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Autonomous Spectrum Balancing for

Digital Subscriber Lines
Raphael Cendrillon, Jianwei Huang, Mung Chiang, Marc Moonen

Abstract�The main performance bottleneck of modern Digital
Subscriber Line (DSL) networks is the crosstalk among different
lines (users). By deploying Dynamic Spectrum Management
(DSM) techniques and reducing excess crosstalks among users,
a network operator can dramatically increase the data rates
and service reach of broadband access. However, current DSM
algorithms suffer from either substantial suboptimality in typical
deployment scenarios or prohibitively high complexity due to
centralized computation. This paper develops, analyzes, and
simulates a new suite of DSM algorithms for DSL interference-
channel models called Autonomous Spectrum Balancing (ASB),
for both synchronous and asynchronous transmission cases. In
the synchronous case, the transmissions over different tones
are orthogonal to each other. In the asynchronous case, the
transmissions on different tones are coupled together due to inter-
carrier-interference. In both cases, ASB utilizes the concept of
a �reference line�, which mimics a typical victim line in the
interference channel. The basic procedure in ASB algorithms is
simple: each user optimizes the weighted sum of the achievable
rates on its own line and the reference line while assuming the
interferences from other users as noise. Users then iterate until
the target rate constraints are met. Good choices of reference
line parameters are already available in industry standards, and
the ASB algorithm makes the intuitions completely rigorous and
theoretically sound. ASB is the �rst set of algorithms that is
fully autonomous, has low complexity, and yet achieves near-
optimal performance. It effectively solves the nonconvex and
coupled optimization problem of DSL spectrum management,
and overcomes the bottleneck of all previous DSM algorithms.

Index Terms�Digital Subscriber Lines, spectrum manage-
ment, power allocation, distributed algorithm, dual decomposi-
tion

EDICS: SPC-TDLS, SPC-MULT

I. INTRODUCTION

A. Motivation

Digital Subscriber Line (DSL) technologies transform tra-

ditional voice-band copper channels into broadband access

systems, which are capable of delivering data rates up to

several Mbps per twisted-pair over a distance of 10 kft in

the basic Asymmetric DSL (ADSL). Despite over 140 million

DSL lines worldwide as of 2005, the major obstacle for

performance improvement in modern DSL systems remains

to be crosstalk, which is the interference generated among

different lines in the same cable binder. The crosstalk is

typically 10-20 dB larger than the background noise, and
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direct crosstalk cancelation (e.g., [2], [3]) are infeasible in

many cases, due to the complexity issues (both amount of

computation needed and the requirements of new chip sets)

or as a result of unbundling (i.e., incumbent service providers

must rent certain lines to their competitors).

Recently, various dynamic spectrum management (DSM)

algorithms have been proposed to address this frequency-

selective interference problem by dynamically optimizing

transmission power spectra of different modems in DSL

networks. DSM algorithms can signi�cantly improve data

rates over the current practice of static spectrum management,

which mandates spectrum mask or �at power backoff across

all frequencies (i.e., tones).

This paper develops, analyzes, and simulates a suite of DSM

algorithms for power allocation (or, equivalently, bit loading),

called Autonomous Spectrum Balancing (ASB). Overcoming

the bottlenecks in the state-of-the-art DSM algorithms, ASB

is the �rst set of algorithms that is both autonomous (dis-

tributed algorithm across the users without explicit information

exchange) with low complexity, provably convergent, and

achieving close to the globally optimal rate region in practice.

B. Related Work on DSM Algorithms

One of the �rst and most well known DSM algorithms

is the Iterative Water-�lling (IW) algorithm [4], where each

line maximizes its own data rate by water�lling over the

noise and interference from other lines. The IW algorithm

is a completely autonomous algorithm with a linear com-

plexity in the number of users. Although IW can achieve

near optimal performance in weak interference channels, it

is highly-suboptimal in the widely-encountered near-far sce-

narios (which will be described in details in Section II), such

as mixed central of�ce and remote terminal deployments of

ADSL and upstream VDSL. This is in part due to the greedy

nature of the algorithm.

Recently two optimal but centralized DSM algorithms are

proposed, the Optimal Spectrum Balancing (OSB) algorithm

[5] and the Iterative Spectrum Balancing (ISB) algorithm [6],

[7]. The OSB algorithm addresses the spectrum management

problem through the maximization of a weighted rate-sum

across all users, which explicitly takes into account the damage

done to the other lines when optimizing each line's spectra.

Unfortunately OSB has an exponential complexity in the

number of users, making it intractable for DSL network

with more than 5 lines. As an improvement over the OSB

algorithm, ISB is proposed to implement the weighted-rate

sum optimization in an iterative fashion over the users. This
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leads to a quadratic complexity in the number of users, which

makes the ISB feasible for networks with a relatively large

number of users.

However, the even more critical issue is that both OSB and

ISB are centralized algorithms, which rely on a centralized

network management center (NMC) to optimize the PSDs

for all modems. NMC requires knowledge of the crosstalk

channels between all lines and all background noise, which

is dif�cult to obtain due to the large number of lines. Identi-

�cation and transmission of crosstalk channel measurements

back to the NMC are not supported in existing standards

either. Also, the operation of NMC requires a lot of overhead,

in terms of both bandwidth and infrastructure. Furthermore,

the regulatory requirements on unbundling service make it

impossible to perform a centralized optimization. Finally,

many lines in the same binder terminate on different quad

cards in the DSL Access Multiplexer because customers in

the same neighborhood sign up for service at different times,

which makes it impossible to have central coordination even

if one can tolerate the costs.

A semi-centralized DSM algorithm called SCALE is pro-

posed in [8]. SCALE algorithm achieves better performance

than IW with comparable complexity. However, the algorithm

is not autonomous since explicit message passing among users

is required. Such explicit message passing in an uncoordinated

fashion requires modems to have sophisticated processing

capabilities not available in DSL modems, including blind

synchronization, blind identi�cation of the crosstalk channel,

blind detection of the transmit constellation used by the

crosstalk, and blind detection of the crosstalk signal.

In summary, there are currently no DSM algorithms that

provide both low complexity, autonomous operation and near-

optimal rate region. This paper overcomes this bottleneck

through the ASB algorithms.

IW, OSB, ISB, and SCALE mentioned above all assume

synchronous transmissions of the modems, which allows

crosstalk to be modeled independently on each tone. Unfortu-

nately, this synchronization is almost never true in practice.

Instead, the signal transmitted on a particular tone of one

modem will appear as crosstalk on a broad range of tones

on the other modems. This inter-carrier-interference (ICI)

signi�cantly complicates the DSM problem further. The state-

of-art results for asynchronous transmissions are the two cen-

tralized greedy algorithms proposed in [9], bit-subtracting and

bit-adding algorithms. Both algorithms start from the power

spectrum density (PSD) obtained with the ISB algorithm in

the synchronous case, and search for local optimal solutions

in the neighborhood by taking ICI into account. But again

these are centralized algorithms.

C. Summary of Contributions

The suite of ASB algorithms proposed in this paper has

the following advantages compared with all the previous algo-

rithms. First of all, ASB is autonomous: it can be applied in a

distributed fashion across users with no explicitly information

exchange. Furthermore, the algorithm has low complexity in

both the number of users and tones, and is provably convergent

under reasonable conditions on the channel gains that are

often satis�ed in practice. In the synchronous case, the ASB

algorithm has similar complexity as IW, but in the near-

far scenario achieves a performance much better than IW

and close to ISB and OSB. In the asynchronous case, the

ASB algorithm reduces the complexity from those in [9],

and achieves signi�cant better performance than the ASB

algorithm that does not consider the ICI. The comparisons

between ASB algorithms and other existing algorithms are

listed in Table I. It compares various aspects of different

DSM algorithms, where ASB attains the best tradeoff among

distributiveness, complexity, and performance. Here we use K
to denote the number of tones and N to denote the number

of users.

The key idea behind ASB is to leverage the fact that

DSL interference channel gains are very slowly time-varying,

which enables an effective use of the concept of �reference

line� that represents a typical victim line. Roughly speaking,

the reference line represents the statistical average of all

victims within a typical network, which can be thought as

a �static pricing�. This differentiates the ASB algorithm with

power control algorithms in the wireless setting, where pricing

mechanisms have to be adaptive to the change of channel

fading states and network topology, or Internet congestion

control, where time-varying pricing signals are used to align

sel�sh interests for social welfare maximization. By using

static pricing, no explicit message passing among the users

is needed and the algorithm becomes completely autonomous

across the users. When adapting its PSD, each line attempts

to achieve its own target rate while minimizing the damage it

does to the reference line. We show such mechanisms can

attain the balance between sel�sh and socially responsible

operation. On the other hand, each user keeps a local �dynamic

pricing� of the individual power constraint, which enables its

own optimization problem to be decoupled across the tones

within each user. We prove the convergence of ASB under

an arbitrary number of users, for both sequential and parallel

updates. Since IW can be recovered as a special case of ASB

in the synchronous case, our proof techniques extend previous

work on IW [4], [10].

