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Abstract— The Secondary Surveillance Radar (SSR) is a
transponder system used in air traffic control. Due to growing
traffic densities, it is increasingly likely that a ground station
receives a mixture of responses of various aircraft, partly over-
lapping in frequency and time. Currently such “collisions” are
disregarded, at a loss of system performance and reliability. In
this article, we propose to equip the ground station with an
antenna array, and investigate techniques to blindly separate such
a mixture based on source waveform properties. At base-band, a
received SSR signal consists of a binary sequence with alphabet
��� ��, modulated by a complex exponential due to the residual
carrier frequency. We present three algebraic algorithms to
compute the separating beamformers by taking into account the
particular modulation format of the received signal. The Cramer-
Rao Bound is derived, extensive simulations are presented, and
an experimental platform has been built to collect measurement
data and demonstrate the algorithms.

I. I NTRODUCTION

Secondary Surveillance Radar (SSR) is essential for Air
Traffic Control (ATC). Unlike the primary radar, the SSR is
a communication radar (transponder system) that informs the
ATC about the identity and the altitude of aircraft [1]. An SSR
ground station uses a rotating scanning beam and transmits
interrogating queries, consisting of pulse trains modulated on
a carrier at 1030 MHz. Upon receiving a query, an aircraft
responds by transmitting an SSR reply signal, a bursty pulse
train modulating a carrier at���� MHz and containing the
requested information. The system was designed in the 1950s,
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but is currently limited by the fact that all replies nominally
use the same carrier frequency, and may overlap in time.
This occurs, e.g., if two aircraft are close to each other but
at different heights, or when an aircraft responds to a query
from a neighboring ground station. If two responses overlap,
the receiver cannot decode the message and both are lost [2].

To bring some relief, a new protocol (Mode S, for Selective),
operating at the same frequencies, is currently being installed
[3]. In Mode S, aircraft can be individually addressed to give
a response, enabling short data communications between the
station and the aircraft. This new mode will also assist the
Traffic Advisory and Collision Avoidance System (TCAS)
by providing automated communication between the aircraft.
Nonetheless, also in this protocol overlaps may occur.

Today, the ground station uses the same rotating antenna for
transmission and reception of SSR signals. We may envision
two extensions: (1) Create a distributed system, where the
existing radar system is used for transmission of the queries
only, but where a network of receivers is placed at various
locations, (2) Equip each receiver with an array of antennas
[4], [5]. This enables multi-lateral location estimation and
facilitates message detection [4], [6], [7]. Indeed, at each
receiver base station, the overlapping reply signals can be
separated using blind beamforming, and subsequently for
each recovered signal we can detect the individual symbols
and estimate the direction of arrival (DOA) and the Time
of Arrival (TOA). The combined information from several
receivers allows multi-lateral location estimation at the system
level. Estimating the beamformers and the parameters at the
receiver is the aim of this paper.

Blind source separation can be done based on properties
of the array response matrix or on properties of the source
signals. The former has as disadvantage that a carefully cali-
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brated array must be used, and that no multipath is tolerated.
Therefore, we consider the rich structure of the source signals
as a feature for separation. Indeed, SSR replies have a very
structured source model: each sample at the receiver is the
product of a binary PAM symbol taken from the alphabet
��� ��, multiplied by a complex exponential (phase progres-
sion) due to the residual carrier frequency.

Blind source separation of SSR reply signals was first
considered by Comon in [8]. This algorithm considered max-
imizing a contrast function based on higher-order statistics
(HOS). However, it was noted by Petrochilos and Comon in
[9], [10] that such HOS methods are unreliable because for
SSR Mode S signals all cumulants of order�, � and� have a
large probability to be zero. Thus, algorithms using cumulants
of 6-th order or higher need to be used.

In this article, we present a collection of algorithms which
implicitly use 6-th and 8-th order statistics. The proposed
algorithms arealgebraic: similar to the Analytic Constant
Modulus Algorithm (ACMA) [11], the beamformers are com-
puted from a batch of data by solving a joint diagonalization
problem. Some of these algorithms were first presented at
conferences [12], [13]. Here, we present the algorithms in
a broader perspective, and compare them in simulations and
using experimental data. Full details can be found in the
PhD thesis [5]. Follow-up work includes [14], where an
alternative time-domain approach has been proposed for the
restrictive case of two partly overlapping Mode S replies with
a sufficiently large time difference of arrival. The present paper
concentrates on the complementary case where signals are
highly overlapping.

The paper is structured as follows. Section II introduces the
data model and lists the assumptions and some preliminary
material. Section III presents three properties of the source
signals, and Section IV uses these to derive three algorithms to
find separating beamformers for each of the sources. Section V
derives the relevant Cramer-Rao Bound (CRB), and section VI
compares the algorithms in simulations. In the course of this
work, we have constructed an experimental platform consisting
of an array of four antennas. We apply the algorithms to
measurement sets collected with the array, and show the results
in section VII.
Notation: � denotes the identity matrix, and� and� are the
vectors with all entries are equal to� and�, respectively. We
denote by���� the complex conjugation, by���� the matrix
transpose, and by���� the matrix conjugate transpose.
���� denotes the mathematical expectation operator, and

Vec is the operator that stacks the columns of a matrix�
into a single vector�. The notation���� refers to the Moore-
Penrose inverse (pseudo-inverse). The symbol� denotes the
Schur-Hadamard (element-wise) matrix product, and� the
Kronecker product.

II. DATA MODEL AND PRELIMINARIES

SSR communicates via two different protocols: Mode A/C
and Mode S. The A/C mode was initiated during World War
II, and is supposed to be soon totally replaced by Mode S. In
this paper we make the assumption thatonly Mode S replies

are present. A combined model containing both Mode A/C and
Mode S replies is more complex, due to the slightly different
(incommensurate) pulse lengths.

A. Received data model

A Mode S reply frame contains either�	 or ��
 bi-
nary symbols��. The bits are encoded in a “Manchester
Encoding” scheme, where�� � � is coded as�� �
��� �
, and �� � � as �� � ��� �
. The transmitted
bit stream� is a burst (packet) consisting of a preamble
� � ��� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �
 followed by the
encoded data bits, i.e.,

� � ��������� � � � ��������
 (1)

with a total length� � ��
�� 
���. The preamble is aimed at
facilitating the detection of the start of a packet.

