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Consistent Sampling and Signal Recovery
Akira Hirabayashi, Member, IEEE, and Michael Unser, Fellow, IEEE

Abstract—An attractive formulation of the sampling problem is
based on the principle of a consistent signal reconstruction. The re-
quirement is that the reconstructed signal is indistinguishable from
the input in the sense that it yields the exact same measurements.
Such a system can be interpreted as an oblique projection onto a
given reconstruction space. The standard formulation requires a
one-to-one relationship between the input measurements and the
reconstructed model. Unfortunately, this condition fails when the
cross-correlation matrix between the analysis and reconstruction
basis functions is not invertible; in particular, when there are less
measurements than the number of reconstruction functions. In this
paper, we propose an extension of consistent sampling that is appli-
cable to those singular cases as well, and that yields a unique and
well-defined solution. This solution also makes use of projection
operators and has a geometric interpretation. The key idea is to ex-
clude the null space of the sampling operator from the reconstruc-
tion space and to enforce consistency on its complement. We specify
a class of consistent reconstruction algorithms corresponding to
different choices of complementary reconstruction spaces. The for-
mulation includes the Moore-Penrose generalized inverse, as well
as other potentially more interesting reconstructions that preserve
certain preferential signals. In particular, we display solutions that
preserve polynomials or sinusoids, and therefore perform well in
practical applications.

Index Terms—Consistency, preferential components, sampling
method, signal reconstruction, underdetermined scenario.

I. INTRODUCTION

Asampling theorem usually refers to a mathematical for-
mula or a process for reconstructing a continuously de-

fined signal from its discrete measurements. The classical ex-
ample is Shannon’s sampling theorem which has been extended
in a variety of ways (see, e.g. [1]–[4]). Sampling theorems typ-
ically guarantee a perfect reconstruction under suitable mathe-
matical conditions which often represent an idealized situation.
For example, Shannon’s sampling theorem assumes that the un-
derlying signal is bandlimited and requires an infinite number of
samples. Real world signals or images, however, are never ex-
actly bandlimited and the number of sampled values available
is usually finite.

A more recent trend has been to approach sampling from
the perspective of approximation [5]–[10]. Here, the goal is no
longer to obtain an exact reconstruction, but rather a solution
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that is as close as possible to the original signal according to
some criterion. This gives rise to a more realistic formulation of
the sampling problem because there are no restrictions of ban-
dlimitation on the class of input signals. In this work, we will as-
sume that the measurements (generalized samples) are obtained
by taking a series of inner products between the input and a set
of analysis functions . Moreover, we will concen-
trate on linear algorithms that reconstruct the signal as a linear
combination of reconstruction functions . An at-
tractive solution for determining the optimal signal coefficients
is to attempt to minimize the squared norm of the difference be-
tween a reconstructed signal and the target function [5]–[7]. It
turns out that this can be achieved only when the reconstruction
functions are included in the subspace spanned by the sampling
functions. In the sequel, we will refer to the subspaces spanned
by the two sets of basis functions as the sampling space and the
reconstruction space, respectively.

When both the sampling functions and the reconstruction
functions are given a priori, the sampling and reconstruction
spaces are usually distinct, and the minimum error recon-
struction can, in general, no longer be recovered from the
measurements. Unser and Aldroubi investigated such a case,
and proposed the use of a consistency criterion [8], [9]. This
means that, if the reconstruction is measured using the same
sampling functions, then the measurements will be equal to
the original measurements. The sampling theorem in [8] re-
constructs signals in an infinite dimensional subspace that is

-shift-invariant. The authors also provide a bound that guaran-
tees that the consistent reconstruction is a good approximation
of the minimum error solution, which is typically not accessible
from the measurements alone [11]. An extended framework for
general—but finite dimensional—subspace reconstruction (not
necessarily shift-invariant) is discussed in [10].

The above formulations all require a one-to-one relation be-
tween the measurements and the reconstructed function. How-
ever, one can easily conceive of situations where this condition
is not satisfied. This happens, for instance, when the dimensions
of the sampling and reconstruction spaces are not matched. The
case where the number of measurements is greater
than the number of degrees of freedom in the reconstruction

can be dealt with easily using least squares techniques.
Of greater interest to us are the situations where the sampling
problem is ill-posed. This happens, for example, when there is
missing data: . There are also instances with for
which consistent signal recovery is not feasible. A well-known
example is the problem of signal interpolation using polynomial
splines of even degree with knots at the integers, which gives rise
to a singular system matrix [12]. This latter example is meant to
show that we are not completely free to select the reconstruction
space independently of the analysis functions.

