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Abstract— It is well known, that the Alamouti scheme is
the only space-time code from orthogonal design achieving the
capacity of a multiple-input multiple-output (MIMO) wirel ess
communication system with nT = 2 transmit antennas and
nR = 1 receive antenna. In this work, we propose then-times
stacked Alamouti scheme fornT = 2n transmit antennas and
show that this scheme achieves the capacity in the case ofnR = 1

receive antenna. This result may regarded as an extension of
the Alamouti case. For the more general case of more than one
receive antenna, we show that if the number of transmit antennas
is higher than the number of receive antennas we achieve a
high portion of the capacity with this scheme. Further, we show
that the MIMO capacity is at most twice the rate achieved with
the proposed scheme for all SNR. We derive lower and upper
bounds for the rate achieved with this scheme and compare it
with upper and lower bounds for the capacity. In addition to the
capacity analysis based on the assumption of a coherent channel,
we analyze the error rate performance of the stacked OSTBC
with the optimal ML detector and with the suboptimal lattice -
reduction (LR) aided zero-forcing detector. We compare theerror
rate performance of the stacked OSTBC with spatial multiplexing
(SM) and full-diversity achieving schemes. Finally, we illustrate
the theoretical results by numerical simulations.

I. I NTRODUCTION

Recent information theoretic results have demonstrated that
the ability of a system to support a high link quality and
higher data rates in the presence of Rayleigh fading improves
significantly with the use of multiple transmit and receive
antennas [1], [2]. Since then there has been considerable
work on a variety of schemes [3] which exploit multiple
antennas at both the transmitter and receiver in order to either
obtain transmit and receive diversity and therefore increase
the reliability of the system, e.g., orthogonal space-timeblock
codes (OSTBC) and space-time trellis codes [4]–[6] or achieve
the theoretical bounds [7] derived in [1], [2]. Interested readers
are referred to [3], where a detailed analysis of different
schemes is given.

The performance of OSTBC with respect to mutual infor-
mation has been analyzed (among others) in [8]–[11] and it
was shown that the capacity is achieved only in the case of
nT = 2 transmit, the well known Alamouti scheme [5], and
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nR = 1 receive antennas due to the rate loss inherent in
OSTBC with higher number of transmit antennas. Recently,
it was shown in [12] that due to this rate loss, OSTBC
with odd number of antennas are always outperformed by
OSTBC with even number of antennas, restricting even more
the deployment of OSTBC. On the one hand, we have the
OSTBC with low complexity and low rates. On the other
hand, we have the space-time trellis codes, which achieve
higher spectral efficiency in addition to high performance with
respect to frame error rates. However, the decoding complexity
of space-time trellis codes is increasing exponentially with
the number of transmit antennas and the transmission rate. In
order to achieve higher spectral efficiency combined with low
complexity maximum likelihood detectors, [13]–[17] designed
quasi-orthogonal space-time block codes (QSTBC) with trans-
mission rate one for more than two transmit antennas.

Other approaches aimed at reducing the decoding complex-
ity of space-time trellis codes. For instance, a layered space-
time architecture was proposed in [18], where the transmit
antennas were partitioned into two-antenna groups and on each
group space-time trellis codes were used as component codes.
In order to further decrease the complexity of this layered
space-time architecture, [19]–[21] used the Alamouti scheme
as component code for each group in combination with a sub-
optimal successive group interference suppression detection
strategy. The outage probability of this scheme was analyzed
in [22] for nT > nR and an upper bound was derived. An
asymptotic analysis of the rate achievable with this schemeis
performed in [23]. Forn = 2, this transmission scheme is also
referred to as double-space-time transmit diversity (DSTTD)
and was proposed as one possible candidate for high speed
downlink packet access (HSDPA) in 3GPP and beyond [24].

It is obvious that reducing the computational complexity
of the detector without sacrificing much performance is an
important issue. There is a huge amount of suboptimal de-
tectors with low complexity in the literature, linear detectors
like zero-forcing (ZF) or minimum mean square error (MMSE)
and nonlinear detectors like e.g. VBLAST [25]. Unfortunately,
these detectors significantly sacrifice performance in terms of
bit-error-rate (BER). Recently, lattice reduction (LR) aided de-
tection in combination with suboptimal detectors was proposed
by Yao and Wornell in order to improve the performance of
multi antenna systems [26]. The lattice reduction algorithm
proposed in [26] is optimal, but works only for MIMO systems
with two transmit and two receive antennas. The impact of
receive antenna correlation on the performance of LR-aided
detection was analyzed in [27]. In [28], the work of [26] was
extended to systems with more transmit and receive antennas,
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using the sub-optimal LLL [29] lattice reduction algorithm.
In [30], the LR-aided schemes in [28] were adopted to the
MMSE criterion. Note that the error rate curves of all these
LR detectors are parallel to those for maximum likelihood
(ML) detection with only some penalty in power efficiency.

In this work, we show that the stacked Alamouti scheme
is capable to achieve the capacity in combination with the
optimal maximum likelihood detector for the case ofnT = 2n
transmit antennas andnR = 1 receive antennas. This was also
shown for the basic Alamouti scheme withnT = 2 andnR =
1 [8]. Our result may therefore be regarded as an extension of
the Alamouti scheme tonT > 2. Furthermore, we show that in
the case of more than one receive antenna and ifnT > nR the
stacked Alamouti scheme is capable to achieve a significant
portion of the capacity and approaches the capacity ifnT ≫
nR. For anynT , nR, we show that the MIMO capacity is at
most twice the rate achieved with the proposed scheme for all
SNR. However, achieving high portions of the capacity does
not guarantee good performance in terms of error probability.
Thus, we compare the error-rate performance of the proposed
scheme with spatial multiplexing (SM), a rate oriented space-
time transmission schemes which achieve a high portion of
the capacity of MIMO systems, and with the aforementioned
diversity-oriented QSTBC by deploying LR-aided linear ZF
and ML detectors at the receiver, respectively.

The remainder of this paper is organized as follows. In
Section II, we introduce the system model and establish the
notation. The structure of the stacked Alamouti scheme and
the equivalent channel model are shown in section III. The
analysis of the mutual information is presented in section IV.
LR-aided linear ZF detection is shortly described in section
V including the analysis of the probability density function of
the condition number of the equivalent channel generated by
the different transmission schemes (SM,QSTBC, and stacked
OSTBC). Section VI provides simulation results, followed by
some concluding remarks in Section VII.

