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Abstract— The Secondary Surveillance Radar (SSR) is a but is currently limited by the fact that all replies nominally
transponder system used in air traffic control. Due to growing yse the same carrier frequency, and may overlap in time.
traffic densities, it is increasingly likely that a ground station This occurs, e.g., if two aircraft are close to each other but

receives a mixture of responses of various aircraft, partly over- t diff t height h . ft ds t
lapping in frequency and time. Currently such “collisions” are at dartrerent heignts, or when an aircrait responds 1o a query

disregarded, at a loss of system performance and reliability. In from a neighboring ground station. If two responses overlap,
this article, we propose to equip the ground station with an the receiver cannot decode the message and both are lost [2].
antenna array, and investigate techniques to blindly separate such  To bring some relief, a new protocol (Mode S, for Selective),
a mixture based on source waveform properties. At base-band, a oharating at the same frequencies, is currently being installed
received SSR signal consists of a binary sequence with alphabet 31 In Mode S. ai ft be individually add d to ai
{0, 1}, modulated by a complex exponential due to the residual [3]. In Mode S, alrf:ra can be individua y_a 'resse o gve
carrier frequency. We present three algebraic algorithms to @ response, enabling short data communications between the
compute the separating beamformers by taking into account the station and the aircraft. This new mode will also assist the
particular modulation format of the received signal. The Cramer-  Traffic Advisory and Collision Avoidance System (TCAS)
Rao Bound is derived, extensive simulations are presented, andpy, 4rqviding automated communication between the aircraft.
an experimental platform has been built to collect measurement . .
data and demonstrate the algorithms. Nonetheless, also in this protocol overlaps may occur.
Today, the ground station uses the same rotating antenna for
transmission and reception of SSR signals. We may envision
. INTRODUCTION two extensions: (1) Create a distributed system, where the

) . . existing radar system is used for transmission of the queries
Secondary Surveillance Radar (SSR) is essential for Alfyy 1t where a network of receivers is placed at various

Traffic Control (ATC). Unlike the primary radar, the SSR i§qcations, (2) Equip each receiver with an array of antennas
a communication radar (transponder system) that informs §18 (5] This enables multi-lateral location estimation and
ATC about t'he identity and the alt|tude.of aircraft [1]. An SS acilitates message detection [4], [6], [7]. Indeed, at each
ground station uses a rotating scanning beam and transmifSejyer base station, the overlapping reply signals can be
mterro.gatlng gueries, consisting of pglse trains modulgted Wparated using blind beamforming, and subsequently for
a carrier at 1030 MHz. Upon receiving a query, an aircraflych recovered signal we can detect the individual symbols
responds by transmitting an SSR reply signal, a bursty pul§y estimate the direction of arrival (DOA) and the Time
train modulating a carrier at090 MHz and containing the ¢ arrival (TOA). The combined information from several
requested information. The system was designed in the 19505 qjyers allows multi-lateral location estimation at the system
Manuscript received March 29, 2006; revised September 4, 2006,  1€Vel. Estimating the beamformers and the parameters at the
Alle-Jan van der Veen is with Delft University of Technology, Delft, Theeceiver is the aim of this paper.

Netherlands (e-mail: aj.vanderveen@tudelitnl). = Blind source separation can be done based on properties
Nicolas Petrochilos is with the University of Hawali'i, Hi, the research was

performed while he was affiliated with Delft University of Technology, an@_f the array response matrlx_ or on properties of the source_,-
continued in University of Tor vergata, Roma, Italy (e-mail: petro@ieee.orgignals. The former has as disadvantage that a carefully cali-



brated array must be used, and that no multipath is toleratede present. A combined model containing both Mode A/C and
Therefore, we consider the rich structure of the source sign&iode S replies is more complex, due to the slightly different
as a feature for separation. Indeed, SSR replies have a véncommensurate) pulse lengths.

structured source model: each sample at the receiver is the

product of a binary PAM symbol taken from the alphabeh Received data model

{0, 1}, multiplied by a complex exponential (phase progres- A Mode S reply frame contains eithei6 or 112 bi-

S|aniinciiueS;cLirtchee ;Z‘i’;gij;iocnargfgrseguf;&i signals was fir%ary symbolsb,,. The bits are encoded in a “Manchester
ncoding” scheme, wheré,, = 0 is coded asb, =

F:qngdered by Comon |n.[8]. This algorlthm considered ma 0. 1, and b, = 1 asb, = [1,0]. The transmitted
imizing a contrast function based on higher-order statistics : .
. . Pt streamb is a burst (packet) consisting of a preamble

(HOS). However, it was noted by Petrochilos and Comon in~ ~ 1,0,1,0,0,0,0,1,0,1,0,0,0,0,0,0] followed by the
[9], [10] that such HOS methods are unreliable because fgiu;deé éa’Ea ’biis’iia P T y
SSR Mode S signals all cumulants of ordert and5 have a Y
large probability to be zero. Thus, algorithms using cumulants b =[p,b1,b2,- -, bsg/112] (1)
of 6-th order or higher need to be used.

In this article, we present a collection of algorithms whicfiv ilitating the detecti f the start of ket
implicitly use 6-th and 8-th order statistics. The propose(?Cllalng € detection ol the start of a packet.
algorithms arealgebraic: similar to the Analytic Constant . The Mode S reply signal emitted by the aircraft transponder

Modulus Algorithm (ACMA) [11], the beamformers are com-® @ pulse amplitude modulation & and has the form

ith a total lengthV € {128,240}. The preamble is aimed at

puted from a batch of data by solving a joint diagonalization 127/239
problem. Some of these algorithms were first presented at b(t) = Z b[n]p (t — nT5) @)
conferences [12], [13]. Here, we present the algorithms in n=0

a broader perspective, and compare them in simulations agflereb[n] is the n-th entry ofb, andp(t) is a (nominally)
using experimental data. Full details can be found in th@ctangular pulse of widt’, = 0.5 s, for Mode S.
PhD thesis [5]. Follow-up work includes [14], where an Before being emitted by the antenna, the signal is up-
alternative time-domain approach has been proposed for ighverted to have a center frequerfcy Nominally, this carrier
restrictive case of two partly overlapping Mode S replies witfrequency isf. = 1090 MHz, but the tolerance permitted by
a sufficiently large time difference of arrival. The present papghe ICAO is +3 MHz, thus f. # f.. (In future, this tolerance
concentrates on the complementary case where signals @ig be reduced to+1 MHz.) Due to this possible carrier
highly overlapping. frequency mismatch, a residual frequenty= f. — f. will
The paper is structured as follows. Section Il introduces themain after down-conversion bfy. to baseband. This residual
data model and lists the assumptions and some prelimin@rg[rrier adds a Significant phase rotati@fp(j},rft) to the
material. Section Il presents three properties of the sourgeinsmitted symbols.
signals, and Section IV uses these to derive three algorithms toat the receiver, each antenna signal is downconverted and
find separating beamformers for each of the sources. Sectios¥mpled at raté/T,. Not assuming temporal synchronization
derives the relevant Cramer-Rao Bound (CRB), and section Wjthin a symbol period, the received baseband sigial =

compares the algorithms in simulations. In the course of thig,T,) is described (up to a complex gain factor) as
work, we have constructed an experimental platform consisting

of an array of four antennas. We apply the algorithms to s[n] = bln]exp (s2mn fT;) = bn]o" ®3)
measurement sets collected with the array, and show the resyffs:re ¢ = exp(j27fT,) is the phase shift due to the
in section VII. residual carrier frequency over a sampling period. This signal