In this paper, we propose a formulation that can also deal with
the cases where the consistent sampling problem is ill-posed.
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The key idea is to essentially exclude the null space of the sam-
pling operator from the reconstruction space, and to enforce the
consistency constraint on a reduced subspace. An important as-
pect is that the choice of the complement of the null space is
not unique, a fact that can be used to our advantage for intro-
ducing special reconstruction constraints. For instance, we will
show that enforcing the preservation of certain preferential sig-
nals (such as polynomials or sinusoids) can facilitate signal re-
covery and improve reconstruction.

This paper is organized as follows. In Section II, we formu-
late the sampling problem within a Hilbert space framework,
and recall the principle of a consistency signal recovery. We
also display some examples where the one-to-one condition
fails, implying that the standard approach is not applicable. In
Section III, we clarify the meaning of the one-to-one condition
from the viewpoints of over-sampling and under-sampling. In
Section IV, we propose an extended sampling theorem that
yields a well-defined consistent solution in all cases ,
including the singular ones. The key point is that this sampling
theorem depends on the specification on an appropriate recon-
struction subspace , the choice of which is not necessarily
unique. In Section V, we look at special strategies for specifying

and propose a reconstruction process that preserves certain
preferential signals. We also present explicit computational for-
mulas. In Section VI, we discuss the connection with traditional
consistency sampling and clarify the type of extension that is
provided here. One special case corresponds to the generalized
inverse version of the classical algorithm. However, the present
formulation also covers alternative reconstruction strategies
(e.g., preservation of polynomials) that are less standard and
more interesting from an approximation theoretic point of
view. This latter point is demonstrated in Section VII where we
present some examples of signal recovery and compare the two
types of approaches.

A. Notations and Mathematical Preliminaries

We will make use of the following notations. The measure-
ments of a signal are represented as a vector in the -dimen-
sional unitary space . The reconstructed signal, on the other
hand, will be parameterized by a vector in with .
The standard bases for and , are and

, respectively. That is, (respectively, )
is the -dimensional (respectively, -dimensional) vector con-
sisting of zero elements except for the th (respectively, th) el-
ement which is equal to 1. is the identity operator.

The orthogonal complement of a subspace is denoted by
. and stand for the range and the null space of

an operator , respectively. is the adjoint operator of .
Let and denote the Moore-Penrose generalized inverse

of an operator and the orthogonal projection operator onto ,
respectively. It holds that

(1)

(2)

(3)

The following lemma will be used to prove our main theorem.
Lemma 1: [13] The operator equation

Fig. 1. Sampling and reconstruction formulation.

has a solution if and only if

and

In this case, the general solution is

where is an arbitrary operator.
Let and be elements of two Hilbert spaces and ,

respectively. Let be an operator from to defined
by

(4)

where is the inner product in . This operator is called
the Neumann-Schatten product [14] and it satisfies the relation

(5)

II. CONSISTENCY

A. Formulation of the Sampling Problem

We start with the formulation of the sampling problem, which
is illustrated in Fig. 1. The original input signal is defined over
a continuous domain and is assumed to belong to a Hilbert
space . The measurements of , denoted by

, are given by the inner product in of
with the sampling functions

The -dimensional vector consisting of is denoted by .
Let be the operator that maps into

(6)
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By using the Neumann-Schatten product, the operator is ex-
pressed without as

(7)

The reconstructed signal is given by a linear combi-
nation of reconstruction functions

(8)

The -dimensional vector of signal coefficients is denoted
by . We now introduce the (adjoint) reconstruction operator

(9)

It follows from (8), (4), (5), and (9) that

(10)

Let be the matrix that maps to

(11)

Then, (10), (11), and (6) yield

(12)

With this formulation, the sampling problem becomes equiva-
lent to finding a suitable matrix so that satisfies some opti-
mality criterion.

Let and be subspaces in spanned by
and , respectively. They are called the sampling
space and the reconstruction space, respectively. They play im-
portant roles in this paper. It holds that

There are no particular assumptions on the functions
and . However, it makes good

sense to select the functions in each set to be linearly indepen-
dent so that they constitute bases for and , respectively.