II. SYSTEM MODEL

We consider a system withnT transmit andnR receive
antennas. Our system model is defined by

Y = GnT
HT +N , (1)

where GnT
is the (T × nT ) transmit matrix, Y =

[y1, . . . ,ynR
] is the (T × nR) receive matrix, H =

[h1, . . . ,hnT
] is a (nR×nT ) matrix characterizing the coherent

channel, andN = [n1, . . . ,nnR
] is the complex (T × nR)

white Gaussian noise (AWGN) matrix, where an entry{nti}
of N (1 ≤ i ≤ nR) denotes the complex noise at theith
receiver for a given timet (1 ≤ t ≤ T ). The real and imaginary
parts ofnti are independent andN (0,nT/(2SNR)) distributed.
An entry of the channel matrix is denoted by{hij}. This
represents the complex gain of the channel between thejth
transmit (1 ≤ j ≤ nT ) and theith receive (1 ≤ i ≤ nR)
antenna, where the real and imaginary parts of the channel
gains are independent and normal distributed random variables
with N (0,1/2) per dimension. The channel matrix is assumed
to be constant for a block ofT symbols and changes indepen-
dently from block to block. The average power of the symbols

transmitted from each antenna is normalized to be1/nT , so
that the average power of the received signal at each receive
antenna is one and the signal-to-noise ratio (SNR) isρ. It
is further assumed that the transmitter has no channel state
information (CSI) and the receiver has perfect CSI.

III. C ODE CONSTRUCTION

A space time block code is defined by its transmit matrix
GnT

with entries{xj}
p
j=1, which are elements of the vector

x = [x1, . . . , xp]
T with x1, . . . , xp ∈ C, whereC ⊆ C denotes

a complex modulation signal set with unit average power,
e.g. M -PSK.. The rateR of a space-time code is defined
as R = p/T . In this paper, we focus on the ratenT /2
stacked Alamouti scheme. Starting with the well known (basic)
Alamouti scheme [5] fornT = 2 transmit antennas

G2(x1, x2) =

[
x1 x2
x∗2 −x∗1

]

,

the transmit matrix of the stacked Alamouti scheme withnT =
2n is constructed in the following way

GnT

(
{xj}

nT

j=1

)

= [G2(x1, x2),G2(x3, x4), . . . ,G2(xnT −1, xnT
)] .

Example 3.1:For the case ofn = 2, i.e. nT = 4 transmit
antennas we have

G4({xj}
4
j=1) =

[
x1 x2 x3 x4
x∗2 −x∗1 x∗4 −x∗3

]

,

which is also referred to as DSTTD [24].
After some manipulations (particularly complex-

conjugating) the system model in (1) can be rewritten
as

y′ = H′x+ n′ , (2)

wherey′, n′ ∈ C2nR and H′ ∈ C2nR×nT . The equivalent
channel equals

H′ = [(H′

1)
T , . . . , (H′

i)
T , . . . , (H′

nR
)T ]T ,

whereH′

i is given as

H′

i =
[
H′

i,1,H
′

i,3, . . . ,H
′

i,nT−1

]
, (3)

where

H′

i,j =

[
hij hi(j+1)

−h∗i(j+1) h∗ij

]

.

IV. M UTUAL INFORMATION

The instantaneous capacityI of a MIMO system withnT

transmit andnR receive antennas is given as [1], [2]

I = log2 det

(

InT
+

ρ

nT
HHH

)

. (4)

In the following two subsections, we derive lower and upper
bounds for both the ergodic capacity and the average rate
achievable with the proposed stacked scheme in order to yield
lower and upper bounds on the ratio of the ergodic capacity to
the average rate of the stacked OSTBC. In the third subsection,
we characterize the absolute loss of the average rate of the
stacked OSTBC to the ergodic capacity.
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A. Upper bounds on the ergodic capacity and the average rate
of stacked OSTBC

By applying the trace-determinant inequalitydet(A)1/n ≤
1
n tr(A), we arrive at a simple upper bound on the instanta-
neous capacity given as

I ≤ Iub = L log2

(

1 +
ρ

nTL

nT∑

j=1

nR∑

i=1

|hji|
2

︸ ︷︷ ︸

λ

)

, (5)

whereL is equal toL = min(nT , nR). Averaging the upper
bound in (5) over all channel realizations results in [31] (C =
E[I] denotes ergodic capacity)

C ≤ Cub = E [Iub] =
L

ln(2)

nTnR−1∑

k=0

(
nTL

ρ

)nTnR−k−1

(6)

e
nT L

ρ Γ

(

1− (nTnR − k),
nTL

ρ

)

.

Note that for high SNR, the slope of the upper bound is equal
to L. In addition to this upper bound, we compare the rate
achieved with the stacked scheme with the following upper
bound

C ≤ CJen = log2

(
L∑

i=0

(
L

i

)
K!

(K − i)!

(
ρ

nT

)i
)

, (7)

derived in [32] by using Jensen’s inequality, whereK =
max(nT , nR).

In the following, we analyze the performance of the stacked
scheme with respect to mutual information and derive upper
bounds for the average rate of the stacked scheme. We first
analyze the case ofnR = 1 receive antennas and then
generalize the analysis to the case of arbitrary number of
receive antennas.

1) CasenR = 1: In case ofnR = 1, the achievable rate of
the stacked Alamouti scheme is

IsA =
1

2
log2 det

(

InT
+

ρ

nT
(H′

1)
HH′

1

)

.

Using the determinant equalitydet(I+AB) = det(I+BA),
after some manipulations we arrive at

IsA = log2



1 +
ρ

nT

nT∑

j=1

|hj1|
2



 , (8)

which equals the capacity of a MIMO system withnT transmit
and nR = 1 receive antennas [1], i.e. as long asnR =
1, the capacity is achieved for arbitraryn = nT /2. Note
that in [3, p.199] a Taylor series expansion is performed
for the capacity and the mutual information achievable with
certain schemes such as the stacked OSTBC. After comparing
the first two expansion coefficients (the linear term and the
second order coefficients) it is shown that the stacked OSTBC
reaches second-order capacity fornR = 1, i.e. the second-
order coefficient of the mutual information of the stacked
OSTBC is equal to the second-order coefficient of the capacity.
Although essential features of the mutual information can
be already seen from the first and second-order coefficients

(especially at low SNR), our result above may regarded as
more general, since the exact capacity and mutual information
expressions are analyzed. Further note that the result above
may be regarded as an extension of the results in [8]. There it
was shown, that the basic Alamouti scheme withnT = 2 and
nR = 1 achieves the capacity.

