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Quadratically Constrained Beamforming Robust
Against Direction-of-Arrival Mismatch
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Abstract—It is well known that the performance of the min-
imum variance distortionless response (MVDR) beamformer is
very sensitive to steering vector mismatch. Such mismatches can
occur as a result of direction-of-arrival (DOA) errors, local scat-
tering, near-far spatial signature mismatch, waveform distortion,
source spreading, imperfectly calibrated arrays and distorted an-
tenna shape. In this paper, an adaptive beamformer that is robust
against the DOA mismatch is proposed. This method imposes two
quadratic constraints such that the magnitude responses of two
steering vectors exceed unity. Then, a diagonal loading method
is used to force the magnitude responses at the arrival angles
between these two steering vectors to exceed unity. Therefore, this
method can always force the gains at a desired range of angles
to exceed a constant level while suppressing the interferences
and noise. A closed-form solution to the proposed minimization
problem is introduced, and the diagonal loading factor can be
computed systematically by a proposed algorithm. Numerical
examples show that this method has excellent signal-to-interfer-
ence-plus-noise ratio performance and a complexity comparable
to the standard MVDR beamformer.

Index Terms—Capon beamformer, diagonal loading, direc-
tion-of-arrival (DOA) mismatch, minimum variance distortionless
response (MVDR) beamformer, robust beamforming, steering
vector uncertainty.

I. INTRODUCTION

BEAMFORMING has long been used in many areas, such
as radar, sonar, seismology, medical imaging, speech

processing, and wireless communications. An introduction to
beamforming can be found in [25]–[30] and the references
therein.

A data-dependent beamformer was proposed by Capon
in [1]. By exploiting the second-order statistics of the array
output, the method constrains the response of the signal of
interest (SOI) to be unity and minimizes the variance of the
beamformer output. This method is called minimum variance
distortionless response (MVDR) beamformer in the literature.
The MVDR beamformer has very good resolution, and the
signal-to-interference-plus-noise ratio (SINR) performance is
much better than traditional data-independent beamformers.
However, when the steering vector of the SOI is imprecise, the
response of the SOI is no longer constrained to be unity and is
thus attenuated by the MVDR beamformer while minimizing
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the total variance of the beamformer output [2]. The effect is
called signal cancellation. It dramatically degrades the output
SINR. Many approaches, including [6]–[24] and the references
therein, have been proposed for improving the robustness of the
MVDR beamformer. A good introduction to this topic can be
found in [3]. The steering vector of the SOI can be imprecise
because of various reasons, such as direction-of-arrival (DOA)
errors, local scattering, near-far spatial signature mismatch,
waveform distortion, source spreading, imperfectly calibrated
arrays, and distorted antenna shape [3], [4]. In this paper, we
focus on DOA uncertainty.

There are many methods developed for solving the DOA mis-
match problem. In [13]–[20], linear constraints have been im-
posed when minimizing the output variance. The linear con-
straints can be designed to broaden the main beam of the beam-
pattern. These beamformers are called linearly constrained min-
imum variance (LCMV) beamformers. In [22] and [23], convex
quadratic constraints have been used. In [21], a Bayesian ap-
proach has been used. For other types of mismatches, diagonal
loading [11], [12] is known to provide robustness. However, the
drawback of the diagonal loading method is that it is not clear
how to choose a diagonal loading factor. In [24], the steering
vector has been projected onto the signal-plus-interference sub-
space to reduce the mismatch. In [5], the magnitude responses
of the steering vectors in a polyhedron set are constrained to ex-
ceed unity while the output variance is minimized. This method
avoids the signal cancellation when the actual steering vector is
in the designed polyhedron set. In [6], Vorobyov et al. have used
a nonconvex constraint which forces the magnitude responses
of the steering vectors in a sphere set to exceed unity. This non-
convex optimization problem has been reformulated in a convex
form as a second-order cone programming (SOCP) problem.
It has been also proven in [6] that this beamformer belongs to
the family of diagonal loading beamformers. In [7] and [8], the
sphere uncertainty set has been generalized to an ellipsoid set
and the SOCP has been avoided by the proposed algorithms
which efficiently calculate the corresponding diagonal loading
level. In [9], a general rank case has been considered using a
similar idea as in [6] and an elegant closed-form solution has
been obtained.