Notation: T denotes the identity matrix, arland1 are the i actually multiplied by an unknown complex gain factor
vectors with all entries are equal toand 1, respectively. We representing the effect of the channel, the receiver amplifier,

denote by(-)* the complex conjugation, by:)* the matrix and an initial phase offset. This will be taken into account in
transpose, and bf)? the matrix conjugate transpose. the next section.

E{-} denotes the mathematical expectation operator, and
Vec is the operator that stacks the columns of a ma#ix
into a single vectoa. The notation(-) ' refers to the Moore- ) ]
Penrose inverse (pseudo-inverse). The symbalenotes the ~ We extend the single source model (3) to the reception of

Schur-Hadamard (element-wise) matrix product, andhe 2 mixture ofd independent SSR source signals impinging on
Kronecker product. an m-element antenna array. The baseband antenna signals

are sampled at rate/T; and stacked in vectors|n] (sizem,
where thei-th entry corresponds to theth antenna signal).
After collecting N samples, the observation model is

SSR communicates via two different protocols: Mode A/C X = MS + E 4)
and Mode S. The A/C mode was initiated during World War
I, and is supposed to be soon totally replaced by Mode S. Where X = [x[1],--- ,x[N]] is them x N received signal
this paper we make the assumption tbaty Mode S replies matrix,M is an unknownn x d mixing matrix which includes

B. Problem statement

Il. DATA MODEL AND PRELIMINARIES



the antenna responses, path coefficients, initial phase offssignal. In this blind source separation context, we can only
the array signatures and the complex gains of the sourcéy, to ensure that each;[n] looks like an SSR signal (i.e.,

S =[s[1], -+ ,s[N]] is thed x N source matrix, wherg[n] = that certain properties are satisfied), and that the collection of
[s1[n],---, sq[n]]T is a stacking of thel source signals, and signal estimates is independent.

E is them x N noise matrix. We assume that the sources have

unit amplitude and that the noise is temporally and spatial
white.

Note that each sourcetransmits data in packets of finite In our applicationM is typically tall and full column rank,
length?; (¢; = 128 or 240 bits) and with an arbitrary starting but not square. To simplify our algorithms, we assume that
time. Each source can thus have an arbitrary time offset first a (standard) preprocessing is appliedXrto reduce its
(positive or negative integer) with respect to the start of th@w dimension fromm to d. This is done by computing a
observation interval. To consider this effect, we apply zer&ingular value decomposition &,
padding and truncation operations to the data time séifies

k)f. Preprocessing

N — H
in (1) to obtain a similar sequendsin], 1 < n < N, where X=UBV",
_ 0 n—r<lorn—r>4¢ whereU andV are unitary and is diagonal containing the
bn] =1 ' ingular values in d i h f sighi
b[n — 7], 1<n—7<4. singular values in decreasing order. The number of sighas

detected fron¥ using standard rank detection tests, e.g., based
on likelihood ratios [15] or information theoretic criteria such
S=FcB (5) as AIC and MDL [16], [17], [18]. Let¥ be a diagonal matrix
. L _____containing thed largest singular values, arld be anm x d-
where & is the Schur-Hadamard (pointwise multiplication)yiyensional matrix containing the corresponding columns of
operator, and U, and define
¢ b7 .. B 61[1] 61[2] 61[N] s def

~—1 A
’ B der X'=y UfX,

The source matri¥S has structure

F

ba % ... ¢F ba[l] ba[2] ‘__thqyd@@]:o ding to the model

Although the algorithms which we will propose will not be X' = (ﬁ;_lfjHM)s + (ﬁ)_lf}HE) ef N IS + B
based on a calibrated array (i.e., a parametric structuiemior
it is sometimes interesting to make such an assumption: (1)Tiis is the same model as we had before, except Xats
allows comparison to source separation algorithms which afex N andM' is d x d and invertible. In the algorithms, we
based on direction finding, such as MUSIC and ESPRIT, (2) #ssume that this preprocessing has been done, and we drop
some cases, the DOAs are also of interest, e.g., for localizifitf primes from the notation. The computational complexity
the aircraft (although this is the task of the primary radarfnumber of multiplications) is of orden>N.
or for assigning each retrieved message to the corresponding he reduction in the number of rows iX and M is
aircraft (since the blind source separation algorithms retriedcessary to avoid the existence of nullspace beamformers
the messages in an arbitrary ordering). Thus, if the array isvv such thatw{’M = 0. Indeed, such beamformers could be
calibrated Uniform Linear Array (ULA) with half-wavelength added to a valid separating beamforneey without changing
antenna spacing, and if the multipath is negligible, we cdfe outputsignal, and only change the output noise. Hence they
further write M = AG whereA = [a(6,),--- ,a(f,)] is the Would destroy the uniqueness of the solution, and complicate
m x d steering matrixg; is the direction of incidence of the the estimation algorithms.
i-th source with respect to the ULA boresightg), is the ~ The data covariance whitening implied by premultiplying
array steering vector, defined as with & is not as essential, but has been applied in similar

_ T algorithms because it causes the beamformers to converge
a(0) = [1,exp(ymcos(9)), - - ,exp(ym(m — 1) cos(0))]" , asymptotically inN to the Wiener beamformer [19]. Wiener
©) beamformers are attractive because they optimize the out
put
and G is a d x d diagonal matrix containing the angle-Signal to Interference and Noise Ratio (SINR). Note that after
dependent antenna response, propagation gain and initial ph@igeprewhitening step, the noi is no longer spatially white.
offset of each source.