2) Case ofnT = 4 and nR = 2 (DSTTD): In the case of
nT = 4 transmit andnR = 2 receive antennas, the equivalent
channel is given by

H′ =







h11 h12 h13 h14
−h∗12 h∗11 −h∗14 h∗13
h21 h22 h23 h24
−h∗22 h∗21 −h∗24 h∗23






.

The achievable rate in this case is given as

IsA =
1

2
log2 det






InT

+
ρ

nT







λ1 0 α1 α2

0 λ1 −α∗

2 α∗

1

α∗

1 −α2 λ2 0
α∗

2 α1 0 λ2












,

whereλi =
∑nT

j=1 |hij |
2, α1 = h11h

∗

21 + h12h
∗

22 + h13h
∗

23 +
h14h

∗

24, andα2 = −h11h22+h12h21−h13h∗24+h14h23. Using
Fischer’s inequality

det

([
A BH

B D

])

≤ det(A) det(D)

yields

IsA ≤ log2

((

1 +
ρ

nT
λ1

)(

1 +
ρ

nT
λ2

))

.

By using the arithmetic-geometric inequality, we arrive at

IsA ≤ 2 log2

(

1 +
ρ

2nT
||H||2

)

.

This upper bound equals to twice the rate of a full code rate
OSTBC for nT = 4 transmit andnR = 2 receive antennas
with a power penalty of3 dB. In this particular case a more
precise statement can be made due to the following strict form
of Fischer’s inequality [33]

Lemma 4.1:Let P =

[
A BH

B D

]

(A,D square,

nonempty) be positive definite. Then

B has full rank ⇒ detP < (detA)(detD)

Proof: Let R ≻ 0 denote positive definiteness, andR ≻
S defined by(R − S) ≻ 0. Then [34, 7.7.6]P ≻ 0 ⇔ (A ≻
0,D ≻ BA−1BH). Thus for arbitraryB holdsD − (D −
BA−1BH) = BA−1BH � 0 and becomes strict ifB has
full rank. Since

(
0 ≺ S ≺ R ⇒ detS < detR

)
we obtain

detP = (detA)(det[D − BA−1BH ]) < (detA)(detD), if
B has full rank.
FromdetB = |α1|2+ |α2|2 it follows, that apart from the set
of events{α1 = α2 = 0} of measure zero,B has full rank,
thus the upper bound forIsA is strict with probability one.
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3) Case of arbitrarynR: The available portion of the
mutual information achievable withnR ≥ 1 for the stacked
Alamouti scheme is

IsA =
1

2
log2 det

(

InT
+

ρ

nT
(H′)HH′

)

. (9)

Following the derivation above for arbitrarynR results in

IsA ≤ IubsA =
L1

2
log2

(

1 +
2ρ

nTL1
||H||2

)

, (10)

where L1 = min(nT , 2nR). By averaging (10) over all
channel realizations, an upper bound on the average rate
Rub

sA ≥ E[IsA] of the stacked Alamouti scheme similar to (6)
may be obtained

RsA ≤ Rub
sA = E [Iub] =

L1

2 ln(2)

nTnR−1∑

k=0

(
nTL1

2ρ

)nTnR−k−1

(11)

e
nT L1

2ρ Γ

(

1− (nTnR − k),
nTL1

2ρ

)

,

which can be approximated usinglog2(1 + x) ≈ log2(x) for
x≫ 1 by

Rub
sA ≈

L1

2
log2

(
2ρ

nTL1

)

+
L1

2 ln(2)

(
nTnR−1∑

p=1

1

p
− γ

)

.

Note that the approximation gets better for higher SNR and
may be inaccurate for low SNR. Further note that, for high
SNR, the slope of the upper bound (11) and its approximation
is equal toL1/2.

B. Lower bounds on the ergodic capacity and the average rate
of stacked OSTBC

Similarly to the last subsection, here we derive lower bounds
for the ergodic capacity and the average rate of the stacked
OSTBC. Due to the peculiar property of stacked OSTBC,
lower bounds are obtained in the procedure for the following
cases: (i)nT ≤ nR, (ii) nR < nT < 2nR, (iii) 2nR ≤ nT ≤
4nR, and (iv)4nR < nT .

First of all, from [35] we obtain the following lower bound
on the ergodic capacity

C ≥ Clb =
L∑

j=1

log2

(

1 +
ρ

nT
exp

(
K−j
∑

p=1

1

p
− γ

))

, (12)

whereγ ≈ 0.57721566 is Euler’s constant.
In order to derive an upper bound on the ratio of the ergodic

capacity to the average rate achieved with the stacked scheme,
we need a lower bound for the average rate of the stacked
scheme. To this end, we rewrite (9) as follows

IsA =
1

2
log2 det

(

InT
+

ρ

nT
(H)HH+

ρ

nT
(H′

e)
HH′

e

)

,

(13)

whereH is the actual MIMO channel, which is obtained by
taking the odd rows of the equivalent channelH′ andHe is
obtained by taking the even rows ofH′. The relation between

the actual channelH and He is described in the following
proposition.

Proposition 4.1:Let He be the even andH the odd rows
of H′ given in (2), respectively. Then the following holds

1) He = H∗J, where1

J = InT
2

⊗

[
0 1
−1 0

]

.

2) E
[
HHH

e

]
= E

[
HJTHT

]
= 0.

Proof: The proof is straightforward and uninformative
and thus it is omitted.
Eq. (13) can be rewritten as

IsA =
1

2
log2

(

det

(

InT
+

ρ

nT
(H)HH

)

×

det

(

InT
+

ρ

nT
H′

e

(

InT
+

ρ

nT
(H)HH

)
−1

(H′

e)
H

))

=
1

2
log2 det

(

InT
+

ρ

nT
(H)HH

)

+
1

2
×

log2 det
(

InT
+

ρ

nT
H′

e

(

InT
+

ρ

nT
(H)HH

)
−1

(H′

e)
H
)

.