In [5]–[9], the magnitude responses of steering vectors in an
uncertainty set have been forced to exceed unity while mini-
mizing the output variance. The uncertainty set has been se-
lected as polyhedron, sphere, or ellipsoid in order to be ro-
bust against general types of steering vector mismatches. In
this paper, we consider only the DOA mismatch. Inspired by
these uncertainty-based methods, we consider a simplified un-
certainty set which contains only the steering vectors with a
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desired uncertainty range of DOA. To find a suboptimal so-
lution for this problem, the constraint is first loosened to two
nonconvex quadratic constraints such that the magnitude re-
sponses of two steering vectors exceed unity. Then, a diag-
onal loading method is used to force the magnitude responses
at the arrival angles between these two steering vectors to ex-
ceed unity. Therefore, this method can always force the gains at
a desired range of angles to exceed a constant level while sup-
pressing the interference and noise. A closed-form solution to
the proposed minimization problem is introduced, and the di-
agonal loading factor can be computed systematically by a pro-
posed iterative algorithm. Numerical examples show that this
method has excellent SINR performance and a complexity com-
parable to the standard MVDR beamformer.

The rest of this paper is organized as follows: The MVDR
beamformer and the analysis of steering vector mismatch are
presented in Section II. Some previous work on robust beam-
forming is reviewed in Section III. In Section IV, we develop
the theory and the algorithm of our new robust beamformer.
Numerical examples are presented in Section V. Finally, con-
clusions are presented in Section VI.

Notations: Boldfaced lowercase letters such as represent
vectors, and boldfaced uppercase letters, such as , denote
matrices. The element in row and column of matrix
is denoted by . The notation denotes the conjugate
transpose of the vector . Notation denotes the expectation
of the random variable .

II. MVDR BEAMFORMER AND THE

STEERING VECTOR MISMATCH

Consider a uniform linear array (ULA) of omnidirectional
sensors with interelement spacing . The SOI is a narrowband
plane wave impinging from angle . The baseband array output

can be expressed as

where denotes the sum of the interferences and the noises,
is the SOI, and represents the baseband array response

of the SOI. It is called the “steering vector” and can be expressed
as

(1)

where is the operating wavelength. The output of the beam-
former can be expressed as , where is the complex
weighting vector. The output signal-to-interferences-plus-noise
ratio (SINR) of the beamformer is defined as

(2)

where , and . By varying
the weighting factors, the output SINR can be maximized by
minimizing the total output variance while constraining the SOI

response to be unity. This can be written as the following opti-
mization problem:

subject to (3)

where This is equivalent to minimizing
subject to because

The solution to this problem is well known and was first given
by Capon in [1] as

(4)

This beamformer is called the MVDR beamformer in the litera-
ture. When there is a mismatch between the actual arrival angle

and the assumed arrival angle , this beamformer becomes

(5)

It can be viewed as the solution to the minimization problem

subject to (6)

Since , and
is no longer valid due to the mismatch, the SOI magnitude

response might be attenuated as a part of the objective function.
This suppression leads to severe degradation in SINR, because
the SOI is treated as interference in this case. The phenomenon
is called “signal cancellation.” A small mismatch can lead to
severe degradation in the SINR.

III. PREVIOUS WORK ON ROBUST BEAMFORMING

Many approaches have been proposed for improving the ro-
bustness of the standard MVDR beamformer. In this section, we
briefly mention some of them related to our work.

A. Diagonal Loading Method

In [11] and [12], the optimization problem in (3) is modified
as

subject to

This approach is called diagonal loading in the literature. It in-
creases the variance of the artificial white noise by the amount

. This modification forces the beamformer to put more effort
in suppressing white noise rather than interference. As before,
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when the SOI steering vector is mismatched, the SOI is atten-
uated as one type of interference. As the beamformer puts less
effort in suppressing the interferences and noise, the signal can-
cellation problem addressed in Section II is reduced. However,
when is too large, the beamformer fails to suppress strong
interference because it puts most effort to suppress the white
noise. Hence, there is a tradeoff between reducing signal cancel-
lation and effectively suppressing interference. For that reason,
it is not clear how to choose a good diagonal loading factor in
the traditional MVDR beamformer.