The rest of the paper is organized as follows. We introduce

the system model in Section II, for both synchronous and

asynchronous transmission cases. The spectrum management

problem and a general framework of ASB are outlined in

Section III. ASB algorithms for the synchronous and asyn-

chronous cases will be given in Sections IV and V, respec-

tively. We provide convergence proofs and simulation results

in Sections VI and VII. The complexity properties of the ASB

algorithm and the IW algorithm are given in Section VIII, and

we conclude in Section IX.

II. SYSTEM MODEL

Results in this paper hold for any DSL systems topology.

To be concrete, we will often examine the typical near-

far deployment scenario for downstream ADSL transmissions
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TABLE I

COMPARISON OF VARIOUS DSM ALGORITHMS

Algorithm Operation Complexity Performance Reference

Synchronous Case

IW Autonomous O (KN) Suboptimal [4]

OSB Centralized O
�

KeN
�

Optimal [5]

ISB Centralized O
�
KN2� Near optimal [6], [7]

ASB-S1 Autonomous O (KN) Near optimal this paper

Asynchronous case

Greedy algm. Centralized O
�
N2K3� Suboptimal [9]

ASB-A1 Autonomous O
�

NK2 log2(K)
�

Suboptimal this paper

with a frequency band up to 1.1 MHz,1 as shown in Fig. 1.

There are two twisted-pair copper lines in the network. The

�rst line is from the Central Of�ce (CO) to customer 1. Since

customer 2 is far away from CO, the service provider deploys

a Remote Terminals (RT) near the edge of the network, which

connects with customer 2 through a relatively short copper

line. In the downstream transmission case shown in the �gure,

the transmitting modems (TX) are located at the CO and RT,

and the receivers (RX) are at the customer homes. Each DSL

modem transmits over multiple frequency tones (carriers).

Multiple lines sharing the same binder generate crosstalks

(interferences) to each other on all frequency tones. Although

RT extends the footprint of the DSL network, it also generates

excessive interference to the CO line due to the physical

proximity between the RT TX and the CO RX. However, CO

TX generates little crosstalk to RT RX due to the long distance

between them.

Similar near-far problem also occurs in the upstream trans-

mission for VDSL, which operates at a frequency band up to

12 MHz, and line lengths are typically limited to less than

1.2 km. As a result, VDSL modems are typically deployed at

one point in the network (e.g., a RT node), thus do not have

the mixed CO/RT problem in the downstream transmissions.

However, due to the difference in customer home locations,

shorter lines exhibit strong crosstalks into the longer lines

receivers in the upstream transmissions. Furthermore, in a

mixed VDSL/ADSL deployments, RT-deployed VDSL will

damage the CO-deployed ADSL signals in the downstream.

Next we formally introduce the mathematical models for

both synchronous and asynchronous transmission cases, fol-

lowing the notation in [5], [6], [9]. More details are given in

Section VI-B.4.

A. Synchronous Transmission

We consider a DSL network with a setN = {1, ..., N} users
(i.e., lines, transmitting modems) and K = {1, ...,K} tones

(i.e., frequency carriers). Assuming the standard synchronous

discrete multi-tone (DMT) modulation, transmissions can be

modeled independently on each tone k as follows:

yk = Hkxk + zk.

1The near-far problem does not occur in the upstream ADSL case, where
the transmission frequency band is below 138 kHz and crosstalk is minimal
at such low frequencies.

DMT (Discrete Multi−Tone) Transmissions

Fiber

Copper Line

Downstream Transmission

IP and PSTN Network

crosstalk

TX

TX RX

RX

Customer 2

CO

RT

Customer 1

Fig. 1. Mixed CO/RT distribution

The vector xk , {xn
k , n ∈ N} contains transmitted signals on

tone k, where xn
k is the signal transmitted by user n at tone

k. Vectors yk and zk have similar structures: yk is the vector

of received signals on tone k; zk is the vector of additive

noise on tone k and contains thermal noise, alien crosstalk

and radio frequency interference. We denote the channel gain

from transmitter m to receiver n on tone k as hn,m
k . We denote

the transmit Power Spectrum Density (PSD) sn
k , E

{
|xn

k |
2
}
,

where E {·} denotes expected value. The vector containing the

PSD of user n on all tones as sn , {sn
k , k ∈ K}.

When the number of interfering users is large, the inter-

ference can be well approximated by a Gaussian distributed

random variable. The achievable bit rate of user n on tone k
is

bn
k , log

(
1 +

1
Γ

sn
k∑

m6=n αn,m
k sm

k + σn
k

)
, (1)

where αn,m
k , |hn,m

k |2 / |hn,n
k |2 is the normalized crosstalk

channel gain, and σn
k , E

{
|zn

k |
2
}

/ |hn,n
k |2 is the normalized

noise power density. Here Γ denotes the SINR-gap to capacity,

which is a function of the desired BER, coding gain and noise

margin [11]. For notational simplicity, we absorb Γ into the

de�nition of αn,m
k and σn

k . The bandwidth of each tone is

normalized to 1. Each user n is typically subject to a total

power constraint Pn, due to the limitations on each modem's

analog frontend:
∑

k∈K sn
k ≤ Pn. The data rate on line n is

thus Rn =
∑

k∈K bn
k .

B. Asynchronous Transmission

In practice, it is often dif�cult to maintain perfect syn-
chronization between different DMT blocks due to different
transmission delays on different lines. Compared with the
synchronous transmission case, here the received PSD of
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user n on tone k, E
{
|yn

k |
2
}
, also depends on other users'

transmission PSD on tones other than k,

E
n
|yn

k |2
o

= |hn,n
k |2 sn

k+
X
m 6=n

 
KX

j=1

γ (k − j)
��hn,m

j

��2 sm
j

!
+E
n
|nn

k |2
o

.

Here γ (j) is the ICI coef�cients estimated in the worst case

[9],

γ (j) =

{
1, j = 0
2

K2 sin2( π
K j) , −K

2 ≤ j < K
2 , j 6= 0 ,

and has the symmetric and circular properties, i.e., γ (−j) =
γ (j) = γ (K − j) . Then the achievable bit rate of user n on

tone k in (1) needs to be revised as (with Γ set to 1)

bn
k , log

1 +
sn

k∑
m6=n

(∑K
j=1 γ (k − j)αn,m

j sm
j

)
+ σn

k

 .

(2)

All the other system parameters and constraints are the same

as the synchronous case.

III. SPECTRUM MANAGEMENT PROBLEM AND A GENERAL

FRAMEWORK OF ASB

The spectrum management problem is de�ned as follows,

max
{sn,n∈N}

R1 s.t. Rn ≥ Rn,target,∀n > 1, (3)

s.t.
∑
k∈K

sn
k ≤ Pn,∀n.

Here Rn,target denote the target rate of user n, and we can pick

an arbitrary user to be user 1. Due to interference between

users, Problem (3) is nonconvex. Furthermore, it is highly

coupled across users (due to crosstalk) and tones (due to total

power constraint as well as ICI in the asynchronous case),

making it a very dif�cult optimization to solve. However, the

rate region achieved by all users is convex in the asymptomatic

case when number of tones becomes large [5]. Thus by

changing the values of Rn,target of all users n > 1, the solution
of Problem (3) can trace out the Pareto optimal boundary of

the rate region.

It appears that any algorithm that globally solves (3) must

have knowledge of all crosstalk channels and background

noise spectra, forcing it to operate in a centralized fashion.

In order to overcome this dif�culty, we observe that, for

optimal solutions of (3) each user adopts a PSD that achieves

a fair compromise between maximizing their own data-rate

and minimizing the damage they do to other users. Based on

this insight, we introduce the concept of a reference line, a

virtual line that represents a typicalvictim user within the DSL

system. It turns out that it is adequate to make the reference

line correspond to the longest line in the network (e.g. the

CO line in a mixed CO/RT scenario in Section VII), which

has the weakest direct channel and receives relatively stronger

crosstalk from other users. Then, instead of solving (3) , each
user tries to maximize the achievable rate on the reference

line, subject to its own rate and total power constraints.