Since H′

e

(

InT
+ ρ

nT
(H)HH

)
−1

(H′

e)
H is a positive

semidefinite matrix, it follows immediately that the rate
achieved with the stacked Alamouti is lower bounded by

IsA ≥
1

2
log2 det

(

InT
+

ρ

nT
(H)HH

)

,

which is half the capacity of a MIMO system withnT transmit
andnR receive antennas.

Another lower bound is obtained for the casenT ≤ nR

by applying Minkowski’s determinant inequality [34, p.482]
(det(A + B) ≥ (det(A)

1

n + det(B)
1

n )n, A ≻ 0,B � 0)
to (9)

RsA = E

[
1

2
log2 det

(

I+
ρ

nT
(H′)HH′

)]

≥
nT

2
E

[

log2

(

1 + ρ det

(
1

nT
(H′)HH′

) 1

nT

)]

=
nT

2
E

[

log2

(

1 + ρ det

(
1

nT
(HHH+HH

e He)

) 1

nT

)]

.

Applying again Minkowski’s determinant inequality results in

RsA ≥
nT

2
E

[

log2

(

1 + ρ det

(
1

nT
HHH

)1/nT

+ρ det

(
1

nT
HH

e He

) 1

nT
)
]

.

SinceHe is obtained simply by conjugating and exchanging
some elements of the actual matrixH, it can be shown that the

1Notation: AT , AH , A∗ means transpose, hermitian transpose, and
complex conjugation, respectively
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eigenvalues of(He)
H(He) are the same as the eigenvalues of

HH(H). Therefore, the lower bound is equal to

RsA ≥
nT

2
E

[

log2

(

1 + ρ exp ln

(

2 det

(
1

nT
HHH

) 1

nT

))]

.

Sincelog2(1+ce
x) is a convex function inx for c > 0 and by

applying Jensen’s inequality it holds thatE [log2(1 + cex)] ≥
log2(1 + c exp(E [x])), we have

RsA ≥
nT

2
log2

(

1 + ρ expE

[

ln

(

2 det

(
1

nT
HHH

) 1

nT

)])

=
nT

2
log2

(

1 + ρ2 exp
1

nT
E

[

ln

(

det

(
1

nT
HHH

))])

.

From [35], [36], we know that

E

[

ln

(

det

(
1

nT
HHH

))]

=

nT∑

j=1

E [lnXj]− nT lnnT ,

where theXj are independent,χ2 distributed independent
variables with2(nR − j + 1) degrees of freedom. Using this
yields

RsA ≥
nT

2
log2



1 +
ρ
nT

2

exp




1

nT

nT∑

j=1

E [lnXj ]







 .

With
E [lnXj ] = ψ(nR − j + 1),

whereψ(·) is the digamma function, which may be rewritten
for integer arguments as follows

ψ(x) = −γ +
x−1∑

p=1

1

p
.

Using this results in the following lower bound for the average
rate of the stacked scheme.

RsA ≥
nT

2
log2



1 +
ρ
nT

2

exp




1

nT

nT∑

j=1

nR−j
∑

p=1

1

p
− γ









[casenT ≤ nR].

Similar steps can be pursued fornT ≥ 4nR resulting in the
following lower bound

RsA ≥nR log2



1 +
2ρ

nT
exp




1

2nR

2nR∑

j=1

nT/2−j
∑

p=1

1

p
− γ









[casenT > 4nR]

For the case ofnT ≥ 2nR we rewrite (9) as

IsA =
1

2
log2 det

(

I2nR
+

ρ

nT

[
HHH HHH

e

HeH
H HeH

H
e

])

.

(14)

SinceE
[
HHH

e

]
= 0 from proposition 4.1, we may proceed

as in [2] to arrive at a lower bound given as

IsA ≥
1

2

L1∑

k=1

log2

(

1 +
ρ

nT
Xk

)

,

whereXk are again independent,χ2 distributed independent
variables with2(K1 − k + 1) degrees of freedom withK1 =
max(2nR, nT ). By following the same line of arguments as
in [35], we arrive at

RsA ≥ Rlb
sA =

1

2

L1∑

j=1

log2

(

1 +
ρ

nT
exp

(
K1−j
∑

p=1

1

p
− γ

))

[casenT ≥ 2nR]

In [23], a similar (however, looser) lower bound was derived
for this case in order to analyze the asymptotic performance
(with respect toρ) of stacked OSTBC.

For the case ofnR < nT < 2nR we have

RsA = E

[
1

2
log2 det

(

I+
ρ

nT
(H′)HH′

)]

= E

[
1

2
log2 det

(

I+
ρ

nT

(
HHH +HeH

H
e

)
)]

= E

[
1

2
log2 det

(
1

2
I+

ρ

nT
HHH +

1

2
I+

ρ

nT
HeH

H
e

)]

.

Applying now Minkowski’s determinant inequality results in

RsA ≥
1

2
E

[

log2 det

(

I+
2ρ

nT
HHH

)]

(15)

and finally

RsA ≥ Rlb
sA =

1

2

L∑

j=1

log2

(

1 +
2ρ

nT
exp

(
K−j
∑

p=1

1

p
− γ

))

[casenR < nT < 2nR].

The lower bound results derived in this subsection are
summarized in Table I on the top of the next page.

Note that for high SNR, most of the bounds have a slope
equal toL1/2, which equals the slope of the upper bound (11).
Only for the casenR < nT < 2nR, the slope of the lower
bound is equal toL/2. In Fig. 1 on the top of the next page,
the average rate, the upper bound (11) and the lower bounds
from Table I for nT = and nR = 1, . . . , 4 are depicted.
From the Fig., we observe that the upper bound in (11) and
lower bounds track the average rate quite well. Only in the
aforementioned casenR < nT < 2nR, the slope of the lower
bound differs from the exact performance and the upper bound.
Note that fornR = 1, the upper bound coincides with the exact
performance.