B. LCMV Method

In [13]–[20], the linear constraint of the MVDR in (3) has
been generalized to a set of linear constraints as

subject to (7)

where is an matrix and is an vector. The solu-
tion can be found by using the Lagrange multiplication method
as

This is called the LCMV beamformer. These linear constraints
can be directional constraints [15], [16] or derivative constraints
[17]–[19]. The directional constraints force the responses of
multiple neighbor steering vectors to be unity. The derivative
constraints not only force the response to be unity but also sev-
eral orders of the derivatives of the beampattern in the assumed
DOA to be zero. These constraints broaden the main beam of
the beampattern so that it is more robust against the DOA mis-
match. In [20], linear constraints have further been used to allow
an arbitrary specification of the quiescent response.

C. Extended Diagonal Loading Method

In [6], the following optimization problem is considered:

subject to (8)

where is a sphere defined as

(9)

where is the assumed steering vector. The constraint forces the
magnitude responses of an uncertainty set of steering vectors to
exceed unity. The constraint is actually nonconvex. However,
in [6], it is reformulated to a second-order cone programming
(SOCP) problem which can be solved by using some existing
tools, such as SeDuMi in MATLAB. It has also been proven
in [6] that the solution to (8) has the form for
some appropriate and . Therefore, this method can be viewed
as an extended diagonal loading method [7]. In [7] and [8], the
uncertainty set in (9) has been generalized to an ellipsoid, and

the SOCP has been avoided by the proposed algorithms which
directly calculate the corresponding diagonal loading level as
a function of , , and .

D. General-Rank Method

In [9], a general-rank signal model is considered. The steering
vector is assumed to be a random vector that has a covari-
ance . The mismatch is therefore modeled as an error matrix

, in the signal covariance matrix , and an error
matrix in the output covariance matrix . The
following optimization problem is considered:

subject to

where denotes the Frobenius norm of the matrix , and
and are the upperbounds of the Frobenius norms of the error

matrices and , respectively. This optimization problem
has an elegant closed-form solution as shown by Shahbazpanahi
et al. in [9], namely

(10)

where denotes the principal eigenvector of the matrix
. The principal eigenvector is defined as the eigenvector cor-

responding to the largest eigenvalue.

IV. NEW ROBUST BEAMFORMER

In this paper, we consider the DOA mismatch. When there is
a mismatch, the minimization in (6) suppresses the magnitude
response of the SOI. To avoid this, we should force the magni-
tude responses at a range of arrival angles to exceed unity while
minimizing the total output variance. This optimal robust beam-
former problem can be expressed as

subject to (11)

where and are the lower and upperbounds of the uncer-
tainty of SOI arrival angle, respectively, and is the steering
vector defined in (1) with the arrival angle . The following un-
certainty set of steering vectors is considered:

(12)

where , and . This uncer-
tainty set is a curve. This constraint protects the signals in the
range of angles from being suppressed.

A. Frequency-Domain View of the Problem

Substituting (12) into the constraint in (11), the constraint can
be rewritten as
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Fig. 1. Frequency-domain view of the optimization problem.

where is the Fourier transform of the weight vector
. The objective function can also be rewritten in the

frequency domain as

where is the power spectral density (PSD) of the array
output . Therefore, the optimization problem can be rewritten
in the frequency domain as

subject to for

Note that is a weighting function in the above integral.
The frequency-domain view of this optimization problem is il-
lustrated in Fig. 1. The integral of is mini-
mized while for is satisfied. Even
though we will not solve the problem in the frequency domain,
it is insightful to look at it this way.

B. Two-Point Quadratic Constraint

It is not clear how to solve the optimal beamformer in
(11) because the constraint does not fit into any of the existing
standard optimization methods. The constraint
for can be viewed as an infinite number of
nonconvex quadratic constraints. To find a suboptimal solution,
we start looking for the solution by loosening the constraint.
We first loosen the constraint by choosing only two constraints

and from the infinite con-

straints for . The corresponding
optimization problem can be written as

subject to and (13)

Due to the fact that the constraint is loosened, the minimum to
this problem is a lowerbound of the original problem in (11).
Note that the constraint in (13) is a nonconvex quadratic con-
straint. In order to obtain an analytic solution, we reformulate
the problem in the following equivalent form:

subject to

where

and , , and are real numbers.
To solve this problem, we divide it into two parts. We first

assume , , and are constants and solve . The solution
will be a function of , , and . Then, the solution

can be substituted back into the objective function so that the
objective function becomes a function of , , and . Finally,
we minimize the new objective function by choosing , , and