The Mode S reply signal emitted by the aircraft transponder
is a pulse amplitude modulation of�, and has the form

���� �

��������
���

���
� ��� ���� (2)

where���
 is the�-th entry of�, and���� is a (nominally)
rectangular pulse of width�� � ����s, for Mode S.

Before being emitted by the antenna, the signal is up-
converted to have a center frequency	�. Nominally, this carrier
frequency is	� � ���� MHz, but the tolerance permitted by
the ICAO is�� MHz, thus	� �� 	�. (In future, this tolerance
will be reduced to�� MHz.) Due to this possible carrier
frequency mismatch, a residual frequency	 � 	� � 	� will
remain after down-conversion by	� to baseband. This residual
carrier adds a significant phase rotation����

�	�� to the
transmitted symbols.

At the receiver, each antenna signal is downconverted and
sampled at rate����. Not assuming temporal synchronization
within a symbol period, the received baseband signal
��
 �

����� is described (up to a complex gain factor) as


��
 � ���
 ��� ��
��	��� � ���
�� (3)

where � � ��� ��
�	��� is the phase shift due to the
residual carrier frequency over a sampling period. This signal
is actually multiplied by an unknown complex gain factor
representing the effect of the channel, the receiver amplifier,
and an initial phase offset. This will be taken into account in
the next section.

B. Problem statement

We extend the single source model (3) to the reception of
a mixture of� independent SSR source signals impinging on
an �-element antenna array. The baseband antenna signals
are sampled at rate���� and stacked in vectors���
 (size�,
where the�-th entry corresponds to the�-th antenna signal).
After collecting� samples, the observation model is

� �	
� � (4)

where� � ����
� � � � ���� 

 is the � 	 � received signal
matrix,	 is an unknown�	� mixing matrix which includes
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the antenna responses, path coefficients, initial phase offsets,
the array signatures and the complex gains of the sources,

 � ����
� � � � � ��� 

 is the�	� source matrix, where���
 �
�
���
 � � � � � 
���



� is a stacking of the� source signals, and
� is the�	� noise matrix. We assume that the sources have
unit amplitude and that the noise is temporally and spatially
white.

Note that each source� transmits data in packets of finite
length�� (�� � �
� or 
�� bits) and with an arbitrary starting
time. Each source can thus have an arbitrary time offset� �
(positive or negative integer) with respect to the start of the
observation interval. To consider this effect, we apply zero-
padding and truncation operations to the data time series���

in (1) to obtain a similar sequence����
, � 
 � 
 � , where

����
 �

�
�� �� � � � or �� � � ��
���� � 
� � 
 �� � 
 �� �

The source matrix
 has structure


 � 
�� (5)

where� is the Schur-Hadamard (pointwise multiplication)
operator, and



	
�
�

�
��

�� ��� � � � ���
...

...
...

�� ��� � � � ���

�
�� � �

	
�
�

�
��

�����
 ����

 � � � ����� 

...

...
...

�����
 ����

 � � � ����� 


�
�� �

Although the algorithms which we will propose will not be
based on a calibrated array (i.e., a parametric structure for	),
it is sometimes interesting to make such an assumption: (1) it
allows comparison to source separation algorithms which are
based on direction finding, such as MUSIC and ESPRIT, (2) in
some cases, the DOAs are also of interest, e.g., for localizing
the aircraft (although this is the task of the primary radar),
or for assigning each retrieved message to the corresponding
aircraft (since the blind source separation algorithms retrieve
the messages in an arbitrary ordering). Thus, if the array is a
calibrated Uniform Linear Array (ULA) with half-wavelength
antenna spacing, and if the multipath is negligible, we can
further write	 � �� where� � ������� � � � � �����
 is the
�	 � steering matrix,�� is the direction of incidence of the
�-th source with respect to the ULA boresight,����, is the
array steering vector, defined as

� ��� � ��� ������ �������� � � � � ��������� �� �������
� �
(6)

and � is a � 	 � diagonal matrix containing the angle-
dependent antenna response, propagation gain and initial phase
offset of each source.

Without considering this structure,	 may also reflect the
imperfections of the array such as calibration errors, antenna
coupling effects or inaccuracies in the position of the elements,
and propagation effects such as short-delay multipath (scat-
tering in the vicinity of the receiver array). As mentioned,
for the purpose of source separation we do not consider this
structure and only assume the matrix	 to be left-invertible
(this implies� � �).

Our aim is to compute beamformers��, � � �� � � � � �,
such that��

� ���
 � �
���
 is an estimate of the�-th SSR

signal. In this blind source separation context, we can only
try to ensure that each�
���
 looks like an SSR signal (i.e.,
that certain properties are satisfied), and that the collection of
signal estimates is independent.

C. Preprocessing

In our application,	 is typically tall and full column rank,
but not square. To simplify our algorithms, we assume that
first a (standard) preprocessing is applied on� to reduce its
row dimension from� to �. This is done by computing a
singular value decomposition of�,

� � ���� �

where� and� are unitary and� is diagonal containing the
singular values in decreasing order. The number of signals� is
detected from� using standard rank detection tests, e.g., based
on likelihood ratios [15] or information theoretic criteria such
as AIC and MDL [16], [17], [18]. Let�� be a diagonal matrix
containing the� largest singular values, and�� be an�	 �-
dimensional matrix containing the corresponding columns of
�, and define

�� 	
�� ��
��
���� �

then according to the model

�� � � ��
��
���	�
� � ��

��
�����

	
�
� 	�
��� �

This is the same model as we had before, except that� � is
�	� and	� is �	 � and invertible. In the algorithms, we
assume that this preprocessing has been done, and we drop
the primes from the notation. The computational complexity
(number of multiplications) is of order��� .

The reduction in the number of rows in� and 	 is
necessary to avoid the existence of nullspace beamformers
�� such that��

� 	 � �. Indeed, such beamformers could be
added to a valid separating beamformer� � without changing
the output signal, and only change the output noise. Hence they
would destroy the uniqueness of the solution, and complicate
the estimation algorithms.

The data covariance whitening implied by premultiplying
with ��

��
is not as essential, but has been applied in similar

algorithms because it causes the beamformers to converge
asymptotically in� to the Wiener beamformer [19]. Wiener
beamformers are attractive because they optimize the output
Signal to Interference and Noise Ratio (SINR). Note that after
the prewhitening step, the noise�� is no longer spatially white.

D. Joint diagonalization problem

The algorithms to be proposed in the next sections lead to
joint diagonalization problems. To avoid being repetitious, that
problem is presented here in a more general setting.