Without considering this structur®I may also reflect the
imperfections of the array such as calibration errors, antenffa
coupling effects or inaccuracies in the position of the elements, The algorithms to be proposed in the next sections lead to
and propagation effects such as short-delay multipath (scatint diagonalization problems. To avoid being repetitious, that
tering in the vicinity of the receiver array). As mentionedproblem is presented here in a more general setting.
for the purpose of source separation we do not consider thisLet A be a square matrix. Its eigenvalue decomposition (if
structure and only assume the matN& to be left-invertible it exists, i.e., ifA is regular) is a factorizatiod = VAV !,
(this impliesm > d). where A is a diagonal matrix containing the eigenvalues

Our aim is to compute beamformesg;, i = 1,--- ,d, andV is an invertible matrix containing the eigenvectersas
such thatwx[n] = §;[n] is an estimate of the-th SSR its columns. These are the solutions to the equalien= v\.

Joint diagonalization problem



Numerically, the eigenvalue problem is often replaced by the
Schur decomposition, which is the factorization [20]

A = QRQ”

where Q is unitary andR is upper triangular. The diagonal
entries of R are the eigenvalues. It can be obtained by
introducing the QR factorization df , with the advantage that

the Schur decomposition always exists whereas the eigenvalue
decomposition does not.

Similarly, the generalized eigenvalue problem (or matrix
pencil problem) for a pair of square matrides, B) is to find
solutions toAv = Bv ), or the factorizatiolPAV = BV A. If
B is invertible, this is the same as computing the eigenvali@. 1. Manchester Encoding Property: the cross-product of three consecutive
decomposition ofB -1 A. It is convenient to write this as a ' s"SPaced samples is always equal to zero.
joint decomposition. By introducing a matrik and W =
V!, and two diagonal matriceA 4, Ag, we obtain

Ill. SSRSIGNAL PROPERTIES

A=FA,WH B=FAgW, (7) The model of a single SSR reply signal (3) gives rise to
several algebraic properties that will be used for blind source
The generalized eigenvalues ake= A ;" A 4, but the added separation in Section IV.
generality allows to handle cases whefe and/or B are
singular, or some diagonal entries Af, and/orAp are zero. A Encoding properties

The corresponding Generalized Schur Decomposition is _ . . .
P 9 P The Manchester encoding of the SSR signals gives rise to

A =QR4Z", B=QRpZY. (8) an interesting temporal correlation property which is deter-

ministic and independent of the actual transmitted data. If we

whereQ andZ are unitary, andR 4, Rp are upper triangu- multiply a sample from the first phase of the Manchester sym-

lar. This decomposition always exists and can be computgd| by a sample from the second phase, the result will always

iteratively, e.g., using the QZ algorithm, Jacobi iterations, etpe equal to zero. More generally, if we are unsynchronized to
[20]. The diagonal entries dR 4, Rp are those ofA 4, Ap.  the beginning of a Manchester symbol, we can multiply three

The joint diagonalization problem is a further generalizationonsecutivel,-spaced samples and observe that the result is
of the above to more than two matrices: always zero (see Figure 1). A similar property holds for a
single baseband signa|n] at the receiver, independent of a
fractional sampling offset and of the residual carrier frequency.

For K > 2 the problem is overdetermined, hence solutions Property 3.1: Independent of the transmitted data, a re-

in general do not exist. However, for a set of matrices th&F'Ved Mode S reply signai[n] of the form (3) obeys:

on the basis of model assumptions is expected to admit this sln—1] s[n] siln+1] =0, Vn € N 9)
factorization, we can try to compute the matrix pgt, W) This property will be used to design a receiver algorithm to
that best diagonalizes the set of given matrices, usually in sogéparate multiple SSR signals.

least squares sense. It can be computed using generalizations

of the QZ algorithm, Jacobi iterations [21], [22], [11], [23],5 7ero/Constant Modulus property

[24], Alternating Least Squares [25], [26] or subspace fitting
techniques [27].

The problem can be further generalized by considerir‘lﬁ
rectangular matriced\;, as in this paper. In particular the
Alternating Least Squares algorithms are readily generaliz
to handle this situation. FoK matrices of sizem x n,
the computational complexity is of ordd (m?2n + mn?).
Alternatively, assumingn > n (tall matrices) andF to be
of full column rankn, the problem for rectangular matrices

A, =FAWH  i=1... K.

Due to the residual frequency, the received signal samples
n] are not binary as transmitted, but lie either on the unit
rcle, or are equal to zero. Moreover, if two subsequent
%ceived samples are non-zero, then these samples are related
y a factorg = exp (275 fT). These observations lead to the
following two properties:
Property 3.2: Static property: s[n] is a Zero-Constant Mod-

ulus (ZCM) source if

can be reduced to a joint diagonalization of square matrices s[n]=0 or |s[n]|=1, Vn € N

as follows. ConstructA = [A;,---,Ak] and use an SVD _ | .

to estimate the common column space, which is equal 1d"S IS equivalent to

the column space oF. Let U be a matrix containing an s[n]s*[n]s[n] = s[n] (10)

orthogonal basisr( columns), and defind; = U” A;. Then Property 3.3: Dynamic property: For any integet,

Al =F'A,WH with F' = UHF. TheA! are squarer(x n) . . i

and satisfy a joint diagonalization model, and the standarcgs[?ls"[n —k] =0 or sn]s*[n — k] = 6", Vn eN
algorithms apply. (11)



This is equivalent to wherey’ generically has no repeated entries. Set

s[n]s*[n — k]s[n]s*[n — k] = ¢*s[n]s*[n — k], Vn €N P, =P J, P;,=P,J, (15)
(12)
Note that the mentioned properties also hold for the ro
of the source matrixS as defined in (5).

V\}Qen genericallyP} has no repeated columns and has full
column rank? At this point, the pencil problem is replaced

by
IV. SEPARATION ALGORITHMS aPly' = Pyy'. (16)

The properties presented in Section Il are used to derivéhere we will assume from now on thRt; has full column

three algorithms: AZCMA, MDA, and MS-ZCMA. rank. Note that by constructio®’ has only d nonzero
columns. Hence, there ag most d nonzero solutionga;}
. . to (16). On the other hand, fat SSR signals we know that

