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Abstract— It is well known, that the Alamouti scheme is ngr = 1 receive antennas due to the rate loss inherent in
the only space-time code from orthogonal design achievingne  OSTBC with higher number of transmit antennas. Recently,
capacity of a multiple-input multiple-output (MIMO) wirel €ss it \yag shown in [12] that due to this rate loss, OSTBC
communication system with n = 2 transmit antennas and ith odd b f ant | toerf db
nr = 1 receive antenna. In this work, we propose then-times with o num ér of antennas are always Qu_per orme y
stacked Alamouti scheme fornT = 92n transmit antennas and OSTBC W|th even number Of antennas, I’estI‘ICtIng even more
show that this scheme achieves the capacity in the caserof =1 the deployment of OSTBC. On the one hand, we have the
receive antenna. This result may regarded as an extension of OSTBC with low complexity and low rates. On the other
the Alamouti case. For the more general case of more than one hand, we have the space-time trellis codes, which achieve
receive antenna, we show that if the number of transmit antenas . ’ .. . . ) ! .
is higher than the number of receive antennas we achieve ahlgher spectral efficiency in addition to high Perf‘?rmam@""
high portion of the capacity with this scheme. Further, we sow espect to frame error rates. However, the decoding coritplex
that the MIMO capacity is at most twice the rate achieved with of space-time trellis codes is increasing exponentiallyhwi
the proposed scheme for all SNR. We derive lower and upper the number of transmit antennas and the transmission rate. |
bounds for the rate achieved with this scheme and compare it order to achieve higher spectral efficiency combined with lo

with upper and lower bounds for the capacity. In addition to the . . L .
capacity analysis based on the assumption of a coherent chael, complexity maximum likelihood detectors, [13]-[17] desigl

we analyze the error rate performance of the stacked OSTBC gquasi-orthogonal space-time block codes (QSTBC) withstran
with the optimal ML detector and with the suboptimal lattice- mission rate one for more than two transmit antennas.
reduction (LR) aided zero-forcing detector. .We compare theerror Other approaches aimed at reducing the decoding complex-
rate performance of the stacked OSTBC with spatial multipleing iy, of space-time trellis codes. For instance, a layeredaspa
(SM) and full-diversity achieving schemes. Finally, we ilistrate . - . .
the theoretical results by numerical simulations. time architecture was pro_posed in [18], where the transmit
antennas were partitioned into two-antenna groups andan ea
group space-time trellis codes were used as component.codes
|. INTRODUCTION In order to further decrease the complexity of this layered

Recent information theoretic results have demonstratad tﬁpace-tlme architecture, [19]-{21] used the Alamouti suhe

- . . . s component code for each group in combination with a sub-
the ability of a system to support a high link quality anél comp : h group S
(aatlmal successive group interference suppression dmtect

higher data rates in the presence of Rayleigh fading IMETOVS rategy. The outage probability of this scheme was andlyze

significantly with the use of multiple transmit and receive 422] for ny > ny and an upper bound was derived. An

antennas [1], [.2]' Since then there h"?‘s been .Cons'd.era.brllymptotic analysis of the rate achievable with this schesme
work on a variety of schemes [3] which exploit multiple

. o .. performed in [23]. Fon = 2, this transmission scheme is also
antennas at both the transmitter and receiver in order herreit . oL - _

. . ) . ) . referred to as double-space-time transmit diversity (DS)I'T
obtain transmit and receive diversity and therefore ingeea . . .
the reliability of the system, e.g., orthogonal space-tistek and was proposed as one possible candidate for high speed
codes (OSTBC) and space-time trellis codes [4][6] or iedownllnk packet access (HSDPA) in 3GPP and beyond [24].

. : . It is obvious that reducing the computational complexity
the theoretical bounds [7] derived |n_[l], [2]. Inte_resteda?ers of the detector without sacrificing much performance is an
are referred to [3], where a detailed analysis of different . : :

S important issue. There is a huge amount of suboptimal de-
schemes is given.

The performance of OSTBC with respect to mutual infortectors with low complexity in the literature, linear detes
. . like zero-forcing (ZF) or minimum mean square error (MMSE
mation has been analyzed (among others) in [8]-[11] and ke z ing (ZF) nimu a ( )

and nonlinear detectors like e.g. VBLAST [25]. Unforturigte

was_sgotwn thgtt t:f capﬁlcklty IS a;:nevedt.onl)r/‘ n the5 case (LR se detectors significantly sacrifice performance in sesi
nr = 2 transmit, the well known Alamouti scheme [5], an it-error-rate (BER). Recently, lattice reduction (LRyled de-
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using the sub-optimal LLL [29] lattice reduction algorithmtransmitted from each antenna is normalized tolbe., so
In [30], the LR-aided schemes in [28] were adopted to titbat the average power of the received signal at each receive
MMSE criterion. Note that the error rate curves of all thesantenna is one and the signal-to-noise ratio (SNR).idt
LR detectors are parallel to those for maximum likelihoots further assumed that the transmitter has no channel state
(ML) detection with only some penalty in power efficiency. information (CSI) and the receiver has perfect CSI.