Let � be a square matrix. Its eigenvalue decomposition (if
it exists, i.e., if� is regular) is a factorization� � �����,
where� is a diagonal matrix containing the eigenvalues� �,
and� is an invertible matrix containing the eigenvectors� � as
its columns. These are the solutions to the equation�� � ��.
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Numerically, the eigenvalue problem is often replaced by the
Schur decomposition, which is the factorization [20]

� � ����

where� is unitary and� is upper triangular. The diagonal
entries of � are the eigenvalues. It can be obtained by
introducing the QR factorization of�, with the advantage that
the Schur decomposition always exists whereas the eigenvalue
decomposition does not.

Similarly, the generalized eigenvalue problem (or matrix
pencil problem) for a pair of square matrices����� is to find
solutions to�� � ���, or the factorization�� � ���. If
� is invertible, this is the same as computing the eigenvalue
decomposition of����. It is convenient to write this as a
joint decomposition. By introducing a matrix
 and� �
���, and two diagonal matrices�	��
 , we obtain

� � 
�	�
� � � � 
�
�

� � (7)

The generalized eigenvalues are� � ���

 �	, but the added

generality allows to handle cases where� and/or � are
singular, or some diagonal entries of�	 and/or�
 are zero.
The corresponding Generalized Schur Decomposition is

� � ��	�
� � � � ��
�

� � (8)

where� and� are unitary, and�	, �
 are upper triangu-
lar. This decomposition always exists and can be computed
iteratively, e.g., using the QZ algorithm, Jacobi iterations, etc.
[20]. The diagonal entries of�	��
 are those of�	��
 .

The joint diagonalization problem is a further generalization
of the above to more than two matrices:

�� � 
���
� � � � �� � � � �� �

For � � 
 the problem is overdetermined, hence solutions
in general do not exist. However, for a set of matrices that
on the basis of model assumptions is expected to admit this
factorization, we can try to compute the matrix pair�
���
that best diagonalizes the set of given matrices, usually in some
least squares sense. It can be computed using generalizations
of the QZ algorithm, Jacobi iterations [21], [22], [11], [23],
[24], Alternating Least Squares [25], [26] or subspace fitting
techniques [27].

The problem can be further generalized by considering
rectangular matrices��, as in this paper. In particular the
Alternating Least Squares algorithms are readily generalized
to handle this situation. For� matrices of size� 	 �,
the computational complexity is of order����� � ����.
Alternatively, assuming� � � (tall matrices) and
 to be
of full column rank�, the problem for rectangular matrices
can be reduced to a joint diagonalization of square matrices
as follows. Construct� � ���� � � � ��� 
 and use an SVD
to estimate the common column space, which is equal to
the column space of
. Let � be a matrix containing an
orthogonal basis (� columns), and define� �

� � �
���. Then

��
� � 


����
� , with 
� � ��
. The��

� are square (�	�)
and satisfy a joint diagonalization model, and the standard
algorithms apply.

Fig. 1. Manchester Encoding Property: the cross-product of three consecutive
��-spaced samples is always equal to zero.

III. SSR SIGNAL PROPERTIES

The model of a single SSR reply signal (3) gives rise to
several algebraic properties that will be used for blind source
separation in Section IV.

A. Encoding properties

The Manchester encoding of the SSR signals gives rise to
an interesting temporal correlation property which is deter-
ministic and independent of the actual transmitted data. If we
multiply a sample from the first phase of the Manchester sym-
bol by a sample from the second phase, the result will always
be equal to zero. More generally, if we are unsynchronized to
the beginning of a Manchester symbol, we can multiply three
consecutive��-spaced samples and observe that the result is
always zero (see Figure 1). A similar property holds for a
single baseband signal
��
 at the receiver, independent of a
fractional sampling offset and of the residual carrier frequency.

Property 3.1: Independent of the transmitted data, a re-
ceived Mode S reply signal
��
 of the form (3) obeys:


��� �
 
��
 
��� �
 � � � �� � � (9)
This property will be used to design a receiver algorithm to

separate multiple SSR signals.

B. Zero/Constant Modulus property

Due to the residual frequency, the received signal samples

��
 are not binary as transmitted, but lie either on the unit
circle, or are equal to zero. Moreover, if two subsequent
received samples are non-zero, then these samples are related
by a factor� � ��� �
��	���. These observations lead to the
following two properties:

Property 3.2: Static property: 
��
 is a Zero-Constant Mod-
ulus (ZCM) source if


��
 � � or 

��

 � � � �� � �

This is equivalent to


��

���

��
 � 
��
 (10)
Property 3.3: Dynamic property: For any integer�,


��

���� �
 � � or 
��

���� �
 � �� � �� � �

(11)
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This is equivalent to


��

���� �

��

���� �
 � ��
��

���� �
 � �� � �

(12)
Note that the mentioned properties also hold for the rows

of the source matrix
 as defined in (5).

IV. SEPARATION ALGORITHMS

The properties presented in Section III are used to derive
three algorithms: AZCMA, MDA, and MS-ZCMA.1

A. AZCMA: Algebraic Zero-Constant Modulus Algorithm

The following algorithm was originally derived by Van der
Veen and Tol in [12] and is included here for reference. The
algorithm is derived for noise-free data (but will of course be
applied to noisy data). We consider Property 3.2, and substitute
�����
 � 
��
. This shows that� is a beamformer which
returns a ZCM signal if and only if

�����
���
�������
 � �����
 � �� � �� � � � � � �

Using properties of Kronecker products, we can separate the
unknown� from the known���
’s. Note that the left-hand
side contains only third-order terms of the entries of�,
whereas the right-hand side only has first-order terms. This
imbalance is overcome by defining

� � ���� � ���

(which is constant for each�) and multiplying the right-hand
side by� � �


�
��. This gives

�����
���
�������
 � �

�

�������
 ��
� �����
� ���
� ����
����� �� ���� �

� �

vec��� � ����
����� �� ���� �� �

where� is the Kronecker product. Define matrices��, ��

with rows �����
 � ���
 � ����
�� and vec��� � ����
�� ,
respectively. Then the ZCM separation problem is seen to be
equivalent to finding all solutions�����, � �� � to

���� � ��� � where� � �� ����� � (13)

