}. For M?-ary square QAM, we therefore have
Cr(X,T) = C(X',2T) where X’ is an M-ary PAM constellation. We also defifé ¢ R?7*2 as a basis for the

subspaceyC mapped into the real spad”’; that is

!’

vy 2 Re{y:} Im{wm} ... Re{yr} Im{yr} . (8)
—Im{y1} Re{w} ... —Im{yr} Re{yr}
Note that the columns oY are orthogonal. The projection matiX(y) € R?7*27 is defined as

A YY

P(y) = )
Il

(9)

such that

P = a. i — .
(Y)x =arg min_ |x —vi|

That is, the vectoP(y)x is the projection ofx onto the subspac®R2. Now, it can be easily shown that

pt _ arg max cos? 0(x, P(Y)X)

£°
x:%€C(X,T)
Thus the GLRT-optimal data estimat&®, corresponds to th& € Cr(X,T) closest in angle to the plangR?.

It is important to note that two forms of ambiguity exist fdrig noncoherent detection problem. The first is
the well-known phase ambiguity which occurs for any coftetien that is invariant to a particular phase rotation.
For example, for square QAM constellations the followingrfoptimal channel estimate and codeword pairs have
the same likelihood(hoPt, x°PY), (—hOPt —XOPY)  (—ih%Pt ix°PY and (ih°', —ix°P"); corresponding to the four /2
rotations of the constellation. We will assume that thisetyf ambiguity can be resolved, for example, by using
the phase of the last symbol from the previous codeword [#hyousing differential encoding [10]. The second
type of ambiguity we call a divisor ambiguity and arises whkare are multiple points i€(X’,T) that lie on

the same 1-dimensional (real or complex) subspace[k.g.1] and[3, 3, 3] for 4-ary real-PAM withT = 3. This

produces a lower bound on the noncoherent block detectram mte as discussed and analyzed in [25].

IIl. REDUCED SEARCH SPACE

In this section we show that the GLRT-optimal data estins®f can be found without testing all the elements of
C(X,T). In the previous section we established théft' is the codeword closest in angle to a particular subspace,
so it naturally makes sense to define a ‘nearest neighboro$dtie subspace and search within that set. The
subspace of interest has basis vegt@nd passes through the origin. We show that the nearestbwight for this
subspace containg®®. This implies that low complexity decoding algorithms can developed, based on finding

this particular nearest neighbor set, and searching it.
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Definition 1: We defineN N (v) to be the point, or set of points, &X', T') closest to the arbitrary poirnt (i.e.,
the nearest neighbor te). That is,d is an element oVNN (v) if ||v —d| < ||v —z| forall z € C(X,T).

Of course, usuallyV N (v) will have a single element, and in this case we can WKt (v) = d.

Definition 2: We defineN (C(X, T), y) to be the nearest neighbor subset of the codelf¢ak 7"), corresponding
to the subspace with basis vectgr passing through the origin. That ia,e NV (C(X,T),y) if and only if there
exists some\ such thatV N (\y) = u.

Note that from a geometrical perspective, it is useful tokhdof A as being equivalent to the inverse of a channel
estimate; implying that a poini is in the nearest neighbor set if there is a channel estimatech that the distance
|y — hu| is smaller than for any other point. Consequently we def##e2 (h°P")~! as the reciprocal of the optimal
channel estimate.

The following property of the GLRT-optimal codeword estim&°, allows us to reduce the set of codewords
which need to be tested, to a small subset 0f|19de possible codewords (whefe denotes set cardinality). Note
that an equivalent result was presented in [20], howeveg#dametrical interpretation of our formulation is more
apparent; and is important when developing our new seagiridims later.

Property 1:

Pe N(C(Xx,T),y).
Proof: Consider the case whes&” ¢ N (C(X,T),y). From Definition[2 this implies that there exists some
% € N(C(X,T),y) such that|\°Ply —x|| < [|A\°Pty —%°P!|| however this would implyL(y; %, h°PY) > L(y; X!, hoPY)

from (2) and hence we have a proof by contradiction. ]

IV. PAM DETECTION FOR REAL-VALUED FADING CHANNELS

This section presents a low complexity algorithm for GLRfmal noncoherent PAM detection over real-valued
channels. Practically, such channels arise in basebandntiasion (eg. multi-level PCM), or in certain bandpass
systems where phase and frequency are separately estilmateghase-locked loop.

We first present a theorem that we will use to reduce the numbeodewords that need to be examined, even
beyond the limitations imposed by Properly 1. Note that is teal-valued channel case, the subspace of interest
(defined byy) actually reduces to a ling;R. The theorem implies that only a limited extent of the linede to
be searched; and that the extent depends on the largestofaju&Ve then propose a fast low-complexity iterative
algorithm to perform the search. In the sequel, we will edtére algorithm to complex-valued channels. Later, we
will directly incorporate the algorithm from this sectiomd an extremely low complexity suboptimal algorithm for

noncoherent detection over the more commonly encounteregplex-valued channels.
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A. Limiting the Search Space

Theorem 1:For noncoherent detection @ff-ary PAM codewords of lengtfi’ over a real-valued fading channel
\Xoptyt\ <KM+T-2

forallt=1,2,...,T.
Proof: Definen £ argmax, {|A\%y,|}. Note that if|\°PYy,| < M then the theorem is satisfied.
Now, consider the alternative case wheé"y,,| > M. Rearranging the GLRT-optimal channel estimate[in (3)

gives (XY (y — hoP%%°P') = 0 and hence
opt /\opS, Aopt (10)

We will use this property to bound®. Using [2) and the fact that (X', T") contains all possible sequences
{x |z € XVt }, the elements 0k°"' can be determined on an element-wise basis as

i:?pt = argmin ‘S\Omyt — a:| (11)
reX

For the case we are considering whek&y,,| > M, it follows that since the largest PAM constellation valaee
+(M — 1), that&9” = sgn {y, } (M — 1) wheresgn is the signum function.
We now substitute[{11) intd (10) to bound®, which gives
j%pt(j\opty Aopt Z ~.opt )\optyt _ jgpt). (12)
t#m
Now (I1) and the symmetry of the PAM constellation implieattkgn {:v°pt} = sgn {\°P,}. Moreover, since

% e {£1,43,...,+£(M — 1)} it follows form the definition of\%" that—1 < A°PYy, — 2% < 1 for all 2™ except
(M — 1). More generally, for alli, sgn {@"} (\%Ply, — #*) > —1 and hence{™ (AP, — &{P) > —|2¢P.
Substituting this into[{112) gives

Cz,%pt(j\optyn _ i,%pt) < Z jgpt‘

t#m
and hence
|5\optyn‘ _ i'%pt Aopt Aopt
In t#n
(T-1)(M-1)
<M-1+———=M+T-2.
+ =1 +

Therefore, sinceA\°Ply,| < |\°PY,| for all ¢ the theorem is proved. [
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B. PAM Algorithm

In this Section we use Propeity 1 and Theofém 1 to develop atowmplexity algorithm for real-PAM detection.
This algorithm reduces the number of codewords for whichdéeision metric is evaluated to ord&fT', which
is much smaller than the set of all possitiié” codewords that would be considered by an exhaustive search.
Furthermore, we demonstrate how the algorithm can be imgidéeal in an iterative manner so that the complexity
is O(T1ogT).