Since the main purpose of introducing the reference line

is to characterize the damage that each user does to other

interfering users, we will make the achievable rate of the

reference line user-dependent. In other words, from user n's
point of view, the reference line's rate is Rn,ref ,

∑
k∈K b̃n

k ,
where the achievable bit rate on tone k in the synchronous

case is de�ned as

b̃n
k , log

(
1 +

s̃k

α̃n
ksn

k + σ̃k

)
, (4)

and, in the asynchronous case, as

b̃n
k , log

(
1 +

s̃k∑K
j=1 γ (k − j) α̃n

j sn
j + σ̃k

)
. (5)

The coef�cients {s̃k, σ̃k, α̃n
k ,∀k, n} are parameters of the

reference line and can be readily obtained from long-term �eld

measurements. Since the crosstalk channel can be regarded as

time-invariant in DSL systems, the parameters of the reference

lines are known to users a priori. Intuitively, the reference line

serves as a penalty term in each user's optimization problem

to align sel�sh behavior with social welfare maximization, and

eliminates the need of explicit message passing among users.

Thus, instead of solving Problem (3) which requires global

information, we let each user n solve the following problem

in ASB algorithm:

max
sn

Rn,ref s.t. Rn ≥ Rn,target, (OPT1)

s.t.
∑
k∈K

sn
k ≤ Pn.

We want to emphasize that the each user autonomously solves

a different version of Problem (OPT1). For user n, Problem
(OPT1) only involves optimization over its own PSD sn,

which determines the achieved rates of itself (Rn) and the

reference line (Rn,ref ). The interference generated by other

users are considered as �xed background noise in the opti-

mization, and the achieved rates of other users in the network

do not need to be considered. After each user solves its

own version of Problem (OPT1), the crosstalk values change

accordingly. Then each user n has to solve Problem (OPT1)

again, repeating the process until the PSD converges. The

complete ASB algorithms will be given the Sections IV and V,

where each version of ASB deploys a unique way of solving

Problem (OPT1). In Section VII, we will use �area of the

rate region� as the performance metric when comparing ASB

algorithms with other existing DSM algorithms (e.g., [4]�[7],

[9]).

To facilitate the analysis in the following sections, we also

consider another variation of Problem (OPT1), where we relax

user n's target rate constraint and replace the optimization

objective by a weighted rate sum of user n's own rate and the

reference line's rate seen by user n, i.e.,

max
sn

wnRn + (1 − wn) Rn,ref s.t.
∑
k∈K

sn
k ≤ Pn. (OPT2)

Here the weight parameter wn ∈ [0, 1], where wn = 1 means

user n performs a pure sel�sh optimization, and wn = 0
means the reference line's rate will be maximized.2 In the

2Problem (OPT2) can be derived from Problem (OPT1) using standard
Lagrangian relaxation of user n's target rate constraint, where the dual variable
is chosen to be wn/ (1 − wn), which ranges from 0 to ∞.
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synchronous case, it has been shown in [5] that the rate region

of Problem (OPT1) (in terms of Rn and Rn,ref ) is convex in

the asymptotic case with large number of tones, we can always

�nd a value of wn such that the optimal result of Problem

(OPT2) is the same as Problem (OPT1) (i.e., �nd a wn such

that the solution of Problem (OPT2) satis�es Rn = Rn,target) as

long as the latter is feasible. Thus the key challenge of the ASB

algorithm is to ef�ciently solve Problem (OPT2). The above

correspondence is not necessarily true in the asynchronous

case. In that case, we can still use Problem (OPT2) as an

approximation of Problem (OPT1) to derive an algorithm that

achieves good performance.

IV. ASB ALGORITHMS IN SYNCHRONOUS TRANSMISSION

In this section, we develop an ASB algorithm for the

synchronous case, where the achievable bit rates of user n
and the reference line (from user n's perspective) are given

by (1) and (4). Since the transmissions on different tones are

orthogonal to each other here, we can use dual decomposition

to solve Problem (OPT2), de�ned for each user n. Although
Problem (OPT2) is nonconvex, we know from [5] that the

corresponding duality gap of Problem (OPT2) is zero in the

asymptotic case where the total number of tones is large, thus

solving the dual problem can lead to optimal primal solution.3

We name the algorithm in this section as ASB-S1, where

we solve Problem (OPT2) through a dual decomposition.

Each user n solves Problem (OPT2) by solving a nonconvex

problem on each of the K tones and choosing the dual variable

(i.e., dynamic price) such that the total power constraint is

tight. Then users take turns to perform this optimization until

the PSDs converge.

By incorporating the total power constraint into the objec-

tive function, we have the following relaxation of Problem

(OPT2),

Ln , (1 − λn)
(
wnRn + (1 − wn) Rn,ref

)
− λn

∑
k∈K

sn
k .

Here λn ∈ [0, 1] and needs to be chosen such that

(
∑

k sn
k − Pn) λn = 0. Then Problem (OPT2) can be solved

by the following unconstrained optimization problem,

max
sn

Ln
(
wn, λn, sn, s−n

)
, (6)

where s−n =
(
s1

k, ..., sn−1
k , sn+1

k , ..., sN
k

)
denotes the PSD of

all users except user n. Further de�ne

Ln
k = (1 − λn)

(
wnbn

k + (1 − wn) b̃n
k

)
− λnsn

k , (7)

then it is clear that Ln can be decomposed into a sum across

tones of Ln
k , Ln =

∑
k Ln

k . As a result, Problem (6) can be

decomposed into K subproblems, one for each tone k. The
optimal PSD that maximizes Ln

k is

sn,S1
k = arg max

sn
k∈[0,P n]

Ln
k

(
wn, λn, sn

k , s−n
k

)
, (8)

3Recent results in [12] show that the duality gap is already approximately
zero when there are only 8 tones, and the actual number of tones in the current
DSL standards is 2 to 3 orders of magnitude larger.

Algorithm 1 ASB Synchronous Version 1 (ASB-S1)

1: Initialize PSDs: sn
k ← Pn/K,∀n ∈ N , k ∈ K.

2: repeat

3: for all user n ∈ N do

4: Initialize wn
min = 0, wn

max = 1
5: while |

∑
k bn

k − Rn,target| > ε do

6: wn = (wn
min + wn

max) /2
7: Initialize λn

min = 0, λn
max = 1

8: while |
∑

k sn
k − Pn| > ε do

9: λn = (λn
min + λn

max) /2
10: sn

k ← arg maxsn′
k ∈[0,P n] L

n
k ,∀k ∈ K.

11: if
∑

k sn
k > Pn then

12: λn
min = λn

13: else

14: λn
max = λn

15: end if

16: end while

17: if
∑

k bn
k > Rn,target then

18: wn
max = wn

19: else

20: wn
min = wn

21: end if

22: end while

23: end for

24: until all users' PSDs converge

where s−n
k =

(
s1

k, ..., sn−1
k , sn+1

k , ..., sN
k

)
. Although Ln

k is

nonconvex in sn
k , the maximization is over a scalar variable

only, and the optimal value sn,S1
k can be easily found as

follows. First solve the �rst order condition, ∂Ln
k/∂sn

k = 0,
which is equivalent to

(1 − λn) wn

sn,I
k +

∑
m6=n αn,m

k sm
k + σn

k

− (1 − λn) (1 − wn) α̃n
k s̃k(

s̃k + α̃n
ksn,I

k + σ̃k

)(
α̃n

ksn,I
k + σ̃k

) − λn = 0. (9)

Equation (9) can be simpli�ed into a cubic equation which has

three roots that can be written in close form. Then comparing

the value of Ln
k at each of these three roots, as well as checking

the boundary solutions sn
k = 0 and sn

k = Pn, we can �nd out

the corresponding value of sn,S1
k .

User n then updates λn to enforce the total power constraint,

and updates wn to enforce the target rate constraint. Both

parameters can be found by a simple bisection search. Users

then iterate until all PSDs converge. The complete ASB-S1

algorithm is given in Algorithm 1.

Remark 1: The ASB algorithm leverages strong design

points from both OSB and IW. Like OSB, ASB uses a

weighted rate-sum to account for the damage done to other

lines within the network when optimizing each line's spectra.

This weighted rate-sum leads to near-optimal performance.

Like IW, ASB uses an iterative approach, optimizing the PSD

of each user in turn.

Remark 2: The concept of a reference line has been em-

ployed extensively in heuristic-based DSM algorithms in the
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industry, including the reference PSD method that is currently

mandated in the VDSL standards [13]�[15]. The reference

PSD method speci�es that the received PSD of a modem

must match the so-called �reference PSD�. In VDSL standard,

different reference PSDs are de�ned for different transmission

bands (e.g., two bands in VDSL1 and three bands in VDSL2).

The referenced PSD is de�ned as the received PSD of a

�typical line� that would be operating in each particular band.

The length of this typical line determines its channel attenua-

tion, and the corresponding received PSD. The reference PSD

method is used in upstream VDSL transmissions to mitigate

the near-far problem. A similar technique has also been recom-

mended for downstream transmissions in order to protect ex-

isting ADSL services from RT distributed VDSL [16]. While

in industry standards the use of a reference line was motivated

by engineering intuitions and ad hoc developments, here we

apply the concept of the reference line from a theoretical

foundation. We formulate Problems (OPT1) and (OPT2) based

on the reference line idea, and solve the problems based on

dual decomposition techniques and optimization theory. This

leads to the near-optimal performance of the ASB algorithm.

