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An L1-Method for the Design of
Linear-Phase FIR Digital Filters

Liron D. Grossmann and Yonina C. Eldar, Member, IEEE

Abstract—This paper considers the design of linear-phase finite
impulse response digital filters using an 1 optimality criterion.
The motivation for using such filters as well as a mathematical
framework for their design is introduced. It is shown that 1 fil-
ters possess flat passbands and stopbands while keeping the tran-
sition band comparable to that of least-squares filters. The unique-
ness of 1-based filters is explored, and an alternation type the-
orem for the optimal frequency response is derived. An efficient
algorithm for calculating the optimal filter coefficients is proposed,
which may be viewed as the analogue of the celebrated Remez
exchange method. A comparison with other design techniques is
made, demonstrating that the 1 approach may be a good alter-
native in several applications.

Index Terms—Differentiability, digital filtering, 1 norm,
Newton method, uniqueness.

I. INTRODUCTION

L INEAR-PHASE finite impulse response (FIR) digital fil-
ters play an important role in many signal processing ap-

plications, for example, in multirate systems, image processing,
and communication systems, to mention a few. Consequently,
design methods for linear-phase filters have been intensively re-
searched in the digital signal processing literature for over al-
most half a decade; see [1] and references therein.

The design of FIR filters has long been recognized as an
approximation problem, where an ideal frequency response,
usually a discontinuous function, is approximated by a finite
number of smooth functions. Such an approximation problem
usually consists of a tradeoff. On the one hand, the resulting
filter should preserve the discontinuous behavior of the ideal
response, i.e., sharp transitions. On the other hand, these filters
are also required to be as flat as possible in the passbands and
stopbands. It is widely known that these two requirements are
contradictory [2].

The design process typically involves four steps [1]. First,
defining a desired ideal frequency response. Second, choosing
an allowed class of filters (e.g., length FIR filters). Third, es-
tablishing a measure of “goodness”; clearly, various optimality
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criteria lead to different filter behavior, providing a convenient
tool to control the inherent tradeoff of the design problem. Fi-
nally, developing a computational method to find the desired
filter coefficients. The last two steps are closely related, since
the choice of optimality criterion is often dictated by the exis-
tence of an efficient algorithm for calculating the optimal filter.

During the past forty years, numerous techniques for de-
signing digital FIR filters have been suggested. The majority of
them rely on one or a combination of the following optimality
criteria: least-squares , minimax and maximally flat
[3]. The use of norm, , has also been suggested
as a successful alternative to the and criteria [4].

Least-squares filters are popular and are used in many appli-
cations [5]–[11]. They gained their popularity due to two main
reasons. First, the resulting optimal filters require the solution
of a single linear system of equations, which can be solved ef-
ficiently. The eigenfilter method is one of the fastest ways to
obtain an approximate filter [12]. Second, minimizing the
least-squares error has the physical interpretation of energy min-
imization, which is also related to the ‘signal to noise ratio’ as-
sociated with the signals to be filtered [3]. Another common
method, related to the least-squares approach, is the windowing
technique, which is also very easy to implement [13], [14].

Nevertheless, there are applications in which the overshoot
resulting from the least-squares filter is not acceptable, and fur-
ther reduction in the maximum error is required. In such cases,
filters which are optimal in the minimax sense can be designed
[15]–[18]. Minimax filters result in the minimum number of co-
efficients for a given tolerance scheme, i.e., when the design
specifications are given in terms of the transition bandwidth and
the maximum deviations in the passbands and stopbands. In ad-
dition, the existence of an efficient iterative design algorithm,
the Remez method [15], [19], [20], makes them easy to im-
plement. Referring to the inherent tradeoff of the filter design
problem, minimax filters may be viewed as one of its extremes.
For a given number of coefficients, they result in the narrowest
transition band, but their passbands and stopbands exhibit the
most non-flat behavior, i.e., an equiripple response.

Maximally flat filters are on the opposite extreme: for a given
filter length, they possess a very flat passband and stopband,
but the associated transition band is much wider than that of
the minimax approach. The maximally flat filters are easy to
compute and several closed form formula exist for their design
[21]–[23]. However, the resulting transition bandwidth is usu-
ally very hard to control, which often makes them less attractive.

Attempting to further explore meaningful criteria for de-
signing linear-phase FIR filters, in this paper we consider using
the weighted norm for approximating digital filters. The use
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of norm as a measure of goodness is very common in several
engineering applications, in particular in robust estimation prob-
lems, basis pursuit and sparse representations [24]. However, it
has not received much attention and serious treatment in the filter
design literature. In fact, we are aware of very few works dealing
with the criterion [25]–[27]. In [25], the design of high-order
differentiators was considered, and in [27] an arbitrary ampli-
tude function was designed using the discrete norm. A general
algorithm for the approximation under was proposed in
[26], but convergence is not guaranteed for , and when
it exists, it is often very slow. Moreover, in all three papers the
suggested algorithms are based on a discretization of the original
continuous problem, which yields only an approximate solution.
In order for the approximation to be accurate, the sampling grid
must be dense, which becomes computationally demanding. In
addition, no clear justification was given for the use of the
measure in the context of filter design. We therefore believe that
the two major reasons for the absence of filters are the lack
of motivation and an efficient algorithm that solves the original
problem. It is the goal of this paper to provide motivation for the
use of the criterion in the design of FIR linear-phase filters,
and to propose an efficient and accurate algorithm for computing
the optimal filter without the need for discretization.