Property[l implies thak®"* can be found by calculating the metric il (4) for only thases N (C(X,T),y),

i.e. for only thosex € C for which the lineyR passes through its Euclidean nearest neighbor regiorhétunbre,
Theorent 1 implies that only a finite segment of the line needdmsidered. We have demonstrated such a search in
Figure[d, which shows the positive axes for 8-ary PAM with= 2, where the shaded regions indicate the nearest
neighbor regions of the points which need to be searchedspégeifics of the algorithm are as follows.

First, for ease of notation we modify the received codewpitdy changing the signs of all negative elements in
y. This will mean that the corresponding (modifietP’* will now have all positive elements. The true (original)
GLRT estimate ofx can be obtained by applying the reverse sign changeg€®o Observe that we can do this
without loss of generality since the PAM constellation isnsyetric around zero.

Definition 3: We defineP (%) to be the range ol such thatx is the nearest neighbor toy, within the limits
0 <X\ < A" 2 (M 4+ T —2)/max; {y;} (Where the limits are due to Theordm 1 and the fact that:alre

greater than zero for the modified received codeword). Fllyma

PX)2 {XA| %€ NN(Ay), X e (0, ™)},

Note that each non-emp#)(x) corresponds to a distinct interval of the lig&®. The proposed algorithm proceeds
by enumerating these non-emg®yx)’s, by first enumerating their boundary points along the §ffe We then sort
the boundary points so that the decision metrics for theespwndingk can be calculated in an iterative manner.

For real-PAM, the boundary values of can be shown to be given by, = % foralt =1,...,7 and
b=2,4,...,M — 2 such that0 < v, < \™ (where the values of come from the regular boundaries in the
positive half of the PAM constellatio®’). We use)), to denote the set of allv; ;, ¢) pairs.

We then sort the elements ®% in ascending order of their, ;, value, and append the vala™ 0) to the
end of the ordered set (since this is the outer boundary o$dlgenent of the ling/R which needs to be searched,
according to Theorerl 1; where the second element of the pairhitrarily set to O since it is not needed in the
algorithm). We denote the newly ordered setiyand index it byk, (i.e. we denote itsith element by(vy , t)).
These ordered values are shown on the example case of Eigwteele the values af;, denote the distance along

the lineyR where the line crosses from one nearest neighbor regiorthetmext.
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We now show howy can be used to enumerate the codewords which need to be esgasstd show how to
calculate the corresponding decision metrics in an itegatianner. The algorithm can be visualized geometrically
as searching along a segment of the [, by iterating ink. Whenever the line crosses from the nearest neighbor
region of one lattice point (codeword) to the nearest naighbgion of another, we calculate the metric for the
new lattice point. Note that in this context, the valuetgfindicates the dimension of the boundary that is going
to be crossed (in th&-dimensional space) whdeavingthe kth segment of the line.

The iterative search starts with the codewsfd = 1 2 [ 1,1,...,1])’; which has a corresponding decision
metric L(1) = (1'y)2/ ||11]|*, whereL(x) £ (x'y)2/ ||x||* is the likelihood function in[{4). We will use the symbol
\ as a marker for the most likely codeword, and we initially iséd \ = v1/2 (i.e. during the iteration process,
will be updated whenever a codeword is found to have a higkeliHood than any previously searched codeword,
and the value of\ will be chosen such tha¥ N ()) gives the new codeword).

The iteration proceeds by noting that each time a neareghbei boundary is crossed, only one element of the
T-dimensional nearest neighbor codeword vector changase(dor real-PAM, the boundaries are straight lines,
orthogonal to one of the dimensions, and parallel to all tters). Therefore théth codeword which needs to be
considered, is calculated from tli# — 1)th codeword, on an element-wise basis as follows:

Y forp# by
b . (13)
:Eé)+1, forp =tx_1.

We definea, £ (x®)'y and g, £ 5{“””2, and hencelL(x®)) = a2/, is the decision metric for théth

codeword considered. The values and 3, are calculated iteratively as follows,

ap = ag—1+ 2y, _, (14)

Bk = Br—1 + 4%, _, +4. (15)

If L(x*)) improves on the previous best codeword estimate then weteipdm the interior of P(x(%)), by
settingj\ = (Vg + vg—1)/2.

Once all segments of the line have been searched, we #f&8ve- NN (\y). Pseudo-code for the algorithm is
given in TableTI.

The complexity of the algorithm is a function of the numberimtersection points ;, i.e., Ny 2 V|, where
|-| denotes set cardinalityV; is upper bounded byM /2 — 1)T', however in general it will be much less than this
due to the restricted line search implied by Theofém 1, asshiy simulation in Sectioh ' VlI. The sorting dfy
can be performed using standard sorting techniqued(iNy log Ny) [26]. The updated (13)[[(14) and_{15) have

complexity O(1), and the final calculation a&°" is of orderT. Thus the overall complexity is dominated by the
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sorting operation, and hence the complexity of the algoriite of orderO(T logT); a significant improvement

compared with an exhaustive search overMff’ possible codewords in the codebodkY, T').

V. GLRT-OPTIMAL QAM DETECTION FOR COMPLEX-VALUED FADING CHANNELS

This section presents a low complexity algorithm for GLRJmal noncoherent QAM detection over complex-
valued fading channels. Similarly to the the real-PAM case,first present a theorem that we will use to reduce
the number of codewords that need to be examined, beyonihtitations imposed by Property 1. In the complex-
valued channel case, the subspace of interest is the M#@Te whereY was defined in[{8). The theorem implies
that only a limited extent of the plane needs to be searchedi;tlzat the extent depends on the largest element
in y. We then propose a fast low-complexity algorithm to perfahm search for QAM. We also show how PAM

detection over complex-valued channels can be viewed asdasgase of the QAM algorithm.