In this work, we show that the stacked Alamouti scheme
is capable to achieve the capacity in combination with the I1l. CODE CONSTRUCTION

optimal maximum likelihood detector for the caseraf = 2n A space time block code is defined by its transmit matrix

tsrk?gvsvr:I;[o?r::]eengzzi?A]@%Iar:olutriesccer?(/eemaen\t\?i?;as.2T:|!15d\:1vas aIS(CnT with entries{z;},_,, which are elements of the vector
. =lz1,..., with z1,...,2, € C, whereC C C denotes
1 [8]. Our result may therefore be regarded as an extension. of 1 Z) 1 P -

the Al i sch ¢ 5 Furth how that i a’ complex modulation signal set with unit average power,
€ Alamouli scheme toy > z. Furthermore, we show tha Ine.g. M-PSK.. The rateR of a space-time code is defined
the case of more than one receive antenna ang i ng the

as R = p/T. In this paper, we focus on the rater/2

stac_ked Alamouti sc.heme is capable to achieve a S'.gn'ﬂc%%cked Alamouti scheme. Starting with the well known (bgsi
portion of the capacity and approaches the capacityyif> Alamouti scheme [5] fomy — 2 transmit antennas

ng. For anynr, ng, we show that the MIMO capacity is at
most twice the rate achieved with the proposed scheme for all Ga(21, ) = [ xi xi ] ’
SNR. However, achieving high portions of the capacity does Ty —X

not guarantee good performance in terms of error probgbilithe transmit matrix of the stacked Alamouti scheme with=
Thus, we compare the error-rate performance of the proposgfis constructed in the following way

scheme with spatial multiplexing (SM), a rate oriented spac

time transmission schemes which achieve a high portion of Gnr ({Ij};g)

the capacity of MIMO systems, and with the aforementioned = [Gy(z1, 22), Ga(23,74), ..., Go(Trp—1,Tny )] -
diversity-oriented QSTBC by deploying LR-aided linear ZF

and ML detectors at the receiver, respectively.

The remainder of this paper is organized as follows.
Sectionl, we introduce the system model and establish the Gu({z;},) = 1 T2 T3 T4
notation. The structure of the stacked Alamouti scheme and AT Sg=1 Ty —x] T} —T3
the equivalent channel model are shown in secfioh . TRehich is also referred to as DSTTD [24].
analysis of the mutual information is presented in sedildn | After some manipulations (particularly complex-
LR-aided linear ZF detection is shortly described in S“tioconjugating) the system model iil(1) can be rewritten
Vlincluding the analysis of the probability density functiof
the condition number of the equivalent channel generated by y = H'x + 1’ @)
the different transmission schemes (SM,QSTBC, and stacked ’

OSTBC). Sectiofi VI provides simulation results, followed bwherey’, n’ € C**® and H' € C?*"#*"T. The equivalent
some concluding remarks in Section MII. channel equals

H' = [(Hll)Tv sy (H;)Tv ) (H;R)T]Ta

Example 3.1:For the case oh = 2, i.e. np = 4 transmit
@ntennas we have

)

Il. SYSTEM MODEL

We consider a system withr transmit andngy receive whereH; is given as
antennas. Our system model is defined by

T H; = [Hé,lv Hé,Sv s vHé,anl} ) (3)
Y=G, H +N, Q) where
where G, is the (' x ny) transmit matrix, Y = H . — [ hij higjs1) }
[¥1,---,¥ng] is the (C x ng) receive matrix, H = 7 N4 hij '
[hy,...,h, ]is a(rxnr) matrix characterizing the coherent
channel, andN = [nj,...,n, ] is the complex T x ng) IV. MUTUAL INFORMATION

white Gaussian noise (AWGN) matrix, where an enfnt;}  The instantaneous capacifyof a MIMO system withnp

of N (1 < i < ng) denotes the complex noise at ti# transmit andny receive antennas is given as [1], [2]
receiver for a giventime(1 < ¢ < T'). The real and imaginary

parts ofn;; are independent antl(0,nr/(2SNR)) distributed. I =log, det (InT + LHHH) ) 4)

An entry of the channel matrix is denoted Hy,;}. This nr

represents the complex gain of the channel betweenjtthe  In the following two subsections, we derive lower and upper
transmit ( < 57 < ng) and theith receive { < i < ng) bounds for both the ergodic capacity and the average rate
antenna, where the real and imaginary parts of the chanaehievable with the proposed stacked scheme in order td yiel
gains are independent and normal distributed random Jasalbower and upper bounds on the ratio of the ergodic capacity to
with A/(0,1/2) per dimension. The channel matrix is assuméle average rate of the stacked OSTBC. In the third subsectio
to be constant for a block &f symbols and changes indepenwe characterize the absolute loss of the average rate of the
dently from block to block. The average power of the symboktacked OSTBC to the ergodic capacity.
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A. Upper bounds on the ergodic capacity and the average rgtespecially at low SNR), our result above may regarded as
of stacked OSTBC more general, since the exact capacity and mutual infoomati
By applying the trace-determinant inequalityt(A)/» < expressions are analyzed. Further note that the resulteabov

Ltr(A), we arrive at a simple upper bound on the instantglay be regarded as an extension of the results in [8]. There it
F]leous capacity given as was shown, that the basic Alamouti scheme with= 2 and

ngr = 1 achieves the capacity.

nr NR
_ P 2 2) Case ofnr = 4 andng = 2 (DSTTD): In the case of
I <1y = Llog, (1+W—L22|hﬂ| ) , (5 ) T R ( )

i np = 4 transmit andnp = 2 receive antennas, the equivalent

—— channel is given by
A
where L is equal toL = min(np,ng). Averaging the upper hii  hiz2 hiz  huis
bound in [®) over all channel realizations results in [3T]=£ H — —his R}y —his hig

E[I] denotes ergodic capacity) hor haa  hag  hos

L nrnrg—1 nTL nrnr—k—1 _h§2 h§1 _h§4 h§3
C < Cu = ElLa] Z ( ) (©) The achievable rate in this case is given as

In(2) &~ p
&ET (1 — (nrngr — k), @) : A0 ar az
P 1 p 0 N —ab o
: . I.4 = —logydet | I, + — ; 2 "1 ,
Note that for high SNR, the slope of the upper bound is equaA g 082¢ T np | o] —ar A O
to L. In addition to this upper bound, we compare the rate a; o 0 A
achieved with the stacked scheme with the following upper
bound whereX; = Y277, |hy|?, an = harhsy + hishss + haghs, +

Lor K1 i hiah3y, andoag = —hi1hoo+hi2hor —hish3,+hishos. Using
_ : p Fischer’s inequalit
< Cyen = 1 (2 7 quality
€ = Coon = logy <Z<z’)(K—i)! (nT)> %
n A BH
derived in [32] by using Jensen’s inequality, wheke = det ([ B D D < det(A) det(D)
max(ny,ng).
In the following, we analyze the performance of the stackggl|ds
scheme with respect to mutual information and derive upper

bounds for the average rate of the stacked scheme. We first p p
sA Slogz 1+n—/\1 1+ n—)\g .
T T

analyze the case ofig = 1 receive antennas and then
generalize the analysis to the case of arbitrary number of
receive antennas. By using the arithmetic-geometric inequality, we arrive at
1) Caseni = 1: In case ofng = 1, the achievable rate of
i i P
the stacked Alamouti scheme is I,a < 2log, (1 + o ||H||2) .