A. AZCMA: Algebraic Zero-Constant Modulus Algorithm there are preciselyl beamformersw;, so that there arat

The following algorithm was originally derived by Van derleast d nonzero solutions. It follows that the paiP},P})
Veen and Tol in [12] and is included here for reference. Thieas preciselyl generalized eigenvalues, necessarily equal to
algorithm is derived for noise-free data (but will of course be; = || w; ||?; the other eigenvalues afe The corresponding
applied to noisy data). We consider Property 3.2, and substit@igenvectorsy are transformed ty; = Jy} to add back the
wix[n] = s[n]. This shows thatw is a beamformer which repeated entries.
returns a ZCM signal if and only if At this point there are two cases. If there are no repeated
nonzero eigenvalues, then theare (up to an arbitrary scaling)
equal toy; = w*; @ w; @ w*;, from whichw; is immediately
Using properties of Kronecker products, we can separate tAt&ined, up to scaling. The correct scalingiof follows from
unknownw from the knownx[n]'s. Note that the left-hand the corresponding eigenvalug. Alternatively, if some .of the
side contains only third-order terms of the entries vof eigenvalues are repeated, then the corresponding eigenvectors

whereas the right-hand side only has first-order terms. THR™M an arbitrary basis of a subspace which contains the
imbalance is overcome by defining vectors we are looking for. We need to find the correct linear

combinations such that the Kronecker structure holds: this is
a=|lw|]®* = wlw a joint diagonalization problem as shown below.

o o ] In fact, the prewhitening step as described in Section 1I-C
(which is coTst%nt for eacl) and multiplying the right-hand 55 jed to a data matrix’ with orthonormal rows. In this case,
side byl = Jw"w. This gives a; = wlw; = sFs;, so that there are repeated eigenvalues

wHx[n]x[n]Hwwhx[n] = LwHwwHx[n] Vn yvhenever two signals have an equal nL_meer of nonzero entries,

& (x*[n] ® x[n] ® x*[n))H (w* g@ wow) = e, nearly always. We propose tc_) avoid _the_detect|0n of equal

= Llvedl; @ x*[n)H(w* @ w @ w*) Vn, elgenv_alues anq apply the joint dlagona_llzanon step to the full
@ collection ofd eigenvectors of the pencil (16), as follows.

wix[n]xn)f wwx[n] = wx[n], ¥n=1,---,N.

where® is the Kronecker product. Define matric®s, P2 Each eigenvectay; of sized® is a linear combination of the
with rows (x*[n] ® x[n] ® x*[n])? and ve¢l; ® x*[n]), solutions, ory; = Z?Zl Aijw*j@wjow*;, fori=1,--- d.
respectively. Then the ZCM separation problem is seen to lfewe reshape a single vector;;(w*; ® w; @ w*;) into a
equivalent to finding all solution&x,y), a # 0 to d? x d matrix, we obtain the rank-1 matripw ; ®w*]~))\i]~wf.

Similarly, reshapingy; into ad? x d matrix Y;, we obtain

aPy = Pyy, wherey =w* @wo@w*. (13)
Y; = FA,WHY (17)

To ensure an overdetermined system of equations, we require
P, and P, to be “tall’, i.e., N > d3. Equation (13) is then WhereW = [wy,---, wq|, F = [w; @ w*,- -+ ,wg@ W],
a rectangular matrix pencil problem of the forx = ABx. andA; is a diagonal matrix containing the coefficients;.
The pencil is “singular”, i.e.P; and P, are not full rank,  Ignoring the structure of, the problem to obtaiWv and

because the structure of the rows Bf implies that some the {A;} from (17) is recognized as a joint diagonalization
of its columns are repeated. This causes additional null spg@@blem, generalized to rectangular matrices. Thus, the algo-
solutions that need to be avoided. Similagly= w*@wow*  rithms mentioned in Section II-D can be applied.

has repeated entries, and we want our solutions to satisfy thidVith noise, we follow the same algorithm. WitN' > d?,
structure. Because it is known which entries are repeatedthe pencil problem (16) is overdetermined. The usual reduction
is straightforward to remove the duplicate entries in bpth to a pencil with square matrice@{” P}, P{¥ P} ), amounts to

and the corresponding columns Bf, and P, by defining a a projection of the column span Bf; onto that ofP}, and is a
selection matrixJ of size d® x %dz(d + 1), such that form of noise mitigation. The square pencil hlseigenvalues,

y = Jy’ ( ) 2gpecific situations still lead t#®) being singular, e.g., if two signals are
’ purely constant modulus, or if two sources share exactly the same frequency.
Such pencils can be analyzed using more advanced techniques (see e.g., [28]),
IMatlab implementations of these algorithms are available from the authbut for the sake of simplicity, we will not consider them here. If such a
upon request. situation arises, the algorithm will fail.



of which we keep thel largest (the others are close to O)random square or tall matrix has a kernel unless there is a

The corresponding eigenvectofy i} are used in the joint structural reason for it. The proposition showed there is no

diagonalization step. This by itself is also an overdeterminedructural reason.

problem, hence provides additional noise mitigation. A limitation of the algorithm is that, for completely or
The computational cost of the algorithm is determinedimost completely non-overlapping SSR replies, there are

by the generalized eigenvalue decomposition of the padditional vectors in the kernel. Indeed,wf; and w, are

(PP, P{HP!). The algorithm is summarized in figure 2.corresponding beamformers, then vectors of the ferm®

The complexity is of ordefNd® multiplications. w; ® wy are in the kernel, because they correspond to
conditionssi [n + 1] ® s1[n] ® s2[n — 1] = 0, which is always
B. MDA: Manchester Decoding Algorithm satisfied for non-overlapping source signals. The additional

\{ectors in the kernel will break the assumption on which the

The Manchester Encoding Property 3.1 can be useda?igorithm is based (i.e., any vector in the kernel is a linear

design a receiver algorithm to separate multiple SSR sign

) . N cOmbination of thew¢, i = 1,---.d), and without further
Indeed, if we consider a beamformer such thats;[n] = . L . o
" . . . corrections the algorithm will show poor performance in this
wx[n] satisfies equation (9), we obtain situation

xXn+1]@xn]oxn -1 weowew)=0 (18)

forn = 2,---,N — 2. To collect these conditions, de-C. MSZCMA: Multi-Shift Zero Constant Modulus Algorithm
fine the matrixP : (N — 2) x d® as the stack of rows

H Let w be ad-dimensional beamforming vector to recover
[x[n+ 1] ®@x[n]®@x[n—1]]" forn=2,.---,N —1, so that

s[n], wHx[n] = 3[n]. Using properties of the Kronecker
Pw® =0 W wowow. (19) product, equation (12) from the ZCM Property 3.3 becomes

Unlike the case in the previous algorithm, it is not necessaryx[n] ® x*[n — 7] ©@ x[n] @ x*[n — 7))" (W* @ w @ w* @ w)
to reduce the dimension of ¢ as the rows of the matri® =¢" x[n]@ox*n—7))" (W @ w)
do not have redundant entries. On the other hand, operations (20)

similar to (14)—(15) may improve the estimation and help to . . )
force some structure in the solutiogs. Let w?* be an(d(d+1)/2)2-dimensional vector that contains