To ensure an overdetermined system of equations, we require
�� and�� to be “tall”, i.e., � � ��. Equation (13) is then
a rectangular matrix pencil problem of the form�� � ���.
The pencil is “singular”, i.e.,�� and�� are not full rank,
because the structure of the rows of�� implies that some
of its columns are repeated. This causes additional null space
solutions that need to be avoided. Similarly,� � �������

has repeated entries, and we want our solutions to satisfy this
structure. Because it is known which entries are repeated, it
is straightforward to remove the duplicate entries in both�
and the corresponding columns of�� and�� by defining a
selection matrix� of size�� 	 �

��
���� ��, such that

� � ��� � (14)

1Matlab implementations of these algorithms are available from the authors
upon request.

where�� generically has no repeated entries. Set

��
� � ��� � ��

� � ��� � (15)

then generically��
� has no repeated columns and has full

column rank.2 At this point, the pencil problem is replaced
by

���
��

� � ��
��

� � (16)

where we will assume from now on that� �
� has full column

rank. Note that by construction� �
� has only � nonzero

columns. Hence, there areat most � nonzero solutions�� ��
to (16). On the other hand, for� SSR signals we know that
there are precisely� beamformers��, so that there areat
least � nonzero solutions. It follows that the pair�� �

���
�
��

has precisely� generalized eigenvalues, necessarily equal to
�� � ��� �

�; the other eigenvalues are�. The corresponding
eigenvectors��� are transformed to�� � ���� to add back the
repeated entries.

At this point there are two cases. If there are no repeated
nonzero eigenvalues, then the�� are (up to an arbitrary scaling)
equal to�� � ��

������
�
�, from which�� is immediately

obtained, up to scaling. The correct scaling of� � follows from
the corresponding eigenvalue� �. Alternatively, if some of the
eigenvalues are repeated, then the corresponding eigenvectors
form an arbitrary basis of a subspace which contains the
vectors we are looking for. We need to find the correct linear
combinations such that the Kronecker structure holds: this is
a joint diagonalization problem as shown below.

In fact, the prewhitening step as described in Section II-C
has led to a data matrix�� with orthonormal rows. In this case,
�� � �

�
� �� � ��� ��, so that there are repeated eigenvalues

whenever two signals have an equal number of nonzero entries,
i.e., nearly always. We propose to avoid the detection of equal
eigenvalues and apply the joint diagonalization step to the full
collection of� eigenvectors of the pencil (16), as follows.

Each eigenvector�� of size�� is a linear combination of the
solutions, or�� �

��
��� ����

�
������

�
� , for � � �� � � � � �.

If we reshape a single vector������
� � �� � �

�
�� into a

��	� matrix, we obtain the rank-1 matrix�����
�
������

�
� .

Similarly, reshaping�� into a �� 	 � matrix��, we obtain

�� � 
���
� (17)

where� � ��� � � � � � ��
, 
 � �����
�
�� � � � �����

�
�
,

and�� is a diagonal matrix containing the coefficients� �� .
Ignoring the structure of
, the problem to obtain� and

the ���� from (17) is recognized as a joint diagonalization
problem, generalized to rectangular matrices. Thus, the algo-
rithms mentioned in Section II-D can be applied.

With noise, we follow the same algorithm. With� � ��,
the pencil problem (16) is overdetermined. The usual reduction
to a pencil with square matrices,����

� �
�
���

��
� �

�
��, amounts to

a projection of the column span of� �
� onto that of��

�, and is a
form of noise mitigation. The square pencil has�� eigenvalues,

2Specific situations still lead to��

� being singular, e.g., if two signals are
purely constant modulus, or if two sources share exactly the same frequency.
Such pencils can be analyzed using more advanced techniques (see e.g., [28]),
but for the sake of simplicity, we will not consider them here. If such a
situation arises, the algorithm will fail.



6

of which we keep the� largest (the others are close to 0).
The corresponding eigenvectors�� ��� are used in the joint
diagonalization step. This by itself is also an overdetermined
problem, hence provides additional noise mitigation.

The computational cost of the algorithm is determined
by the generalized eigenvalue decomposition of the pair
����

� �
�
���

��
� �

�
��. The algorithm is summarized in figure 2.

The complexity is of order��� multiplications.

B. MDA: Manchester Decoding Algorithm

The Manchester Encoding Property 3.1 can be used to
design a receiver algorithm to separate multiple SSR signals.
Indeed, if we consider a beamformer� such that�
 ���
 �
�����
 satisfies equation (9), we obtain

����� �
� ���
� ���� �


�
�� �� ��� � � (18)

for � � 
� � � � � � � 
. To collect these conditions, de-
fine the matrix� � �� � 
� 	 �� as the stack of rows
����� �
� ���
� ���� �



� for � � 
� � � � � � � �, so that

��� � � � �� 	
�
� � �� �� � (19)

Unlike the case in the previous algorithm, it is not necessary
to reduce the dimension of�� as the rows of the matrix�
do not have redundant entries. On the other hand, operations
similar to (14)–(15) may improve the estimation and help to
force some structure in the solutions��.

The rest of the algorithm is quite similar to the one in
Section IV-A. For� sources, there are� linearly independent
separating beamformers��, � � �� � � � � �, as shown in
Proposition 4.1 below. Thus we have� linearly independent
vectors��

� that belong to the kernel of�. If the kernel is�-
dimensional, then the subspace spanned by���

� � � � �� � � � � ��
is exactly equal to the kernel of�, and a basis���� for the
kernel must be a linear combination of the��

� . Thus, the
algorithm is to estimate an arbitrary basis���� for the kernel
using the SVD of�, find linear combinations of the basis
vectors to map them to the structured vectors���

� �, and then
estimate the corresponding�� from each vector��

� .
The key step is to find the linear combinations of the basis

vectors. This is again a joint diagonalization problem in three
dimensions, similar to the case discussed in Section IV-A, and
can be solved for the��’s.

The algorithm is summarized in figure 3. The computational
cost of the algorithm is determined by the estimation of the
kernel of� (�� � 
�	 ��). The complexity is of order���.

Proposition 4.1: Assume that	 is square and invertible,
the sources are statistically stationary and temporally totally
overlapping, and that there is no noise. Then for large number
of samples� , the matrix� will almost surely have rank����
��, equivalently its kernel will almost surely be of dimension
�.

The proof is given in appendix . The proposition implies
that for sufficiently large� there are no other solutions
than ���

� � � � �� � � � � ��, so that the problem is identifiable.
Experience with similar algorithms indicate that� is already
of maximal rank once it is tall, i.e.,� � �� is sufficient in
practice [29], [30]. This is because it is very unlikely that a

random square or tall matrix has a kernel unless there is a
structural reason for it. The proposition showed there is no
structural reason.