We start by formulating our design problem in Sec-
tion II, after which we provide motivation for using filters.
The mathematical framework of -based filters is intro-
duced in Section III. It is first shown that the error function
is differentiable and sometimes even twice differentiable. A
characterization of the optimal error function is also derived,
which is analogous to the alternation theorem of the minimax
filters. In addition, we develop a necessary and sufficient con-
dition for the optimal filter to be unique. A simple Newton-type
algorithm is proposed in Section IV, and its convergence and
efficiency are discussed. In Section V we compare between
the proposed algorithm and the Remez exchange method, and
show that both algorithms share several properties, especially
fast running time. Some examples are given in Section VI, with
an emphasis on the properties of optimal filters with respect
to other existing design approaches.

II. PROBLEM FORMULATION AND MOTIVATION

A. Notations and Definitions

Matrices and vectors are denoted by bold font, with lower-
case letters corresponding to vectors and uppercase letters to
matrices. The th element of a vector is denoted by , and
the element of a matrix by . We let de-
note a sequence of vectors. Unless stated otherwise the norm of a
vector is taken to be the norm, and is denoted by , that is,

. The minimal and maximal eigenvalues
of a matrix are denoted by and , respec-
tively. The minimal and maximal singular values of a matrix
are denoted by and , respectively.

The sign function of a function is defined by

(1)

For given and , the set is denoted by .
The weighted inner product between two real functions, and

, on is written as

(2)

where is a positive weighting function and is at least
twice differentiable on .

Given a function defined for every and every
for some , we denote its derivative (assuming it

exists) with respect to by . The set of zeros of
is

(3)

The Lebesgue measure of is denoted by . When
is an interval is its length, and when is a

finite set, . The following definition will be useful
in our development:

Definition 1 (Simple Zero): A zero of a differentiable
function is called simple if and .

B. The Design Problem

We consider the problem of approximating an ideal frequency
response , using an order FIR filter with
impulse response . We shall develop our
design procedure by considering the basic low-pass filter

(4)

High-pass filters are treated in the exact same manner. We
briefly discuss multiband filters in Section VII.

The frequency response of the approximating filter is
given by the discrete time Fourier transform (DTFT) of its im-
pulseresponse

(5)

For simplicity, we consider symmetric odd length filters (known
as type-I filters), in which case can be written as

(6)

where , and is the real-valued function

(7)

As we discussed in [28], our design problem is to approx-
imate by a linear combination of functions

, that is by the cosine polynomial
.
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We define the error function between a desired frequency re-
sponse and its approximation to be

(8)

When the filter to be designed must be optimal under a cer-
tain norm, the approximation problem can be mathematically
written as , where denotes a weighted
norm. The two most popular norms used in FIR design are as
follows.

1) Weighted least-squares

(9)

2) Weighted Chebyshev

(10)

In this paper, we propose using the weighted norm given by

(11)

The function is a positive weighting function, used in
order to weight certain frequencies. Thus, our problem is to find

such that is minimized.

C. Motivation

From the pure mathematical point of view, the theory of
approximation is much more challenging than that of and

. As we shall see in the next section, the norm of the error
may not always be differentiable, and the optimal solution is not
guaranteed to be unique. In addition, there is no closed-form
solution to the optimal filter as in the least-squares case, nor is
there a known efficient algorithm such as Remez for calculating
the resulting filter. Thus, investigating the mathematical prop-
erties of filters and finding an efficient algorithm is an inter-
esting mathematical challenge.

From the engineering point of view, the norm is very
popular in other fields such as robust estimation problems and
sparse representations. Thus, it is natural to investigate it in the
filter design context. In robust estimation, for example, the
norm is used to attenuate large spikes contaminating a desired
signal. The measure is suitable in this case since it tends to
give weight to small error, ignoring rare error events. Consid-
ering the discontinuity in the ideal frequency response as a rare
event (most of time the response is either one or zero), it is there-
fore reasonable to expect that when the norm is applied in
the filter design problem, it will smear the transition band while
keeping the passband and stopband as smooth as possible.

More insight into the properties of the norm can be gained
by comparing the solutions when the interval
is not split, i.e., , and . Fig. 1 shows
the 65-length FIR filters approximating an ideal
low-pass with . Since we are approximating a
discontinuous function, the and filters were obtained by
discretization methods, which do not require continuity.

Fig. 1. Approximations of an ideal low-pass filter with ! = 0:485 � over
[0; �]: (a) L ; (b) L ; (c) L .