1
I;4 = = log, det <InT + L(H’l)HH’l) .
2 nr This upper bound equals to twice the rate of a full code rate
Using the determinant equalitiet(I+ AB) = det(I+BA), OSTBC forny = 4 transmit andng = 2 receive antennas
after some manipulations we arrive at with a power penalty oB dB. In this particular case a more
precise statement can be made due to the following striot for

s of Fischer’s inequality [33]
ISA :10g2 1+L2|h71|2 , (8) A BH
nr i Lemma 4.1:iLet P = B D } (A,D square,

which equals the capacity of a MIMO system with transmit nNonempty) be positive definite. Then

and ng = 1 receive antennas [1], i.e. as long ag =

1, the capacity is achieved for arbitrary = ny /2. Note B has fullrank = detP < (det A)(det D)

that in [3, p.199] a Taylor series expansion is performed Proof: Let R - 0 denote positive definiteness, aBd~
for the capacity and the mutual information achievable with defined by(R —S) = 0. Then [34, 7.7.6]P - 0 < (A >
certain schemes such as the stacked OSTBC. After compatih@ > BA™'B). Thus for arbitraryB holds D — (D —
the first two expansion coefficients (the linear term and tBBA'Bf) = BA™'B¥ = 0 and becomes strict iB has
second order coefficients) it is shown that the stacked OSTH#@l rank. Since(0 < S < R = detS < detR) we obtain
reaches second-order capacity fog = 1, i.e. the second- detP = (det A)(det[D — BA™'B¥]) < (det A)(det D), if
order coefficient of the mutual information of the stacke® has full rank. [
OSTBC is equal to the second-order coefficient of the capaciEromdet B = |a;|? + |az|? it follows, that apart from the set
Although essential features of the mutual information caof events{a; = as = 0} of measure zeraB has full rank,
be already seen from the first and second-order coefficiettisis the upper bound faf, 4 is strict with probability one.
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3) Case of arbitraryng: The available portion of the the actual channel and H, is described in the following
mutual information achievable withp > 1 for the stacked proposition.

Alamouti scheme is Proposition 4.1:Let H, be the even an@ the odd rows
1 P ) Her of H' given in [2), respectively. Then the following holds
faa = 5 logy det <I”T o ) H) - Oy B =B, wherd
Following the derivation above for arbitraryr results in 0 1
J=1Irr ® 1 0

L < It = Tlogy (14 22 H)?), 0)
nrL; 2) E [Hﬂf] —FE [HJTHT] —0.

where L, = min(ng,2ng). By averaging [(10) over all Proof: The proof is straightforward and uninformative
channel realizations, an upper bound on the average rafd thus it is omitted. ]
R, > E[I,4] of the stacked Alamouti scheme similar [d (6)F0. (I3) can be rewritten as

may be obtained

_1 14 H
Ll nrnr—1 <nTL1>77,TnR—kZ—1 ISA — 5 10g2 (det (I’ILT + E(H) H) X

Rua < R = ELu] ~2In(2) > 2p )
1) det <InT n —H’ (IM n i(H)HH) (H’e)H> )

k=0
nr

npls nrly
e 2 I'(1—(nrngr—k), , 1 1
( (nznr =k =5, ) = 5 logy det <InT +L(H)HH> 5%
nr
which can be approximated usifgg, (1 + =) = log,(z) for -1
> 1by log det (L, + - H, (Im - L(H)HH) (H)") .
nr nr
nrn 1
Ly 2p L, =1 —1
Rij ~ 3 log (nTL1) + 21n(2) < pz:; » ) Since H/ (InT + %(H)HH) (H,)" is a positive

semidefinite matrix, it follows immediately that the rate

Note that the approximation gets better for higher SNR anrghieved with the stacked Alamouti is lower bounded by
may be inaccurate for low SNR. Further note that, for high

SNR, the slope of the upper boud](11) and its approximation Iy > llog det (In i i(H)HH)
is equal toL1/2. - 2 Tonp ’

which is half the capacity of a MIMO system with- transmit

B. Lower bounds on the ergodic capacity and the average raeaadnp receive antennas.
of stacked OSTBC Another lower bound is obtained for the case < ng

Similarly to the last subsection, here we derive lower baunéY a@pplying Minkowski's determinant inequality [34, p.482
for the ergodic capacity and the average rate of the stackégt(A + B) > (det(A)# + det(B)¥)", A = 0,B = 0)
OSTBC. Due to the peculiar property of stacked OSTBE9 ®
lower bounds are obtained in the procedure for the following
cases. (I)’I’LT < ng, (II) nr < nr < 2ng, (III) 2ng < np < Ry =E |:_ 10g2 det <

+ L(H’)HH’)]

Ang, and (V) 4ng < nr. nr N
First of aII,.from [35] we obtain the following lower bound > e log, [ 1+ pdet (L(H/)HH/> n
on the ergodic capacity 2 nr
S p ISE 175 Nog, (14 paet (e + mom,))
CZClbzzllogQ 1+Eexp 21;—7 , (12) =5 |08 +pde E( +H.H.) .
J= p=
where~ ~ 0.57721566 is Euler's constant. Applying again Minkowski's determinant inequality resuin