A limitation of the algorithm is that, for completely or
almost completely non-overlapping SSR replies, there are
additional vectors in the kernel. Indeed, if�� and�� are
corresponding beamformers, then vectors of the form� � �
�� � �� are in the kernel, because they correspond to
conditions
�����
� 
���
� 
���� �
 � �, which is always
satisfied for non-overlapping source signals. The additional
vectors in the kernel will break the assumption on which the
algorithm is based (i.e., any vector in the kernel is a linear
combination of the��

� , � � �� � � � � �), and without further
corrections the algorithm will show poor performance in this
situation.

C. MS-ZCMA: Multi-Shift Zero Constant Modulus Algorithm

Let � be a�-dimensional beamforming vector to recover

��
, �����
 � �
��
. Using properties of the Kronecker
product, equation (12) from the ZCM Property 3.3 becomes

����
� ����� � 
 � ���
� ����� � 
�
�
��� ����� ���

� �� ����
� ����� � 
�
�
��� ���

(20)

Let��� be an��������
��-dimensional vector that contains
only the non-redundant elements of the Kronecker product
�����������. We define by�� the��	 ��������
��

matrix such that����������� � �����. We also define

��� � �� ��

�

��
��� � ����
� ����� � 
� ���
� ����� � 
�

�
��

�

��
��� � ����
� ����� � 
�

�

Then (20) can be written as

�
������
�� � ���
������

�� (21)

Stacking the rows�
����� and�
�����, � � �� � � � � � , into matrices
�

��
� and�
��

� , respectively, we obtain

�
��
� �

�� � ���
��
� �

�� (22)

where�
��
� is �����	��������
��, and�
��

� is �����	��.
This equation holds for all� � �, and is somewhat similar
to the matrix pencil problem (13) considered before, except
that the solution vectors on the left and right hand side of the
equations are not equal.

Various approaches are possible. As in Section IV-A, we can
multiply with � � �

�

� to reach an equation that involves
only ���. An second approach is proposed in [12], called
AFZA, where the equation is written in terms of a single
unknown vector����� ���� 
� . A third approach which
seems to work better is outlined below.

To solve (22), we first need to find the common column span
of �
��

� and�
��
� . Let�� be a matrix whose columns form an

orthonormal basis of this subspace, and let�

��
� and�
��

� be
the orthogonal complements of�� over�
��

� and�
��
� . Then
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Given a data matrix� � ����������� � � � ���� ��, compute separating beamformers�:
1) Detect number of signals� and prewhiten (Section II-C) (���)
2) Construct��

� with rows ������� ����� ��������
and��

� with rows vec��� � ��������, � � �� � � � � � (���)
3) Compute���

� �
�

� and���

� �
�

� (���)
4) Solve the matrix pencil����

� �
�

��
� � ���

� �
�

��
� (��)

Let ���

�� be the eigenvectors corresponding to the� largest eigenvalues
5) �� � ���

�� � � �� � � � � � (��)
Reshape�� into matrices�� (size�� � �)

6) Solve�� � �	��
� �� � �� � � � � �� for � (Section II-D) (��)

���

Fig. 2. Summary of AZCMA (in brackets the order of complexity of each step).

Given a data matrix� � ����������� � � � ���� ��, compute separating beamformers�:
1) Detect number of signals� and prewhiten (Section II-C) (���)
2) Construct� with rows ����� ��� ����� ���� ���� , � � �� � � � � � (���)
3) Compute the SVD of� (size�� � �) and determine a basis���� for the kernel (���)
4) Reshape each�� into a matrix�� (size�� � �), � � �� � � � �
5) Solve�� � �	��

� �� � �� � � � � �� for � (Section II-D) (��)
���

Fig. 3. Summary of MDA (in brackets the order of complexity of each step).

we can compute the decomposition into ‘common’ and ‘not
common’ subspaces as

�
��
� �

	
�� �


��
�


 �
�


��
�

�

��
�

�

�
��
� �

	
�� �


��
�


 �
�


��
�

�

��
�

�

where the�
��
� , � � ��� 
� are of full row rank. Inserting these

two equations into (22), we obtain

	
�� �


��
� �
��

�


����

��
� �

�� � ���

��
� �

��

�

��
� �

��

����

��
� �

��

�
�� � � (23)

where the first matrix compound has full column rank by
definition. Thus, we have

�
��
� �

�� � ���
��
� �

�� � � (24)

�
��
� �

�� � � (25)

�
��
� �

�� � � (26)

Since it is complicated to work with the three equations
simultaneously, we propose in our algorithm to use only the
last equation (26). This equation holds for any� , and we
can obtain several similar conditions by taking a range of�

different� � �. Stacking the matrices�
��
� in a single matrix

�, we obtain

���� 	
�
�

�
�����
�


��
�

�

��
�
...

�

��
�

�
�������� � � (27)

For � SSR sources, there are� linearly independent beam-
formers��, � � �� � � � � �, and these correspond to� inde-
pendent solutions: nonzero vectors in the kernel of�. Note
that� has�� columns. As with the preceding algorithms, for
a sufficient number of time-lags�, the matrix becomes very
tall and will not have other vectors in the kernel.

Thus, the algorithm continues by estimating an arbitrary
orthonormal basis�������� for the kernel of the matrix�.
Similar to the preceding algorithms, each vector� � of size
�� of this basis is a linear combination of the solutions, or
�� �

��
��� ����

��
� . Reshaping the�� into � 	 � matrices

��, we obtain�� �����
� , where� � ��� � � � � � ��
,

and the�� are diagonal matrices containing the coefficients
��� . This is the standard joint diagonalization problem, and
can be solved for� as in Section II-D.

The algorithm is summarized in figure 4. The computational
cost is dominated by the decomposition (23) for each� . This
corresponds to the cost of a QR factorization of��


��
� �


��
� 
,

which is of the order���, therefore the complexity is of order
����.

The set of time delays���� � � � � ��� can be chosen arbitrar-
ily, as long as the matrix� is expected to achieve its maximal
rank. To save some computational cost, we could initially take
� small and let it grow until the estimate of the kernel of�
(updated using subspace tracking algorithms) is considered not
to change anymore.