. Define the function

(14)

where is the Lagrange multiplier. Taking the gradient
of (14) and equating it to zero, we obtain the solution

Substituting the above equation into the constraint, the Lagrange
multiplier can be expressed as

Substituting back into , we obtain

(15)

Given , , and , can be found from the above equa-
tion. Note that it is exactly the solution to the LCMV beam-
former mentioned in Section III-B with two directional con-
straints. Therefore, this approach can be viewed as an LCMV
beamformer with a further optimized in (7). However, this ap-
proach is reformulated from the nonconvex quadratic problem
in (13). It is intrinsically different from a linearly constrained
problem. The task now is to solve for , , and . Write



CHEN AND VAIDYANATHAN: QUADRATICALLY CONSTRAINED BEAMFORMING 4143

where , , and are real non-negative numbers. Substituting
in (15) into the objective function, it becomes

(16)

To minimize the objective function, can be chosen as

(17)

so that the last equality in (16) holds. Now and are obtained
by (17) and (15), and the objective function becomes (16). To
further minimize the objective function, and can be found
by solving the following optimization problem:

This can be solved by using the Karush–Kuhn–Tucker (KKT)
condition. The following solution can be obtained:

(18)

Summarizing (15), (17), and (18), the following algorithm for
solving the beamformer with the two-point quadratic constraint
in (13) is obtained.

Algorithm 1

Given , , and , compute by the following steps:

The matrix inversion in Step 2 contains most of the com-
plexity of the algorithm. Therefore, the algorithm has the same
order of complexity as the MVDR beamformer. Since the con-
straint is loosened, the feasible set of the two-point quadratic
constraint problem in (13) is a superset of the feasible set of the
original problem in (11). The minimum found in this problem
is a lowerbound of the minimum of the original problem. If the
solution in the two-point quadratic constraint problem in

Fig. 2. Example of a solution of the two-point quadratic constraint problem
that does not satisfy jsywj � 1 for � � � � � .

(13) happens to satisfy the original constraint
for , then is exactly the solution to the orig-
inal problem in (11). The example provided in Fig. 1 is actually
found by using the two-point quadratic constraint instead of the
original constraint, but it also satisfies the original constraint.
This makes it exactly the solution to the original problem in (11).

Unfortunately, in general, the original constraint
for is not guaranteed to be satisfied by the

solution of the two-point quadratic constraint problem in (13).
Fig. 2 shows an example where the original constraint is not
satisfied. This example is obtained by increasing the power of
the SOI in the example in Fig. 1. One can compare
in Figs. 1 and 2 and find that the SOI power is much stronger in
Fig. 2. In this case, the beamformer tends to put a zero between

and to suppress the strong SOI. This makes
for some between and . The original constraint is

thus not satisfied. This problem will be overcome by a method
provided in Section V.

C. Two-Point Quadratic Constraint With Diagonal Loading

In Fig. 2, we observe that the energy of ,
is quite large compared to that in

Fig. 1. Fig. 3 shows the locations of the zeroes of the -trans-
form of the beamformer in Fig. 2. One can observe
that there is a zero between and . This zero causes the
signal cancellation in Fig. 2. It can be observed that the zero
is very close to those two points which are constrained to have
magnitudes greater than unity. When a zero is close to these
quadratically constrained points, it attenuates the gain at these
points. However, the magnitude responses at these points are
constrained to exceed unity. To satisfy the constraints, the
overall energy of must be adjusted to a certain high level.
Therefore, if a zero is between and , which occurred in
Fig. 3, the norm of the weighting vector will become very
large. By using this fact, we can impose some penalty on
to force the zeroes between and to go away. This can be
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Fig. 3. Locations of zeroes of the beamformer in Fig. 2.

accomplished by the diagonal loading approach mentioned in
Section III-A. The corresponding optimization problem can be
written as

subject to and (19)

where is the diagonal loading factor which represents the
amount of the penalty put on . The solution can be
found by performing the following modification on the output
covariance matrix:

and then applying Algorithm 1. When , the solution
converges to

subject to and (20)

The following lemma gives the condition for which satisfies
the constraint for all in .

Lemma 1: for if and only if

Proof: According to (20), substituting and ap-
plying Algorithm 1, one can obtain

sincd

where

and sincd

By direct substitution, one can obtain

sincd sincd

sincd
(21)

where and

if sincd
otherwise.