B. Conventional Consistency Sampling Theorems

Consistency is the concept proposed in [8]. The requirement
is that the reconstructed signal should yield the same measure-
ments as the underlying original signal if it was reinjected into
the system. By using the formulation mentioned above, consis-
tency is expressed as

The consistency sampling theorems that have been discussed
so far in the literature [8]–[10] all make the assumption that

(13)

This condition guarantees a one-to-one relation between the
measurements and the reconstructed function

. It ensures both the existence and the uniqueness of the
consistent reconstruction. In that case, it has been shown that the
consistent reconstruction of any in is given by its oblique
projection onto along .

However, one can easily think of situations where (13) does
not hold. The most obvious case is when the number of sam-
pling functions is less than that of the reconstruction functions.
This corresponds to the missing data scenario mentioned in the
introduction. The standard setting is not completely
safe either, as illustrated by the following example.

Example 1: Let and be the B-splines of degree
0 and 1 defined by

,

and

respectively, where is the convolution operator. The domain
of the target signal is . Let and be

respectively, where

This corresponds to the periodized version of a system where the
sampling is performed by integrating the signal over the sam-
pling period and where the reconstruction is performed
using piecewise linear splines.

Now, in the case where is even, one can verify that
in (10) with

(14)

belongs to , which contradicts hypothesis (13).
This means that there are situations, such as the example here,

where the consistency sampling theorems that have been pro-
posed in the literature are not directly applicable (concretely,
this means that the underlying system matrix is not invertible in
the conventional sense). This motivates us to investigate viable
methods for achieving consistency in the underdetermined sce-
nario that is specified by

(15)

(16)

Note that (16) may hold if the dimension of is lesser or equal
to that of but not otherwise; this excludes all overdetermined
scenarios where there are more independent measurements than
degrees of freedom in the reconstruction. Let us also emphasize
that the symbol in the left-hand side (LHS) of (16) is not the
direct sum because of (15).
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III. OVER-SAMPLING AND UNDER-SAMPLING

Before proceeding to the main result, we clarify the meaning
of (15) from the viewpoints of over-sampling and under-sam-
pling. Usually, these concepts are defined with reference to
Shannon’s sampling theorem for band-limited signals. In that
context, over-sampling means sampling at a rate that is above
the critical Nyquist rate, while under-sampling means sampling
at a lesser rate. It is obviously possible to reconstruct band-lim-
ited signals perfectly in the former case but generally not in the
latter.

With the formulation in Section II-A, these concepts are
translated as follows. First, the band-limited property is
generalized to the fact that belongs to . Second, the
over-sampling scenario corresponds to the case where the sam-
pled measurements are linearly dependent for
any in . Third, the perfect reconstruction property means
that there exists that satisfies

(17)

for any in . We can also distinguish between different sam-
pling scenarios.

Definition 1: With the formulation in Section II-A, if there
exists some that satisfies (17) for any in , then we
have an oversampling (respectively, normal-sampling) scenario
over depending on whether the sampled measurements

are linearly dependent for any in or not.
If, on the other hand, there is no that satisfies (17) for any
in , then we have an undersampling scenario.

The next proposition reemphasizes the crucial role of (13) in
the standard formulations of the sampling theorem.

Proposition 1: There exists an operator that satisfies (17)
for any in , if and only if (13) holds.

Proof: Assume that some satisfies (17) for any in .
Then, it holds for any in that

because . Hence, (13) holds.
Conversely, assume that (13) holds. Then, Proposition 1 in

[10] says that is the oblique projection operator
onto along . Hence, by letting , it holds
that

which implies (17).
Here, we will depart from the traditional normal and over-

sampling scenarios covered by Proposition 1 and concentrate
on the under-sampled case instead.

IV. GENERALIZED CONSISTENCY SAMPLING THEOREM

We now discuss the consistency sampling problem under (15)
and (16). The first equation implies that a consistent reconstruc-
tion is generally not unique. Indeed, let be a consistent re-
construction, and be a non-zero element of . Then,

is also a consistent reconstruction that is obviously dif-
ferent from .