The rest of the algorithm is quite similar to the one PNy the non-redundant elements of th(z Kronecker pr2oduct
* * . ’
Section IV-A. Ford sources, there aré linearly independent (W* @ w @ w* @ w). We define byl” the d” x (d(d +1)/2)

Proposition 4.1 below. Thus we hawklinearly independent w2 — wrew

vectorsw; that belong to the kernel @. If the kernel isd- 1 . . Ty
dimensional, then the subspace spannefiy,i = 1,-- - , d} pa’)’ = (x[Ml® X*[n -] (?,X[”] ®x*[n —1])

is exactly equal to the kernel @, and a basigy;} for the prn = (x[n]®x*[n—7])

kemgl must be a linear compination of the;. Thus, the 1an (20) can be written as
algorithm is to estimate an arbitrary bagig;} for the kernel

using the SVD ofP, find linear combinations of the basis pH) wot = ¢7p(?) w2 (21)
vectors to map them to the structured vectpws; }, and then ’ 7
estimate the correspondivg; from each vectow?. Stacking the I’OW$)(71,2L andp(f?z, n=r,---,N, into matrices

The key step is to find the linear combinations of the bas@!") andP?, respectively, we obtain
vectors. This is again a joint diagonalization problem in three
dimensions, similar to the case discussed in Section IV-A, and PHw?! = P2 w2 (22)
can be solved for thev;'s.

The algorithm is summarized in figure 3. The computationdthereP is (N —7)x (d(d+1)/2)?, andP? is (N —7) x d°.
cost of the algorithm is determined by the estimation of thEhis equation holds for alr € N, and is somewhat similar
kernel of P (N —2) x d3). The complexity is of ordeid¢. 1O the matrix pencil problem (13) considered before, except

Proposition 4.1: Assume thafM is square and invertible, that the solution vectors on the left and right hand side of the
the sources are statistically stationary and temporally totafgluations are not equal.
overlapping, and that there is no noise. Then for large numberVarious approaches are possible. As in Section IV-A, we can
of samplesV, the matrixP will almost surely have rankd®— multiply with o = w"w to reach an equation that involves
d), equivalently its kernel will almost surely be of dimensiorPnly w*. An second approach is proposed in [12], called
d. AFZA, where the equation is written in terms of a single

The proof is given in appendix . The proposition implieginknown vectorw©*”  w?27]T. A third approach which
that for sufficiently largeN there are no other solutionsSeems to work better is outlined below.
than {w?,i = 1,--- ,d}, so that the problem is identifiable. To solve (22), we first need to find the common column span
Experience with similar algorithms indicate thRtis already of P andP™. Let U, be a matrix whose columns form an
of maximal rank once it is tall, i.eN > d? is sufficient in orthonormal basis of this subspace, andllIétl) andU(Tz) be
practice [29], [30]. This is because it is very unlikely that ahe orthogonal complements &f - overP(Tl) andP(f). Then



Given a data matriXX = [x[1], x[2],-- -, x[N]], compute separating beamforméié:

1) Detect number of signal$ and prewhiten (Section 1I-C) Nm?)
2) ConstructP] with rows (x*[n] ® x[n] ® x*[n])?J
and P} with rows vedl; ® x*[n))*J, n=1,--- |N (Nd?)
3) ComputeP/” P, and P/ P} (Nd®)
4) Solve the matrix pencihP /7Py’ = P/ PLy’ (d®)
Let {y;} be the eigenvectors corresponding to thirgest eigenvalues
Reshapey; into matricesY; (sized” x d)
6) SolveY; =FA,W" (i=1,---,d) for W (Section II-D) d°)
Nd°

Fig. 2. Summary of AZCMA (in brackets the order of complexity of each step).

Given a data matriXX = [x[1], x[2],- - - , x[IN]], compute separating beamformahé:
1) Detect number of signal$ and prewhiten (Section 11-C) Nm?)
2) ConstructP with rows (x[n + 1] @ x[n] @ x[n — 1)), n=1,--- |N (Nd?)
3) Compute the SVD oP (sized® x d) and determine a basig;} for the kernel vd®)
4) Reshape each; into a matrixY; (sized®> xd),i=1,---d
5) SolveY; =FA;W" (i=1,---,d) for W (Section II-D) d°)

Fig. 3. Summary of MDA (in brackets the order of complexity of each step).

we can compute the decomposition into ‘common’ and ‘not For d SSR sources, there atielinearly independent beam-
common’ subspaces as formersw;, i = 1,--- ,d, and these correspond tbinde-
pendent solutions: nonzero vectors in the kerneZofNote

Py — [ u. uWw ] l AETB that Z hasd? columns. As with the preceding algorithms, for
4 T B; a sufficient number of time-lagg, the matrix becomes very
A tall and will not have other vectors in the kernel.
P(Tz) — [ U. U(T2) ] l (72) Thus, the algorithm continues by estimating an arbitrary
B7 orthonormal basis{y;}%_, for the kernel of the matrixz.

W . ) Similar to the preceding algorithms, each veciar of size
where theB-", i € {1,2} are of full row rank. Inserting these ;2 of this basis is a linear combination of the solutions, or
two equations into (22), we obtain yi = Z?:1 \i;w?. Reshaping they; into d x d matrices

A wot _ ¢TA(T2)W®2 Y;, we obtain.: WAZ»WH_, whereW.:' Wi, -, w.d].,
U. U U(2)] B o —0 (@3 and theTA?’ are diagonal matrices containing the coefficients
T T T T Aij. This is the standard joint diagonalization problem, and
—¢"BP w2 can be solved foW as in Section II-D.
The algorithm is summarized in figure 4. The computational
ost is dominated by the decomposition (23) for eacfihis
corresponds to the cost of a QR factorizationBt” P,

where the first matrix compound has full column rank b)é
definition. Thus, we have

AWw2t _ " APw?2 = ¢ (24) whicf; is of the ordefVd®, therefore the complexity is of order
BUw2t — o o5y LN . .

(72)w®2 (25) The set of time delay$r,--- , 71} can be chosen arbitrar-

B w 0 (26) ily, as long as the matri¥ is expected to achieve its maximal

Since it is complicated to work with the three equation . . )
P d small and let it grow until the estimate of the kernelZf

simultaneously, we propose in our algorithm to use only t . . . . .
last equation (26). This equation holds for anyand we updated using subspace tracking algorithms) is considered not
§to change anymore.

can obtain several similar conditions (b taking a rangd.o
2

h?nk. To save some computational cost, we could initially take

%ifferentg € N. Stacking the matriceB; " in a single matrix V. CRAMER-RAO BOUND
, we obtain .
The Cramer-Rao Bound (CRB) is a lower bound on the
B((f) variance of unbiased parameter estimates. We consider here
B® the deterministic CRB, which considers the additive noise
Zw?? ! w?? =0 (27) as stochastic, whereas the model parameters are regarded as

deterministic unknown parametetsAs usual, we consider

3The bound for this problem was first presented in [31].