A. Limiting the Search Space

Theorem 2:For noncoherent detection dff2-ary QAM codewords of lengtil” over a complex-valued fading

channel

|Re {A\y, }| < M +2T -2, and

Tm {A°Py, }| < M +2T -2,

forallt=1,2,...,T.

Proof: Define the pointv £ \°'y, along with its corresponding real-valued representatipas in [T). Also
definen £ argmax;, {|v;|}. Note that if|v,| < M then|Re {\°"y,}| < M and|Im {\°"y,}| < M for all t and
the theorem is satisfied.

Now, consider the alternative case whHep| > M. Similarly to the real-PAM case, rearranging the GLRT-oyatl

channel estimate if3) give®P)f(y — h°P%%PY = 0 and hence
(X%PY)T(A%Ply — &%) = 0. (16)

It follows that

~ 2
_ x|

 opt T)A(opt.

ISR
Combining this with the the fact that for any vectarc C7, the real-valued representation of the complex scalar

y'u is Y'u, we obtain the real-valued representationi&’ft as




IEEE TRANSACTIONS ON SIGNAL PROCESSING, ACCEPTED TO APPEARCCEPTED NOV. 2006) 11

and therefore

3 =/
v = X)\Opt = < 2 X.
]|
It follows that v/x = ||x||, i.e.
& (v — x™) = 0. (17)

Using [2) and the fact that(X', T') contains all possible sequences | z; € X' Vt }, the elements ok° can be

determined on an element-wise basis as
#P = arg Inln lv, — z| (18)

forall t =1,...,2T where we recall from Sectidn THA that’ = {£+1,+3,..., (M — 1)}. We now substitute

(@8) into [1T) which gives
iopt(v . Aopt Z Aopt _ Aopt . (19)

n
t#n

This is similar to [[IR) in the proof of Theorem 1. By followitigrough the subsequent steps in the proof of Theorem
1, and keeping in mind that the dimensions of the vectors aveaf dimensior2T, we obtain|v,,| < M + 2T — 2

which implies thatiRe {\%P,}| < M + 27 — 2 and [Im {\°P'y,}| < M + 27 — 2 forall t = 1,...,T. [

B. QAM Algorithm

In this Section we use Propefty 1 and Theofdm 2 to develop actomplexity algorithm for QAM detection.
Property 1 implies tha°? can be found by calculating the metric [d (4) for only these N (C(X,T),Y), i.e.for
only thosex € C for which the planeYR? passes through its Euclidean nearest neighbor regionhéfumbre,
Theoreni® implies that only a finite region of the plane needdesidered. Conceptually, this is a direct extension
of the real-PAM case shown in Figuté 1 (considered previgudlhe difference being that Figuté 1 shows the
line yR, but we now have a plan¥ R?. Also the number of orthogonal dimensions doubles whenideriag
complex-valued channels. We demonstrated this complkiestachannel QAM case in Figufé 2 which is a two
dimensional plot in the plan&® R2. The parallel lines (at various angles) are the boundarisig from the QAM
constellation, and the shaded region indicates the nemeagtbor regions of codewords which need to be searched.
The QAM search algorithm we present here, follows the samiptes as the real-PAM algorithm of Section
IV-B] where instead of working with boundary points of linegsnents, we need to work with boundary edges of
planar regions. The specifics of the algorithm are as follows

First, for ease of notation we modify the received codewptoly multiplying it by the complex scalay?, /|ym |,

wherem = argmax; |y;|. This will mean that thenth element ofy will be real-valued and positive. The true
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(original) GLRT-optimal estimate of the channel can be btaisted by applying the reverse phase rotatioh®,
while the optimality of the new GLRT-optimal codeword esditm is unaffected.

Hence Theorerfil2 implies that the search over the pMpeis reduced to the segment of the plane for which
A1, [Aa] < AM& where \™a £ (M + 2T — 2) /|y, |. Furthermore, as discussed in Secfionlll-B because offe
phase ambiguity in square QAM constellations, there are@RT-optimal inverse channel estimate$Pt, 4 \°Pt
(with corresponding phase ambiguous GLRT-optimal coddvestimates). Hence, we only need to consider the
square region of the plane

S={A| A € (0, A", )\, [0, A7) } (20)

since exactly one of-\°Pt £i\°Pt will exist in this region of the plane. Note thatis the shaded region in Figure
(mentioned previously).
Similarly to the real-PAM case we make the following defimiti

Definition 4: We defineP(x) to be the range oA € S such thatk is the nearest neighbor fgA. Formally,

Px) 2 {A|x€ NN(YA), AcS ).

Note that each non-empti(x) corresponds to a distinct region of the plaWék?. The proposed algorithm
proceeds by enumerating these non-em(x)’s, by first enumerating their boundary vertices in the plarteese
vertices are found by calculating the intersection of all tonstellation-point boundary lines in the plane (e.g. as
shown in FigurdR). The vertices are then used to calculatitenior-point inside each of the nearest neighbor
regions in the shaded squa$e The respective nearest neighbor codeword is calculatedach interior-point, and
then it is only these points for which the likelihood metren® calculated. Clearly, this is a significantly reduced
search space compared with the space of all possible codswor

For QAM the vertices of the nearest-neighbor regions in tlh@g@YR? can be found by first noting that, since

2% can be given in on an element-wise basis agn (Pgk) can be written as

2T
P(x) = (J{ Az, = arg min [(YA), — 2], A€ 5}
t=1 -

where(YA), is thetth element ofY A and we recall thai” = {£1,4£3,...,£(M — 1)}. This can be written as
the feasible region for the set of linear inequalities cgpmnding to the nearest neighbor region boundarie¥’in

for each element of;,, as
2T
P(R) = ([ { A U&) < (XA <uld,), A€ S}
t=1

where [(z,) and u(&,) are the upper and lower nearest neighbor boundaries in thstetation X’. For ¢ ¢

{2m,2m — 1} they take on values in the sgb,+2,...,+(M — 2),+00}. Fort € {2m,2m — 1} we must
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consider intersections with the boundary&fand therefore in this cadéz,) andu(z,) take on values in the set
{0,£2,...,£(M — 2),+(M + 2T — 2)}.

By including the square boundary of the regiSnall non-emptyP(x) are closed simply connected sets on the
planeR2. Therefore, since’(x) is formed from linear inequalities it is a convex polygonRd. For eachP (%),
denoteB(x) as its polygonal boundary arid(x) as the vertices of the polygon.