In order to recover uniqueness, we consider some comple-
mentary subspace of in , denoted by , which plays
a central role in our formulation. This subspace is such that

(18)

where denotes the direct sum, and

(19)

Proposition 2: Let be a given complementary subspace of
in . Then, any has a corresponding consistent

reconstruction in that is uniquely defined.
Proof: Let both and be consistent reconstructions in

. Then, . Hence, it follows that

which implies belongs to . Since
also belongs to , it follows from (19) that

which implies .
The uniqueness of the consistent reconstruction is guaranteed

by forcing the solution to lie in the complementary subspace .
We can characterize the reconstruction by an oblique projection
as follows. Equations (16) and (18) yield

That is, is decomposed into the direct sum of and .
Then, we can define the oblique projection operator onto
along denoted by .

Theorem 1: Let be a fixed complementary subspace of
in . For any in , the function in (12) is a unique

consistent reconstruction in if and only if is the oblique
projection of onto along .

Proof: Let . Assume that is a unique consis-
tent reconstruction for any in . Then, since

, it holds that

(20)

Hence, we have

which implies

(21)

Equation (20) also implies that

which means

(22)
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Since for any in lies in , we have

(23)

Equations (21), (22), and (23) imply that is the oblique pro-
jection of onto along .

Conversely, assume that for any in is the
oblique projection of onto along . Then, (21), (22), and
(23) hold. Since (21) yields , it follows from (22)
that

which implies

Hence, we have (20), which implies that is a consistent
reconstruction.

Theorem 1 means that the unique consistent reconstruction in
is obtained by reconstructing the oblique projection:

(24)

This leads to a consistency sampling theorem for the case of
(15).

Theorem 2: Let be a fixed complementary subspace of
in . The unique consistent reconstruction in is obtained

by

(25)

where is an arbitrary linear operator (i.e., rectangular matrix)
from to .

Proof: Because of Theorem 1, we prove that the oblique
projection in (24) is obtained by (12) if and only if is given
by (25). Assume that is the oblique projection in (24) for any

in . Then, it follows from (12) that

(26)

Since is a subspace of , it holds that

Further, we have that

These two equations and Lemma 1 imply that (26) has a solu-
tion, and that its general form is given by (25) since

.
Conversely, assume that is given by (25). Since

, it holds that

Further, since , we have that

Hence, it follows from (12) and (25) that

which implies (24).
If , the only possible choice of subspace

is itself, and the oblique projection in (24) yields that onto
along . Hence, Theorem 2 reduces to the conventional

consistency sampling theorems in [8] and [10].
Even though the solution specified by (24) is unique, there is

a whole family of equivalent operators in (25) that depend on
the choice of . The canonical choice is but there may
also be alternative ones that are more attractive computationally.

V. SAMPLING THEOREM WITH PRESERVATION OF

PREFERENTIAL SIGNALS

In Theorem 2, we are free to choose the subspace as long
as it is a complementary subspace of in . From
the viewpoint of consistency, there is no difference among all
possible choices of . However, itself changes depending on

. This suggests that there may be ways of selecting that are
better than others. Here, we propose a selection strategy that
favors a particular subclass of signals.

Even though we have enough degrees of freedom to recon-
struct all signals in , the implication of (15) is that we do
not have enough information (measurements) to distinguish be-
tween all of them. Suppose now that we have identified a sub-
class of signals of special interest in that do not belong to

. Then, we can at least make sure that these will be
reconstructed perfectly by selecting a subspace that contains
them. A typical example is the constant that often accounts for
a large portion of the signal energy; especially in image pro-
cessing applications.

We now assume that we are given a collection, , of
such preferential signals in ; these span the subspace

where the subscript means “interest.”
If the direct sum of and is equal to , that is, if

then is uniquely determined as . Otherwise, we need a
second condition. To this end, we impose that the remainder of

is its orthogonal complement in , which is
denoted by . The subscript means “complement.” This al-
lows us to specify the reconstruction subspace as

(27)

The application of Theorem 2 then yields to our next result.
Theorem 3: The unique consistent reconstruction in

of a signal is obtained by (12) if and only if
is given by

(28)

where is arbitrary and where is an operator defined by

(29)
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Fig. 2. Reconstruction ~N by Theorem 3. Note that V and V \ V are not
perpendicular in general.

Proof: Since is perpendicular to , the sum of the two
orthogonal projection operators and is that onto in
(27). Then, Proposition 1 in [10] implies that the oblique pro-
jection operator onto in (27) along is given by

. Hence, it follows from the first equation of (3)
that

Moreover, we have that

which implies that (25) takes the special form given by (28).
In order to verify our second condition, let us decompose

in into two components:

where and lie in and , respectively,
as shown in Fig. 2. The first component is perfectly recon-
structed because lies in . On the other hand, the other com-
ponent is not perfectly reproduced in general because it does
not belong to . It is projected onto and its projection is de-
noted by . Then, the reconstruction for is given by

Note that is the minimum error approximation of in
because is perpendicular to . This guarantees that
the proposed sampling theorem provides a good approximation
of the input signal (i.e., better than for any other possible choice
of such that ).