For example, in a two-user network, if the reference line is

set to the longest line in the network, the ASB algorithm

achieves a performance similar as the optimal but centralized

ISB and OSB algorithms. Simulations in Section VII show

that the performance of the ASB algorithm is insensitive to

inaccuracies or variations in the choice of the reference line

parameters.

Remark 3: In considering only a single reference line,

the ASB algorithm makes an implicit assumption that, by

protecting the weakest line in the binder, a user will indirectly

protect other shorter lines (i.e., stronger lines). The ASB

algorithm could be extended in a straightforward way to

include multiple reference lines, which does not impact the

convergence properties and only leads to a small increase in

complexity. For each extra reference line introduced into ASB,

an extra local maxima will appear in the optimization of (8).

ASB algorithm evaluates the objective function at each local

maxima and chooses the global maximum. As the frequency

increases, we observe that the global optimal solution chosen

by the ASB algorithm jumps from a lower local optimal solu-

tion to a higher one. This is because, as frequency increases,

the longest reference lines becomes inactive due to weak

direct channel in the high frequency band, thus it is no longer

necessary to protect this line. A higher PSD is then chosen

that corresponds to a higher local optima. This new PSD

will protect the second longest reference line, which is now

the weakest line in the system for that particular frequency.

When there are M reference lines, the ASB objective function

exhibits up to M +1 local maxima. The �rst M local maxima

correspond to protecting each of the reference lines, while the

(M +1)st local maxima corresponds to the completely sel�sh

water�lling solution, which is employed in the very highest

frequencies when all reference lines have switched off due to

weak direct channels. To simplify presentation, in this paper

we only focus on the approach of using a single reference line.

V. ASB ALGORITHMS IN ASYNCHRONOUS TRANSMISSION

In this section, we propose ASB algorithm for the asyn-

chronous case, where the achievable bit rates of user n
and the reference line (from user n's perspective) are given

by (2) and (5). In this case, Problem (OPT2) is still non-

convex and highly coupled due to crosstalk. Different from

the synchronous case, a dual-based decomposition is not

even applicable here since the PSD across different tones are

coupled due to ICI.

We will introduce a greedy power shuf�e algorithm into

the ASB framework, where each user n �rst initializes the

PSD level by solving Problem (OPT2) assuming synchronous

transmission (i.e., temporarily ignoring the ICI), then shuf�e

its PSD sn (i.e., subtract a small amount from one tone and add

it back to another tone) to reach a locally optimal solution of

Problem (OPT2). Each user takes turns to perform this power

shuf�ing until the PSDs converge.

Let's denote the objective function of Problem (OPT2) as

Jn (sn) = wn
∑

k

bn
k

(
sk

n

)
+ (1 − wn)

∑
k

b̃n
k (sn) .

For notational simplicity, we ignore the dependence of Jn

on s−n (which is assumed to be �xed during user n's PSD

optimization). Now, de�ne 4s as the incremental amount of

power a user can change on a tone at a time. In other words,

4s de�nes the granularity of the power shuf�e, which trades

off performance and convergence speed.

For each user n with �xed wn, each search iteration consists

of two phases: subtraction phase and addition phase. In the

subtraction phase, user n reduces its PSD by 4s on the tone

that yields the maximum increase in Jn (sn) (or the smallest

decrease if decreasing 4s on any tone leads to a decreased

objective). In the addition phase, user n increases its PSD by

4s on the tone that yields the maximum increase in Jn (sn)
(or smallest decrease similar as in the subtraction phase). This

iteration repeats until the net change of Jn (sn) in the last

iteration (i.e., the sum of changes in both phases) is zero.

Note that the net change of objective function will never be

negative in a single iteration, since in the addition phase a

user can always add 4s back to the same tone chosen in the

subtraction phase and recover the PSD level as in the previous

iteration.

The complete ASB-A1 algorithm is given in Algorithm 2.

Line 7 computes user n's PSD similar as in the synchronous

case, given �xed transmission PSDs of other users, s−n. Lines

8 to 10 re�ne the value of sn several times by taking ICI

into explicit consideration. For each value of granularity 4s,
we apply the Power Shuf�e (PS) subroutine (Algorithm 3) to

update sn until convergence is reached, which occurs once

no further greedy power swap can increase the objective. In a

similar fashion to the barrier method [17], we use the optimal

solution from the previous re�nement as the initial position in

the current re�nement. By using diminishing values of 4s, we
achieve a much faster convergence rate and higher accuracy

than can be achieved with a single PSD granularity. Finally,

user n updates wn in lines 11 to 15 using bisection search to

make the target rate constraint tight.



SUBMITTED TO IEEE TRANSACTIONS ON SIGNAL PROCESSING, SEPTEMBER 1, 2006 7

Algorithm 2 ASB Asynchronous version 1 (ASB-A1)

1: Initialize PSDs: sn
k ← Pn/K, ∀n ∈ N , k ∈ K.

2: repeat

3: for all user n ∈ N do

4: Initialize wn
min = 0, wn

max = 1
5: while |

∑
k bn

k − Rn,target| > ε do

6: wn = (wn
min + wn

max) /2
7: Compute sn as Lines 7 to 16 in ASB-S1

8: for all 4s = 0,−1, ...,−100dBm/Hz do

9: sn ← PS (n,wn, sn, s−n,4s) .
10: end for

11: if
∑

k bn
k > Rn,target then

12: wn
max = wn

13: else

14: wn
min = wn

15: end if

16: end while

17: end for

18: until all users' PSDs converge

Algorithm 3 Power Shuf�e (PS) subroutine

1: procedure PS(n,wn, sn, s−n,4s)
2: repeat

3: Kpos
n ← {k : sn

k ≥ 4s} .
4: for all k′ ∈ Kpos

n do

5: s̃n ← sn

6: s̃n
k ← s̃n

k −4s
7: 4Jn

− (k′) ← Jn (s̃n) − Jn (sn)
8: end for

9: kopt
− = arg maxk′ 4Jn

− (k′)
10: sn

kopt

−
← sn

kopt

−
−4s

11: for all k′ ∈ K do

12: s̃n ← sn

13: s̃n
k ← s̃n

k + 4s
14: 4Jn

+ (k′) ← Jn (s̃n) − Jn (sn)
15: end for

16: kopt
a = arg maxk′ 4Jn

+ (k′)
17: sn

kopt

+
← sn

kopt

+
+ 4s

18: 4Jn = 4Jn
−

(
kopt
−

)
+ 4Jn

+

(
kopt
+

)
19: until 4Jn = 0
20: return sn

21: end procedure

The PS subroutine is speci�ed in Algorithm 3. Line 3 �nds

the set of tones on which a decrease of PSD will not lead to

a negative PSD. Lines 4 to 10 perform the subtraction phase,

and lines 11 to 17 perform the addition phase. Since the value

of Jn (sn) increases in each iteration and is upper-bounded,

it must converge. Therefore, it is clear that the following is

true:

Proposition 1: The PS subroutine always converges.

The convergence of the ASB-A1 algorithm is dif�cult to show

in general, due to the nonconvexity of Problem (OPT2) and

the fact that the PS subroutine can only reach a local optimal

solution. In our simulation, however, the ASB-A1 algorithm

always converges.

Remark 4: At the end of each iteration of the PS subroutine,

the power constraint of user n is always tight. This is because

we take 4s away from one tone in the subtraction phase, and

put it back to one tone in the addition phase. Thus the resource

is always fully utilized and no power violation occurs. This is

different from the bit-addition and bit-subtraction algorithms

in [9], where the power constraints are either loose or violated

during the whole process of the algorithm before convergence.

Remark 5: Each user n always achieves a better objective

Jn (sn) at the end of the PS subroutine, compared with the one

achieved by using ASB-S1 algorithm before the PS subroutine.

This is due to the monotonic increase of Jn (sn) during the

iterations of the subroutine.

VI. CONVERGENCE ANALYSIS

In this section we prove convergence for various versions

of ASB. We will only consider the rate adaptive (RA) mode,

where users �x their weights w and aim at maximizing their

rates under a total power constraint [11].4 We notice that

all previous DSL literature (e.g., [4]�[10]) also focus on the

RA mode when discussing convergence.It is worth noting that

extensive simulations show that all algorithms proposed in this

paper always converge, even when w adapts to enforce target

rate constraints.

We �rst discuss the convergence of ASB-S1 in a two-user

case. The convergence of ASB-A1 has been brie�y mentioned

in Proposition 1 for PS subroutine. We then consider the high

Signal-to-Noise-Ratio (SNR) regime for the reference line,

under which we prove stronger convergence results in both

synchronous and asynchronous cases.