We now propose a method that enumerates all the vertiggs for all non-emptyP(x), and then uses these
vertices to generate a point in the interior of Bl(x), which is then used to obtain a unique codeword via finding
the nearest neighbor codeword to that point. Consider thefggoints{ v + e |v € V(x)}. If o is some vector
that is not parallel to any side of the polygét{x), and if e is chosen sufficiently small, then at least one point in
this set will be in the interior ofP(x). Since the received symbol is subject to AWGN, and is theeefivational
with probability one, it follows that the arbitrary choicé @ = [ 1 1) will aimost surely guarantee this, given that
e > 0 is chosen sufficiently small. In practice, simply settingp some small positive constant will be sufficient
to ensure that a point in the interior éf(x) is enumerated. However, in Appendi¥ A we present a technique
perform this in a strictly optimal fashion with complexitgpvertex ofO(T).

Since the vertices are shared by adjacB(it), each vertex is only required to be enumerated once. We define
the set of all vertices within or on the boundary 8fasV = { v |v € V(%), P(Xx) # 0 }. The setV can be
enumerated as the the intersections of the lidgsy, + Y, ;v = b andY,, jv1 +Y,, ,ue = V', for all pairs of

t,t" and for all nearest neighbor boundarig$’ in X’. That is
-1
41 Kt,l Kt,l b

- (21)
2 Yo Y5 v

forallt =1,2,...,2T — 1, ¢ =t+1,t+2,...,2T, andb,b’ € B(t), whereB(t) £ {0,£2,...,+(M —2)}

if t ¢ {2m,2m — 1} and for symbol indice¢ € {2m,2m — 1} where we consider the square bound&fy) =

{0,£2,...,£(M — 2),+(M + 2T — 2)}.

To enumerate a point in eadA(x), for each vertexs enumerated we calculate the points on the plane2
v+ep, andA™ £ v +eu. Then for each of these two points, if it is in the squ&reve calculate the corresponding
codewordsN N(ATY) and/orNN(A~Y) and the decision metrics ifil(4).

Pseudo-code is provided in Taljle] IV.

The complexity of the algorithm is a function of the numberoofdewords examinedys, which is in turn
a function of the number of vertices calculated. The numbevestices calculated in{21) corresponding to the

intersections between lines in wherg’ is a boundary oft” and bothb andd’ are non-zero i§°(2T — 1)[(M —

1)2 — 1]; for which at most two codewords are generated for a quaftérese intersections. For the intersections
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of the boundaries oft’ and the square there are2(27 — 2)(M — 1)? intersections, which for one quarter of
these intersections one codeword is generated. For theagett(0, 0) and (A™® \™®) one codeword is generated.
Hence the total number of codewords examined is at most

T(2T - 1)

N¢ < 5

(M —1)? = 1]+ (2T — 2)(M — 1) + 2. (22)

Since the complexity of each codeword and decision mettizutation is of orderl” then the overall complexity is
of orderM2T3 (which is linear in the constellation siZ&f?) a significant improvement over an exhaustive search
over all M2T possible codewords in the codebadkY, T).

A further reduction in computational expense, without aogslin optimality, can be achieved by enumerating
only one out of each set of four phase ambiguous vertices. t&éblenique is not presented here due to space
constraints, however the number of non-zero vertices axaanis reduced by a factor of 4 and3 of the matrix

inverse calculations i .(21) are avoided.

C. PAM Over Complex Channels

PAM detection over complex fading channels can be viewed &pexial case of complex-channel QAM,
where there is zero imaginary component in the constetiatio this case, the search over the plad&? can
be restricted by extending the proof of Theorem 2. To do this,note that the condition in_(IL6) holds, which
implies that(x°Pt)’ (Re {\%ly} — x°P!) = 0 sincex°' is always real-valued. The rest of the proof follows to give
the result that|Re {\°"%,}| < M + T — 2. This fact combined with Properiyl 1 and the phase ambiguity
of PAM constellations, implies that we only consider codeigox = NN(YA) for A in the regionS =
{A]0< M <A™ = (M +T —2)/|ym| }-

The specifics of thel/-ary PAM algorithm are the same as for th&-ary QAM case, with the exception that
the calculation of[(21) to obtain the vertices in the intenbthe [21) is only performed for all=1,3,...,27—1,
t'=t+2,t+4,...,2T, andb, b’ € B(t), whereB(t) = {0,42,...,+(M —2)} if t # 2m — 1 and forB(t) =
{0,42, ..., (M —2),M +T -2} if t = 2m — 1.

The total number of codewords searched can be shown to besit mo

T(T-1
%[(M—1)2—1]+(T—1)(M—1)+1. (23)
Since the complexity of each codeword and decision mettutation is of orderI’ then the overall complexity is
O(T3). In the following section, we will see that a simple subotirpproach can achieve even lower complexity

with near-optimal performance.
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VI. SUBOPTIMAL ALGORITHMS FORCOMPLEX-VALUED FADING CHANNELS

In this section, we propose even lower complexity subogdtagorithms for detection of QAM and PAM over
complex-valued fading channels. We directly use the GLRflhaal algorithm for real-PAM from Section 1V as

the basis for the algorithms.

A. Suboptimal PAM algorithm

Since for PAM constellations, all constellation points dilong the real line in the complex plane, a suboptimal
phase estimation technique combined with our GLRT-optiatgbrithm for real-valued fading channels should be
sufficient to provide near-optimal performance. This dffety reduces the search over the whole plang? for
the GLRT-optimal case, to a search over a single line at thengéstimated phase angle.

We use the power-law estimator [27] which, for constellagi@xhibiting a rotational symmetry af radians, is
simply

. 1 L
dpL 2 52D (24)
t=1
where/ refers to the complex argument. Detection is performed By fatating the received codewaoydaccording
to this estimate, and then detectiﬂ@{e—jépty} using the GLRT-optimal algorithm of PAM over a real-valued

fading channel.

B. Suboptimal QAM algorithm

Here we propose a suboptimal algorithm, which reduces trezativalgorithmic complexity toO(72logT)
by using O(T) instances of the PAM detection algorithm presented in 8edfi/l Instead of enumerating the
intersections of lines on the\;, A\2)-plane, as we did in Sectién VB, here we propose to use a reddirsion of
the nearest-neighbor real-PAM line-search algorithmZAdmes of the type presented in Sectionl IV. We generate
these lines emanating from the origin irfo(the shaded region in Figulré 2), evenly spaced in angle. Qiseg this
does not guarantee that we fully enumet&feC(X), T') since a finite number of radiating lines can not completely
cover a plane, however, we will see by simulation in SedfieB] that the performance is close to the optimal.