The important term of in (28) is the first one. It involves
the factors and , which are abstract operators from the

function space to the vector spaces and , respectively,
and which are not suitable for computer calculations.

In order to specify numerically, we now provide its matrix
expression. First, let be the Gram matrix of
given by

...
...

. . .
...

Next, we introduce the cross-correlation matrix between
and :

...
...

. . .
...

and define three more matrices

...
...

. . .
...

...
...

. . .
...

...
...

. . .
...

Theorem 4: The predominant term of in (28) admits the
following explicit matrix form

(30)

where
(31)

(32)

with , , , and as defined above, and where , , and
are auxiliary matrices given by

(33)

(34)

(35)

Proof: Let be the operator defined by

(36)

It follows from (7), (9), and (36) that

(37)

(38)

(39)
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(40)

(41)

Equation (1) implies that the orthogonal projection operator
in the right-hand side (RHS) of (29) is given by .

Hence, it follows from (2) and (39)–(41) that

(42)

(43)

The other projection operator in (29) is expressed as fol-
lows. The subspace is the intersection of the orthogonal com-
plements of and . Since Theorem 4 in [15] implies
that can be decomposed into the orthogonal direct sum of

(44)

the orthogonal complement of in is expressed as
. Therefore, is determined by

(45)

By a decomposition similar to (44), can be expressed as
the orthogonal direct sum of

(46)

Equations (45) and (46) yield

Hence, the orthogonal projection operator onto is given by
the difference of those onto and . That is

(47)

It follows from (2), (37), (38), and (33) that

(48)

Further, (48), (39), (34), (2), (37), and (33) imply that

(49)

Hence, from (47)–(49), (37), (38), and (33), we have

(50)

(51)

Then, (29), (42), (50), and (31) yield

(52)

Further, (29), (43), (51), and (32) give

(53)

Finally, it follows from (2), (52), and (53) that

which implies (30)
When the reconstruction basis is orthogonal, the matrix

reduces to an identity. In that case, the formulas in Theorem 4
get simplified as follows.

Corollary 1: If is the identity matrix, then , , and in
(35), (31), and (32) are expressed as

respectively, and the first term of in (29) is given by

The proof is straightforward.

VI. MOORE-PENROSE GENERALIZED INVERSE

RECONSTRUCTION

The consistent sampling theorems that have been described
in the literature all require (13) that guarantees that the solution
is unique. The formulation that is the closest to ours is that of
Eldar [10]. In our notation, her main result reads.

Proposition 3: [10] Let . Then, any
can be consistently reconstructed from the measurements by
(8) if in (11) is given by

(54)

This reconstruction is uniquely specified from the measure-
ments and corresponds to the oblique projection of onto
along the direction specified by .

Interestingly, Eldar did choose to specify her solution using
a generalized inverse operator even though this precaution was
not really necessary in the above context. Since the Moore-Pen-
rose generalized inverse in (54) is always well defined, it is pos-
sible to apply her reconstruction in the singular case as well,
with the caveat that one uses unicity for the signals belonging to

. We will now derive this generalized inverse reconstruction
algorithm as a special case of our formulation. This will also
clarify the behavior of this type of operator for the case of (15).

Theorem 5: The unique consistent reconstruction in
is obtained by (12) if and only if is given by

where is arbitrary.
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In order to prove Theorem 5, we use the following two
lemmas. The proof of these is deferred to the Appendix.

Lemma 2: The function space can be decomposed into the
direct sum of

(55)

Lemma 3: The operator is the oblique projec-
tion operator onto along .

(Proof of Theorem 5): Lemma 3 implies that for
is given by

Hence, it follows from (1) and (3) that

so that

Hence, Theorem 2 reduces to the theorem.
Theorem 5 means that the reconstruction by (g-in-

verse) lies in . While unicity and perfect recon-
struction are guaranteed for this particular subspace, it is not
so for the whole reconstruction space when the condition
in Proposition 3 fails. The Moore-Penrose g-inverse solution
has the property that the norm of the coefficients of the recon-
structed signal is minimum, which may or may not be relevant
here. However, its disadvantage over the more general solution
described in Theorem 3 is that it arbitrarily limits our freedom in
the choice of the reconstruction subspace. In the sequel, we will
show that the perfect reconstruction of certain classes of prefer-
ential signals is an interesting option and that the choice of an
appropriate subspace can improve the results substantially.