Given a data matriXX = [x[1], x[2],-- -, x[N]], compute separating beamforméié:

1) Detect number of signal$ and prewhiten (Section 1I-C) Nm?)
2) For each delay (L times)

(a) ConstrucP" with rows (x[n] ® x*[n — 7] ® x[n] @ x*[n — 7])T I’

and P with rows (x[n] ® x*[n — 7)), n=1,--- N (Nd*)

(b) EstimateU,, by subspace intersection B and P(2> (Nd®)
(c) ComputeB» from P and U, (Nd*h

3) ConstructZ as in eqn. (27) and compute the SVD %f (Ld%)

Let {y;} be thed eigenvectors corresponding to its kernel
4) Reshape eacy; into a matrixY; (sized x d)
SolveY; = WA,W¥ (i=1,--. d) for W (Section II-D) d®)

Fig. 4. Summary of MS-ZCMA (in brackets the order of complexity of each step).

the noise variance? as known, since it can be estimated VI. SIMULATIONS

independently of the other parameters. Further, we consider "To demonstrate the effectiveness of the proposed algorithms
the case of known signals (matrR is discrete-valued with ZCMA, MDA, and MS-ZCMA), we compare them to JADE
entries {0.’1} and can be assumed as known for thg s 1] (a HOS method based on fourth-order statistics), to
perturbations of the parameters under which the CRB is vali F-ICA [34] (a HOS method which forces the statistical
Idnﬁ[32] orebcatr;] fmdb the CR?J‘W a stlﬂrgcllar problem, Wh'cnndependence of the outputs, based on Fast-ICA), to AFZA
fers only by the absence ol the ma ___(one of the other methods proposed in [12]), to ESPRIT [35],
To obtain results which can be compared to DOA estimatio hd to the Cramer-Rao Bourtd
i%g)m(:m\jiﬁevrv:g cor[leslder agc]allbrat(?d(ear)ray and(gw)l]m;;d For the simulations, we have considered a calibrated array
L d ! d of M = 4 elements, with an inter-element distance of a half
a(#) is the array response vector for a signal from d'recuonavelength and in absence of multipath. The array set-up is
6. The matrixG is diagonal, and the diagonal entries contalnhosen 10 be able to compare to ESPRIT. and to have a S|mple
oo 25,55 2G84 Dty to moty he coitioning o the proben by reccing
A= {6, ),/o i fiil < <Z} {Re angle separation between the sources. As source signals,
PASIARISE N e generated a uniform random sequenceVof= 100 SSR
The CRB on the variance of each parameter is given s\émples (50 Manchester encoded symbols with 2 samples per

mforcrzgsirqor:gltﬂ?( ((jllzzﬁ/lc;n(e[lég]r;tnes of the inverse of the I:'Shermbol) This is a bit shorter than actual SSR packets, and

Proposition 5.1: In the case of known signals, the FIM is does not '”C'“O_'ef the trammg preamble. . .
Unless specified otherwise, the default simulation parame-

Ig? Lr Lo, Ipy ters are equal powered sources with an SNR3®fdB per
_2 Lo Lip Tpp Ipg antenna element, DOAs equal [tt0°, 110°] measured from
FIMQ(A) 2 ’l[c' IT I I (28) . . .
o %9 of be po array end-fire, no time offsets (completely overlapping data
Ly Iy I, Igg packets), and frequency offsets equa[+® - 104, 5 - 10] Hz.
where We will subsequently vary the SNR, the DOA separation, and
Iy = Re{(GSS”G")o (DY D.A)*} the time offset, respectively.
I, = Re{( (Co8)(Co S)HGH) ®RA} Most statistics are based ait), 000 mdependent' Monte-
_ HGH) & (DY A Carlo runs. For MS-ZCMA, we choose the following set of
Iy = Re{(GS(CoS) ) o )"} L = 11 time delaysr,, which has shown satisfactory results:
1, = Re{(@SSH@H (A A)* } {0,1, —1,2, -2, &, N N =N N Ny
g " In th|s S|mulat|on the computational complexity (number
L, = Re{(GSS 7)o Dy A)” } of multiplications) of each of the algorithms is roughtg*
6 -
I;, = Re{[ (CoS9)(®S) ] o (AH A)*} flops for AZCMA and MDA', and10 ﬂpps for MS ZCMA:
B H A We show performance first of all in terms of the failure
Lo = Re{[ (GS)(GS) ] (A ) } rate, where a failure is declared if we recover the same source
LIis = Re{j[(GS)(GS)"]o DA A)} twice, rather than two independent sources. A failure is also
b = ReGI(E(CO) (@S]0 (AMAy)  deoiredf e ouput SR o ary souce i bl For
L, = Re{j[(®S)(GS)"]o (A" A)} source via ’
— |0%a i i .
wher.e Dy = [891 61),---, ae (0d)], ® is a diagonal b; = argmax |[a(8) a2, i=1,..d
matrix containing the phases/¥:, Ry = AFA, C = 9
jerT[L,---,1]7[0,1,---,N — 1], andS = F © B. “We also compared to SOBI [36], but it did not perform well. We do not

The proof is straightforward and presented in [31]. present the results so as not to clutter the graphs.



wherea; is thei-th column of A = W, the pseudo-inverse
of the matrixW. To judge the quality of the beamformers,
We show the root mean squared error (RMSE) of the DOA
estimates, averaged over both sources. (The two sources have 10°a =
similar RMSESs. Also the behavior of the frequency estimates
is quite similar and is not shown for brevity.) We also present
the SINR at the output of the beamformer, which is defined as
the ratio of the power of the desired source over the combined 1
power of the interference sources plus the noise power.