By (21), it can be verified that

if and only if

which can also be expressed as
If the condition is satisfied,

exists such that the condition for
is satisfied. For example, if , , , and

, then we have

In this case, exists so that the robust condition
for 35 is satisfied. However,

introducing the diagonal loading changes, the objective func-
tion to . The modification of the
objective function affects the suppression of the interferences.
To keep the objective function correct, should be chosen
as small as possible while the condition for

is satisfied. For finding such a , we propose the
following algorithm.

Algorithm 2

Given , , , an initial value of , a search step size
, and a set of angles , which satisfies

for all , can be computed by the following
steps:

Compute by Algorithm 1

If for all

then stop.

else and go to 1.

Fig. 4 illustrates how Algorithm 2 works. In this figure, the
set is the feasible set of
the two-point quadratic constraint problem in (13). The set

is the feasible set of the
mismatched steering vector problem in (11). If the condition

is satisfied, Lemma 1 shows that
. In this case, exists so that . Algorithm

2 keeps increasing by multiplying until
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for all is satisfied. This is an approximation for
The number can be very small. In Section V,

works well for all of the cases. Also, the SINR is not sensitive
to the choice of , as we will see later.

V. NUMERICAL EXAMPLES

For the purpose of design examples, the same parameters
used in [8] are used in this section. A uniform linear array (ULA)
of omnidirectional sensors spaced a half-wavelength
apart (i.e., ) is considered. There are three signals im-
pinging upon this array, as follows:

1) the SOI with an angle of arrival ;
2) an interference signal with an angle of arrival

;
3) another interference signal with an angle of arrival

.
The received narrowband array output can be modeled as

where is the steering vector defined in (1), and is the
noise. We assume , , , and are the zero-
mean wide-sense stationary random process satisfying

(40 dB above noise)

(20 dB above noise)

Thus, the covariance matrix of the narrowband array output
can be expressed as

1) Example 1: SINR versus diagonal loading factor .
In this example, the actual arrival angle is 43 , but the as-

sumed arrival angle is 45 . The SINR defined in (2) is com-
pared for a different diagonal loading factor . The following
five methods involving diagonal loading are considered:

1) Algorithm 1 in Section IV with the new method with
and ;

2) general-rank method [9] in (10) with the parameter

3) diagonal loading method [11], [12] in Section III-A;
4) directional LCMV [15], [16] with two linear constraints

which forces the responses of the signals from 42 and 48
to be unity;

5) derivative LCMV [17]–[19] with two linear constraints
which forces the responses of the signals from 45 to be
unity and the derivative of the beampattern on 45 to be
zero.

The SINR of the MVDR beamformer without mismatch is also
plotted. This is an upperbound on the SINR. Fig. 5 shows the re-
sult for 10 dB. One can observe that there is a huge jump
in the SINR of Algorithm 1 around . When this occurs,

Fig. 4. Illustration of Algorithm 2, where A = fwjjsy(�)wj � 1; � =

� ; � g and B = fwjjsy(�)wj � 1; � � � � � g.

Fig. 5. Example 1: SINR versus 
 for SNR = 10 dB.

the SINR of Algorithm 1 increases significantly and becomes
very close to the upperbound provided by the MVDR beam-
former without mismatch. This jump occurs when the beampat-
tern changes from Fig. 2 to Fig. 1. Once the beamformer enters
the set as illustrated in Fig. 4, the SINR increases dramati-
cally. After that, the SINR decays slowly as increases because
of the oversuppression of white noise. Fig. 6 shows the case of
SNR 20 dB. For large SNR, larger is needed for the beam-
former to be in set . Observing Figs. 5 and 6, we can see why
Algorithm 2 works so well. Algorithm 2 increases by repeat-

edly multiplying until satisfies for
. This occurs as crosses the jump in SINR. Also,

the SINR is not sensitive to the choice of because the SINR
decays very slowly after the jump. By Algorithm 2, we can find
a suitable with only a few iterations. For other approaches
involving diagonal loading, it is not clear how to find a good
diagonal loading factor . One can observe that Algorithm 1
has a very different SINR performance than the two-point di-
rectional LCMV with diagonal loading. This shows that further
optimization of the parameters , , and in Section IV-B is
very crucial.

2) Example 2: SINR versus SNR.
In this example, the actual arrival angle is 43 , but the as-

sumed arrival angle is 45 . The SINRs in (2) are compared
for different SNRs ranging from 20 to 30 dB. The following
methods are considered.
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Fig. 6. Example 1 continued: SINR versus 
 for SNR = 20 dB.