In order to derive an upper bound on the ratio of the ergodic
capacity to the average rate achieved with the stacked sshem Raoa > "Tg
we need a lower bound for the average rate of the stacked T2
scheme. To this end, we rewrifg (9) as follows

1 1/np
log, (1 + pdet (—HHH>
ny

1
1 np
+pdet <—HHH) ! )]
nr

(13) SinceH. is obtained simply by conjugating and exchanging

some elements of the actual matHk it can be shown that the
whereH is the actual MIMO channel, which is obtained by M

taking the odd rows of the equivalent chani®l and H. is INotation: AT, AH, A* means transpose, hermitian transpose, and
obtained by taking the even rows HF'. The relation between complex conjugation, respectively

1
Ia= 3 log, det (InT + i(H)HH + (H/)HH/
nr
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eigenvalues ofH. )" (H.) are the same as the eigenvalues afhere X;, are again independent? distributed independent
HY (H). Therefore, the lower bound is equal to variables with2(K; — k + 1) degrees of freedom wittk';, =

) o max(2ng,ny). By following the same line of arguments as
log, <1 + pexpln <2 det <—HHH> ))1
nr

" _in [35], we arrive at
] ) ) ) Ki—j 1
Sincelog, (1+ce”) is a convex functionin: forc > 0andby  p_, > gt — Zlogz 1 + L — exp Z .
applying Jensen'’s inequality it holds th&flog, (1 + ce®)] > ° J 1 D

log, (1 + cexp(E [z])), we have [casens > 2nR]

Roa > %TE

p=1

Rgq > nTTIOgQ <1 —I—pexpE

1 nq
In (2 det (n—HHH> )]) In [23], a similar (however, looser) lower bound was derived
T for this case in order to analyze the asymptotic performance
1 1 i
_nr log, <1 1 p2exp —E {ln (det <_HHH))D _(with respect top) of stacked OSTBC.
2 nr nr For the case ofigp < ny < 2ng we have
From [35], [36], we know that

1
nr Roa = | = log, det (I—i— (H’)HH’)}
E [m (det (iHHH))} => E[mX;] - nplnng, 27
nr — r
=t =K %logz det (I +-— (HH" + HHH))}
where theX; are independenty? distributed independent L nr
vgrligbles with2(ng — j + 1) degrees of freedom. Using this —-F %logQ det ( I+ _HHH + I + —H HH):|
yields L

ny p 1 2z Applying now Minkowski’s determinant inequality results i
Rsa > 710g2 1+ ?exp EZIE[lan]

1 -
Rsa > -E [1og det <I + —HH )] (15)
With 2 ? nr

E[nX;] = ¢(ng - j+1), and finally

where(-) is the digamma function, which may be rewritten
for integer arguments as follows K-iy
R5A>R5A— ZlogQ +—exp Z];_’Y
p=1
[casenR < np < 2ngl.

mfll
x) = —7—!—2—.
pzlp

Using this results in the following lower bound for the avgza

rate of the stacked scheme. The lower bound results derived in this subsection are

summarized in Tablg | on the top of the next page.

1 Note that for high SNR, most of the bounds have a slope
Rox = 0m, (14 o (23°) 15 ; i
2

nr P equal tol1/2, which equals the slope of the upper bound (11).
=1 =1 Only for the casenr < nr < 2ng, the slope of the lower
[caseny < ngl. bound is equal td/2. In Fig.[d on the top of the next page,
Similar steps can be pursued fof > 4np resulting in the the average rate, the upper bouhd] (11) and the Iowe_zr bounds
following lower bound from Table[) forny = andng = 1,...,4 are depicted.
From the Fig., we observe that the upper boundid (11) and
2p 1 Zme” /2= 79 lower bounds track the average rate quite well. Only in the
Rsa >nplog, 1+ — eXP 2nR Z Z ; -7 aforementioned caser < nr < 2ng, the slope of the lower
j=1 p=1 bound differs from the exact performance and the upper bound
[casent > 4ng] Note that fornp = 1, the upper bound coincides with the exact
performance.

For the case ofir > 2ng we rewrite [9) as

HH? HHH ] )

1 L log, det (I + P [
sA — 3 2n -
2 2 " nr | HHY HHY C. Characterization of the absolute rate loss

. " N In this subsection, we characterize the absolute rate loss
SinceE [HH'| = 0 from propositiorC4.1, we may proceedys the stacked OSTBC to the ergodic capacity using Fischer's
as in [2] to arrive at a lower bound given as

inequality. First of all, we discuss the casemgf > 2n . Note
1 & that the rate loss with the basic Alamouti scheme & 2) was
Isa > 5 Zlogg (1 + —Xk) also analyzed in [8], [10] using different approaches. titgr
k 1 from (I4), applying Fischer’s inequality and averaging rove



IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. XX, NO. XX, MON YEAR

Case Lower bound onR; 4
ny <ng £ log, (1 + W exp <nT Z ZnR 71 ’Y))
nr <nr < 2ng %Z 1 logy <1+ exp (Zf;lj%— ))
2ng < nr %Z 10g2 <1+ exp (ZflfJ % —fy))
dng < nr nglogy (1 + == exD <2le ZMR ZnT/2 J 1 - ’Y))

TABLE |
LOWER BOUND ONR;4 FOR THE DIFFERENT CASES

10

—e— Monte-Carlo
8r —e— Upper-Bound
Lower Bound

bps/Hz

bps/Hz

25

201 q
—e— Monte-Carlo

—&— Upper-Bound
Lower Bound

15

10

0 I I I

I
5 10 15 20 25

0 5 10 15 20 25
SNR [dB] SNR [dB]
(@nrp=1 (b) ngp =2
25 25
201 —e— Monte—-Carlo 201 —e— Monte-Carlo