In the first simulation, we vary the input SNR over the range
[5,30] dB. Figure Ja) presents the corresponding failure rates.
We observe that JADE fails nearly always. The reason is that
JADE is based on exploiting differences in the fourth-order
statistics, whereas, for completely overlapping sources, the
cumulants of up to order 5 are expected to be small or zero
[9], [10]: the sources are “pseudo-Gaussian”. EF-ICA includes
a non-linear step and therefore implicitly uses also statistics of 10‘35 % = ¥ ¥ 20 2
order abové. It could separate the sources, but the failure rate Input SNR [dB]
is high (roughly0.35). An explanation is that a large number of
samples (order few thousand) is needed to exploit the statistical
independence. AZCMA has a high failure rate for SNRs below
15-20 dB. MDA and AFZA begin to fail for SNRs below)
dB, while MS-ZCMA and ESPRIT do not fail for SNRs above
5 dB. Figure §b) presents the RMSE of the DOA for the cases
without failure. For SNRs above 20 dB, AZCMA and AFZA
reach a floor 0.1° in standard deviation. Note that the MDA,
the MS-ZCMA, and the ESPRIT algorithms are quite near the
Cramer-Rao Bound and are consistent. The erratic behavior
of JADE is partly due to the very small number of non-failed

i1]
£}
[51]
1]
th

failure rate

107%

RMSE DOA

runs. In Figure %), the output SINR is shown as a function of -5 JADE ‘ LY

the SNR. The performance of the algorithms are quite similar, ESPRIT ‘ e
except for JADE and EF-ICA. The output SINR is larger than B EFlca f
the input SNR by5 up to nearly 6 dB, which is consistent 10‘25 0 15 20 Y 0 s
with the maximum gain o6 dB that can be expected with Input SNR [dB]

four antennas for a single signal. (b)

In a second simulation, we varied the angle separation ‘ ‘ ‘ ‘
between the two sources. Note that, with 4 antennas, the A~ AZCMA ‘
array beamwidth is about5°. Figure a) shows again that 35| B MS-zOMA
JADE is not reliable, and also EF-ICA has a very high failure —— AFZA
rate. For small angle separations (bel6®), AZCMA and 30| o pammiT :
ESPRIT are the first algorithms to break down. Only MDA, -+ EF-ICA
MS-ZCMA and AZFA can handle very closely spaced sources. g 25:S KnownA 1

Figure Gb) demonstrates that only MDA, MS-ZCMA and
ESPRIT can attain the CRB for large angle separation. For
all algorithms, there is room for improvement for small angle
separations. Failures are caused because in the initial SVD, a 1°
signal singular vector will be replaced by a noise singular
vector, which will make it impossible to separate the two
closely spaced sources. (The same happens if the numbet

Ouput SINR [dB]
N
o

: _ : 5 ‘ ‘ ‘

of sources is underestimated.) Note that, in the context of 5 10 15 20 25 30
. . . . Input SNR [dB]

our application, it is rare to have small separations because

typically the receiver antenna array would be at a different (©

location than the requesting radar beam. In figufe),6the
output SINR of all algorithms are again quite similar, exce[ftig. 5. Algorithm performance for varying SNRa) failure rate,(b) RMSE
for JADE and EF-ICA. The SINR tends to a limit 6 dB  °f "¢ DOA estimatesic) output SINR.
for large angle separation, which is equal to the initial input
30 dB plus6 dB of antenna gain.
Finally, we simulate a varying time offset between the ar-
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this section. Moreover, we will not further investigate AZFA
and EF-ICA as their performances are not competitive.

B. Experimental results

The array was installed on the roof of our building at TU
Delft (approx. 90 m high, with several large radar dishes
and metallic structures nearby), and several data sets were
recorded. Most of the recorded data sets have a short time
Fig. 8. The experimental system. duration, 300us, which is sufficient to contain a Mode-S

signal. In these data sets, there were only a few cases of

actual overlaps (we are locatéd km away from the nearest
rival of the two data packets. Figuréaj shows that AZCMA major airport, so the aircraft density is relatively low), but with
and MDA cannot handle well cases of non-overlappingery good SNR %5 to 40 dB). We have created artificial data
sources, because this leads to additional nullspace solutionséts by randomly mixing pairs of measured signals at different
the matrix pencils. On the other hand, as soon as the sourdefay offsets, with the advantage that the true delay offsets are
are not completely overlapping, JADE performs well, since thenown and that we can easily manipulate the delay offsets,
sources are not pseudo-Gaussian anymore. EF-ICA perfornase power and source powers (i.e., the SNR and SINR).
worse with increasing time offset until it gives 100% failurgThe array response vectors and frequency offsets cannot be
in case of non-overlapping sources. MS-ZCMA and ESPRI@hanged.) The mixing is performed simply by adding the two
have an acceptable failure rate performance over the rangerefeived blocksX; and X, over the4 channels with an
time delay offsets. Figure(¥) shows that MS-ZCMA, JADE additional noise matrix:
and ESPRIT have RMSE close to the CRB, with JADE having .
an error increase for small time offsets and MS-ZCMA for X=X +aX, +E.
non-overlapping packets. The output SINR presented in figufdis gave in totalr00 combinations to establish the algorithm
7(c) confirms that JADE performs better with increasing tim@erformance. Since we know the mixing and can easily
delay offset, while the effect is opposite for AZCMA, MDA, estimate the “true” array response vectors from the unmixed
and AFZA. datasets, we know the true mixing matid, see Eq. (4), in

In summary, the simulations show that MS-ZCMA is overalach experiment. We use the pseudo-inverse of this matrix to
the most reliable algorithm, with the exception of cases withbtain a reference performance.
completely non-overlapping packets. AZCMA is not com- We present the results from two series of experiments,
petitive. MDA is a viable alternative (in view of its lower where we compare the performance of the algorithms to the
complexity) for small delay offsets only. None of the regulapseudo-inverse of the true mixing mati.

blind source separation algorithms is applicable. In a first experiment, for every pair of sources, we add
them pairwise without time delay offset, and vary the SNR

VIl. EXPERIMENTAL RESULTS by gdding complex Gaussian_noisg. '
. Figure 9a) shows the resulting failure rates as a function of
A. Experimental setup the SNR. Comparing to the simulation (see Figure 5), we see
To test the algorithms on real data, we have developedtt@at AZCMA and JADE have similar performance (high failure
4-channel phased array measurement system (see Figurer&gs). MDA, MS-ZCMA and “KnownM” have somewhat
The array consist o6 linearly equispaced antennas. The twavorse but still quite similar failure rates for the measured data.
endpoint antennas are “dummy” and loaded with a matchirggure 9b) shows the output SINR as a function of the SNR.
impedance, their presence is to make the coupling betwekrs consistent with the simulations. The performance of all
antennas uniform. The four central antennas feed differealgorithms except JADE is similar to the case where the true
receiving chains, which down-convert the signal from thenixing matrix is known.
radio frequency¥090 MHz) to an intermediate frequenc¥( In a second experiment, we use equi-powered sources, add
MHz), filter around the band of interest and amplify the signahoise to achieve an SNR equal®dB, and only vary the time
The four signals are sampled at 50 MS/s and digitized lyelay offset. Figure 1@) presents the failure rate as a function
a digital oscilloscope which also stores them for later offef the delay of the second source, and#Ghe output SINR.
line processing. The sampling resolution 8sbhits. Offline, Compared to the simulations (Fig. 7), AZCMA now also
the signal is converted to a complex baseband signal usihgs a high failure rate for small separations. Again, MDA
a Hilbert transform, digitally lowpass filtered with a cutoff athas sufficient performance only for small offsets, and is not
an equivalent frequency dfd MHz. reliable for larger offsets. MS-ZCMA has a good performance
The array has not been calibrated. Measurements indicateer the complete range of offsets, and is within 2 dB of the
that the array response does not follow the ULA responsénown mixing matrix” reference line. JADE requires large
which may be caused by coupling or multipath, e.g., due time offsets for reliable performance, and in that case gets
nearby metallic objects. For this reason, it is not possibdose to the reference line as well.
to evaluate the DOAs, and thus we do not compare to theln summary, we have seen that the algorithms have similar
ESPRIT algorithm. We limit ourselves to source separation lpehavior in simulations as in experiments. The performance
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Fig. 9. Performance results using data synthesized from measured singl@- 10- Performance results using data synthesized from measured single-
source data; varying input SNRa) failure rate;(b) output SINR. (I?)Ufcet dftltgv”\\llsfymg time offsets between the two sour@gsfailure rate;
outpu .