V. CRAMER-RAO BOUND

The Cramer-Rao Bound (CRB) is a lower bound on the
variance of unbiased parameter estimates. We consider here
the deterministic CRB, which considers the additive noise
as stochastic, whereas the model parameters are regarded as
deterministic unknown parameters.3 As usual, we consider

3The bound for this problem was first presented in [31].
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Given a data matrix� � ����������� � � � ���� ��, compute separating beamformers�:
1) Detect number of signals� and prewhiten (Section II-C) (���)
2) For each delay� (� times)

(a) Construct����
� with rows ������ ����� � �� ����� ���� � � ��� ��

and����
� with rows ������ ����� � ��� , � � �� � � � � � (���)

(b) Estimate
� by subspace intersection of����
� and����

� (��	)
(c) Compute����

� from �
���
� and
� (���)

3) Construct� as in eqn. (27) and compute the SVD of�. (���)
Let ���� be the� eigenvectors corresponding to its kernel

4) Reshape eacn�� into a matrix�� (size�� �)
Solve�� ��	��

� �� � �� � � � � �� for � (Section II-D) (��)
���	

Fig. 4. Summary of MS-ZCMA (in brackets the order of complexity of each step).

the noise variance�� as known, since it can be estimated
independently of the other parameters. Further, we consider
the case of known signals (matrix� is discrete-valued with
entries��� �� and can be assumed as known for the small
perturbations of the parameters under which the CRB is valid).
In [32], one can find the CRB for a similar problem, which
differs only by the absence of the matrix�.

To obtain results which can be compared to DOA estimation
algorithms, we consider a calibrated array and write	 �
�����, where� � ���� � � � � ��
,� � ������� � � � � �����
, and
���� is the array response vector for a signal from direction
�. The matrix� is diagonal, and the diagonal entries contain
the complex gains�� � �� 

��� of the sources as received by
the array. The unknown parameters are collected in a vector
� � ���� ��� !�� 	�� � 
 � 
 ��.

The CRB on the variance of each parameter is given by
the corresponding diagonal entries of the inverse of the Fisher
Information matrix (FIM) ([33]).

Proposition 5.1: In the case of known signals, the FIM is

���
��� �



��

�
���
��� ��� ��� ���
���� ��� ��� ���

���� ���� ��� ���

���� ���� ���� ���

�
��� (28)

where

��� � Re


��

����� ���

	 �	�
�
�

��� � Re

�
� � � 
� � � 
����

�
���

	

�
��� � Re


�
�
 � � 
����

�
� ���

	 ���
�

��� � Re
�
�!

� !��� ��� ���

�
��� � Re

�
��

� !��� ���

	 ���
�

��� � Re

�
�� � � 
�� �!
��

�
� ��� ���

�
��� � Re


�
��
� ��
��

�
� ��� ���

�
��� � Re





�
��
� ��
��

�
� ���

	 ���
�

��� � Re




�
�� � � 
�� ��
��

�
� ��� ���

�
��� � Re





�
�!
� ��
��

�
� ��� ���

�
where �	 �

	
��
���

���� � � � � �
��
���

����


, ! is a diagonal

matrix containing the phases, ��� , �	 � ���,  �


�� ��� � � � � �
� ��� �� � � � � � � �
, and
 � 
��.

The proof is straightforward and presented in [31].

VI. SIMULATIONS

To demonstrate the effectiveness of the proposed algorithms
(AZCMA, MDA, and MS-ZCMA), we compare them to JADE
[21] (a HOS method based on fourth-order statistics), to
EF-ICA [34] (a HOS method which forces the statistical
independence of the outputs, based on Fast-ICA), to AFZA
(one of the other methods proposed in [12]), to ESPRIT [35],
and to the Cramer-Rao Bound.4

For the simulations, we have considered a calibrated array
of " � � elements, with an inter-element distance of a half
wavelength and in absence of multipath. The array set-up is
chosen to be able to compare to ESPRIT, and to have a simple
way to modify the conditioning of the problem by reducing
the angle separation between the sources. As source signals,
we generated a uniform random sequence of� � ��� SSR
samples (50 Manchester encoded symbols with 2 samples per
symbol). This is a bit shorter than actual SSR packets, and
does not include the training preamble.

Unless specified otherwise, the default simulation parame-
ters are equal powered sources with an SNR of�� dB per
antenna element, DOAs equal to���Æ� ���Æ
 measured from
array end-fire, no time offsets (completely overlapping data
packets), and frequency offsets equal to��� � ���� � � ���
 Hz.
We will subsequently vary the SNR, the DOA separation, and
the time offset, respectively.

Most statistics are based on��� ��� independent Monte-
Carlo runs. For MS-ZCMA, we choose the following set of
� � �� time delays��, which has shown satisfactory results:
��� �� ��� 
� �
� �

�� �
��
�� � �

� �
��
� � �

� �
��
� �.

In this simulation, the computational complexity (number
of multiplications) of each of the algorithms is roughly�� �

flops for AZCMA and MDA, and��� flops for MS-ZCMA.
We show performance first of all in terms of the failure

rate, where a failure is declared if we recover the same source
twice, rather than two independent sources. A failure is also
declared if the output SINR of any source is below	 dB. For
the cases without failure, we estimate the DOA�� of each
source via

��� � �� !��
�

����������
� � � � �� � � � � �

4We also compared to SOBI [36], but it did not perform well. We do not
present the results so as not to clutter the graphs.



9

where��� is the �-th column of �� ���, the pseudo-inverse
of the matrix�. To judge the quality of the beamformers,
We show the root mean squared error (RMSE) of the DOA
estimates, averaged over both sources. (The two sources have
similar RMSEs. Also the behavior of the frequency estimates
is quite similar and is not shown for brevity.) We also present
the SINR at the output of the beamformer, which is defined as
the ratio of the power of the desired source over the combined
power of the interference sources plus the noise power.

In the first simulation, we vary the input SNR over the range
��� ��
 dB. Figure 5�#� presents the corresponding failure rates.
We observe that JADE fails nearly always. The reason is that
JADE is based on exploiting differences in the fourth-order
statistics, whereas, for completely overlapping sources, the
cumulants of up to order 5 are expected to be small or zero
[9], [10]: the sources are “pseudo-Gaussian”. EF-ICA includes
a non-linear step and therefore implicitly uses also statistics of
order above�. It could separate the sources, but the failure rate
is high (roughly����). An explanation is that a large number of
samples (order few thousand) is needed to exploit the statistical
independence. AZCMA has a high failure rate for SNRs below
15–20 dB. MDA and AFZA begin to fail for SNRs below��
dB, while MS-ZCMA and ESPRIT do not fail for SNRs above
� dB. Figure 5��� presents the RMSE of the DOA for the cases
without failure. For SNRs above 20 dB, AZCMA and AFZA
reach a floor of���Æ in standard deviation. Note that the MDA,
the MS-ZCMA, and the ESPRIT algorithms are quite near the
Cramer-Rao Bound and are consistent. The erratic behavior
of JADE is partly due to the very small number of non-failed
runs. In Figure 5�$�, the output SINR is shown as a function of
the SNR. The performance of the algorithms are quite similar,
except for JADE and EF-ICA. The output SINR is larger than
the input SNR by� up to nearly 6 dB, which is consistent
with the maximum gain of	 dB that can be expected with
four antennas for a single signal.