C. Characterization of the absolute rate loss

In this subsection, we characterize the absolute rate loss
of the stacked OSTBC to the ergodic capacity using Fischer’s
inequality. First of all, we discuss the case ofnT ≥ 2nR. Note
that the rate loss with the basic Alamouti scheme (nT = 2) was
also analyzed in [8], [10] using different approaches. Starting
from (14), applying Fischer’s inequality and averaging over
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Case Lower bound onRsA

nT ≤ nR
nT

2
log

2

„

1 + ρ
nT
2

exp
“

1

nT

PnT
j=1

PnR−j
p=1

1

p
− γ

”

«

nR < nT < 2nR
1

2

PL
j=1

log
2

“

1 +
2ρ
nT

exp
“

PK−j
p=1

1

p
− γ

””

2nR ≤ nT
1

2

PL1

j=1
log

2

“

1 +
ρ

nT
exp

“

PK1−j
p=1

1

p
− γ

””

4nR < nT nR log
2

“

1 +
2ρ
nT

exp
“

1

2nR

P2nR
j=1

PnT/2−j
p=1

1

p
− γ

””

TABLE I

LOWER BOUND ONRsA FOR THE DIFFERENT CASES
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(d) nR = 4

Fig. 1. Average rates, upper bounds, and lower bounds of the stacked OSTBCs fornT = 4.

all channel realizations we arrive at

RsA ≤ E

[

1

2
log2

(

det

(

InR
+

ρ

nT
HHH

)

×

(

InR
+

ρ

nT
HeH

H
e

))]

= C(ρ, nT , nR)

(16)

[casenT ≥ 2nR],

i.e. as long asnT ≥ 2nR, the average rate of the stacked
OSTBC is only upper bounded by the ergodic capacity.

Proceeding similarly for the casenT < 2nR results in

RsA =
1

2
E

[

log2 det

(

InT
+

ρ

nT

[
H̃HH̃ H̃HH̃e

H̃H
e H̃ H̃H

e H̃e

])]

≤ E

[

log2

(

det

(

InT
2

+
ρ

nT
H̃HH̃

))]

= C
(ρ

2
,
nT

2
, 2nR

)

< C (ρ, nT , nR) [casenT < 2nR],

(17)

where H̃ is obtained by taking the odd columns of the
equivalent channelH′ andH̃e is obtained by taking the even
columns ofH′. From (17), we observe that fornT < 2nR

the average rate of the stacked OSTBC is upper bounded by
the ergodic capacity of a system withnT

2 transmit and2nR

receive antennas with a power penalty of3 dB.
We can characterize the gap in (16) and (17) due to the
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application of Fischer’s inequality. FornT < 2nR, we have
then

∆ = C
(ρ

2
,
nT

2
, 2nR

)

−RsA

=
1

2
E







log2








det
(

InT
+ ρ

nT
WD

)

det

(

InT
+ ρ

nT

[
H̃HH̃ H̃HH̃e

H̃H
e H̃ H̃H

e H̃e

])














,

where

WD =

[
H̃HH̃ 0

0 H̃H
e H̃e

]

.

Since the events of̃HH
e H̃ having not full rank are of measure

zero the strict form of Fischer’s inequality stated in Lemma
4.1 shows, that the gap in (16) and (17) is non zero in general,
i.e. ∆ > 0, thus it is not possible to reach the upper capacity
bounds.

With

WOff =

[
H̃HH̃ H̃HH̃e

H̃H
e H̃ H̃H

e H̃e

]

−WD,

we can rewrite

det

(

InT
+

ρ

nT

[
H̃HH̃ H̃HH̃e

H̃H
e H̃ H̃H

e H̃e

])

= det

(

InT
+

ρ

nT
(WOff +WD)

)

= det

(

InT
+

ρ

nT
WD

)

×

det

(

InT
+

[

InT
+

ρ

nT
WD

]
−1

ρ

nT
WOff

)

to arrive at

∆ = −
1

2
E

[

log2 det

(

InT
+

[

InT
+

ρ

nT
WD

]
−1

ρ

nT
WOff

︸ ︷︷ ︸

A

)]

.

Using

det(InT
+A) = exp

(
L1∑

k=1

ln(1 + µk)

)

yields

∆ ≤
1

2 ln(2)
E

[
L1∑

k=1

µ2
k

]

where the inequality follows from Taylor series expan-
sion x − 1

2x
2 ≤ ln(1 + x) around x = 0 and the

fact that tr(A) = 0, since A has zero block ma-
trices on its diagonal. Its off-diagonal blocks have the

form B =
[

InT
+ ρ

nT
H̃HH̃

]
−1

ρ
nT

H̃HH̃e and Be =
[

InT
+ ρ

nT
H̃H

e
H̃e

]
−1

ρ
nT

H̃e

H
H̃, respectively. Note that the

matrices in brackets have the same eigenvalues. This implies
that each eigenvalue ofA appears twice, i.e.µk = µk+L1/2,
1 ≤ k ≤ L1/2. Additionally applying the inequality [34,

(5.6.Ex.26)]tr(A2) ≤ ||A||2 we obtain
L1∑

k=1

µ2
k = 2

L1/2∑

k=1

µ2
k ≤

2||B||2F . Further we have

||B||2F = tr

{(
ρ

nT

)2

H̃eH̃e

H
H̃

[

InT
+

ρ

nT
H̃HH̃

]
−2

H̃H

}

which can be interpreted as the trace of a product of two
positive semi definite matricesP, Q. Using the fact, that
H̃eH̃e

H
has the same ordered eigenvalues asH̃H̃H and the

inequality tr(PQ) ≤
∑

j µk(P)µk(Q) [37] yields
L1∑

k=1

µ2
k ≤

L1 and we arrive at the final bound

∆ ≤
1

ln(2)
E





L1/2
∑

k=1

µ2
k



 ≤
L1

2 ln(2)
.

In addition to that, we have the loss between
C
(
ρ
2 ,

nT

2 , 2nR

)
and C (ρ, nT , nR). Approximating (7)

and (12) for high SNR as

CJen (ρ, nT , nR) = log2

(

1 +

L∑

i=1

(
L

i

)
K!

(K − i)!

(
ρ

nT

)i
)

≈ log2

(

1 +
K!

(K − L)!

(
ρ

nT

)L
)

= log2

(

(K − L)!

K!
+

(
ρ

nT

)L
)

+ log2

(
K!

(K − L)!