of MS-ZCMA is close to the case of a known mixing matrix. . ) ) )
MDA is reliable only for small time offsets between thePverlapping. If so, simple algorithms can be used for estimat-
overlapping packets. Conversely, JADE is reliable only fdn9 the beamformers and separating the sources [14]. If it is
large time offsets. AZCMA is not competitive. detected that sources are S|gn|f|cantly overlappl_ng, then MS-
ZCMA and MDA can be applied. The complexity of these
VIIl. CONCLUSIONS algorithms is higher, but not prohibitive since the number
We presented three algorithms (AZCMA, MDA and MS-Of simultaneous sources is Iik'ely to'be small. Tog'ether this
ZCMA) to separate overlapping SSR replies impinging on arrr]1akes a gopd candidate for improving the reception of the
antenna array. Simulations have shown that AZCMA is ncﬂeXt generation of Secondary Surveillance Radar.
reliable, but MDA and MS-ZCMA behave reliable for data
packets that are highly overlapping. For small amounts of APPENDIX

overlap, only MS-ZCMA is reliable. The proposed algorithms PROOF OFPROPOSITION4.1

use properties of the sources, hence can work with uncalibratequ need to show that for sufficiently largé, the kernel

e s oSBT P s of dmensions, nd ot arger . e ssume
. ! . L fcfatlonary situation (signals are present /6r— oo), so that

completely overlapping data packets, JADE is not appllcabve can apply ergodicity. Using the modelk] = Mis[k], we
because the fourth-order cumulants are expected to be sm Ei/e ' '
indeed its performance is poor. For small amounts of overlap,
JADE is functional. We developed an experimental platformk[k + 1] @ x[k] ® x[k — 1] = (M @ M ® M) (s[k + 1] ® s[k] @ s[k — 1]
and demonstrated that MS-ZCMA performs quite well on real (29)
data as well.

In actual implementations, we recommend that first a teset S; be a matrix with rows s® def

is made to detect if sources are non-overlapping or partially[k + 1] © s[k] @ s[k — 1], for & = 2,---,N — 1.



ThenP can be written as
P=S:(MaMeM)? (30)

SinceM is invertible,(M @ M ® M) is invertible as well, so
that the rank ofP is equal to the rank o8 ;.

Define the sample correlation matrix corresponding 8
asR?) = +SHS;. It has the same rank &; as soon as
N > d2. We will verify the rank off{g) asN tends to infinity,
ie., whenf{g) converges to the correlation matngi) of
s(3), under statistical assumptions on the data.

Denote thek-th sample of them-th source ass,,[k] =
b K]0,
with equal probability) and,,, is the residual phase rotation,
random on the unit circle. The j-th entry of f{g) is

(d?

(RY) =% bl — 100 [K]biJ + 1]bo[k — 110, K]0,
’ = [2]
¢7(k71)¢7k¢;(k+1)¢k71¢k¢k+l
m n o rpTq
wherei = md? + nd + I, andj = od®> + pd + ¢, for B!
m,n,l,0,p,q = 1,---,d. As N = oo, R{Y converges to [

R{Y.

Before demonstrating that the rank Bfg) is d® —d, we
show it in the cas@ = 2. Re-order the columns and the rows
in order to follow the triplets(m,n,l) = (1,1,1), (1,1,2), [6]
(1,2,1), (2,1,1), (1,2,2), (2,1,2), (2,2,1), (2,2,2). Then
the matrix converges to a diagonal matrix whose diagonal
entries are:

(5]

1 (8]
16
which is of ranks = 22 —2. There are precisely = 2 columns [°]
equal to zero, which gives the kernel a dimension of 2. Theg)
rest of the matrix is block-diagonal with non-singular blocks
of size3 x 3. [11]
Now, we consider the general case. For triplets that are not
equal up to a permutatiodym,n,l} # {o,p, q}, the residual [12]
carrier induces the terr(rf{gi))m to tend towards zero. By re-
ordering the rows and columns Rﬁi), we transform it into [13]
a block-diagonal matrix, with three kinds of sub-matrices.
1) The first kind of sub-matrices are of sik& 1 for triplets
of the form(n,n,n), forn =1,--- ,d, with value

(&2), -+

)

01211210

[14]

N-1 [15]
> bhk — 103 [K]b3 [k + 1]
k=2

[16]

wherei = n(d? + d + 1). These elements are equal to
zero because of the Manchester encoding property 3171
There are preciselyl sub-matrices of this kind. They
thus contributel dimensions to the kernel (Rg).
The second kind of sub-matrices are of siz& 3 for
triplets of the form(n,n,m) andn # m. Denote the [y
corresponding submatrices B». Given that any non-
diagonal entry of the matrix will contain at least 20]
consecutive samples of,, property 3.1 ensures that they[
are equal to zero. Then the matdX, converges to a [21]
diagonal matrix whose diagonal entries are:
1
16 [

(18]
2)

[22]

R, 12 1]

3)

where b, [k] is the transmitted symbol (0 or 1finjte put sufficiently largeV.
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which is full rank. There are precisely(d — 1) sub-
matrices of this kind.

The third kind of sub-matrices are of sifiex 6 for
triplets of forms{m,n,l} andm # n # [. Denote by
R; the corresponding sub-matrices. A similar but more
tedious analysis reveals thRt; converges to a certain
nondiagonal but full-rank matrix. There are precisely
4d=(4=2) gyb-matrices of this kind.

Hence, the rank ORS? is equal tad® —d. Thus, as the number
of samples tends towards infinit§; and P3 will have rank

—d). By continuity, this will almost surely be the case for
O
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