In a second simulation, we varied the angle separation
between the two sources. Note that, with 4 antennas, the
array beamwidth is about��Æ. Figure 6�#� shows again that
JADE is not reliable, and also EF-ICA has a very high failure
rate. For small angle separations (below	Æ), AZCMA and
ESPRIT are the first algorithms to break down. Only MDA,
MS-ZCMA and AZFA can handle very closely spaced sources.
Figure 6��� demonstrates that only MDA, MS-ZCMA and
ESPRIT can attain the CRB for large angle separation. For
all algorithms, there is room for improvement for small angle
separations. Failures are caused because in the initial SVD, a
signal singular vector will be replaced by a noise singular
vector, which will make it impossible to separate the two
closely spaced sources. (The same happens if the number
of sources is underestimated.) Note that, in the context of
our application, it is rare to have small separations because
typically the receiver antenna array would be at a different
location than the requesting radar beam. In figure 6�$�, the
output SINR of all algorithms are again quite similar, except
for JADE and EF-ICA. The SINR tends to a limit of�	 dB
for large angle separation, which is equal to the initial input
�� dB plus	 dB of antenna gain.

Finally, we simulate a varying time offset between the ar-
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Fig. 5. Algorithm performance for varying SNR:��� failure rate,��� RMSE
of the DOA estimates,��� output SINR.
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Fig. 6. Algorithm performance for varying DOA separation:��� failure rate,
��� RMSE of the DOA estimates,��� output SINR.
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Fig. 7. Algorithm performance for varying time offset between the two data
packets:��� failure rate,��� RMSE of the DOA estimates,��� output SINR.
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Fig. 8. The experimental system.

rival of the two data packets. Figure 7�#� shows that AZCMA
and MDA cannot handle well cases of non-overlapping
sources, because this leads to additional nullspace solutions in
the matrix pencils. On the other hand, as soon as the sources
are not completely overlapping, JADE performs well, since the
sources are not pseudo-Gaussian anymore. EF-ICA performs
worse with increasing time offset until it gives 100% failure
in case of non-overlapping sources. MS-ZCMA and ESPRIT
have an acceptable failure rate performance over the range of
time delay offsets. Figure 7��� shows that MS-ZCMA, JADE
and ESPRIT have RMSE close to the CRB, with JADE having
an error increase for small time offsets and MS-ZCMA for
non-overlapping packets. The output SINR presented in figure
7�$� confirms that JADE performs better with increasing time
delay offset, while the effect is opposite for AZCMA, MDA,
and AFZA.

In summary, the simulations show that MS-ZCMA is overall
the most reliable algorithm, with the exception of cases with
completely non-overlapping packets. AZCMA is not com-
petitive. MDA is a viable alternative (in view of its lower
complexity) for small delay offsets only. None of the regular
blind source separation algorithms is applicable.

VII. E XPERIMENTAL RESULTS

A. Experimental setup

To test the algorithms on real data, we have developed a
4-channel phased array measurement system (see Figure 8).
The array consist of	 linearly equispaced antennas. The two
endpoint antennas are “dummy” and loaded with a matching
impedance, their presence is to make the coupling between
antennas uniform. The four central antennas feed different
receiving chains, which down-convert the signal from the
radio frequency (���� MHz) to an intermediate frequency (��
MHz), filter around the band of interest and amplify the signal.
The four signals are sampled at 50 MS/s and digitized by
a digital oscilloscope which also stores them for later off-
line processing. The sampling resolution is� bits. Offline,
the signal is converted to a complex baseband signal using
a Hilbert transform, digitally lowpass filtered with a cutoff at
an equivalent frequency of�� MHz.

The array has not been calibrated. Measurements indicate
that the array response does not follow the ULA response,
which may be caused by coupling or multipath, e.g., due to
nearby metallic objects. For this reason, it is not possible
to evaluate the DOAs, and thus we do not compare to the
ESPRIT algorithm. We limit ourselves to source separation in

this section. Moreover, we will not further investigate AZFA
and EF-ICA as their performances are not competitive.

B. Experimental results

The array was installed on the roof of our building at TU
Delft (approx. 90 m high, with several large radar dishes
and metallic structures nearby), and several data sets were
recorded. Most of the recorded data sets have a short time
duration, ����s, which is sufficient to contain a Mode-S
signal. In these data sets, there were only a few cases of
actual overlaps (we are located�� km away from the nearest
major airport, so the aircraft density is relatively low), but with
very good SNR (
� to �� dB). We have created artificial data
sets by randomly mixing pairs of measured signals at different
delay offsets, with the advantage that the true delay offsets are
known and that we can easily manipulate the delay offsets,
noise power and source powers (i.e., the SNR and SINR).
(The array response vectors and frequency offsets cannot be
changed.) The mixing is performed simply by adding the two
received blocks�� and �� over the � channels with an
additional noise matrix:

� � ���� � ���� �� �

This gave in total��� combinations to establish the algorithm
performance. Since we know the mixing and can easily
estimate the “true” array response vectors from the unmixed
datasets, we know the true mixing matrix	, see Eq. (4), in
each experiment. We use the pseudo-inverse of this matrix to
obtain a reference performance.

We present the results from two series of experiments,
where we compare the performance of the algorithms to the
pseudo-inverse of the true mixing matrix	.

In a first experiment, for every pair of sources, we add
them pairwise without time delay offset, and vary the SNR
by adding complex Gaussian noise.

Figure 9�#� shows the resulting failure rates as a function of
the SNR. Comparing to the simulation (see Figure 5), we see
that AZCMA and JADE have similar performance (high failure
rates). MDA, MS-ZCMA and “Known	” have somewhat
worse but still quite similar failure rates for the measured data.
Figure 9��� shows the output SINR as a function of the SNR.
It is consistent with the simulations. The performance of all
algorithms except JADE is similar to the case where the true
mixing matrix is known.