From Fig. 1 it is evident that all three filters result in an over-
shoot around the discontinuity, and that the filter possesses
the smallest one. The existence of the overshoot is well known
in the least-squares case as the Gibbs phenomenon [2], and is
equal to 9% of the size of the jump. The fact that Gibbs phe-
nomenon (i.e., the overshoot behavior near the edge) is the least
severe when the approximation norm is was conjectured in
[29], where it was also stated that the overshoot becomes larger
as of the norm increases. Thus, as long as the approxima-
tion of a discontinuous function over the entire frequency band

is considered, the solution seems to be a better alterna-
tive to the least-squares (and, of course, to the minimax) method.

It is important to understand that the fact that the solu-
tion results in the smallest overshoot does not contradict the fact
that the minimax solution leads to the smallest maximal error.
Indeed, the largest deviation is obtained at the cutoff frequency
where the minimax error is the minimal among the three filters.
In the rest of the interval the other perform better. In practice,
however, all three overshoots are usually too high and therefore
the cutoff frequency must be excluded from the approximation.
In this case is the disjoint union of the passband and the stop-
band and the overshoot of the minimax filters is the smallest.
In most of the paper, we consider the approximation when the
cutoff frequency is excluded. The special case when
is discussed in Section V.
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Fig. 1 suggests another interesting property of the filter. In
particular, the measure can provide a suitable solution to the
inherent tradeoff of the filter design problem, that is flat pass-
band and stopband versus sharp transition. Indeed, the filter
possesses a flatter response in the passband and stopband than
those of the and filters. At the same time, the transition
between the passband and stopband is only slightly wider than
that of the approximation.

Despite the apparent advantages of the approach, there are
still two main questions with respect to the best approxima-
tion. While approximating over ensures a unique so-
lution for both the and the problems, uniqueness is not
always guaranteed in the case. Uniqueness is important from
both the theoretical and the algorithmic aspects. For instance, it
is the uniqueness of the minimax filters that allows the use of
the Remez method for computing it. The second question con-
cerns the existence of an efficient algorithm for computing the
coefficients of the optimal filter.

In the next section, we address the issue of uniqueness and
characterize filters. These results lay the ground for the de-
velopment of an efficient algorithm, which is derived in Sec-
tion IV.

III. THE MATHEMATICAL FRAMEWORK OF FILTERS

We begin by considering the differentiability of the norm
with respect to the vector of coefficients.

A. Characterization of the Optimal Filter

Typically problems are solved by replacing the original
continuous problem by a discrete one, and then using linear
programming techniques [27], [30], [31]. Discretization tech-
niques are also common for solving the corresponding and

measures [32]. While discretization algorithms yield very
accurate solutions when applied to and problems, they
are usually impractical for tasks involving the criterion. In-
deed, achieving the same degree of accuracy in an problem
requires a much denser discretization grid than that of an or

one, which increases the computational complexity [33]. In
addition, unlike the and solutions, the norm is very
sensitive to small perturbations, that is, a slight change in the
coefficients may lead to a very different approximating func-
tion [34]. Thus, solving the continuous problem is difficult
to avoid. At the same time, however, we would like it to be as
efficient as possible. There are many efficient optimization algo-
rithms for smooth functions (such as the norm) and several
methods for non-differentiable functions (such as the Cheby-
shev norm) [35]. Unfortunately, none is known to be efficient
for solving the general approximation problem. Neverthe-
less, under a mild assumption, which holds true in our FIR de-
sign case, the norm can be differentiated and sometimes even
twice differentiated. This allows the use of smooth optimization
methods.

The following theorem, which is a straightforward general-
ization of a theorem in [36], states a sufficient condition on a
vector such that is differentiable at . Recall
that denotes the Lebesgue measure of a given set.

Theorem 1 (First Derivative): If , then
is differentiable at , and the th component of

the gradient at is given by

(12)

Fortunately, as shown in the next proposition, essentially all
choices of filter coefficients satisfy the condition of Theorem 1.

Proposition 1: For the function in (4),
for every and .

Proof: Since is a degree cosine polynomial on
, it cannot have more than zeros on unless it is

identically zero [36]. Since we assume is piecewise con-
stant, in each interval of where is constant, is
an degree polynomial. Thus, each such interval contains at
most zeros, resulting in an overall finite number of zeros in

. The case where is identically zero on an interval
of may occur only if equals one of the constant values

takes on, i.e., 0 or 1. This in turn can happen if and only
if has this constant as its first component, keeping the rest of
the components zero.

Thus, except for the trivial case, where is constant (cor-
responding to a length-one filter), we are guaranteed that the
norm of the error is differentiable. As a result, we shall assume
from now on that and therefore . The case where

is treated in Appendix I.
Since is convex in , we obtain the following

characterization of the solution.
Proposition 2: A vector minimizes (11)

if and only if

(13)

As the inner product is linear in the first term, it follows from
this proposition that every degree cosine polynomial has to
be orthogonal to the sign of the optimal error function. It is
also interesting to note the close resemblance of the weighted

characterization to the weighted least-squares one, where
for the latter the solution is characterized by the property that

(instead of ) is orthogonal to the func-
tions [36]. However, whereas the or-
thogonality condition in the least-squares case leads to a set of
linear equations, (13) describes a set of nonlinear equa-
tions in unknowns, the components of .