As in the optimal case, we multiply by v, /|y.| so thaty,, will be real-valued and positive. In this suboptimal
QAM case, this implies that we only examine points on the @¥\ for A = [ A\; A2 |’ satisfying0 < |A1], |A2] <
X where AT £ (M + 2T — 2)/|yum |-

The L directions of the lines with respect to the direction of figsi \; have anglesp £ {¢,,..., ¢} where
¢e = (£ — 1) /(2L). For each angley,, we perform a nearest neighbor line search for the line wasidvector

Xz[ cos ¢y singy |, as proposed in the suboptimal PAM algorithm in Secfion VITA&e search is performed for
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the segment of the lingy, whereA € R and0 < A < A7 where A" £ A/ max {cos ¢, sin ¢, }. In this case
the lines searches are performed for blocks of lerxjth

There is of course a modification required to update the coddwmetrics in terms of complex numbers. The
first line search performed is faf; = 0, and hence the line search is over, = \y. In this case the intervals of

the line P(x) are defined as,
Px) 2 {X|x € NN(y,), A€ (0,A7)}.

Hence the algorithm works by enumerating and calculatigrttetric for allx € C(X”’,2T) for which P(x) is
non-empty.

In this case the sef, of boundary points of the regionB(x) is enumerated by calculating ;, = b/|gt| for
allt =1,...,2T andb = 2,4,..., M — 2, (which are the nearest neighbor boundaries in the poditleof the
constellationX”’), and storing only those values 6#, ;,t) such thatv;;, < AJ®. The set of ordered boundary
pointsV is again obtained by sorting, arid}'®, 0) is appended t& as the extent of the search. Recall that, t)
are thekth elements of.

The search through the codewords is initialized to the fiseavord for the which the line segment passes through,
which is given byx") = s wheres 2 sgn {y}. The likelihood update variables are initialized do= (xV))"y
and 3 = ||xV||2. To regenerate the optimal codeword, the values\aind ¢ are initialized to\ = 1;/2 and
¢=¢1=0.

The (k + 1)th codeword considere&*+1), is calculated from théth codeword as

R D P (25)

To update the decision metric we defing 2 (x*))Ty and 8, £ ||x®||2, and hencel(x*)) = |ay|?/Bs is the
decision metric for thekith codeword considered. The values are updated as follows, K, is odd, thenay, is
updated as
Qg1+ 284, Y(tr_1+1)/2> tk—1 0dd
ap = tp—1Jd(tk—1+1)/ (26)

Qk—1 — 208y, Yt,_1 /25 tr—1even

The values ofg;, are updated according to
Br = Br—1 + 4§tk—1itk—l +4. (27)

If L(x*)) = |ax|?/B, improves on the best codeword estimate then we store(vy, + v;_1)/2 and¢ = ¢y.
To start the next line searcly, is multiplied by 3L and the line search is then performed again for the new

value ofy. When all line searches have been performed, we calcsf&te= NN (X\e’?y) for the originaly.
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Pseudo-code is provided in Taljlé V.

The significantly reduced algorithmic complexity compatedhe GLRT-optimal algorithm is governed by the
number of line searches and the complexity of each line be@mce there ard, phases, each performing a
version of the real-PAM line-search algorithm of Section fbf the caseM-ary PAM detection of2T" symbols.
ThusN¢ < L(2T(M/2—1)+1). From Sectio V-B we have noted that the number of codeward§(C (X, T),y)
is of orderM2T? and thusL must beO(T)) for it to be possible that the majority df (C(X, T),y) is enumerated.
Hence, if L is increased proportionally t@', the overall complexity of the algorithm i©(72logT). Note that
however, the improved computational performance of therélym is largely due to being able to chookesmall,
which corresponds to avoiding examining a significant nunitfe¢he x with associated?(x) being so small as to
imply thatx is not relatively close in angle to the plaigR2. We will see via simulation in Sectidn V1l that small

L (e.g.L =4 for T =7 16-QAM detection) can achieve near-optimal performance.

VIl. SIMULATION RESULTS

We now present simulation results to demonstrate the padoce of the new PAM and QAM noncoherent
reduced search lattice-decoding algorithms. Simulatamasperformed to obtain the codeword error rate (CER) as
a function of SNR for noncoherent detection of 8-ary PAM aBeaty square QAM. For both case, the simulations
are performed for codeword lengthsBf= 3 and7 over a block Rayleigh fading channel whérés i.i.d. circularly
symmetric complex Gaussian with unit variance. We haverasduthat the phase ambiguities have been removed
within each codeword, (for example, by the use of diffe@rgncoding [10]).

Figure[3 presents results for 8-ary PAM for the GLRT-optimplaine search algorithm from Section V-C and the
suboptimal phase-estimator plus line-search algorittomfSectio_VI-A. We also compare with the suboptimal
grid-search algorithm proposed in [20] and the quantimabased receiver proposed in [11]. For the grid-search
algorithm we use uniformly spaced channel phase estimatdsttee channel attenuation estimates are chosen
uniformly from the CDF of the Rayleigh fading channel distiion. For fairness the number of channel attenuation
estimates is adjusted so that the total number of channiehagss was kept equal to the maximum number of
codeword estimates that potentially could be produced byGitRT-optimal algorithm. Best results are obtained
for choosing the channel phase estimate$) @d 7/2, and hence thé&th channel amplitude estimate is given
by |h®)|2 = —log(1 — k/(1 + [Ne/L])). For the quantization-based receiver (QBR) consideredLi, [all
possible sequences of (positive) amplitude levels areymed, and the sign of each symbol is then determined by
symbol-wise coherent detection using uniformly spacechnbbphase estimates (a channel amplitude estimate is

not required since the signal amplitude is assumed knowot)BR, we again use the channel phase estinfates
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and /2.

Figure[4 presents the CER as a function of SNR, for 16-QAMsimziasion. Results are shown for the GLRT-
optimal QAM algorithm given in Sectidn ViB and the suboptirmbgorithm given in Section VI-B. We also compare
with the grid-based algorithm, where best performance fiotezl number of codeword estimates was obtained using
L = 4 channel phase estimates, which we also use for QBR.

For both the PAM and QAM cases we see that the suboptimalskaeeh algorithms provide negligible per-
formance loss compared to the GLRT-optimal algorithm. Far ¢ase ofl' = 3, where QBR is computationally
possible, there is a noticeable performance loss. As discui;m Section II-B, divisor ambiguities result in a lower
bound on the CER. Expressions for these lower bounds wengde in [25] and are also shown in the figure.
Clearly, for high SNR, both of our GLRT-optimal algorithmsdaboth suboptimal algorithms detection achieve these
bounds for both PAM and QAM. As noted in [11], there is an immrsuboptimality introduced by quantizing
the unbounded channel attenuation by employing a gricckeapproach, and hence the performance is clearly
inferior. Also, although QBR achieves near-optimal parfance forl’ = 3, since the complexity of QBR increases
exponentially withT" is not possible to produce curves for= 7.