A. Convergence of ASB-S1 Algorithm

Here we discuss the convergence of ASB-S1 algorithm,

where the nonconvexity of (9) makes it dif�cult to prove

the convergence. In the two-user case, we can still show the

following.

Theorem 1: Consider a two-user system with �xed w and

λ. There exists at least one �xed point of ASB-S1, and the

algorithm converges if users start from initial PSD values(
s1

k, s2
k

)
=

(
0, P 2

)
or

(
s1

k, s2
k

)
=

(
P 1, 0

)
on all tones.

The proof of Theorem 1 uses supermodular game theory [18]

and strategy transformation similar to [19], and is omitted

here due to space limitation. Supermodular game theory can

be used to deal effectively with nonconvexity problems, and

the convergence result in Theorem 1 does not require any

condition on the crosstalk channels. However, it is only for

the case of �xed λ, and users have to initialize their PSD at

particular values.

B. Convergence under High SNR Regime of the Reference Line

To reduce the computation complexity and gain more insight

into the solution structure, we simplify the problem under high

SNR approximation of the reference line as shown below.

4The second main category of the spectrum balancing operation is Fixed
Margin (FM) mode, where users try to minimize their power consumption
under a minimum target rate constraint.
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1) Synchronous Transmission Case: The reference line rate

can be written as a linear function of the transmission power

of user n under additional assumptions. First, from (4) we

know that the reference line's rate b̃n
k is a decreasing and

concave function in user n's transmission power sn
k , and we

can approximate b̃n
k with the following linear lower bound:

b̃n
k (sn

k ) ≈ b̃n
k (0) +

∂b̃n
k (sn

k )
∂sn

k

∣∣∣∣∣
sn

k =0

· sn
k

= log
(

1 +
s̃k

σ̃k

)
− α̃n

k

σ̃k

s̃k

s̃k + σ̃k
sn

k . (10)

In other words, this gives the upperbound on the rate loss of

the reference line due to the interference from user n. Second,
if we assume that the reference line operates in the high SNR

regime whenever it is active, i.e., if s̃k > 0 then s̃k À σ̃k,

then (10) can be further simpli�ed as

b̃n
k (sn

k ) ≈
(

log
(

s̃k

σ̃k

)
− α̃n

ksn
k

σ̃k

)
1{s̃k>0}, (11)

where 1{A} is the indictor function and equals to one when
event A is true. Under (11), Problem (OPT2) becomes a con-
vex optimization problem. Especially, user n's maximization
objective function on tone k in (7) is approximated by

Ln
k

�
wn, λn, sn

k , s−n
k

�
= (1 − λn)

�
wnbn

k − (1 − wn) α̃n
ksn

k

σ̃k
1{s̃k>0}

�

− λnsn
k + (1 − λn) (1 − wn) log

�
s̃k

σ̃k

�
1{s̃k>0},

thus the corresponding optimal PSD can be found in close
form as

sn
k

�
wn, λn, s−n

k

�
=

2
4 wn (1 − λn)

λn + (1 − wn) (1 − λn)
α̃n

k
σ̃k

1{s̃k>0}
−
X
m6=n

αn,m
k sm

k − σn
k

3
5

+

,

(12)

where [x]+ = max{x, 0}. This is a water-�lling type of

solution, with different water-�lling levels for different tones.

We name it frequency selective water�lling. Solution (12) is

intuitively satisfying. The PSD for user n should be smaller

when the power constraint is tighter (i.e., λn is larger), or

the crosstalk channel to the reference line α̃n
k is higher, or

the noise level on the reference line σ̃k is smaller, or there

is more interference plus noise
∑

m6=n αn,m
k sm

k + σn
k on the

current tone.

This leads to a second version of the ASB algorithm in the

synchronous case, ASB-S2 algorithm as shown in Algorithm

4.

The ASB-S2 algorithm turns out to be a special case of the

ASB-A2 introduced next for the asynchronous case, of which

the convergence results will be presented in Sect. VI-B.3.

2) Asynchronous Transmission Case: Due to the coupling

induced by ICI, it is very dif�cult to �nd the global optimal

solution of Problem (OPT2) in the asynchronous case. How-

ever, if we also assume high SINR regime on the reference

Algorithm 4 ASB-S2: ASB-S1 under high SNR regime

1: Replace Line 10 in Algorithm 1 with

sn
k ←

[
wn (1 − λn)

λn + (1 − wn) (1 − λn) α̃n
k

σ̃k
1{s̃k>0}

−
∑
m6=n

αn,m
k sm

k − σn
k

+

.

Algorithm 5 ASB-A2: ASB-A1 under high SNR regime

1: Replace Line 10 in Algorithm 1 with

sn
k ←

 wn (1 − λn)

λn + (1 − λn) (1 − wn) α̃n
k

∑
j

γ(j−k)
σ̃j

1{s̃j>0}

−
∑
m6=n

∑
j

γ (k − j)αn,m
j sm

j

 − σn
k

+

.

line as in the synchronous case, we have

b̃n
k = log

(
1 +

s̃k∑K
j=1 γ (k − j) α̃n

j sn
j + σ̃k

)

≈
(

log
(

s̃k

σ̃k

)
−

∑
j γ (k − j) α̃n

j sn
j

σ̃k

)
1{s̃k>0}.

Similarly, Problem (OPT2) becomes not only convex but also

with a objective function that is separable across tones., i.e.,

Jn (sn) =
∑

k

wnbn
k − (1 − wn) α̃n

k

∑
j

γ (j − k)
σ̃j

1{s̃j>0}s
n
k


+ (1 − wn)

∑
k

log
(

s̃k

σ̃k

)
1{s̃k>0},

and the corresponding optimal PSD that solves Problem

(OPT2) is given as

sn
k

(
wn, λn, s−n

)
=

 wn (1 − λn)

λn + (1 − λn) (1 − wn) α̃n
k

∑
j

γ(j−k)
σ̃j

1{s̃j>0}

−
∑
m6=n

∑
j

γ (k − j)αn,m
j sm

j

 − σn
k

+

, (13)

where λn is chosen to make the total power constraint tight,∑
k sn

k = Pn. This is a generalization of the frequency

selective water�lling solution of ASB-S2. The complete ASB-

A2 algorithm is given in Algorithm 5.

3) Convergence of Algorithms ASB-S2/A2: We �rst con-

sider the convergence in a two-user case where users sequen-

tially optimize their PSD levels.

Theorem 2: The ASB-A2 algorithm globally converges to

the unique �xed point in a two-user system under �xed w, if

maxk α1,2
k maxk α2,1

k < 1/ (
∑

k γ (k))2 .
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Proof of Theorem 2 is given in Appendix A. The key idea

behind the proof is that the ASB-A2 algorithm leads to a

contraction mapping in the PSD updates, when the maximum

product of the crosstalk channel gains is small enough. One

extreme case is in a practical CO/RT mixed deployment

case, where the crosstalk from CO to RT is negligible (i.e.,

maxk

{
α1,2

k

}
maxk

{
α2,1

k

}
¿ 1). We note that the value

of
∑

k γ (k) is around 1.66 for a wide range of K (i.e.,

32 ≤ K ≤ 4096).
It is straightforward to show the following result for ASB-

S2.

Corollary 1: The ASB-S2 algorithm globally and geometri-

cally converges to the unique �xed point in a two-user system

under �xed w, if maxk α2,1
k maxk α1,2

k < 1.

Corollary 1 recovers the convergence results for iterative

water-�lling in the two-user case [4] as a special case (by

letting the reference line to be inactive).

We further extend the convergence results to a system with

an arbitrary N > 2 of users. We consider both sequential and

parallel PSD updates of the users. In the more realistic but

harder-to-analyze parallel updates, time is divided into slots,

and each user n updates its PSD simultaneously with other

users in each time slot according to (13) based on the PSDs

from the previous time slot, and the λn is adjusted such that

the power constraint is tight.

Theorem 3: Assume maxm6=n,k αn,m
k < 1

(N−1)
P

k γ(k) ,

then the ASB-A2 algorithm globally and geometrically con-

verges to the unique �xed point in an N -user system under

�xed w, with either sequential or parallel updates.

Proof of Theorem 3 is given in Appendix B. For ASB-S2

algorithm, we have

Corollary 2: If maxm6=n,k αn,m
k < 1

N−1 , then the ASB-S2

algorithm globally and geometrically converges to the unique

�xed point in an N -user system under �xed w, with either

sequential or parallel updates.

Corollary 2 recovers the convergence results for iterative

water-�lling in an N -user case with sequential updates (proved

in [10]) as a special case. Interestingly, the convergence proof

for the parallel updates turns out to be simpler than that for

sequential updates.