)

≈ log2

(

1 +

(
ρ

nT

)L
)

≈ log2

((

1 +
ρ

nT

)L
)

=L log2

(

1 +
ρ

nT

)

(18)

and

C
(ρ

2
,
nT

2
, 2nR

)

(a)

≥
nT

2
log2



1 +
ρ

nT
exp




2

nT

nT
2∑

j=1

2nR−j
∑

p=1

1

p
− γ









=
nT

2
log2



exp



−
2

nT

nT
2∑

j=1

2nR−j
∑

p=1

1

p
+ γ



+
ρ

nT





+
nT

2 ln(2)




2

nT

nT
2∑

j=1

2nR−j
∑

p=1

1

p
− γ





≈
(nT

2

)

log2

(

1 +
ρ

nT

)

, (19)

where(a) follows from applying Jensen’s inequality to (12).
With (18) and (19), the loss betweenC

(
ρ
2 ,

nT

2 , 2nR

)
and

C (ρ, nT , nR) is quite accurately described by

C (ρ, nT , nR)− C
(ρ

2
,
nT

2
, 2nR

)

≈
(

L−
nT

2

)

log2

(

1 +
ρ

nT

)

, [casenT < 2nR].
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Finally, the absolute loss fornT < 2nR between the ergodic
capacity of a MIMO system and the stacked scheme is given
by

(

L−
nT

2

)

log2

(

1 +
ρ

nT

)

≤ C (ρ, nT , nR)−RsA

≤
nT

2 ln(2)
+
(

L−
nT

2

)

log2

(

1 +
ρ

nT

)

.

The same procedure can be pursued fornT ≥ 2nR resulting
in the following general characterization for anynT , nR

max
(

0, L−
nT

2

)

log2

(

1 +
ρ

nT

)

≤ C (ρ, nT , nR)−RsA

≤
L1

2 ln(2)
+ max

(

0, L−
nT

2

)

log2

(

1 +
ρ

nT

)

,

which is equal to
(

L−
L1

2

)

log2

(

1 +
ρ

nT

)

≤ C (ρ, nT , nR) −RsA

≤
L1

2 ln(2)
+

(

L−
L1

2

)

log2

(

1 +
ρ

nT

)

. (20)

From (20), we observe that as long asnT ≥ 2nR, the absolute
loss is only a constant, which depends only on the number of
receive antennas. In casenT < 2nR the absolute loss increases
linearly with

(
L− nT

2

)
.

V. SUBOPTIMAL DETECTION AND CONDITION NUMBER

In the previous sections, we have shown that the stacked
OSTBC achieves significant portions of the ergodic capac-
ity. This does not, however, guarantee good performance in
terms of error probability, which will be investigated in this
section. Note that in the analysis in the previous sections it
was implicitly assumed, that an optimal maximum-likelihood
detector is used at the receiver, which performs an exhaustive
search over all possible transmit symbols at each detection
step. Especially for higher number of transmit antennas, this
becomes computationally prohibitive. If additionally high rates
are requested, then higher order modulation sizes are necessary
which increases the computational complexity even more.
Thus, suboptimal detection schemes have to be employed
reducing the detection complexity and thereby achieving
reasonable error rate performance results. Therefore, in this
section the impact of the suboptimal LR-aided linear ZF-
detector on the performance of the stacked OSTBC is analyzed
and compared to SM and QSTBC by resorting the equivalent
channel representation. In order to apply the LR algorithm,
the system model has to rewritten, which is done in the
following subsections for the different transmission schemes.
Afterwards, the LR-aided linear ZF-detection is described
briefly.

A. Spatial Multiplexing (SM)

For SM, the transmit matrixGnT
is reduced tox, since

T = 1. In order to apply the suboptimal LR for SM, the

system model in (1) has to be rewritten as a real model [28]
of the form

yE =

[
ℜ{x}
ℑ{x}

]T

HSM
E + nE ,

where

yE =

[
ℜ{y}
ℑ{y}

]T

,nE =

[
ℜ{n}
ℑ{n}

]T

,

and

HSM
E =

[
ℜ{H} ℑ{H}

−ℑ{H} ℜ{H}

]

.

In the following, we refer toHSM
E as the equivalent channel

for the SM scheme.

B. QSTBC

Without loss of generality, in this subsection we shortly
describe the QSTBC fornT = 4 transmit antennas [38].
To generalization to higher number of transmit antennas is
straightforward [16]. The transmit matrix fornT = 4 transmit
antennas is then given [16], [38].

G4(x) =







x1 x2 x3 x4
x∗2 −x∗1 x∗4 −x∗3
x3 −x4 −x1 x2
x∗4 x∗3 −x∗2 −x∗1






.

After rewriting (1), we arrive at (similar to the proposed
scheme, (cf. (2))

yQ = HQx+ nQ , (21)

whereHQ = [(HQ
1 )

T , . . . , (HQ
i )

T , . . . , (HQ
nR

)T ]T and(HQ
i )

is given as

H
Q
i =







h1i h2i h3i h4i
−h∗2i h∗1i −h∗4i h∗3i
−h3i h4i h1i −h2i
−h∗4i −h∗3i h∗2i h∗1i






.

For generalnT , we have to rewrite the system model in (21)
as a real model similar to SM. FornT = 4, however, it
is not necessary to resort to the real system model. Here,
the system model can be decomposed such that the iterative
optimal algorithm in [26] for a system withnT = 2 transmit
antennas can be applied. For this we first perform channel-
matched filtering as the first stage and noise pre-whitening as
the second stage of preprocessing at the receiver resultingin
two independent subsystems [39], one of which

ỹo =

[
β β
ǫ −ǫ

]

︸ ︷︷ ︸

H
Q

E

[
x1
x3

]

+ ño ,

is only a function of the elements ofx with odd index, and
the other one is only a function of the elements ofx with even
index,

ỹe =

[
β β
ǫ −ǫ

]

︸ ︷︷ ︸

H
Q

E

[
x4
x2

]

+ ñe ,
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where H
Q
E is the 2 × 2 equivalent channel for QSTBC,

β =
√

λ+α
2 , ǫ =

√
λ−α
2 , λ =

∑nR

i=1

∑nT

j=1 |hi,j |
2, and

α =
∑nR

i=1 2Im(h∗i,1hi,3+h
∗

i,4hi,2). Both subsystems can now
be detected separately, which reduces the complexity of the
receiver significantly.

Lemma 5.1:In order to get the best performance with
respect to error rates and a decoupled system with scalar input
and scalar output as in the case of OSTBC, the columns of
H

Q
E have to be orthogonal. However, the probability that this

occurs forHQ
E is zero.