In Tablell we present the relative computational complegibf the algorithms for the simulations in terms of the
average number of codewords examined. The numbers in hisaickBcate the number of codewords examined by
the search if the restrictions on the search region provigedheoremg§ll anid 2 are not applied (and are therefore
slightly greater than the worst case values giver in (22)@8)). We see that the suboptimal phase-estimator plus
line-search approaches examine far fewer codewords yainstear-optimal performance, and that the complexity

of QBR quickly becomes infeasible with increasiig

GLRT-Optimal Phase Estimato QBR Grid

Reduced Search| + Line Search Search
8PAM T=3 1323 (173) 7.3 (10) 128 174
8-PAM T=7 772.6  (1093) 16.4 (22) | 32768 1094
16-QAM T =3 52.6 (87) 229 (28)| 108 88
16-QAM T =7 311.8 (439) 52.9 (60) 8748 440

TABLE |

NUMBER OF CODEWORDS EXAMINED FOR NONCOHERENPAM AND QAM DETECTION

VIIl. REDUCEDAMBIGUITY TRANSMISSION

In this section we extend our new noncoherent detectionrighgo to pilot assisted transmission (PAT) systems

[6]. Unlike, standard PAT we propose to use the pilot symioolfoncoherent ambiguity resolution, rather than
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simply for channel estimation. We propose to replace thet giymbol of PAT with a symbol generated in the
following way. Two bits are allocated for resolving the¢2 phase ambiguity of square QAM, and the remaining
bits in the symbol are allocated to parity, remove divisobajuities and improve error performance. Therefore,
this scheme has the same data rate as PAT and can be compawdty.di

With parity check bits in the codeword, we can now even furtieeluce the search space of our reduced search
GLRT lattice-decoding algorithm by only considering codetls which satisfy a parity check. This significantly
reduces the ambiguity problem. We will denote this paritjed transmission scheme as reduced ambiguity (RA)
transmission.

An arbitrarily chosen parity check scheme might reduce thealrer of divisor ambiguities, however since the
metric [4) has a geometric interpretation it may be possiblelesign other parity-check schemes which both
resolve ambiguities and optimize performance by providinminimum angular separation between codewords.

The resolution of ambiguities can be achieved, at least 86QAM, by using the following parity-check scheme.

Two parity bitsp,, po are calculated from the data bi{g:, ds, ..., dyr—1)} as follows,
4(T—-1)
p=1+ Y d (28)
t=1
2(T—1)
p=1+ Y dy (29)
t=1

where = denotes equality inGF(2). They are then mapped to the upper right-hand quadrant ofQAM
constellation of the first (pilot) symbol in the codeword afidws: (00) — 1+ 7, (01) — 1+ 34, (11) — 3+ 3j
and (10) — 3 + j. Effectively this means the first two bits of the first symbdleach codeword is chosen such
thatz,,z, > 0, which removes ther/2 phase ambiguity, and the other two bits are parity bits, Wwincthis case
can be shown to completely remove the divisor ambiguities &ppendixXB).

Figure[® presents the bit error rate (BER) as a function of SdiRdetection of 16-QAM transmitted over a
block independent phase-noncoherent AWGN channel. Agairhawe assumed that the phase ambiguities have
been removed within each codeword. Results are shown fee tbodeword length® = 3,5, 7. The figure shows
curves for our new RA reduced-search GLRT-optimal algaritand compares them to standard PAT. Both schemes
use a single pilot symbol per codeword; which for the RA schésngenerated as described above, and for PAT it
is a symbol which has energy equal to the average energy parayFor PAT, the GLRT estimate of the channel
(based on the pilot symbol) is used to perform GLRT-optinathdletection, while for RA lattice decoding we use
our reduced search GLRT-optimal algorithm. Note that foll,A/e BER is independent of the codeword length
T since it is a symbol-by-symbol detection scheme, whereaRRfd lattice decoding the BER decreases’as

increases since it is a sequence detection scheme. Clearcbeme outperforms PAT increasingly with
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Figure[6 shows the CER for the scenario of Figure 5. This setwehighlight even further the benefit from

our lattice (sequence) decoding approach compared with P&TPAT, since bit errors occur independently on a

symbol-by-symbol basis, the CER increases WittHowever, for RA lattice decoding the CER decreases. Also th

figure highlights the advantage of using pilot symbols, carad with fully noncoherent transmission, by observing

that the SNR range is significantly lower than for Figures @[@n

IX. CONCLUSION

In this paper we developed polynomial-time lattice-dengdilgorithms for noncoherent block detection of PAM

and QAM. Faster suboptimal algorithms for QAM were also preéed which have excellent agreement with the

optimal algorithms. A reduced ambiguity transmission sehevas introduced which was shown to outperform pilot

assisted transmission over the phase noncoherent channel.

APPENDIX

A. Strictly Optimal Calculation of Interior Points

For each non-empty regioR(x), there exists a vertex € V(x) and small scalars™, v~ > 0, such that either

vt2v+[vt0) orv™ 2v+ v 0] isin the interior of P(x).

Suppose the first case is true. Now, the line v[ 1 0 |'intersects an edge of the boundaryffx), and we will

call this intersection point.. We propose to choose™ = v > 0 so thatv™ is the midpoint ofv and . Defining

u, as thetth element ofu = Y v, whereY is defined by the original received vectpr we can calculatet as

follows,

U,
min2f 2 T—u,

t 2gt gt < O’
u
: 2\_? —Uy
mtm - 2y, gt > 0.

g the linev — [ 1 0] we calculater™ = > 0 as

u
i QL?J*Et
mn - =y, <0,
u
i 2[?]_Ht
Mgy, > 0.

This process will in general always calculate a point in eaoh-empty P(x). However, to avoid calculation

problems we first rotate by y,,,/|ym|, so that the vector§v™ 0 ]’ and[ v~ 0] are not parallel to any of the

edges ofP(x) (e.g.those that are part &). This rotation is later reversed, so that the points caleal are in the

original coordinates.
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B. Removal of Ambiguities in 16-ary QAM

In this section we show that the proposed RA pilot symbol aaeh (using parity checks, as discussed in Section
[VIT totally removes both the phasand divisor ambiguities otherwise inherent in a noncoheremect®n system
(as discussed in Section IIFA).