—&— Upper-Bound
Lower Bound

15

bps/Hz

10

—&— Upper-Bound
Lower Bound

15

bps/Hz

10

\ ‘ ‘ ‘
0

I
0 5 10 15 20 25

0 5 10 15 20 25
SNR [dB] SNR [dB]
(C)TLR:3 (d)nR:4

Fig. 1. Average rates, upper bounds, and lower bounds ofttukedd OSTBCs for; = 4.

all channel realizations we arrive at

RSASE

1
5 1082 (det (InR + —HHH>

Proceeding similarly for the caser < 2npy results in

1 p [ H'H HYH
Ryq = =E |log,det (I, + 2| = = = 2
e G e )

<E [1og2 (det <I np + —HHH>)}
nr

= (g nzT 2”R) < C(p,nr,nr) [casenr < 2ng],
X <InR + _H HH> =C(p,nr,ng) a
(16) where H is obtained by taking the odd columns of the

[casenr > 2ng],

equivalent channdl’ andH., is obtained by taking the even
columns ofH'. From [1T), we observe that forr < 2ng

the average rate of the stacked OSTBC is upper bounded by
the ergodic capacity of a system witlf- transmit and2n g

i.e. as long aswr > 2ng, the average rate of the stackedeceive antennas with a power penalty3odiB.
OSTBC is only upper bounded by the ergodic capacity. We can characterize the gap in16) afdl (17) due to the
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~

L1/2

application of Fischer’s inequality. Fotr < 2ng, we have (5.6.Ex.26)]tr(A2) < [|A||> we obtalnz B=23 @2

then
A= C(p n2T 2nR) Rsa
det (InT + %WD)

HYH HYH,
et (1o + 5 | e e

1
= iE 1Og2 :|) )

where

HYH 0
WD‘{ 0 TFA, ]

Since the events dfiZ H having not full rank are of measure
zero the strict form of Fischer’s inequality stated in Lemma
shows, that the gap in_(16) amdl(17) is non zero in general,

k=1
2||B||%. Further we have

2 —2
IB|[7 = tr { <£) HH, [ {InT + —HHH] ﬁH}
nr nr

which can be interpreted as the trace of a product of two
positive semi definite matrice®, Q. Using the fact, that

H.H.” has the same ordered eigenvaluedHd” and the
Ly

inequality tr(PQ) < >, yu,(P)us(Q) [37] yields > uf <
ke

L, and we arrive at the final bound '

Li/2

B2 nk| < L()

i.e. A > 0, thus it is not possible to reach the upper capacity

bounds.
With
HYH,
AL, ] - W

HYH,
HAH,

HYH

Wor = [ AR

we can rewrite
p [ HFH
det (InT + - [ ﬁfﬁ
— det (Im + L (Wog + WD))
nr
- 14
= det (InT + —WD) X
nr

—1
det (InT + [InT + iwp} iWOﬁ)
nr nr

to arrive at
1 P o
A= _iE log, det (InT + {InT + EWD} EWOﬁ)] .
A

Using

Ly
det(I,, + A) = exp (Z In(1+ Nk))

k=1

yields

Ly
E|> uﬁ]
k=1

where the inequality follows from Taylor series expan- %("_T) log, (1_1__),
< In(l + z) aroundz = 0 and the 2
0, since A has zero block ma-

trices on its diagonal. Its off- d|agonal blocks have thgip, @8) and [ID), the loss betwe@l(” nr

sion z — 1a?

fact that tr(A) =
”HHH and B, =

form B = [InT

L., +2HIH,

HHH}

that each eigenvalue ok appears twice, i.€ux = g4z, /s,

1 < k < ILi/2. Additionally applying the inequality [34,

—1
EHe H, respectively. Note that the
matrices in brackets have the same eigenvalues. This implie

In addition to that, we have the loss between
C (g, "ZT,ZnR) and C (p,nr,ng).
and [12) for high SNR as

Approximating [T)
oo 2
~log, <1+(K#!L)! <£>L>
i (U2 ()" s ()

L L
~log, <1 + <L> ) ~ log, <<1 + L) )
nr nr

~Llog, (1 + i) (18)
nr
and
p nr
¢ (55 2mn)
9 g
(a)’]’L p 2 nTTan*jl
2—T10g2 14+ —exp —Z ——7
2 nr nri— P
oy 9 ”TTan—jl p
=—-logy [exp | —— > Sty |+ =
2 i nr
1= P
nrt
nr 2 2 2nR— Jl
AN
2In(2) \ nr =~ = P
i (19)
nr

where (a) follows from applying Jensen’s inequality tb {12).
£, 2ng) and

C (p,nr,ng) is quite accurately described by

p nr

2727

~ (L — n—T) log, (1 + —) , [casenr < 2npg].
2 nr

C(p,nT,nR)—C’( 2nR)
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Finally, the absolute loss fatr < 2ngr between the ergodic system model in[{1) has to be rewritten as a real model [28]
capacity of a MIMO system and the stacked scheme is givefithe form

by ’
| R{x} SM
r p yE‘{%{x}} Hem e
L——)log2 14+ -—) <C(p,nr,ng) — Rea
2 nr

where
nr nr P T T
< +(L——=)lo 1+ —. R R
iy () (15) e (3] e 1200
The same procedure can be pursuedifpr> 2ng resulting 44
in the following general characterization for any, ng HSM _ R{H} S{H}
Bl -S{H} R{H} |-

max (OaL - n_T) 10g2 (1 + L) S C(p,TLT,TLR) - RSA
2 nr

L1 nr p
< O,L——)l 1+2),
= 2In(2) +maX( 9 ) 082 ( * nT)

which is equal to

In the following, we refer taH?M as the equivalent channel
for the SM scheme.