1) Algorithm 2 with , , ,
, , initial , and step size ;

2) general-rank method—same as in Example 1;
3) extended diagonal loading method [6]–[8] in (8) with the

parameter

the algorithm in [7] is used to compute the diagonal loading
level;

4) directional LCMV [15], [16] with two linear constraints
which forces the responses of the signals from 42 and 48
to be unity;

5) directional LCMV with three linear constraints at the an-
gles 42 , 45 , and 48 ;

6) derivative LCMV with two linear constraints which force
the responses of the signals from 45 to be unity and the
derivative of the beampattern on 45 to be zero;

7) derivative LCMV with three linear constraints which force
the responses of the signals from 45 to be unity and both
the first and second derivatives of the beampattern on 45
to be zero;

8) the standard MVDR beamformer in (5).
Due to the fact that no finite-sample effect is considered, except
in Algorithm 2 and the extended diagonal loading method, no
diagonal loading has been used in these methods. Again, the
SINR of the MVDR beamformer without mismatch is also
plotted as a benchmark. The results are shown in Fig. 7. The
SINR of the standard MVDR beamformer is seriously degraded
with only 2 of mismatch. When the SNR increases, the MVDR
beamformer tends to suppress the strong SOI to minimize the
total output variance. Therefore, in the high SNR region, the
SINR decreases when SNR increases. The LCMV beamformers
have good performances in the high SNR region. However, the
performance in the low SNR region is much worse compared
to other methods. This is because the linear equality constraints
are too strong compared to the quadratic inequality constraints.
One can observe that for both directional and derivative LCMV

Fig. 7. Example 2: SINR versus SNR.

methods, each extra linear constraint decreases the SINR by
about the same amount in the low SNR region. In this example,
Algorithm 2 has the best SINR performance. It is very close to
the upperbound provided by the MVDR beamformer without
mismatch. Algorithm 2 has better SINR performance than the
general rank method [9] and the extended diagonal loading
method [6]–[8] because the uncertainty set has been simplified
to be robust only against DOA mismatch. Note that even though
these methods have worse performances than Algorithm 2 with
regard to DOA error, they have the advantages of robustness
against more general types of steering vector mismatches.
The number of iterations in Algorithm 2 depends on the SNR
and the choice of . For instance, it converges with two steps
when SNR 10 dB and six steps when SNR 20 dB in this
example.

3) Example 3: SINR versus mismatch angle.
In this example, the assumed signal arrival angle is 45 ,

and the actual arrival angle ranges from to .
The SINR in (2) is compared for different mismatched angles

. The following methods are considered:
1) Algorithm 2 with , , ,

, , initial , and step size ;
2) general-rank method [9] in (10) with the parameter

3) extended diagonal loading method [6]–[8] in (8) with the
parameter

4) directional LCMV [15], [16] with three linear constraints
which forces the responses of the signal from 41 , 45 , and
49 to be unity;

5) first-order derivative LCMV—same as in Example 1;
6) the standard MVDR beamformer in (5).
The SINR of the MVDR beamformer without mismatch is

also displayed in the following figures. The results for SNR
0 dB are shown in Fig. 8, and the results for SNR 10 dB
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Fig. 8. Example 3: SINR versus mismatch angle for SNR = 0 dB.

Fig. 9. Example 3 continued: SINR versus mismatch angle for SNR= 10 dB.

are shown in Fig. 9. One can observe that the standard MVDR
beamformer is very sensitive to the arrival angle mismatch. It is
more sensitive when the SNR is larger. Except for the standard
MVDR, these methods maintain steady SINRs with the mis-
matched angle varying. In this example, Algorithm 2
has the best SINR performance among these methods. More-
over, when there is no mismatch, the SINR of Algorithm 2 de-
creases slightly compared to the standard MVDR beamformer.

4) Example 4: SINR versus .
In this example, the SINR is being compared for various num-

bers of antennas . The actual angle of arrival is 43 , but the
assumed angle of arrival is 45 . The following methods are
considered:

1) Algorithm 2—the same as in Example 2;
2) general-rank method—same as in Example 2 except is

now a function of , and it can be expressed as

Fig. 10. Example 4: SINR versus a number of antennas for SNR = 0 dB.