Proof: For orthogonality, it follows from the scalar
product of the columns ofHQ

E that α has to be zero. But
since the channel entries{hji} are mutually independent
and identically distributed (i.i.d.) random complex Gaussian
processes, the probabilityPr(α = 0) is equal to the probability
Pr(
∑nR

i=1 2Im(h∗i,1hi,3 + h∗i,4hi,2) = 0), which in turn is
zero. From this it follows that orthogonality and thereforea
decoupled system can not be achieved.
A disadvantage of this QSTBC is that in order to achieve
the same transmission rate as SM, we have to compensate
the rate loss by using a considerably higher constellation.
But recall that higher constellations complicates amplification,
synchronization, and detection. E.g., a transmission rateof 4
bits/sec/Hz for a system withnT = 4 transmit antennas is
achieved by SM with BPSK, whereas 16QAM is required
for the code rate one QSTBC. In [14], [40] it was shown
that QSTBC approach the capacity in case ofnR = 1,
which is achieved in case of the stacked OSTBC as shown
in section IV-A. FornR > 1, the performance of QSTBC in
terms of mutual information degrades severely in contrast to
the stacked OSTBC, which achieve at least half of the capacity
as derived in section IV-B.

C. Proposed scheme

Given (2), the equivalent real signal model for the proposed
stacked OSTBC is given as

y′′ = HOS
E

[
ℜ{x}
ℑ{x}

]

+ n′′ ,

where

HOS
E =

[
ℜ{H′} −ℑ{H′}
ℑ{H′} ℜ{H′}

]

.

D. LR-aided linear ZF Detection

By applying the algorithm, them × n equivalent channel
HE for each transmission scheme can be decomposed as

HE = QR , (22)

whereR is an×n matrix with integer entries andQ is am×n
matrix, which is better conditioned thanHE , i.e. the columns
of Q are less correlated and shorter. A good indication for
the correlation of a matrix is the so called condition number,
which is defined as the ratio of the largest singular value of
the matrix to the smallest. Using (22), the equivalent signal
model is then given as

y = HExr + n = QRxr + n = Qz+ n .

Now, by multiplyingQ−1 from left to y we arrive at

ỹ = z+Q−1n ,

where the noise enhancement and coloring is relatively small,
sinceQ−1 is also good conditioned. In order to get a estima-
tion for the transmitted symbols, the following operation has
to be applied

x̂ = C

(

R−1QZn

[
1

C
ỹ −R

1

2
1n

]

+
1

2
1n

)

, (23)

where 1n is a n × 1 vector of ones,C is a constant
given asC =

√
6

M−1 andQZn [·] describes the component-
wise quantization with respect to the infinite integer space
Z. However, this quantization can only be applied, if the
transmit modulation signal setC is transformed toZ, which
is achieved with the scaling and shifting of̃y within the
quantization operation in (23). Note that after this quantization,
re-scaling and re-shifting, some points may lie outside the
constellation. A suboptimal solution is to assign these points
to the nearest point within the constellation. For BPSK, the
effect of this assignment has a significant effect on the error
rate performance, however, this gain diminishes with higher
order modulations.

E. Condition number

For illustration, the probability density functions (pdfs) of
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(H
E
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)

Stacked OSTBC−LR
Stacked OSTBC
SM−LR
SM

Fig. 2. Pdfs of channel cond. numbers with SM or the stacked OSTBC with
and w/o LR for a4× 4 system.

the natural logarithm of the condition number of the channels
for the stacked QSTBC and SM are depicted in Fig. 2. From
the Fig., we observe that the SM-channel is bad-conditioned
and that LR has a great impact on the channel. For the stacked
OSTBC, we observe that the impact of LR is not as significant
as for SM.

The pdf of the natural logarithm of the condition number
for the QSTBC is depicted in Fig. 3. For comparison, the pdf
for the stacked OSTBC is also plotted. In case of QSTBC,
for some channels we have no gain with LR, since many
samples of the equivalent channel generated with QSTBC have
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inherently low condition numbers such that the LR has no
effect. Different from the QSTBC, for the stacked OSTBC
there is a gain achieved by applying the LR for almost
all samples of the equivalent channel model. Note that for
orthogonal channels (e.g., with OSTBC), the pdf is a dirac
impulse at position0.
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Fig. 3. Pdfs of channel cond. numbers with the stacked OSTBC or QSTBC
with and w/o LR.

VI. SIMULATIONS

In Fig. 4, the average rate of the stacked Alamouti scheme
and the ergodic capacity of a MIMO system withnR = 2 and
nT = 2, 4 and nT = 8 is depicted. In case ofnT = 2, we
have the standard Alamouti scheme. From the Fig., we observe
that the difference between the average rate of the stacked
Alamouti scheme and the capacity diminishes significantly by
increasing the number of transmit antennas.
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Fig. 4. Ergodic capacity and average rates of the stacked OSTBC with
nR = 2 receive andnT = 2,nT = 4 andnT = 8 transmit antennas.

In Fig. 5, the average rate of the stacked Alamouti scheme
and the ergodic capacity withnT = 4 andnR = 2, 4 andnT =
8 is depicted. In contrast to the case of increasing number of
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Fig. 5. Ergodic capacity and average rates of the stacked OSTBC with
nT = 4 transmit andnR = 2,nR = 4 andnR = 8 receive antennas.

transmit antennas, here we observe that the difference between
the average rate of the stacked Alamouti scheme and the
ergodic capacity increases by increasing the number of receive
antennas.

In Fig. 6, the ratioC/RsA is depicted fornT = 8 transmit
andnR = 2 (bottom) tonR = 9 (top) receive antennas. For
high SNR, we observe that as long asnT ≥ 2nR the ratio
decreases as the SNR increases. In casenT < 2nR the ratio
increases steadily. As derived in section IV-B, the ratio isupper
bounded byC/RsA < 2 for anynR, nT .
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Fig. 6. RatioC/RsA for nT = 8 transmit andnR = 2 (bottom) tonR = 9
(top) receive antennas.

In Fig. 7, the ratioC/RsA is depicted fornT = 8 transmit
andnR = 4, nR = 6 andnR = 9 receive antennas. In addition
to that, we used our lower and upper bounds derived in the
previous section in order to derive lower and upper bounds for
the ratioC/RsA, i.e.