B. QSTBC

Without loss of generality, in this subsection we shortly

L : - ;
<L— —1> log, <1 + L) <C(p,nr,nr) —Rsa describe the QSTBC fonr = 4 transmit antennas [38].
2 nr To generalization to higher number of transmit antennas is

L1 L1 P straightforward [16]. The transmit matrix fer; = 4 transmit
< 21n(2) + (L - 7) log, (1 + E) : (20) ' antennas is then given [16], [38].
From [20), we observe that as longras > 2n g, the absolute 1 Z2 z3 T4
loss is only a constant, which depends only on the number of Gy(x) = Ty —a] ry —a3
receive antennas. In case < 2ng the absolute loss increases L3 —T4 T 2
linearly with (L — ). Ty o w3y —ry Iy

After rewriting (@), we arrive at (similar to the proposed

V. SUBOPTIMAL DETECTION AND CONDITION NUmMBer  Scheme, (cfI(2))

In the previous sections, we have shown that the stacked y? =H%%+n, (21)
OSTBC achieves significant portions of the ergodic capaghere H®? — [(H?)T’.”’(H?)T’“.’(Hg )77 and (H?)
ity. This does not, however, guarantee good performanceigﬂgiven as "
terms of error probability, which will be investigated inigh

section. Note that in the analysis in the previous sections i hii hai o hsi hag
was implicitly assumed, that an optimal maximum-likelikloo ge — | ~ha b —ha Dy
detector is used at the receiver, which performs an exhausti ’ —hai hai hii —hai
search over all possible transmit symbols at each detection —hy  —hz  hy by

step. Especially for higher number of transmit antennds, thq, generah, we have to rewrite the system model [n](21)
becomes computationally prohibitive. If additionally hicates 55 5 real model similar to SM. Fat; = 4, however, it

are requested, then higher order modulation sizes ares&gesjs not necessary to resort to the real system model. Here,
which increases the computational complexity even mok@e system model can be decomposed such that the iterative
Thus, suboptimal detection schemes have to be emploxﬁgimm algorithm in [26] for a system with, = 2 transmit
reducing the detection complexity and thereby achievinghtennas can be applied. For this we first perform channel-
reasonable error rate performance results. Thereforehisn tyatched filtering as the first stage and noise pre-whitening a

section the impact of the suboptimal LR-aided linear Zhnhe second stage of preprocessing at the receiver resiting
detector on the performance of the stacked OSTBC is analyzg@g independent subsystems [39], one of which

and compared to SM and QSTBC by resorting the equivalent
channel representation. In order to apply the LR algorithm, Vo = [ BB } { Z1 ] + 1, ,
the system model has to rewritten, which is done in the € —Je x3

following subsections for the different transmission soks.

HE
Afterwards, the LR-aided linear ZF-detection is described _ ) )
briefly. is only a function of the elements of with odd index, and
the other one is only a function of the elementsofith even
index,
A. Spatial Multiplexing (SM) 5o = [ BB } { T4 ] +h,
€ —J€ X9

For SM, the transmit matrixG,,,. is reduced tox, since
T = 1. In order to apply the suboptimal LR for SM, the HY
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where HCE2 is the 2 x 2 equivalent channel for QSTBC, Now, by multiplying Q! from left to y we arrive at

B = \QMTQ e = /23 A = X 20T kil and §=—2z+Q 'n,

a = 2Im(h}  h;3+h; 4h;2). Both subsystems can now _ o _

be detected separately, which reduces the complexity of tybere the noise enhancement and coloring is relativelylsmal

receiver significantly. sinceQ~! is also good conditioned. In order to get a estima-
Lemma 5.1:In order to get the best performance witHion for the transmitted symbols, the following operaticash

respect to error rates and a decoupled system with scalat in{9 be applied

and scalar output as in the case of OSTBC, the columns of o 1. 1 1

HY have to be orthogonal. However, the probability that this X =C (R Qzn [53’ - R?n} + §1n) ; (23)

occurs forH¢ is zero. _ _

Proof: For orthogonality, it follows from the scalarWNeré 1. is a n x 1 vector of ones,C' is a constant
product of the columns oH¢ that o has to be zero. But 9Ven asC = 4/ 77— and Qz.[] describes the component-
since the channel entrieghji} are mutually independentwise quantization with respect to the infinite integer space
and identically distributed (i.i.d.) random complex Gdass Z. However, this quantization can only be applied, if the
processes, the probabilify. (o = 0) is equal to the probability transmit modulation signal set is transformed tdZ, which
P.(3MF 2Im(hy 1 his + hishi2) = 0), which in turn is is achieved with the scaling and shifting §f within the
zero. From this it follows that orthogonality and therefare quantization operation ifi(23). Note that after this quzatton,
decoupled system can not be achieved. m re-scaling and re-shifting, some points may lie outside the
A disadvantage of this QSTBC is that in order to achievgonstellation. A suboptimal solution is to assign thesen{soi
the same transmission rate as SM, we have to compend@atéhe nearest point within the constellation. For BPSK, the
the rate loss by using a considerably higher constellatic#ffect of this assignment has a significant effect on thererro
But recall that higher constellations complicates amgltfin, rate performance, however, this gain diminishes with highe
synchronization, and detection. E.g., a transmissionof order modulations.
bits/sec/Hz for a system with, = 4 transmit antennas is
achieved by SM with BPSK, whereas 16QAM is requireg condition number
for the code rate one QSTBC. In [14], [40] it was shown
that QSTBC approach the capacity in casemf = 1,
which is achieved in case of the stacked OSTBC as shown

For illustration, the probability density functions (pyisf

35
in section[IV-A. Forny > 1, the performance of QSTBC in
terms of mutual information degrades severely in contrast t 3l
the stacked OSTBC, which achieve at least half of the capacit R
: H : i - - Stacked OSTBC-LR
as derived in sectiop TViB. 28 N ctacked OSTBG
A rot - - -SM-LR
I ! N
C. Proposed scheme g 2 = SM
<} ! g
Given [2), the equivalent real signal model for the proposed % 15l . PR
stacked OSTBC is given as E A
o [ ! \
R{x} iy \
" o__ oS " i [ \
v [ S5 e C .
o5/ F 8
where ) AN '\
gos _ [ MH} —S{H'} A S
ETS{HY R\ | 0 05 1 15 2 25 3

Iog(coﬁd(HE))

D. LR-aided linear ZF Detection Fig. 2. Pdfs of channel cond. numbers with SM or the stacke@iBZSwith
By applying the algorithm, then x n equivalent channel and w/o LR for a4 x 4 system.