VII. APPLICATION EXAMPLES

A. Signal Recovery Example

First, we consider a simple example to show the effectiveness
of the proposed sampling theorem. Let be , where
is the number of the reconstruction functions. Functions in
satisfy

and the corresponding inner product is

Fig. 3. Preferential signals f� g in the simulation that are preserved by the
proposed sampling theorem.

The sampling functions are integer-shifts of the B-spline of de-
gree 0

(56)

The reconstruction functions are integer-shifts of the cyclic
B-spline of degree 3. That is, by letting

the reconstruction function is given by

We assume that is even, and . In this case, similar to
Example 1, the one-to-one condition does not hold. Indeed, in
(10) with in (14) belongs to .

In order to use the proposed sampling theorem, we need to
select a class of preferential signals in . In this ex-
ample, we choose four reference signals given by

with

These signals for are shown in Fig. 3. In particular,
corresponds to the constant signal, and is included in because
the B-splines satisfy the partition of unity. Indeed, the classical
property , which holds for any B-spline
of degree [16], implies that .

The best way to emphasize the difference between the pro-
posed sampling theorem (Theorem 3) and the g-inverse solu-
tion in Theorem 5 is to consider a target signal that belongs
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Fig. 4. Reconstructed signals by the proposed sampling theorem (the thick line)
and the g-inverse solution in Theorem 5 (the thinner line) when the target is � ,
which is perfectly reconstructed by the proposed one.

Fig. 5. Reconstructed signals by the proposed sampling theorem (the thick line)
and the g-inverse solution (the thin line) when the target (the dashed line) is the
signal given in (57).

to the subspace . In the present case, the constant signal inci-
dentally belongs to , and is perfectly reconstructed
by g-inverse solution as well as the proposed one. We there-
fore concentrate on the target signal , which is not included
in . The reconstructed results are shown in Fig. 4.
The thick line shows the reconstructed signal given by the pro-
posed sampling theorem. As expected, the target signal is per-
fectly reconstructed since it is included in . The thinner line
shows the reconstructed signal obtained by the g-inverse solu-
tion in Theorem 5, which is less satisfactory and oscillating.

Fig. 5 shows the reconstructed results when the target is

,
(57)

which is displayed with a dashed line. Note that does
not belong to , and hence is not perfectly reconstructed in

either cases. The thick and the thin lines show signals obtained
by the proposed sampling theorem and the g-inverse solution,
respectively. We can see that the proposed sampling theorem
gives a better result—essentially perfect for —than
the g-inverse solution. Obviously, the result depends on the
choice of the preferential signals which plays a key role in our
formulation.

B. Application to Image Magnification

We now present an application of the proposed sampling the-
orem to an image magnification problem. Fig. 6 shows three im-
ages (256 256 pixels) taken from the SIDBA standard image
library. These were downsized by a factor of two using 2
2 averaging. The reduced 128 128 images were further di-
vided into 8 8 pixels patches. We set the task to magnify
these patches back to the original size (16 16) using a full
DCT expansion, and to recover the original 256 256 image
by juxtaposition. This was achieved by reconstructing a contin-
uous image from the 8 8 subimages (measurements) by the
proposed sampling theorem and the g-inverse solution in The-
orem 5. The 16 16 magnified subimages were obtained by
resampling the continuous reconstruction. For comparison, we
also include the results of a zooming by two obtained by bicubic
spline interpolation which is considered to be one of the better
methods for image resampling [17], [18]. This latter, more stan-
dard approach to resizing has the advantage of simplicity but
it should be noted that it does not ensure consistency with the
measurements (local averages).

In order to specify our consistent reconstruction algorithm,
we select to be the space of square-integrable functions on
the area , where . The inner
product in is defined by

The sampling functions corresponding to our
set-up (downsizing by averaging) are

where and are functions defined by (56) with
and .

The reconstruction is performed in a local DCT basis, which
is defined by

for and , where

,

.