The next theorem allows us to further characterize the optimal
solution.

Theorem 2 (Characterization of the Optimal Filter): Let
be an optimal weighted approximation to on

of degree , corresponding to a vector . Then
changes sign either or times in .

Proof: See Appendix II.
Theorem 2 resembles the famous alternation theorem of the

corresponding minimax filter problem [15], where the role of
the zeros of the error function in the former is played by the ex-
trema in the latter. Nevertheless, while the alternation theorem
states that the optimal solution is also unique, the filter is not
guaranteed to be so. The question of uniqueness is explored in
the next subsection.
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We now address second order differentiability of .
The existence of the Hessian matrix will allow us to develop an
efficient algorithm for minimizing . The next the-
orem was originally stated for the unweighted norm defined
over an interval, and given without proof in [37]. Here we gen-
eralize it to a weighted norm over a disjoint union of intervals.
Since the generalization and its further consequences are not
straightforward, we provide a full proof of the theorem.

Theorem 3 (Second-Order Derivative): Let
be the set of zeros of in and assume that

each zero is simple. Then the Hessian matrix of is
given by

(14)

where is an matrix with ,
and with .

Proof: We wish to compute
. By (12),

(15)

Suppose there are zeros in and zeros in
. Thus,

where , and . The
last equality is justified by the assumption that the zeros are
simple. Similarly with

Using the chain rule we have that

Denoting , we write and
. Since is assumed

to be simple, , and thus , resulting in
. The same argument holds for and

. Now, for we have

(16)

where we used the fact the zeros are assumed to be simple, and
therefore and have opposite signs. For we have

The same is true for , concluding that
for all .

It remains to compute , where we note that
the dependence of on is implicit, through the
equations . Define the ma-
trices , and

. By the implicit function theorem,
. Now, from the definition of

is seen to be diagonal with diagonal elements equal to
. The th element of is given by
. Therefore

(17)

Combining (16) and (17) proves the theorem.
Theorem 3 is useful only when the zeros of the error function

at are simple. Otherwise, is not defined, and we are not even
guaranteed that is twice differentiable.

In summary, we have shown that the norm of the error
function is differentiable for almost every choice of filter coeffi-
cients and that if its zeros are simple and their number exceeds

, then is also twice differentiable. We now
address the uniqueness of the optimal solution.

B. The Problem of Uniqueness

While the and the minimizers are always unique,
uniqueness is not guaranteed in the case. The uniqueness of
the optimal solution is important for two main reasons. The first
one is purely theoretical, while the second is of practical nature.
Specifically, as we shall see in the next section, uniqueness has
paramount influence on the fast convergence of our algorithm.
Therefore, our goal in this section is to state conditions under
which uniqueness is ensured.

Theorem 4 (Uniqueness): Let be an optimal fre-
quency response. Then is unique if and only if the corre-
sponding error function changes sign times in .

Proof: Assume first that has sign changes,
and let us show that is unique. Suppose to the contrary that
there exists another optimal solution, . By [38],
must satisfy

(18)
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Condition follows from the fact that is a
degree cosine polynomial, and that is optimal. From
condition , we conclude that and

must change signs at the same points. So, must
interpolate at the same points of , which means that

has zeros, and therefore .
The proof of the converse is complicated and is therefore rel-

egated to Appendix III.
We now characterize the zeros of the unique solution.
Corollary 1: Let be the unique optimal weighted

approximation to on . If is not constant, then each
zero of the error function is simple, i.e., it is of multiplicity one.

Proof: From Theorem 4, has zeros in .
By the Rolle theorem, between each two zeros must
cross zero. Excluding the transition band, and noting that

(19)

we conclude that must have at least zeros in .
Now, suppose that one of the zeros of , say , is

not simple, i.e., . By (28), as well.
Thus, has zeros ( from the extrema of
and ). However, since is the derivative of a degree
polynomial it cannot have more than zeros, un-
less it is identically zero, contradicting the fact that is not
constant.

Using the differentiability and uniqueness results, in the next
section we propose an algorithm for computing the best th
order filter for a given .

IV. THE WEIGHTED ALGORITHM

The problem of approximating a general continuous function
defined over an interval by a finite number of basis functions
under the (unweighted) criterion was considered by Watson
in [37]. Assuming that the error is differentiable (and some-
times even twice differentiable), Watson suggested the use of the
modified Newton method in order to obtain the optimal coeffi-
cients of the basis functions. Using the fact that the error func-
tion in our case is indeed differentiable and may be also twice
differentiable, we generalize Watson’s idea to a weighted
error and develop a modified Newton method for computing the

filter coefficients. By exploiting the special structure of the
filter design problem, we accelerate several steps and improve
the computational complexity of the resulting algorithm.