3) extended diagonal loading method—same as in Example 2
except is now a function of , and it can be expressed as

4) three-point directional LCMV method—same as in Ex-
ample 2;

5) first-order derivative LCMV—same as in Example 2;
6) the standard MVDR beamformer in (5).

The results for the case of SNR 0 dB and SNR 10 dB
are shown in Figs. 10 and 11, respectively. One can observe
that when there is no mismatch, the SINR performance of the
MVDR beamformer is an increasing function of the number of
the antennas , since the beamformer has a better ability to sup-
press the interferences and noise when increases. However,
for the MVDR beamformer with mismatch, the beamformer has
a better ability to suppress the SOI as well as interferences when

increases. Therefore, the SINR of the MVDR beamformer
increases at the beginning and then decays rapidly when in-
creases. For the general rank method, the SINRs when is
larger than 22 are discarded because the corresponding are
greater than . For the same reason, the SINRs
when is larger than 15 are discarded in the extended diag-
onal loading method. Again, in this example, Algorithm 2 has
very good performance. Among all of the robust beamformers,
only Algorithm 2 has nondecreasing SINR with respect to .
However, this does not mean there is no limitation on for
Algorithm 2. According to Lemma 1, the condition which guar-
antees the convergence of Algorithm 2 can be expressed as

This means that if the number of antennas is larger than 27,
Algorithm 2 is not guaranteed to converge. In this example, Al-
gorithm 2 fails to converge when .

5) Example 5: SINR versus number of snapshots.
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Fig. 11. Example 4 continued: SINR versus number of antennas for SNR
= 10 dB.

The covariance matrices used in the previous examples
are assumed to be perfect. In practice, the covariance matrix can
only be estimated. For example, we can use

where is the sampling rate of the array, and is the number
of snapshots. The accuracy of the estimated covariance matrix

affects the SINR of the beamformer. In this example, the
actual arrival angle is 43 , but the assumed arrival angle is 45 .
The SINRs are compared for a different number of snapshots

. The following methods are considered:
1) Algorithm 2 with , , ,

, , initial , and step size ;
2) general-rank method [9] with and ;
3) extended diagonal loading method [6]–[8] with the param-

eter before using the algorithm in [7] to compute
the diagonal loading level, the estimated covariance matrix
is first modified by ; in other words, an
initial diagonal loading level is used;

4) three-point directional LCMV—same as in Example 2 ex-
cept a diagonal loading level is used;

5) first-order derivative LCMV—same as in Example 2 ex-
cept a diagonal loading level is used;

6) fixed diagonal loading [11], [12] with ;
7) the standard MVDR beamformer in (5) with correct

steering vector .
All of these methods use the estimated covariance matrix

. Due to the fact that the finite-sample effect is con-
sidered, each method uses an appropriate diagonal loading
level. The SINR of the MVDR beamformer, which uses the
correct steering vector and the perfect covariance matrix

, is used as an upperbound. In this example, noise
is generated according to the Gaussian distribution. The SINR
is computed by using the averaged signal power and inter-
ference-plus-noise power over 1000 samples. The results are
shown in Fig. 12 for SNR 10 dB. The MVDR beamformer

Fig. 12. Example 5: SINR versus number of snapshots for SNR = 10 dB.

without mismatch suffers from the finite-sample effect. There-
fore, the SINR is low when the number of snapshots is small.
For the fixed diagonal loading method, the SINR is relatively
high when the number of snapshots is small. This shows that the
diagonal loading method is effective against the finite-sample
effect. However, SINR stops increasing after some number of
snapshots because of the SOI steering vector mismatch. Again,
Algorithm 2 has the best SINR performance for most situations.
This shows that it is robust against both the finite-sample effect
and the DOA mismatch.

The famous rapid convergence theorem proposed by Reed et
al. in [27] states that an SINR loss of 3 dB can be obtained by
using the number of snapshots equal to twice the number of
antennas . In this example, twice the number of antennas is
only 20. However, this result is applicable only to the case where
the samples are not contaminated by the target signal. Therefore,
it cannot be applied to this example. One can see that in Fig. 12,
the SINR requires more samples to converge because the sam-
pled covariance matrices contain the target signal of 10 dB. In
[24], the authors have pointed out that the sample covariance
matrix error is equivalent to the DOA error. Since our method is
designed for robustness against DOA mismatch, it is also robust
against the finite-sample effect. However, it is not clear how to
specify an appropriate uncertainty set to obtain the robustness
against the finite-sample effect. This problem will be explored
in future work.