Here, , which is the same as the pixel number
in each axis in a magnified image, meaning that we are in an
under-sampling scenario.
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Fig. 6. Standard images used in the simulation. (a) Airplane. (b) Girl. (c) Lenna.

Fig. 7. PSNR values in dB for the three standard images shown in Fig. 6. The
10 bars for each image quantify the PSNR values obtained by the g-inverse
solution, the proposed method with the subset (i), � � �, the proposed method with
the subset (viii), and the bicubic interpolation from left to right, respectively.

For the preferential signals in the proposed sampling the-
orem, we used some smooth functions (lower frequency cosi-
nusoids) included in our reconstruction set. Since we have 64
measurements, we can specify up to 64 functions. Taking this
into account, we used eight subsets of the reconstruction func-
tions: (i) ; (ii)

; (viii) . Note that the
proposed method without any specification of functions reduces
to the g-inverse solution.

Fig. 7 shows PSNR values in dB calculated by

where and are the th, th
pixel values of the reconstructed and the target images, respec-
tively. The horizontal axis indicates the input images in Fig. 6.
The 10 bars for each image quantify the PSNR values obtained
by the g-inverse solution, the proposed method with the subset

(i), , the proposed method with the subset (viii), and the
bicubic interpolation from left to right, respectively. We see
that, in each case, the best result is obtained by the proposed
method with the subset (vii). The same tendency was also ob-
served with other images of the SIDBA image library, except
for the fact that the optimal subset depends on the target image
(results not shown). For the present data set, the best reconstruc-
tion was obtained by the proposed method with the subset (vii),
shown in Fig. 8(a). Fig. 8(b) and (c) shows the result by the
g-inverse solution and the bicubic interpolation. In order to fa-
cilitate the comparison, one of the 16 16 areas indicated by
the white box in Fig. 9(a) is displayed in (b), and the downsized
image is shown in (c). Fig. 9(d) and (e) shows the resampled im-
ages from the reconstructed continuous images by the proposed
sampling theorem and the g-inverse solution, respectively. We
can see blocking artifacts in (e), while there is no such effect
in (d). Fig. 9(f) shows the reconstructed image by the bicubic
interpolation, which lacks sharpness comparatively. We believe
that this is partly due to the lack of consistency of this type of
reconstruction (interpolation) which does not take into account
the fact that the image was reduced by 2 2 averaging.

While the present magnification experiment is somewhat con-
trived (zooming factor of two applied to 8 8 image patches),
it shows the potential of the proposed approach and the supe-
riority of consistent sampling over more traditional interpola-
tion approaches which do not take into account the measurement
process. An important factor for the success of the proposed re-
construction procedure is the appropriate selection of the class
of preferential signals. In our experiments, this has been done
in an ad hoc fashion and it is probable that one may be able to
further improve the results by optimizing this selection process
as well.

VIII. CONCLUSION

We proposed a consistent sampling theorem that yields
a unique and well-defined solution even in the cases where
there is no one-to-one mapping between the measurements
and the reconstructed signal. The key idea was to exclude the
null space of the sampling operator from the reconstruction
space, and to impose consistency to its complement. This
has a simple geometric interpretation and has the advantage
of removing all restrictions on the choice of sampling and
reconstruction functions. By taking advantage of the fact that
the choice of the complement is not unique, we proposed the
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Fig. 8. Reconstructed images. (a) Proposed method. (b) g-inverse solution. (c) Bicubic interpolation.

Fig. 9. Details of the reconstruction shown in Fig. 8. (a) Input image with the white box indicating the area magnified in (b). (c) Downsized image. (d) Proposed
method. (e) g-inverse solution. (f) Bicubic interpolation.

main result: a consistency sampling theorem that preserves cer-
tain preferential signals. We have also shown that a particular
solution to the consistency sampling problem is provided by
the Moore-Penrose generalized inverse. However, we did also
propose other solutions (in particular, polynomial and sinu-
soid-preserving ones) that can give better results in practice.

APPENDIX

A. Proof of Lemma 2

Let be an element in . Then, it holds that

which implies

Taking orthogonal complement of the equation yields

Hence, it follows from (16) that

which implies

(58)

Let be an element in . Then, satisfies
, and there exist some such that . It

holds that

Hence, which implies . Therefore, the RHS
of (58) is a direct sum, and (55) holds.
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B. Proof of Lemma 3

According to the interpretation given in [10], the operator is
a projection along . Hence, we show that

(59)

It holds that

which implies (59).
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