A. Algorithm Description

In essence, our algorithm generates the sequence

(20)

where is the gradient of at is the step size, and
equals either the Hessian matrix when it is positive definite

or a modified version of the Hessian, which is positive definite
[39]. We now explain in detail how to implement each stage of
our method.

Initialization: We begin by choosing an initial guess of the
optimal solution and set the relevant constants, ,
and . Here determines the accuracy of the stopping condition,

and are related to the step size selection of the fifth stage as
will be explained below. The role of , and is to control
the positive definiteness of the matrix in (20). Typical values
are , and

.
For an initial guess, we would like to choose a vector that is

”close” to the optimal solution. Furthermore, we would like it to
be such that our algorithm passes only through vectors at which
the derivative exists (allowing the use of the gradient in (20)).
According to Proposition 1, the only two problematic vectors
are and . Since the value
of is decreased in each iteration, avoiding non-dif-
ferentiable points can be accomplished if the initial vector
satisfies,

(21)

As a good initial guess, we choose such that the corre-
sponding interpolates the desired response at the
points

(22)

see [36]. Thus, is the solution of the linear system

...
...

...
...

(23)

The matrix in this system is always invertible, since the func-
tions form a Chebyshev set on
[36]. Simulations show that this is an excellent choice, since it is
usually very close to the optimal solution and also satisfies (21).
If some of the points in (22) lie in the transition band ,
then intermediate values between zero and one are chosen as the
value of the desired response .

Another possible initial vector is the solution of the weighted
least-squares approximation given by where
and are described in [12]. This guess also appears to be a
good choice that satisfies (21), however simulations show that
the vector corresponding to (23) often performs better.

Matrix Determination: This step determines the matrix
in (20), which can take on one of three forms, depending on the
number of zeros of . Thus, this stage has to start with
the calculation of the zeros of the error function.

The brute force computation is essentially an exhaustive
search over a grid, similar to the way the extrema are computed
in the Remez exchange algorithm [15]. However, since the
error function is a cosine polynomial in each band, and

, both efficiency and accuracy may be improved by using
a polynomial root finding technique. There are several efficient
methods for computing the zeros of an algebraic polynomial,
e.g., [40]. Fortunately, we can convert the problem of finding
the zeros of a trigonometric polynomial in each band into an
algebraic one. To see this consider, for example, on

, which is equal to , and
replace each with , where . The
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zeros of the new algebraic polynomial in are efficiently cal-
culated, from which the corresponding zeros in are extracted.

Next, we construct the matrix according to the following
rule which guarantees that it is positive definite. If there are no
zeros or some of them are not simple, then equals the iden-
tity matrix. If all the zeros are simple then according to Theorem
3 the Hessian matrix exists. If it is positive definite then is
equal to the expression given by (14). Otherwise is the re-
sult of the modified Cholesky method applied to (14), which is
guaranteed to be positive definite [39].

The positive definiteness of the Hessian matrix in (14) is re-
lated to the number of zeros (all simple). If their number is less
than then the Hessian is positive semidefinite, whereas
if it is (it cannot be greater) then the Hessian is positive
definite. This can be shown by noting that in (14) is full rank
if and only if the number of zeros is .

In order to ensure that is well conditioned in case it is
equal to (14), we require that the zeros will be far apart from
each other. This is obtained by checking that their minimal dis-
tance is larger than a specified threshold . Furthermore, in
order to guarantee global convergence we require that the el-
ements of the diagonal matrix in (14) are bounded below by
and above by . This is explained in detail in Appendix IV.

Descent Direction: The third step is the most time consuming
step, since it involves solving the linear system of equations

(24)

where is the gradient at and is the descent direction.
Usually, solving a linear system with unknowns (the
length of ) requires operations. In our case, however,
the special structure of the matrix in (24) can be exploited
to reduce the computational complexity.

If then the solution is straightforward and requires
no computation. When equals the Hessian matrix, (24) can
be solved in steps. Specifically, in this case (24) becomes

. Denoting we first solve
the equation , and then solve .
Duetothefact that isaVandermonde-likematrix,eachsystem
can be solved in operations, as explained in detail in [41].

Finally, if the Hessian matrix is only positive semidefinite,
then using its Cholesky decomposition from the previous step,
we can solve (24) in operations. Of course, there is no
real gain in terms of complexity in this case, since in order to
perform the Choleksy decomposition, an number of op-
erations are required.

If the case where the Hessian matrix is positive definite is
frequent enough, then we can gain a lot in terms of complexity
using the above method for solving (24) in operations.

Stopping Criterion: The algorithm stops when is
less than a predetermined threshold, .

Step Size Selection: The step size, , is determined ac-
cording to the Armijo rule given by

(25)

such that a sufficient decrease of is guaranteed.
The algorithm is summarized in Table I.

TABLE I
THE L ALGORITHM

B. Convergence Issues

We now show that the algorithm of Table I is globally conver-
gent, and state conditions which guarantee a second order rate
of local convergence.