4) Physical Meaning of Convergence Conditions: The con-

vergence conditions in Theorems 2 and 3 and Corollaries 1

and 2 can be translated into constraints on the DSL network

topologies. In downstream ADSL, the constraint can be trans-

lated into the maximum distance between the transmitters of

RT and the CO, which limits the degree of crosstalk the RT

transmitter can generate to CO receiver. In upstream VDSL,

this means that lines cannot have lengths that are too different

from one another, otherwise the near-far effect from the short

lines into the long lines will cause severe crosstalk.

To make the physical meaning more concrete, let us con-

sider a detailed DSL channel model that relates the channel

gain to the network topology. The direct channel can be mod-

eled hn,n
k = e−βkd, where βk is the line propagation constant,

which depends on tone index k, and d is the line length.

The value of βk is well understood, and very accurate models

exist based on frequency, and the line diameter, construction,

l (For TX m to RX n)

lcoupling

crosstalkl (For TX n to RX m)

lcort

TX m RX m

TX n RX n

crosstalk

Fig. 2. Physical parameters of the DSL network
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Fig. 3. Convergence conditions always satis�ed in the two-user case since

maxk αCO,RT
k maxk αRT,CO

k < −2.2dB.

materials, etc. The crosstalk channel, on the other hand, is

not as well understood. However, worst 1% case models for

the crosstalk channel have been developed, with which we

can develop bounds that will guarantee convergence in 99%
of lines. To be speci�c, the channel gain from transmitter m
to receiver n in the worst 1% case crosstalk model is ( [13],

[14]) hn,m
k = Kfextlcouplingfke−βklcrosstalk . Here constant

Kfext = 10−45/20, lcoupling is the length (in km) over which

line m and n come into close contact and electromagnetic

coupling can occur, fk is the frequency on tone k (in MHz),

and lcrosstalk is the distance from the transmitter of m to

the receiver of line n (in km). An graphic illustration of the

notations is shown in Fig. 2.

The convergence conditions for ASB-S2/A2 are based on

normalized channel gains αn,m
k = hn,m

k /hn,n
k . First con-

sider the 2 user downstream ADSL case. For the channel

from the CO TX to the RT RX, lcrosstalk = lcort + lrt,

where lcort is the length from the CO TX to the RT TX,

and lrt is the length of the RT line. In this case, we

have αRT,CO
k = Kfextlcouplingfke−βk(lcort+lrt)/e−βklrt =

Kfextlcouplingfke−βklcort . For ADSL, the maximum deploy-

ment length is typically 5 km, so we can use this to

bound lcoupling ≤ 5km−lcort, i.e., αRT,CO
k ≤ Kfext(5 −
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lcort)fke−βklcort . For any particular value of lcort, the up-

perbound of αRT,CO
k can be maximized across k, which is

typically achieved at k = 256 which corresponds to the highest

frequency at 1.1 MHz (i.e., interference is most severe on high

frequencies). Next, consider the channel from the RT into the

CO, αCO,RT
k = Kfextlcouplingfke−βk(lco−lcort)/e−βklco =

Kfextlcouplingfkeβklcort , where lcouping = lco − lcort ≤
5 − lcort. We can again maximize αCO,RT

k across k (up to

1.1 MHz) for any particular value of lcort. To satisfy the con-

vergence conditions in Theorem 2 and Corollary 1, we need to

�nd lcort such that maxk αCO,RT
k maxk αRT,CO

k < 1 = 0dB

in the synchronous case and maxk αCO,RT
k maxk αRT,CO

k <

1/ (
∑

k γ (k))2 ≈ 1
1.66 = −2.2dB in the asynchronous case.

It turns out that all values of lcort ∈ [0, 5] km satisfy the

convergence conditions as shown in Fig. 3, which means ASB-

S2/A2 always converge in the 2-user case for all deployment

scenarios.

Similarly we can translate the convergence conditions in

the N user case into the constraint on the maximum distance

between the CO TX and RT TX. For example, for a network

with 5 users, we need to have lcort < 1225 m in the

synchronous case and lcort < 1009 m in the asynchronous case

to satisfy the convergence conditions. We want to emphasize

that the suf�cient conditions for convergence can be loose, and

in practice the ASB algorithms always converge.

VII. SIMULATION RESULTS

In this section, we show the performance of the ASB

algorithms, using a realistic simulator based on semi-empirical

channel models developed in standards and used extensively in

the industry [13]�[15]. We only simulate the performances of

the ASB-S1 and ASB-A1 algorithms, which do not involve any

high SNR assumptions. These two algorithms always converge

in our extensive simulations.

A. Synchronous Transmission Case

Here we summarize a typical numerical example, rep-

resentative of many experiments we tried, comparing the

performance of the ASB-S1 algorithms with IW, OSB, and

ISB in the synchronous transmission case. A four-user mixed

CO/RT scenario has been selected to make a comparison with

the highly complex OSB algorithm possible. As depicted in

Fig. 4, user 1 is CO line, while the other three users are RT

lines. ANSI noise model A [20] has been used, which consists

of 16 ISDN, 4 HDSL and 10 conventional (non-DSM capable)

ADSL disturbers.

Due to the different distances among the corresponding

transmitters and receivers, the RT lines generate strong in-

terferences into the CO line, while experiencing very little

crosstalk from the CO line. The target rates of users 2 and 3
have both been set to 2 Mbps. User 4 changes its target rate

from 0 to 8 Mbps, and user 1 (the CO line) does not have a

target rate constraint and always sets its weight coef�cient wco

equal to unity in ASB-S1 (i.e., maximizes its own rate without

protecting the reference line). The reference line is chosen to

match the longest line in the network (i.e., the CO line) in

terms of background noise and crosstalk channel gains with

CPCO

User 3

User 2

User 4

User 1
5Km

2Km

3Km

4Km 3Km

3.5Km

4Km

RT

RT

CP
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Fig. 4. A four-user mixed CO/RT deployment topology.
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Fig. 5. Rate regions obtained by various DSM algorithms

users in the network. The reference PSD is chosen according to

single-user water�lling without considering the interferences

from other users. Based on this reference line de�nition, we

get the rate regions shown in Fig. 5.5 We can see that ASB

achieves a near-optimal performance, almost identical to rate

regions attained by the globally optimal OSB and ISB, and

signi�cant gains over IW. As a typical example, with a target

rate of 1 Mbps on user 1, the rate on user 4 reaches 7.3 Mbps

under ASB algorithm, which is a 143% increase compared

with the 3 Mbps achieved by IW.

Compared with IW, ASB exploits the special structure of

the DSL channel and thus achieves much better performance.

Since the direct channel gets worse with increasing frequency

and length, long lines cannot effectively utilize high frequen-

cies. Crosstalk channel strength, on the other hand, increases

with frequency. In the ASB algorithm, the RT lines transmit

with high power in the low frequencies where there is little

crosstalk, reduce power in the middle frequencies to protect

the reference line, and switch to high power again in the

high frequencies where reference line is not active. In the IW

algorithm, however, the power allocation is as follows (using

the notations in this paper):

sn
k =

wn (1 − λn)
λn

−
∑
m6=n

αn,m
k sm

k − σn
k

+

,

where the adjustable part
wn(1−λn)

λn is the same on all frequen-

cies. User n �rst adjusts λn such that its total power constraint

5Note that only ASB uses the reference lien idea.
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is tight. If the achieved rate Rn is larger than the target rate

Rn,target, it performs equal power-backoff at all frequencies

(i.e., increase the value of λn), which unnecessarily reduce

the power at the very low (where little crosstalk is generated

to the CO line) and high frequencies (where the CO line is

inactive). As a result, the IW algorithm leads to highly sub-

optimal performance, especially in near-far scenarios. As an

example, we plot the PSD allocations under the ASB, IW and

ISB/OSB algorithms in Fig. 6, with the achievable rates of

four users as R1 = 1Mbps, R2 = R3 = 2Mbps, R4 = 3Mbps

for IW and 7.3Mbps for ASB-A1/ISB/OSB.

We also simulate the ASB and IW algorithms in a network

with 10 lines, with the line length equal to 5km for the CO

line, and 4.5 km, 4.1875 km, . . . , 2 km for the RTs. The RTs

are located 2, 2.25, . . . , 4 km from the CO. The target rate for

the CO modem was speci�ed as 1.6 Mbps. With this in mind,

the target rates for the RT modems, which are set equally on all

RTs, are reduced until the CO modem achieves its target rate.

With IW, the RTs are forced to reduce their rates to 0.8 Mbps

in order for the CO to achieve it's target. With ASB, due to

the more intelligent allocation of the RT transmit spectra, the

RTs can maintain a rate of 2.0 Mbps while still ensuring that

the CO modem achieve 1.6 Mbps. ASB algorithm achieves a

gain of 122% in RT rate with respect to IW.