We start by recalling that the proposed parity scheme irgbalculating the parity bits from the data hitsfor

t=1,...,4T as follows.
4(T-1) 2(T—1)

p=1+ > d pr=1+ > dy (30)
=1 =1
where= denotes equality if7 F'(2).
The data and parity bits are then mapped to the symbols assiholiable ], where we recall from the definition

in (@) thatz,, , = Re{z:} andzy, = Im {a;}.

dot—1dat | pip2 | x1 (pilot symbol)
00 | -3 00| 1+4
01| -1 01| 1+3:¢
11 1 11 | 3+ 3¢
10 3 10 | 34+
TABLE Il

MAPPING OF DATA AND PARITY BITS.

Sincex; is constrained to have positive real and imaginary compisnéme phase ambiguity has been removed.
It remains to show that all divisor ambiguities have alsorbeamoved.

To do this, we first define the associates of a Gaussian intgger be the elements of the set(g) =
{g,9i,—g,—gi}. We also denoted(g)” to be a codeword of lengti’ composed of only elements of(g).
For 16-QAM, it can be easily shown that a necessary condftioa divisor ambiguity to exist is that there exists
codewordsxM) € A(gy)T, x(?) € A(go)" for someg;, g2 € X 2 {1 44,3+ 3i,3 44,1+ 3i} such thaty; # go.

For a codeworck and somgy € X, we defineN,, Ny, N3 and N, as the number of occurrences in a codeword
of each of the four possible rotations gfin the codeword, that ig, gi, —g and —gi respectively. Noting that the
phase ambiguity has been removed (singeis constrained to have positive real and imaginary compishea
sufficient condition for two codewords to be unambiguoushigt there exists someg such that theth symbols
from the two codewords are in different quadrants of the demplane. It follows then, that a sufficient condition
for two codewords to be unambiguous is that they do not haweséime values alV; to Ny.

We now use this property oiv; to N, to show that for arbitraryl’, it is not possible for two ambiguous

codewordsx(M) € A(g1)T, x(® € A(go)7, to satisfy the parity check (BO) for any, g» € X such thatg; # go.
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We consider each € X (where we have previously definéd = {1 +4,3 + 3¢,3 + 4,1 + 3¢}) in turn, showing
that all codewordsc € A(g)” that satisfy the parity check, are distinguishable in pHese all parity-satisfying
codewords considered up to that point. For 16-QAM this pssedavolves considering the four Gaussian integers
1+4+14,3+3i,3+4¢andl+ 3iin turn, as detailed in the following four cases.

Definex” to be the data codeword componentgfi.e. x = [z2...27)".

o CasexP € A(1 +4)T71:

In this case, we show that there does not exist ang A(1 + i)7 that satisfies the parity check. Using
Table[Tl, the bits(ds,—3...ds,) are mapped to the symbel = z,, , + iz, € x in the following way:
(1111) — 1 44,(0111) — —1 +4,(0101) — —1 — 4 and (1101) — 1 — 4. Clearly from [29),p2 = 1, and
therefore the pilot symbot; will be either1 + 3i or 3 + 3i. It follows thatx ¢ A(1 +4)7.

o CasexP € A3+ 3i)T 1

In this case, we show the conditions under which a codewogdA (3 + 34)T satisfies the parity check. The
associated bit mappings af&€010) — 3 + 3i, (0010) — —3 + 34, (0000) — —3 — 3¢ and (1000) — 3 — 3i.
Clearly,p; =1+ Ny + N4 andps = 1. Therefore,
14 3i, if (p1p2) = (01) ie.if NoZ Ny,
o {3 +3i, if (pip2) = (11) i.e.if Ny = Ny.
Furthermore it follows thak € A(3 + 3i)T only if No = Nj.

o CasexP € A3 +4)T—1:

In this case, we show the conditions under which a codewoed A(3 + )T satisfies the parity check, and
show that under these conditions there does not exist anjgaois codeword frond (3 + 34)7, i.e. from the
previous case. The bit mappings t€11) — 3+4, (0110) — —1+34, (0001) — —3—i and(1100) — 1—3i.
In this casep; =1+ Ny + Ngandps =1+ Ny + No+ N3+ Ny =1+T —1=T.If Tis odd, then
p2 = 1 and thereforer; € {1 + 34,3 + 3i} and thereforex ¢ A(3 +4)” . If T is even therp; = 0 and
p1 =1+ Ny + N3 = Ny + Ny. Therefore
341 if (pip2) = (10) i.e.if Ny # Ny,

"o {1 +14, if (pip2) = (00) i.e.if Ny = Ny.
It follows thatx € A(3 + )T only if N, # N4 andT is even. Recall that in the previous case, valid
parity satisifying codewords only occurred M, = N,. Therefore an ambiguity will not occur between two
codewordsx € A(3 +i)” andx™) € A(3 + 3i)T since they will be distinguishable in phase.

o CasexP € A(1+3i)T 1

In this case, we show the conditions under which a codewardA (1+3i)7 satisfies the parity check, and show



IEEE TRANSACTIONS ON SIGNAL PROCESSING, ACCEPTED TO APPEARCCEPTED NOV. 2006) 23

(1]

[2]

(3]

(4]

(5]

(6]
[7]

(8]

[9]

(10]

(11]

[12]

(13]

(14]

that under these conditions there does not exist any amissgemdeword from eithed (3 +34)7 or A(3+4)7,
i.e. from the previous two cases. The bit mappings(até¢0) — 1+ 3¢, (0011) — —3+14, (0100) — —1 — 3¢
and (1001) — 3 — 4. Here,p; = 1+ Ny + N3 andp, = T. If T is even, thenp, = 0 and therefore

x1 € {1+14,3+ 4} and no ambiguity occurs. If" is odd thenp; = 1 + N2 + N, andp, = 1. Therefore,

xr1 =

It follows thatx € A(1 +3¢)T only if N, # N, andT is odd. Clearly, these conditions are different to those

to the previous two cases and therefore no ambiguities. exist
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begin
s:=sgny,; /I Store sign of eacly,
y:=soy; /I Make eachy; positive
B™ .= M+T -2
m := argmaxy {ys };
AT = (M + 2T — 2)/|ym|; Il Search regiond < A < \™
Vo = 0; /I Calculate and storé”(x) boundary points

for t := 1to T do
for all b€ {2,4,...,M — 2} do

vi=b/ye;
if v <A™
Vo :={V, (v, t)};
else break;
end for all;
end for;
V = sort(Vy); /I Sort Vg in ascending order of
V= {V,(\"0)};
x:=[11...1]; /I Initialize data estimate
a:=%Xy; /I Initialize likelihood terms
B = I1%I%
L:=a?/B;
X=V(1,1)/2;
for k:=1to|V|—1do /I Iteratively examine likelihoods
t:=V(k,2);
a = a+ 2yy; /I Update likelihood terms
B =B +43: +4;
By = T¢ + 2; /I Updatex
if a?/8 > L /I If better x found
L:=a?/B; Il Update likelihood