Theorem 5: The algorithm in Table I is globally convergent.
Proof: See Appendix IV.

Theorem 6: Let be a minimizer of (11). If
changes sign times in , then the algorithm in Table I
converges at a second order rate.

Note the condition in Theorem 6 is equivalent to the unique-
ness of .

Proof: In order to prove that the rate of convergence is
second order, we need to show that the Hessian is Lipschitz
continuous in a neighborhood of an optimum point , and that
there exists a such that in (25) for all [42].
Showing that for requires that
is positive definite [42], so let us first prove that this is the case
when the solution is unique.

If changes sign times in , i.e., it has
simple zeros in , then according to Theorem 3 the Hessian
matrix at , exists, its rank is , and is
therefore positive definite. Since the Hessian is continuous in

(it is seen to be continuous in which are continuous in ),
there is a neighborhood of , for which the Hessian
matrix exists and is positive definite.

The proof that is Lipschitz continuous in the
vicinity of is given in Appendix V.

In summary, our discussion suggests that for the filter design
problem, the algorithm will converge to the optimal solution
from any starting point. Furthermore, when the optimal solu-
tion is unique convergence will be very fast if the initial starting
iterate is close enough to the optimal solution.

We next compare our algorithm with the Remez exchange
method for designing equiripple filters.
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Fig. 2. Ratio of the time an O(M ) algorithm was used.

V. COMPARISON WITH THE REMEZ ALGORITHM

It is interesting to note that our method shares several features
with the celebrated Remez exchange algorithm for designing
minimax filters, and therefore may be viewed as its dual in the
following sense. First, the Remez procedure is an ascent algo-
rithm, while ours is a descent one. Second, the role of the extrema
in Remez is played by the zeros in the case, that is in each
iteration the set of zeros is replaced by a “better’ set in such a way
that the error is decreased, whereas in the minimax case the set
of extrema is exchanged by a different set to increase the error.
In terms of convergence, both methods are globally convergent,
and under the assumption that the solution is unique (which is
always the case in the minimax problem), both methods enjoy
second order rate of convergence [43]. Simulation results show
that in most cases, the solution is indeed unique.

The most time consuming step in the Remez as well as in
the proposed algorithm is the solution of a system of linear
equations, which usually has a complexity . Parks and
McClellan showed that for the filter design problem this step
requires only flops, using the Barycentric Lagrange in-
terpolation [15]. As shown earlier, the linear system in our case
may also be computed in flops when the Hessian ma-
trix is positive definite. Fig. 2 shows the ratio of the number of
times the Hessian matrix was positive definite to the number of
iterations as a function of for filters with different cutoff fre-
quencies. For each filter order ten different filters (five low-pass
and five high pass with different transition bands and different
weighting functions) were implemented and the ratios on the
graph are taken to be the average of these ten. The average
ratio is 0.53, which implies that half of the time the solution
is achieved in . Nevertheless, the overall complexity of
our algorithm is , while the
complexity of Remez algorithm is always . The number
of iterations required to achieve a certain degree of accuracy in
both algorithms was the same.

The complexity of our method can be reduced to ,
if we take to be the identity matrix when the Hessian is
not positive definite. However, in this case the number of iter-

ations is usually increased, and the running time is not always
improved.

It is interesting to note that our algorithm is also applicable
in the case where , that is it can be applied to the
weighted approximation of a discontinuous function. This is in
contrast with the Remez method, which relies on the continuity
of the approximated function. Since our algorithm is based on
the calculation of the first and second derivatives of the norm
of the error, all we need to check is their existence in the discon-
tinuous case.

Since the first derivative does not depend on the continuity
of , its existence is not affected by the inclusion of the
cutoff frequency. Thus, as in the disjoint case the norm of
the error is differentiable for all vectors in except for

and .
As we saw in Theorem 3, the existence of the Hessian and its

expression are dependent on the first derivative of with
respect to . Specifically, the diagonal elements of in (14) are
equal to

where . Thus, as long as is not
equal to the cutoff frequency is well defined (when is
also a simple zero, of course) and therefore the Hessian matrix is
defined. If, however, for some , then we can no longer
use (14) and substitute it with the identity matrix. Thus, the case
when imposes no restrictions and our algorithm in-
cludes this setting as well.

VI. DESIGN EXAMPLES

We now illustrate the properties of filters through two
examples.

Example 1—Low-Pass Filter: We first consider the low-pass
filter described in (4) with rad. We choose

, and . Fig. 3 shows
the frequency responses of several methods used to design this
low-pass: the Kaiser windowing method, least-squares, min-
imax and the maximally-flat approach. The corresponding
filter is shown in Fig. 4. The figures suggest that the filter
results in the flattest response among the , minimax and win-
dowing methods. At the same time it has a much narrower tran-
sition band than the maximally flat filter. Fig. 5(a) shows the
transition band of the filter (the solid line) and that of the
least-squares, from which it is seen that the filter performs
slightly better than the method, however, the improvement
is minor. Fig. 5(b) shows the passband response of the , the
least-squares, the minimax filters. It is obvious that the ad-
mits the flattest response.