Hp for each transmission scheme can be decomposed as ) N
the natural logarithm of the condition number of the chasnel

Hp =QR, (22)  for the stacked QSTBC and SM are depicted in Elg. 2. From
the Fig., we observe that the SM-channel is bad-conditioned
and that LR has a great impact on the channel. For the stacked

of Q are less correlated and shorter. A good indication f§STBC, we observe that the impact of LR is not as significant

A L L for SM.
the correlation of a matrix is the so called condition numbe?> . .
i fThe pdf of the natural logarithm of the condition number

which is defined as the ratio of the largest singular value ) : A :
the matrix to the smallest. Using_{22), the equivalent éigng‘)r the QSTBC is dep|cte_d in Fig] 3. For comparison, the pdf
model is then given as or the stacked OSTBC is also plotted. In case of QSTBC,
for some channels we have no gain with LR, since many
y=Hgx, +n=QRx, +n=Qz+n. samples of the equivalent channel generated with QSTBC have

whereR is an xn matrix with integer entries an@ is amxn
matrix, which is better conditioned thdi g, i.e. the columns
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inherently low condition numbers such that the LR has no
effect. Different from the QSTBC, for the stacked OSTBC
there is a gain achieved by applying the LR for almost
all samples of the equivalent channel model. Note that for
orthogonal channels (e.g., with OSTBC), the pdf is a dirac
impulse at positioro.

35
3 - - Stacked OSTBC-LR 1
= - Stacked OSTBC
25 DA - - ~QSTBC-LR |
a A ——QSTBC
ILL|
= 1
c
o
g
8 15t i
5
o
l, o
0.5} :
ol .

Fig. 3. Pdfs of channel cond. numbers with the stacked OSTBQSTBC
with and w/o LR.

Fig. 5.
np = 4 transmit andng = 2,ng = 4 andng = 8 receive antennas.

10

30
- nR:Z, Capacity

o5l ——n,=2, Stacked OSTBC i
- nR=4, Capacity
o n_=4, Stacked OSTBC x

20f R X i
- % -N=8, Capacity X
—%—n,=8, Stacked OSTBC e

15

20

Ergodic capacity and average rates of the stackedBQSWith

- transmit antennas, here we observe that the differenceskbatw
the average rate of the stacked Alamouti scheme and the
ergodic capacity increases by increasing the number ofvece
antennas.

In Fig.[8, the ratioC'/ R, is depicted fomy = 8 transmit

andngr = 2 (bottom) tonr = 9 (top) receive antennas. For
high SNR, we observe that as long ag > 2ng the ratio

VI. SIMULATIONS

In Fig.[4, the average rate of the stacked Alamouti SChert%:unded byC'/ Run < 2 for any
sA nRr, NT.

and the ergodic capacity of a MIMO system withy = 2 and
nr = 2,4 andnr = 8 is depicted. In case ol = 2, we
have the standard Alamouti scheme. From the Fig., we observe
that the difference between the average rate of the stackec
Alamouti scheme and the capacity diminishes significangly b
increasing the number of transmit antennas.

14

12 - + -n_=2, Capacity

—+—n_=2, Stacked OSTBC

=
=

-o0-n=4, Capacity
—o—n.=4, Stacked OSTBC
- % -n.=8, Capacity
—— nT:8, Stacked OSTBC

bps/Hz

-10 -5 0 5 10 15 20

Fig. 4. Ergodic capacity and average rates of the stackedBOSWith
ngr = 2 receive anthy = 2,nt = 4 andnp = 8 transmit antennas.

decreases as the SNR increases. In ease 2np the ratio

reases steadily. As derived in secfion IV-B, the ratiogper

CIR,,

1.8

1.7¢

161

1.5¢

1.4¢

131

1.2r

11y

10 20 30
SNR [dB] —

the ratioC/R; 4, i.e.

In Fig.[, the average rate of the stacked Alamouti scheme
and the ergodic capacity withy = 4 andng = 2,4 andnyp =
8 is depicted. In contrast to the case of increasing number of

Chp
ub
RSA

C CJen
< —<
- RsA - Rlsl%

40

Fig. 6. RatioC/Rs4 for np = 8 transmit anchz = 2 (bottom) tong = 9
(top) receive antennas.

In Fig.[4, the ratioC/R; 4 is depicted fomr = 8 transmit
andng = 4, ng = 6 andng = 9 receive antennas. In addition
to that, we used our lower and upper bounds derived in the
previous section in order to derive lower and upper bounds fo

(24)
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Based on the derivations in sectibn TV-B, we know that the
ratio is upper bounded bg®. Further, since the trivial lower
bound is equal td, we only depictedl < C'/Rs4 < 2. For

ng = 9, we observe that both the lower and upper bound are
getting tighter for higher SNR. At low SNR, the upper bound
performs better than the lower bound. Fog = 4, ng = 6

and low SNR, we observe that the upper bound is quite Ioose% =

in comparison tovg = 9. The lower bound forr = 4 is not
depicted here, since it is lower than the trivial lower bowfd

10°

o

Stacked OSTBC-ML

11

1.