A= (V(k,1) + V(k+1,1))/2; Il Store point inP (%)
end if;
end for;
return ¥°" := s o NN(\y);

TABLE IlI

M-ARY REAL-PAM NONCOHERENT LATTICE DECODING ALGORITHM

25
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)

M?Z2-ARY SQUAREQAM NONCOHERENT LATTICE DECODING ALGORITHM

1 begin
2 m 1= arg max; {|y¢|};
3 y := (y.,,/lym|)y; /| Rotatey so thaty,, is purely real
4 B™ .= M + 2T — 2;
5 AT = B"/ |y, | /I Search boundary (Thril] 2)
6 KPS = NN ((e + ie)y); /I Codeword near origin
7| L= L= thood L(x) £ [xTy [T/ Ix?
8 B:={2,4,...,M — 2} /I Positive NN boundaries|

/I Calculate only intersection pointg€. vertices) in

I first quadrant usind(21) by reducing number of

/I NN boundaries3;, B> and then rotating.
9 for t := 1t0 27 — 1 do
10 By :=B;
11 if t € {2m — 1,2m} then By := {B1, B™Y};
12 for ¢/ := ¢+ 1to 27 do
13 Ba = B;
14 if t’ € {2m — 1,2m} then By := {Ba, B™};

-1
15 S := [i‘lvi fo,ﬂ ; /I Matrix in (Z1)
16 for all b, € B:
17 for all b2 € B2
/I Calculate intersection point;
18 v := Real-To-CompletS[ by b2 |');
19 v = Rotate-To-First-Quadraf);
20 for all s € {—1,1}
21 A :=v+ s(e+ie); [/ Point in some partition
/I Check that\ is in reduced search region
22 if 0 < Re{A\} < A™ and
0 < Im {A} < A™ then
23 %X := NN(\y); /I Calculate NN
24 if L(x) > L™ I1'If better x found
25 soest. — . I/ Update codeword estimate
26 L™ = L(x); /I Update likelihood
27 end if;
28 end if;
29 end for all;
30 end for all;
31 end for all;
32 end for;
33 end for;
34 | return %% ;= gbest
TABLE IV

26
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SUBOPTIMAL M2-ARY SQUARE QAM MULTIPLE LINE-SEARCH NONCOHERENT DETECTION ALGORITHM

1 begin

2 L :=0; /I Initialize likelihood
3 AP = (M + 2T — 2)/ maxy |y:;
4 for ¢ =1 to L then

5 /I Search regiond < A < A™ (Theoren2)

6 amax . — )\gax/min{{cosg—zL{sing—z{};

7 Vo = 0; /I Calculate and storé”(x) boundary points
8 for ¢t = 1 to 27T then

9 for all b € {2,4,..., M — 2} then

10 vi= b/|yt|;

11 if v < AT

12 Vo i= {Vo, (v, 1)}

13 else break;

14 end for all;

15 end for;

16 V = sor(Vy); /I Sort Vg in ascending order of
17 V= {V,A"™0)};

18 s :=sgn{y};

19 X:=s; N /I Initialize data estimate|
20 o= chy; /I Initialize likelihood terms
21 B = %1%

22 ifa?/8> L II'If better x found
23 L:=a?/B; /I Update likelihood
24 A=V (1)/2

25 ¢ :=¢n/(2L);

26 end if;

27 for k:=11t0|V|—1do / lteratively examine likelihoods
28 t = V(k,2);

29 if ¢’ is oddthen

30 o= a+25,Y41)/2)

31 else

32 Q= — 28, Y4 /2;

33 end if

34 B = p+4s, &, + 4,

35 Ty =2y + 25,5

36 if |a]?/8 > L 111 better x found
37 L :=|al?/B; /I Update likelihood
38 A= (V(k,1) + V(k + 1,1))/2; Il Store point inP(x)
39 ¢ :=¢rn/(2L);

40 end if;

4 end for;

42 y = ye%; /I Rotatey for next line search
43 end for;

44 | return X% := NN(X\e’?y);

TABLE V

27
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12

10+

Fig. 1. llustration of noncoherent detection of 8-ary PAM " = 2. The dots are all the (two dimensional) PAM codewords in tbsitive

quarter-plane, and the angled line yR, for an example received codewosd The shaded regions indicate the nearest neighbor regions

of points which need to be searched. That is, they ar&/i{€(X,T),y) (from Property[1L), and they correspond to valuesioless than
AMX — (M + T — 2)/ maxy |yt| = M/ maxy |y¢| (from Theoren{1L).

)\2 = Imag{r}

~/
7&

-6 -4 -2 0 2
A, = Realp\}

~
[e)]

Fig. 2. Plot of partitionsP(%) on theR2 plane for 16-ary QAM detection of a sequence of length = 3 for the received vectoy =

[ —0.1076 — 0.4728i, —0.7002 — 0.0968:, —1.1228 + 0.4955: ]. The bold square corresponds to the search bounSary
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New GLRT-Optimal Reduced-Search
— — — Phase-Estimator + Line Search
1o i N PSR Grid Search [20] g
—»— QBR (exponential complexity)
Ambiguity lower bound
107
o
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10 °F
10°F
10_4 I I I I
20 30 40 50 60 70

SNR (dB)

Fig. 3. Plot of Codeword Error Rate (CER) as a function of SNR for aarn8PAM system.

New GLRT-Optimal Reduced-Search

— — — Phase-Estimator + Line Search (Section VI.B)
s == Grid Search [20] i
—»— QBR (exponential complexity)
~. Ambiguity Lower Bound

CER

107 ! ! ! !
20 30 40 50 60 70

SNR (dB)

Fig. 4. Plot of Codeword Error Rate (CER) as a function of SNR for aafygsquare QAM system.
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Fig. 5. Comparison of Bit Error Rate (BER) as a function of SNR forQ8M for PAT versus RA transmission.
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Fig. 6. Comparison of Codeword Error Rate (CER) as a function of SBIRL6-QAM for PAT versus RA transmission.
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