Thus, we see that filters have flatter response than the
least-squares (and than the minimax, of course), but their tran-
sition band remains comparable. The maximally flat filters pos-
sess the flattest response, but their transition width is unaccept-
ably wide. Thus, filters provide a suitable tradeoff between
flatness and the transition bandwidth. In applications where flat-
ness is of utmost importance together with a reasonable transi-
tion bandwidth, for example in antialiasing filters for multirate
systems, the solution may be a good choice.
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Fig. 3. Low-pass filter of length 65: (a) Kaiser; (b) least-squares; (c) minimax;
(d) maximally-flat.

Fig. 4. The 65 length L filter.

Example 2—Bandpass Filter: Although it was mentioned in
Section II that we consider only low-pass and high-pass filters,
in this example we apply our method to design a bandpass filter.
It is easy to see that the conditions on the gradient and Hessian

Fig. 5. (a) Transition bands of the L (solid line) and L (dashed line). (b)
Enlarged part of the passband.

Fig. 6. Bandpass filter of length 35: (a) L ; (b) least-squares; (c) minimax.

remain the same in this case as well. In addition, global con-
vergence is also guaranteed. However, the condition of the local
rate of convergence may change.

The bandpass filter is designed according to the fol-
lowing specifications: its order is , the passband is

and the stopband is . The
weighting function equals one over the passband and stopband.
Fig. 6 shows the and responses.

The figure demonstrates that the transition bands of all filters
is comparable, and that the approach offers the strongest
attenuation in the stopband. The running time of our method
was the same in both examples.



5262 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 55, NO. 11, NOVEMBER 2007

VII. DISCUSSION

This paper addressed the problem of designing FIR linear-
phase digital filters, which are optimal in the sense. Most
common filter design methods rely on either the minimax or the
least-squares criteria, while the measure was ignored. In this
respect, this paper fills the gap by describing both the theory and
the algorithmic aspects of filter design.

Optimal filters result in a very flat response in the passband
and stopband while retaining a transition band which is compa-
rable to that of the least-squares. Thus, filters may constitute
a better tradeoff between the minimax and the maximally flat
filters than the least-squares approach.

The mathematical theory of filters was developed in this
paper. In particular, it was shown that the error function is dif-
ferentiable and a formula for the Hessian matrix was derived.
An explicit condition for uniqueness was stated, which is remi-
niscent of the famous alternation theorem for the minimax case.
Following the mathematical results, a modified Newton algo-
rithm was proposed to calculate the optimal filter. The spe-
cial structure of the problem enabled us to further accelerate the
running time of computationally demanding steps. It was also
shown that the algorithm is globally convergent and that under
the uniqueness assumption it has a second order rate of conver-
gence. In practice, uniqueness usually holds, and even when it
does not, fast convergence was observed.

In this paper we considered only the approximation of
low-pass filters. High-pass filters are treated in the exact same
manner, that is all the theorems proved for the low-pass case are
valid for the high-pass filter as well. However, several results
may not hold in the multiband case. In particular, the charac-
terization in Theorem 2 and the uniqueness condition change
when considering multiband filters. Nevertheless, the algorithm
of Table I can still be applied to compute the coefficients of a
multiband filter, but different conditions on its convergence rate
will be imposed.

The design approach we presented assumes that the specifica-
tions are given in terms of the filter order and the passband and
stopband. Sometimes the specifications are given in terms of
the passband and stopband and the maximal deviations in these
bands. We believe that a formula relating the latter specifica-
tion to the filter order can be developed for filters in a sim-
ilar manner to that of minimax filters. This is a topic for future
research.

We hope that this paper will encourage further research of the
criterion in the field of filter design.

APPENDIX I
THE OPTIMAL FILTER

In this appendix we show how to find the best length-one
filter. Specifically, we wish to find such that

(26)

is minimized. Defining and
, we have

(27)

Clearly, the optimal solution depends on and . If
then , whereas if , then . When
every is an optimal solution. In this case, we also
see that the solution is not unique.

APPENDIX II
PROOF OF THEOREM 2

The proof of the theorem relies on the following lemma.
Lemma 1: For every has no

more than sign changes in .
Proof: Suppose to the contrary that has more than

sign changes in . Since each sign change is also a zero
of has at least zeros in . By the Rolle
theorem the derivative of , has at least
zeros in . Now, note that

(28)

from which we conclude that has at least zeros
in . However, since is the derivative of an degree
polynomial it cannot have more than zeros unless it is
identically zero, which proves that cannot have more
than sign changes.

We now prove the theorem. Suppose first that the error func-
tion has sign changes. We claim that the resulting filter
cannot be optimal. We prove our claim by constructing a cosine
polynomial of degree (at most), which violates the optimality
condition of Proposition 2. To illustrate the idea, suppose
and are given and that the number of sign changes is

. Without loss of generality, let us assume that the error
changes sign one time in , and two times in at the
points , and that . Now, we construct the
cosine polynomial of degree 4

(29)

where is any number larger than and smaller than . We
see that whenever is positive, so is , and
whenever is negative, so is . As a result

Therefore violates the optimality condition for
in Proposition 2.