10 & '| —»— stacked OSTBC-LR
QSTBC-ML
5| | —®—QSTBC-LR

|| n.=9, upper bound 10
19r ——ng=9, exact n.=9 .
1.8| —o— =9, lower bound Vo2 4 & 8 10 12 14 16 18
17l —»—N=6, upper bound SNR [dB] -
_nR=6, exact . )
16F _ Fig. 9. BER for QSTBC and the stacked OSTBC with ML and LR-ZF, 4
Py —o— nR—G, lower bound bit/sec/Hz.
a” 150 ——n_=4, exact
© 14f +nR=4, upper bound
13k 4 bits/sec/Hz. Note that in order to make a fair comparison of
the three transmission schemes (i.e. QSTBC, SM, and stacked
L2y OSTBC), we analyzed a system withr = ng = 4 antennas,
11} since for SM with suboptimal detectors it is necessary that
L ‘ ng > np. From the figure, we observe, that the performance
-10 0 10S NR [dE] ﬁ20 30 40 of the stack_ed OSTBC W|th LR-ZF detectlon is (_:ompz_slrable
with the optimal ML detection. In fact, the diversity gain of
Fig. 7. RatioC/R.4 for ny — 8 transmit andng — 4, ngy — 6 to  POth detectors is equal and there is only a power penalty of

ng = 9 receive antennas.

In Fig.

40

[, the absolute losa is depicted forny =

35r

w
o
T

N
[$2)

Absolute loss: C(p,nT,nR)— RSA
= N
al o

=
o
T

Fig. 8.

| | - v -n,=3, bound #

F|---n_=2, bound ’

: :

nR:7,simuIation ’
— /

g=/» bound ,

- o0 -n_=4, bound F

—+-n

n_=4, simulation ,

R
R
R
nR:S, simulation ,

#
R /

nR:Z, simulation | # eg

L o0 1
?vv%@vvvvvvv— V- -V - V- -V - Y- - -

# Fog
¥ Pleg

7 -
A P
* o
P
Py

Absolute lossA for np = 6 transmit and different numbers of

receive antennas.

transmit

antennas andr =

2 —4 andnrp = 7 receive
antennas. From the figure, we observe that as long;as

about1.7dB of LR-ZF to ML. The gap between ML and LR-
ZF detection is even smaller for QSTBC. Here, the power
penalty is abou®.6dB. Interestingly, the performance of the
stacked OSTBC for both ML and LR-ZF detection is better
than that of QSTBC in the SNR region shown in the figure.
However, for very high SNR and low BER, the diversity gain
of nrng (contrary to diversity on g for the stacked OSTBC)
for the QSTBC will show its effect and in can be expected that
the performance of QSTBC gets better than that of the stacked
OSTBC. For smalleng, this intersection point is expected be
at lower SNR values.

The bit error-rate performance of SM for BPSK and a
transmission rate of 4 bits/sec/Hz is shown in Figl 10. For
comparison purposes, we also plotted the BER of the stacked
QSTBC with QAM. Here, we observe that the BER perfor-
mance with ML-detection of the stacked OSTBC is better than
that of SM for all SNR values. In case of LR-ZF detection, SM
performs only better than QSTBC for low SNR of abQdB.
However, the gap in power efficiency between ML and LR-ZF
is higher for the stacked QSTBC in comparison to SM with
BSPK. Note that (as aforementioned) the small gap for SM
is only due to the BPSK modulation. For higher modulation
sizes, this gap is even higher. By increasing the transomssi
rate to 8bit/sec/Hz, i.e. QAM for SM and 16QAM for the
stacked OSTBC, we observe in Fig] 11 that the gap between

2ng, the slope of the absolute loss tends to a constant for high. and LR-ZF is dramatically increased in case of SM to
SNR. This behavior is tracked quite well by the boundid (20about6dB. On the other hand, the gap between ML and LR-ZF
which is also depicted in the figure.
In Fig.[d, the BER of the stacked OSTBC with QAM and théo the gap achieved with QAM (cf. Fi§. 110) to abou8dB.
QSTBC with 16-QAM is depicted for a transmission rate oflthough the performance of SM with ML detection is better

for the stacked OSTBC and 16QAM is reduced in comparison
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bounds for the rate achieved with this scheme and compared
it with upper and lower bounds for the capacity.

1 In addition to the capacity analysis, we also analyzed the
error rate performance of the proposed scheme. To this eand, w
| combined the stacked OSTBC with a zero-forcing (ZF) detec-
tor applying lattice-reduction (LR) aided detection, @rtbis
suboptimal detector achieves the same diversity as thmapti

ML detector with only some penalty in power efficiency. We
analyzed the effect of LR on the equivalent channel gengérate
by the stacked OSTBC, for spatial multiplexing (SM) and
QSTBC. We observed the highest gain for SM and a higher
gain for the stacked OSTBC in comparison to the QSTBC.

b Finally, we illustrated the theoretical results by numakic
simulations. From simulation results we observed that the
stacked scheme approaches the ergodic capacity of a MIMO
system by increasing the number of transmit antennas for a
fixed number of receive antennas. Furthermore, we observed
that as long as the number of transmit antennas is twice
the number of receive antennas the ratio of the capacity to
than that of the stacked OSTBC for low and moderate SNRe rate of the proposed scheme improves by increasing the
values, for high SNR values it is the other way around. TF®NR. Regarding the simulation of the error rate performance
we observed that in the considered SNR region the stacked
OSTBC performs better in terms of BER for ML as well as
for LR-aided ZF-detection than SM and QSTBC in the setup
| given. Further, we observed that the gap between maximum-
likelihood and LR-ZF detection is dramatically reduced in
comparison to SM schemes, especially for higher transamissi
rates.

O

Stacked OSTBC-ML
4 —v— Stacked OSTBC-LR

10 SM-ML

—— SM-LR

-5

10 "=

10_ i i i i
8 1
SNR [dB] -

Fig. 10. BER for SM and stacked OSTBC with ML and LR-ZF, 4 leitéz.
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