In a second experiment, we use equi-powered sources, add
noise to achieve an SNR equal to
� dB, and only vary the time
delay offset. Figure 10�#� presents the failure rate as a function
of the delay of the second source, and 10��� the output SINR.
Compared to the simulations (Fig. 7), AZCMA now also
has a high failure rate for small separations. Again, MDA
has sufficient performance only for small offsets, and is not
reliable for larger offsets. MS-ZCMA has a good performance
over the complete range of offsets, and is within 2 dB of the
“known mixing matrix” reference line. JADE requires large
time offsets for reliable performance, and in that case gets
close to the reference line as well.

In summary, we have seen that the algorithms have similar
behavior in simulations as in experiments. The performance
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Fig. 9. Performance results using data synthesized from measured single-
source data; varying input SNR:��� failure rate;��� output SINR.

of MS-ZCMA is close to the case of a known mixing matrix.
MDA is reliable only for small time offsets between the
overlapping packets. Conversely, JADE is reliable only for
large time offsets. AZCMA is not competitive.

VIII. C ONCLUSIONS

We presented three algorithms (AZCMA, MDA and MS-
ZCMA) to separate overlapping SSR replies impinging on an
antenna array. Simulations have shown that AZCMA is not
reliable, but MDA and MS-ZCMA behave reliable for data
packets that are highly overlapping. For small amounts of
overlap, only MS-ZCMA is reliable. The proposed algorithms
use properties of the sources, hence can work with uncalibrated
or non-linear arrays, which is an advantage over algorithms
based on the array manifold structure, such as ESPRIT. For
completely overlapping data packets, JADE is not applicable
because the fourth-order cumulants are expected to be small;
indeed its performance is poor. For small amounts of overlap,
JADE is functional. We developed an experimental platform,
and demonstrated that MS-ZCMA performs quite well on real
data as well.

In actual implementations, we recommend that first a test
is made to detect if sources are non-overlapping or partially
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Fig. 10. Performance results using data synthesized from measured single-
source data; varying time offsets between the two sources:��� failure rate;
��� output SINR.

overlapping. If so, simple algorithms can be used for estimat-
ing the beamformers and separating the sources [14]. If it is
detected that sources are significantly overlapping, then MS-
ZCMA and MDA can be applied. The complexity of these
algorithms is higher, but not prohibitive since the number
of simultaneous sources is likely to be small. Together this
makes a good candidate for improving the reception of the
next generation of Secondary Surveillance Radar.

APPENDIX

PROOF OFPROPOSITION4.1

We need to show that for sufficiently large� , the kernel
of � is of dimension�, and not larger than�. We assume a
stationary situation (signals are present for� � �), so that
we can apply ergodicity. Using the model���
 �	���
, we
have

��� � �
� ���
� ��� � �
 � �	�	�	� ���� � �
� ���
� ��� � �
�
(29)

Let 
� be a matrix with rows �
���
	
�
�

���� � �
� ���
� ��� � �


� , for � � 
� � � � � � � �.
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Then� can be written as

� � 
��	�	�	�� (30)

Since	 is invertible,�	�	�	� is invertible as well, so
that the rank of� is equal to the rank of
�.

Define the sample correlation matrix corresponding to� 
��

as ��

��
�� � �

�

�
� 
�. It has the same rank as
� as soon as

� � ��. We will verify the rank of ��
��
�� as� tends to infinity,

i.e., when ��

��
�� converges to the correlation matrix�
��

�� of
�
��, under statistical assumptions on the data.

Denote the�-th sample of the�-th source as
���
 �
����
���, where ����
 is the transmitted symbol (0 or 1
with equal probability) and�� is the residual phase rotation,
random on the unit circle. The�� 
-th entry of ��
��

�� is�
��
��
��

�
���

�
�

�

����
���

���� � �
����
���� � �
���� � �
����
���� � �


��
����
� ���� �

�
����
� ����

� ����
���
�

where � � ��� � �� � %, and 
 � &�� � �� � ', for
���� %� &� �� ' � �� � � � � �. As � � �, ��


��
�� converges to

�

��
�� .
Before demonstrating that the rank of�
��

�� is �� � �, we
show it in the case� � 
. Re-order the columns and the rows
in order to follow the triplets����� %� � ��� �� ��, ��� �� 
�,
��� 
� ��, �
� �� ��, ��� 
� 
�, �
� �� 
�, �
� 
� ��, �
� 
� 
�. Then
the matrix converges to a diagonal matrix whose diagonal
entries are:

�

�	
�� � 
 � � 
 � �


which is of rank	 � 
��
. There are precisely� � 
 columns
equal to zero, which gives the kernel a dimension of 2. The
rest of the matrix is block-diagonal with non-singular blocks
of size�	 �.

Now, we consider the general case. For triplets that are not
equal up to a permutation,����� %� �� �&� �� '�, the residual
carrier induces the term� ��
��

�� ���� to tend towards zero. By re-
ordering the rows and columns of�
��

�� , we transform it into
a block-diagonal matrix, with three kinds of sub-matrices.

1) The first kind of sub-matrices are of size�	� for triplets
of the form��� �� ��, for � � �� � � � � �, with value

�
��
��
��

�
���

�
�

�

����
���

����� � �
�����
�
�
��� � �


where� � ���� � � � ��. These elements are equal to
zero because of the Manchester encoding property 3.1.
There are precisely� sub-matrices of this kind. They
thus contribute� dimensions to the kernel of� 
��

�� .
2) The second kind of sub-matrices are of size� 	 � for

triplets of the form��� ���� and � �� �. Denote the
corresponding submatrices by��. Given that any non-
diagonal entry of the matrix will contain at least�
consecutive samples of��, property 3.1 ensures that they
are equal to zero. Then the matrix�� converges to a
diagonal matrix whose diagonal entries are:

�� �
�

�	
�� 
 �


which is full rank. There are precisely��� � �� sub-
matrices of this kind.

3) The third kind of sub-matrices are of size	 	 	 for
triplets of forms����� %� and� �� � �� %. Denote by
�� the corresponding sub-matrices. A similar but more
tedious analysis reveals that�� converges to a certain
nondiagonal but full-rank matrix. There are precisely
�
����
����

� sub-matrices of this kind.

Hence, the rank of�
��
�� is equal to����. Thus, as the number

of samples tends towards infinity,
� and�� will have rank
������. By continuity, this will almost surely be the case for
finite but sufficiently large� .
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