The SOI power can be estimated by the total output vari-
ance . Fig. 13 shows the corresponding estimated SOI
power. One can see that the estimated SOI power converges
much faster than the SINR. The estimated SOI power repre-
sents the sum of signal and “interference + noise” power but the
SINR represents the ratio of them. The reduction of the inter-
ference plus noise is subtle in the estimated SOI power because
it only changes a small portion of the total variance. However,
the reduction of the interference plus noise can cause a signifi-
cant change in SINR. A change in interference plus noise does
not affect the SOI as much as it affects the SINR. Therefore, the
estimated SOI power converges faster than the SINR.

6) Example 6: SINR versus SNR for general type mismatch.
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Fig. 13. Estimated SOI power versus the number of snapshots for SNR =
10 dB.

In the previous examples, we consider only the DOA mis-
match. Although the proposed method is designed for solving
only the DOA mismatch problem, in this example, we consider a
more general type of mismatch. In this example, the mismatched
steering vector is modeled as

where is a random vector with i.i.d. components
for all . In this example, is chosen to be 0.01.

The SINRs in (2) are compared for different SNRs ranging
from 20 to 30 dB. The SINR are calculated by the averaged
energy of more than 1000 samples. All parameters are as in
Example 2 except the steering vector mismatch. The following
methods are considered:

1) Algorithm 2 with , , ,
, , initial , and step size ;

2) general-rank method—same as in Example 2 except is
chosen to be to cover most of the steering vector
error;

3) extended diagonal loading method—same as in Example
2 except is chosen to be to cover most of the
steering vector error;

4) two-point directional LCMV—same as in Example 2;
5) three-point directional LCMV—same as in Example 2;
6) first-order derivative LCMV—same as in Example 2;
7) second-order derivative LCMV—same as in Example 2;
8) the standard MVDR beamformer in (5).
Due to the fact that no finite-sample effect is considered, ex-

cept in Algorithm 2, and the extended diagonal loading method,
no diagonal loading has been used in these methods. Again,
the SINR of the MVDR beamformer without mismatch is also
plotted as a benchmark. The results are shown in Fig. 14. The
SINRs of the standard MVDR beamformer and all of the LCMV
methods are seriously degraded by this general type mismatch
in the high SNR region. However, the proposed algorithm still
has good performance. As expected, the proposed algorithm has
worse performance than the extended diagonal loading method
when the SNR is equal to 0, 10, and 15 dB because it is de-
signed for robustness against DOA mismatch. The differences
are about 1.5 dB. Surprisingly, however, it has a better SINR

Fig. 14. Example 6: SINR versus SNR for general type mismatch.

performance in the high SNR region compared to other uncer-
tainty-based methods. The authors’ conjecture is that these un-
certainty-based methods are based on worst case; however, the
SINR is obtained by averaging the energy. The worst-case de-
sign guarantees that every time the SOI is protected; however,
it does not guarantee that, in average, the SINR performance
is good. In the worst-case sense, the extended diagonal loading
method [6]–[8] should be the best choice. Nevertheless, this ex-
ample shows that the proposed method has unexpected good
performance compared to the LCMV methods when a general
type of steering vector mismatches occurs. We believe that the
proposed algorithm is a good candidate for robust beamforming
when DOA mismatch is dominant.

VI. CONCLUSION

In this paper, a new beamformer, which is robust against DOA
mismatch, is introduced. This approach quadratically constrains
the magnitude responses of two steering vectors and then uses
a diagonal loading method to force the magnitude response at a
range of arrival angles to exceed unity. Therefore, this method
can always force the gains at a desired range of angles to ex-
ceed a constant level while suppressing the interference and
noise. The analytic solution to the nonconvex quadratically con-
strained minimization problem has been derived, and the di-
agonal loading factor can be determined by a simple itera-
tion method proposed in Algorithm 2. This method is appli-
cable to the point-source model where is known when-
ever is known. The complexity required in Algorithm 1 is ap-
proximately the same as in the MVDR beamformer. The overall
complexity depends on the number of iterations in Algorithm 2
which depends on the SNR. In our numerical examples, when
SNR 10 dB, the number of iterations is less than three. The
numerical examples demonstrate that our approach has excel-
lent SINR performance under a wide range of conditions.
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