B. Asynchronous Transmission Case

Now consider the case of asynchronous transmission. Here

we summarize a typical numerical example comparing the

performances of ASB-A1 algorithm with ASB-S1 algorithm.

As depicted in Fig. 7, the scenario consists of downstream

transmission with two ADSL modems, one 5 km CO line, and

one 3 km RT line. The RT TX is deployed 4 km downstream

from the CO TX.

Figs. 9 and 8 show an example of the PSDs generated by

ASB-A1 and ASB-S1. The target rate for the RT is set to

3.85 Mbps. Using ASB-S1, which does not take the effects of

the ICI into account when optimizing the transmit spectra, the

CO achieves 1.3 Mbps. Using ASB-A1, the CO rate increases

to 1.6 Mbps. With ASB-A1, the transmit power is shifted

further into the high-frequencies to prevent excessive ICI to

the CO line. Also, since the ICI creates an unavoidable �noise�

�oor of at around -90 dBm/Hz, it is possible to increase the

transmit PSD between 340 KHz and 680 KHz with minimal

degradation to the CO line.

Fig. 10 shows the increase in performance relative to IW

achieved by ASB-S1 and ASB-A1 respectively in an asyn-

chronous environment. As we see, even when the modems

are not synchronized, ASB-S1 achieves signi�cant gains over

IW. Furthermore, if the transmit spectra are further re�ned

through the application of ASB-A1, even further performance

gains are possible. For example, if the CO rate is set at 1.4

Mbps, applying ASB-S1 increases the RT rate by 48% over

IW. Applying ASB-A1 leads to a further increase in the RT

rate of 186%, leading to a total gain of 234% over IW.

C. Sensitivity Analysis of the Reference Line Choices

In all previous simulation examples, we choose the ref-

erence line to match the longest line in the network. Here

(a) ASB-S1

(b) IW

(c) ISB/OSB

Fig. 6. Transmit spectra with synchronous transmission
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Fig. 7. Mixed CO/RT distribution

Fig. 8. Transmit spectra with asynchronous transmission: ASB-S1

Fig. 9. Transmit spectra with asynchronous transmission: ASB-A1
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Fig. 10. Performance gains of ASB-S1 and ASB-A1 over IW under
asynchronous transmission

we study the sensitivity of the performance to the choice

of reference line length. We run simulations in a two user

scenario as in Fig. 7, and modems operate synchronously. We

vary the reference line length from 4010m up to 6000m to

examine the effect on rate region.

Fig. 11 shows the achievable rate regions with the dif-

ferent reference line length. Obviously, optimal performance

is achieved by setting the reference length to 5000 m, the

length of the weaker CO distributed line. We notice that

the performance is relatively insensitive to the choice of the

reference line length, especially during the range of 4050 m

to 6000 m. Only when the reference line becomes extremely

inaccurate (i.e., around 4020 m or less), which seldom happens

in practice, performance starts to degrade rapidly. This is

because with a 4020 m reference line, the ASB algorithm

assumes that the RT TX is located only 20 m from the

reference line RX (recall that the RT RX is actually 4000 m

from the CO RX). This will lead to a huge crosstalk channel

from RT to the reference line, and the RT is forced to reduce

power in the entire frequency band within which the CO

transmits. Overall speaking, it is seen that, except in extreme

cases, ASB performs well for a broad range of choices of the

reference line length.

VIII. COMPLEXITY ANALYSIS

Here we compare the complexity of ASB-S1 algorithm

with the IW algorithm, which is summarized in Table II.6

Running time is measured based on the results of Matlab

programs running on an MS-windows machine with a P4-

2.8 GHz processor. Real time operations based on hardware

implementation would be several orders of magnitude faster.

The example we simulated includes a total of K = 256 tones

and N = 2 lines. Cycles till convergence is number of outer-

cycles required through all of the users before convergence

occurs. We typically see that only three outer-cycles are

6The complexity result of ASB-A1 algorithm is given in Table I, and the
corresponding analysis details are omitted due to space limitation.
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TABLE II

ALGORITHM COMPLEXITY

Algorithm Complexity Cycles till Operations Running Time
Order conv. (v) per cycle (secs)

IW O (NK) 3 238NK 0.01
ASB-S1 O (NK) 3 50864NK 0.09

necessary for the rates to converge within 1% of the previous

cycle.

A. Complexity Analysis for IW

Iterative water�lling consists of an outer cycle that iterates

through users, and an inner loop that adjusts the total power

of the current user until the target rate is achieved. For each

user n, we use a bisection on λn within the inner loop, which

is both ef�cient and robust. In the inner loop, each user needs

to �nd the power required to hit its target rate constraint.

Typically achieving a precision of 10−10 in the total power

setting is suf�cient to hit the target rate with high accuracy.

This requires log2

(
1/

(
10−10

))
= 34 iterations of bisection

search.

For each iteration within the inner loop under a �xed value

of λn, a standard water�lling algorithm must be applied with

the following complexity:7

1) Find the optimal water level such that the total power

constraint is satis�ed and allocated power is positive on

all active tones: 3K operations [21].

2) Calculate sn
k based on the optimal water level: K

operations.

3) Calculate corresponding integer bitloading: 3K opera-

tions.

Hence the total complexity of a single water�lling is 7K
operations, where one operation is either an addition or a

7Also, the inverse Channel-Signal-to-Noise-Ratio (CSNR) must be calcu-
lated, and the tones sorted according to the CSNR. However this only needs
to be done once for each outer cycle, and can be re-used for all inner-loop
iterations. Hence this has minimal impact on complexity.

multiplication. Considering the 34 iterations of the bisection

search, the iteration through all of the users, and the iteration

of the whole process until convergence, the total complexity

of IW is then: v ∗ N ∗ 34 ∗ 7K = 238vNK, where v is the

number of cycles required until convergence.

B. Complexity Analysis for ASB-S1

ASB-S1 consists of three levels of iterations, with the

outmost cycle iterating through users. Within each cycle, each

users runs an outer loop where it updates wn until the target

rate is achieved, and an inner loop where tit updates λn until

the total power constraint is satis�ed. The bisection search is

used in both loops. To achieve a precision of 10−10 in both wn

and λn, we need a total of 342 = 1156 iterations. Within each

iteration, the complexity is dominated by �nding the roots of a

cubic equation (e.g., solving (9)), which requires 44 operations

in total [22]. This has to be repeated on all tones, leading

to a total complexity of 44K. Hence the total complexity of

ASB-S1 is v ∗ N ∗ 1156 ∗ 44K = 50864vNK. High SNR

approximation would further reduce the operations count.

It is important to realize that the order of complexity for

ASB is the same as IW: O(NK), and the actual running time

of ASB is still well within the bounds for practical implemen-

tation. This implementation viability is in sharp contrast to the

higher complexity order and centralized schemes of OSB and

ISB, which do not offer much rate region gains over ASB.

IX. CONCLUSIONS

This paper presents the Autonomous Spectrum Balancing

(ASB) algorithm, the �rst suite of DSM methods that is

simultaneously low complexity, completely autonomous, prov-

ably convergent under certain conditions, and achieving close-

to-optimal performance in DSL systems. It achieves large

performance gain over the state-of-art autonomous algorithm

IW, and close-to-optimal performance (established by the

centralized OSB algorithm) in a wide range of scenarios. The

convergence of ASB is proven for an arbitrary number of users

and under channel conditions that are typically satis�ed in

DSL deployments. In particular, ASB includes IW as a special

case, thus the convergence proof of our algorithm extends and

generalizes the convergence proof of IW. ASB can improve

system performance in both synchronous and asynchronous

transmission case, where the latter is a particularly under-

explored research area where only limited, high-complexity

heuristics were available.

The key concept that enables ASB to successfully tackle the

nonconvex and coupled optimization problem is the reference

line, which allows each user to optimize its transmit spectra to

achieves its own target rate while minimizing the degradation

caused to other users in the frequency-selective interference

channel of DSL. ASB applies this approach of �static pricing�

coordination in a rigorous manner with provable theoretical

properties, leading to signi�cantly enlarged rate region com-

pared with IW. This �reference line� idea can be readily

implemented using existing DSM/PBO techniques mandated

by DSL standards. Since good choices for reference lines have

been made in standards, we can readily apply these in our
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algorithms. Although we have focused mainly on ADSL in

this paper, ASB is also applicable in VDSL systems and lead

to signi�cant performance gains as well.
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APPENDIX

A. Proof of Theorem 2

The following Lemma is useful for proving Theorem 2.