Clb

Rub
sA

≤
C

RsA
≤
CJen

Rlb
sA

(24)
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Based on the derivations in section IV-B, we know that the
ratio is upper bounded by2. Further, since the trivial lower
bound is equal to1, we only depicted1 ≤ C/RsA ≤ 2. For
nR = 9, we observe that both the lower and upper bound are
getting tighter for higher SNR. At low SNR, the upper bound
performs better than the lower bound. FornR = 4, nR = 6
and low SNR, we observe that the upper bound is quite loose
in comparison tonR = 9. The lower bound fornR = 4 is not
depicted here, since it is lower than the trivial lower boundof
1.
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Fig. 7. RatioC/RsA for nT = 8 transmit andnR = 4, nR = 6 to
nR = 9 receive antennas.

In Fig. 8, the absolute loss∆ is depicted fornT = 6
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Fig. 8. Absolute loss∆ for nT = 6 transmit and different numbers of
receive antennas.

transmit antennas andnR = 2 − 4 and nR = 7 receive
antennas. From the figure, we observe that as long asnT ≥
2nR, the slope of the absolute loss tends to a constant for high
SNR. This behavior is tracked quite well by the bound in (20),
which is also depicted in the figure.

In Fig. 9, the BER of the stacked OSTBC with QAM and the
QSTBC with 16-QAM is depicted for a transmission rate of
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Fig. 9. BER for QSTBC and the stacked OSTBC with ML and LR-ZF, 4
bit/sec/Hz.

4 bits/sec/Hz. Note that in order to make a fair comparison of
the three transmission schemes (i.e. QSTBC, SM, and stacked
OSTBC), we analyzed a system withnT = nR = 4 antennas,
since for SM with suboptimal detectors it is necessary that
nR ≥ nT . From the figure, we observe, that the performance
of the stacked OSTBC with LR-ZF detection is comparable
with the optimal ML detection. In fact, the diversity gain of
both detectors is equal and there is only a power penalty of
about1.7dB of LR-ZF to ML. The gap between ML and LR-
ZF detection is even smaller for QSTBC. Here, the power
penalty is about0.6dB. Interestingly, the performance of the
stacked OSTBC for both ML and LR-ZF detection is better
than that of QSTBC in the SNR region shown in the figure.
However, for very high SNR and low BER, the diversity gain
of nTnR (contrary to diversity of2nR for the stacked OSTBC)
for the QSTBC will show its effect and in can be expected that
the performance of QSTBC gets better than that of the stacked
OSTBC. For smallernR, this intersection point is expected be
at lower SNR values.

The bit error-rate performance of SM for BPSK and a
transmission rate of 4 bits/sec/Hz is shown in Fig. 10. For
comparison purposes, we also plotted the BER of the stacked
QSTBC with QAM. Here, we observe that the BER perfor-
mance with ML-detection of the stacked OSTBC is better than
that of SM for all SNR values. In case of LR-ZF detection, SM
performs only better than QSTBC for low SNR of about2dB.
However, the gap in power efficiency between ML and LR-ZF
is higher for the stacked QSTBC in comparison to SM with
BSPK. Note that (as aforementioned) the small gap for SM
is only due to the BPSK modulation. For higher modulation
sizes, this gap is even higher. By increasing the transmission
rate to 8bit/sec/Hz, i.e. QAM for SM and 16QAM for the
stacked OSTBC, we observe in Fig. 11 that the gap between
ML and LR-ZF is dramatically increased in case of SM to
about6dB. On the other hand, the gap between ML and LR-ZF
for the stacked OSTBC and 16QAM is reduced in comparison
to the gap achieved with QAM (cf. Fig. 10) to about1.3dB.
Although the performance of SM with ML detection is better
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Fig. 10. BER for SM and stacked OSTBC with ML and LR-ZF, 4 bit/sec/Hz.

than that of the stacked OSTBC for low and moderate SNR
values, for high SNR values it is the other way around. The
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Fig. 11. BER for SM and stacked OSTBC with ML and LR-ZF, 8bit/sec/Hz.

performance of the stacked OSTBC with LR-ZF detection
is better for the whole SNR range in comparison to SM,
which is of higher interest for practical applications, since the
computational complexity of the ML detector is exponential
in the transmission rate. Another disadvantage of SM is that
we need at least as many receive as transmit antennas, i.e.
nT ≤ nR, whereas onlynT

2 receive antennas are necessary
for the stacked OSTBC. Multiple receive antennas are only
optional for the QSTBC .

VII. C ONCLUSION

In this paper, we analyzed the performance of stacked
OSTBC in terms of the average rate. We showed, that the
stacked scheme achieves the capacity of a MIMO system in
the case ofnR = 1 receive antennas. Further, we showed that
the MIMO capacity is at most twice the rate achieved with the
proposed scheme at any SNR. We derived lower and upper

bounds for the rate achieved with this scheme and compared
it with upper and lower bounds for the capacity.

In addition to the capacity analysis, we also analyzed the
error rate performance of the proposed scheme. To this end, we
combined the stacked OSTBC with a zero-forcing (ZF) detec-
tor applying lattice-reduction (LR) aided detection, since this
suboptimal detector achieves the same diversity as the optimal
ML detector with only some penalty in power efficiency. We
analyzed the effect of LR on the equivalent channel generated
by the stacked OSTBC, for spatial multiplexing (SM) and
QSTBC. We observed the highest gain for SM and a higher
gain for the stacked OSTBC in comparison to the QSTBC.

Finally, we illustrated the theoretical results by numerical
simulations. From simulation results we observed that the
stacked scheme approaches the ergodic capacity of a MIMO
system by increasing the number of transmit antennas for a
fixed number of receive antennas. Furthermore, we observed
that as long as the number of transmit antennas is twice
the number of receive antennas the ratio of the capacity to
the rate of the proposed scheme improves by increasing the
SNR. Regarding the simulation of the error rate performance,
we observed that in the considered SNR region the stacked
OSTBC performs better in terms of BER for ML as well as
for LR-aided ZF-detection than SM and QSTBC in the setup
given. Further, we observed that the gap between maximum-
likelihood and LR-ZF detection is dramatically reduced in
comparison to SM schemes, especially for higher transmission
rates.
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