Lemma 1: Consider any non-decreasing function f (x) and
non-increasing function g (x). If there exists a unique x∗

such that f (x∗) = g (x∗) , and the functions f(x) and

g(x) are strictly increasing and strictly decreasing at x = x∗

respectively, then x∗ = arg minx {max{f (x) , g (x)}}.
Proof of Lemma 1: For any ∆x > 0, f (x∗ + ∆x) >
f (x∗) = g (x∗) > g (x∗ + ∆x). Similarly for any ∆x < 0,
f (x∗ + ∆x) < f (x∗) = g (x∗) < g (x∗ + ∆x). It then can

be veri�ed that x∗ = arg minx {max{f (x) , g (x)}} . ¥
Denote sn,t

k as the PSD of user n on tone k after iteration

t, where
∑

k sn,t
k = Pn is satis�ed at the end of any iteration

t for any user n. One iteration is de�ned as one round of

updates of all users. The PSD update in the two-user case can

be written as follows:

sn,t+1
k =

[
wn

(
1 − λn,t+1

)
λn,t+1 + (1 − λn,t+1) (1 − wn)βn

k

−
∑

j

γ (k − j) αn,m
j sm,t

j − σn
k

+

, (14)

where βn
k = α̃n

k

∑
j

γ(j−k)
σ̃j

1{s̃j>0}, n,m ∈ {1, 2}, m 6=
n and ∀k, t, and [x]+ = max (x, 0). Also de�ne [x]− =
max (−x, 0). Without loss of generality, we assume that the

total power constraint is always satis�ed at the end of any

iteration. In general, the total power constraint needs not to

be tight, e.g., when summation of sn
k (which is determined by

(12)) over all tone k is less than the power constraint Pn even

when λn = 0. This might happen in the case where wn is

small enough (i.e., user n's target rate is small). However, we

can make the power constraint tight in this case by de�ning an

extra �virtual tone�. The data rate achieved by user n on the

virtual tone is ε · sn
virtual, where ε is a very small number and

sn
virtual is the PSD allocated to the virtual tone. Furthermore,

the reference line is chosen to be inactive on the virtual tone

(i.e., s̃virtual = 0). Now from the perspective of any actual line,

loading power on the virtual tone has very small yet positive

impact on its own total rate (with very small value ε), and
has no impact on the reference line's rate. Hence the user will

always take any left over power and load onto the virtual tone,

and always operate at full power. Then it is clear that∑
k

[
sn,t

k − sn,t′

k

]+

=
∑

k

[
sn,t

k − sn,t′

k

]−
,∀n, t, t′. (15)

Also de�ne

fn,t (x) =
∑

k

[[
wn (1 − x)

x + (1 − x) (1 − wn) βn
k

−
∑

j

γ (k − j)αn,m
j sm,t

j − σn
k

+

− sn,t
k

−

,



SUBMITTED TO IEEE TRANSACTIONS ON SIGNAL PROCESSING, SEPTEMBER 1, 2006 15

and

gn,t (x) =
∑

k

[[
wn (1 − x)

x + (1 − x) (1 − wn)βn
k

−
∑

j

γ (k − j) αn,m
j sm,t

j − σn
k

+

− sn,t
k

+

,

where n, m ∈ {1, 2}, m 6= n and ∀k, t. It is clear that fn,t (x)
(gn,t (x) , respectively) is non-decreasing (non-increasing) in

x, and strictly increasing (strictly decreasing) at x = λn,t+1

(unless fn,t
(
λn,t+1

)
= gn,t

(
λn,t+1

)
= 0, which means the

PSD converges). From (15) we always have fn,t
(
λn,t+1

)
=

gn,t
(
λn,t+1

)
. Now we can show that

max

{∑
k

[
s1,t+1

k − s1,t
k

]+

,
∑

k

[
s1,t+1

k − s1,t
k

]−}
=max

{
f1,t

(
λ1,t+1

)
, g1,t

(
λ1,t+1

)}
(16)

≤max
{
f1,t

(
λ1,t

)
, g1,t

(
λ1,t

)}
(17)

≤max

∑
k

∑
j

γ (k − j) α1,2
j

(
s2,t

j − s2,t−1
j

)+

,

∑
k

∑
j

γ (k − j) α1,2
j

(
s2,t

j − s2,t−1
j

)− (18)

=max

∑
j

[∑
k

γ (j − k) α1,2
k

(
s2,t

k − s2,t−1
k

)]+

,

∑
j

[∑
k

γ (j − k) α1,2
k

(
s2,t

k − s2,t−1
k

)]−
 (19)

≤max

∑
j

∑
k

γ (j − k) α1,2
k

[
s2,t

k − s2,t−1
k

]+

,

∑
j

∑
k

γ (j − k)α1,2
k

[
s2,t

k − s2,t−1
k

]− (20)

=max

∑
k

α1,2
k

[
s2,t

k − s2,t−1
k

]+ ∑
j

γ (j − k) ,

∑
k

α1,2
k

[
s2,t

k − s2,t−1
k

]− ∑
j

γ (j − k)

 (21)

≤

∑
j

γ (j)

 max
k

{
α1,2

k

}

· max

{∑
k

[
s2,t

k − s2,t−1
k

]+

,
∑

k

[
s2,t

k − s2,t−1
k

]−}
(22)

≤

(∑
k

γ (k)

)2

max
k

{
α1,2

k

}
max

k

{
α2,1

k

}
· max

{∑
k

[
s1,t

k − s1,t−1
k

]+

,
∑

k

[
s1,t

k − s1,t−1
k

]−}
(23)

<max

{∑
k

[
s1,t

k − s1,t−1
k

]+

,
∑

k

[
s1,t

k − s1,t−1
k

]−}
, (24)

where (16) follows from the de�nition of fn,t and gn,t,

(17) follows by using Lemma 1 and letting x = λ1,t, (18)
follows from the de�nition of fn,t and gn,t, the expression

of s1,t
k in (14), and the fact that [x+ − y+]+ ≤ [x − y]+

and [x+ − y+]− ≤ [x − y]− for any x and y, (19) fol-

lows by exchanging indexes k and j, (20) follows by using∑
k [xkyk]+ ≤

∑
k xk [yk]+ for all xk ≥ 0 and yk, (21)

follows by exchanging the summation order of k and j,
(22) follows by using the circulant property of γ (23), i.e.,∑

j γ (j − k) =
∑

j γ (j), (23) by applying the arguments

from (16) to (22) again, and �nally (24) follows by the condi-

tion in Theorem 2. This shows that the ASB-A2 algorithm is a

contraction mapping form an initial PSD values, thus globally

converges to a unique �xed point [23, Page 183]. ¥

B. Proof of Theorem 3

We �rst prove the convergence in the parallel update case.

The PSD of user n in tone k after iteration t + 1 is

sn,t+1
k =

[
wn

(
1 − λn,t+1

)
λn,t+1 + (1 − λn,t+1) (1 − wn)βn

k

−
∑
m6=n

∑
j

γ (k − j) αn,m
j sm,t

j

 − σn
k

+

.
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The rest of the proof can be obtained similar as in Theorem

2 with the following:

max
n

max

{∑
k

[
sn,t+1

k − sn,t
k

]+

,
∑

k

[
sn,t+1

k − sn,t
k

]−}

≤max
n

max

∑
j

 ∑
m6=n

(∑
k

γ (j − k)αn,m
k

(
sm,t

k − sm,t−1
k

))+

,

∑
j

 ∑
m6=n

(∑
k

γ (j − k) αn,m
k

(
sm,t

k − sm,t−1
k

))−
≤max

n
max

{(∑
k

γ (k)

)
(N − 1) max

m6=n,k
αn,m

k

∑
k

[
sm,t

k − sm,t−1
k

]+

,(∑
k

γ (k)

)
(N − 1) max

m6=n,k
αn,m

k

∑
k

[
sm,t

k − sm,t−1
k

]−}

≤

(∑
k

γ (k)

)
(N − 1) max

m6=n,k
αn,m

k

· max
n

max

{∑
k

[
sm,t

k − sm,t−1
k

]+

,
∑

k

[
sm,t

k − sm,t−1
k

]−}

<max
n

max

{∑
k

[
sm,t

k − sm,t−1
k

]+

,
∑

k

[
sm,t

k − sm,t−1
k

]−}
.

For the sequential update case, the convergence

can be proved by combining Lemma 1 and proof

of Theorem 3.4.1 in [10]. First, de�ne Dst,st′ (n) =

max
{∑

k

[
sn,t

k − sn,t′

k

]+

,
∑

k

[
sn,t

k − sn,t′

k

]−}
, and

Dst,st′ =
{

Dst,st′ (n),∀n
}
. Using induction, we can �nd

an N × N matrix H such that Dst+1,st ≤ HDst,st−1 . The

�nal step is to show the maximum eigenvalue of matrix H
is less than 1, which guarantees that ASB-A2 algorithm is

an contraction mapping in the sequential updates. Details are

omitted due to space limitations. ¥