For general values of and , the proof proceeds
in the same manner. Note that the construction of was
possible by the assumption that , otherwise would
be of degree greater than . Thus, we have established that for

to be optimal, the corresponding error function, ,
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must change sign at least times in . The fact that
cannot have more than sign changes follows directly from
Lemma 1.

APPENDIX III
PROOF OF THEOREM 4

To complete the proof of Theorem 4, we first prove a useful
lemma.

Lemma 2: If the optimal error function has sign changes,
then there exist , such that

for and
for .

This lemma shows that if the optimal solution has sign
changes then the sign of the error function cannot be arbitrary.
Specifically, it is at the end of the passband and 1 at the
beginning of the stopband.

Proof: In order to prove the lemma we shall eliminate the
other three possibilities.

1) Suppose that there exist , such that
for

and for . In this case,
we construct a cosine polynomial of degree , that
contradicts the fact the is optimal. The polynomial
has zeros at the points where changes sign, and
therefore .

2) Suppose that there exist , such that
for

and for . We treat this
case in the exact same manner as the first one.

3) Suppose that there exist , such that
for

and for . We claim
that this possibility contradicts the fact that the optimal
solution, , is of degree . In particular, since

has sign changes in must
have zeros there. However, since for

and for , then
must cross zero in adding one more zero to .
In total, has zeros, which means that is
identically zero.

Now, the last option remaining is the one described in the
lemma. If there are no sign changes in then ,
whereas if there are no sign changes in then .
Otherwise is taken to be the last sign change in and

to be the first sign change in .
We now prove that if is the unique optimal weighted

approximation to then the number of sign changes of the
corresponding error function, , is . To this end,
we assume that the number of sign changes is (it was already
proved that for to be optimal this is the minimum number of
sign changes possible), and construct another optimal solution,
denoted by , with coefficients . Specifically, we derive

from in the following way. We construct an
degree cosine polynomial with zeros at the points where

changes sign. The function will be equal to the
sum of and a positive multiple of , and is therefore
an degree polynomial. If the coefficient multiplying is

Fig. 7. A(!) (dashed line), sign(E(!; a)) (solid line), and T (!)
(dashed–dotted line), M = 4.

chosen to be small enough, then the sign function of
and will be the same, implying that both and

are optimal, contradicting the uniqueness of . We now
demonstrate how to construct using figures for ,
and the interval as the transition band.

By Lemma 2, we know the shape of . We as-
sume to the contrary that has sign changes in

and denote the points of sign change by . The
corresponding functions, and are shown in
Fig. 7 in dashed and solid respectively.

Now, construct the cosine degree cosine polynomial
given by

(30)

which is shown in dashed–dotted lines in Fig. 7. Note that in
the passband, and have the same sign, and therefore
any positive multiple of added to preserves the sign
of in the passband. In the stopband, however, and

have opposite signs and their sum may no longer coincide
with the sign of . If, however, a small positive multiple of

is added to then it is possible to preserve the sign of
the sum in the stopband equal to that of . Thus, our goal is
to find , such that

We now show how to choose . As mentioned in the last para-
graph, the problem is in the stopband, so we concentrate on the
interval . Consider first the interval . In this in-
terval is positive and is negative. Since is a zero
of both and we can write the two functions as
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where and for all . Denote
, and define

. Now, , and for all we have

Therefore, on , having the same
sign as .

We now consider the interval . In this interval is
negative and is positive. Since both and are zeros of

and we can write the two functions as

where and for all . Denote
, and define

. Now, , and for all we have

Therefore, we have on , having the
same sign as .

Continuing in a similar manner in the interval we ob-
tain , satisfying on , and
having the same sign as .

Finally, by taking , we get that
has the same sign as over

the entire stopband. Therefore, the errors of and
have the same sign functions, implying that they are both
optimal. Since however, we arrive at a contra-
diction to the fact that is unique.

APPENDIX IV
PROOF OF THEOREM 5

Before proving Theorem 5, we shall state three useful
lemmas.

Lemma [44]: If is positive definite, and
is nonsingular, then

Lemma 4 [45]: If is any matrix norm and is an
matrix, then .

Lemma 5: Let be distinct points in
and let be an matrix, whose th

element is . Then

Proof: We begin with the first inequality. Using Lemma 4
and the matrix norm , we have
that

Now

(31)

proving the first inequality. To prove the second one we first
note that by the singular value decomposition of , we have

(32)

where in the last inequality we used (31). In [46] it is shown that

where and . Thus

(33)

Combining (32) and (33) proves the second inequality.
We now prove Theorem 5. According to [37], we need to find

two positive numbers and , such that

(34)

We claim that the constants and , which are determined
in the first step of the algorithm satisfy (34). To see this let us ex-
amine the three possibilities can assume at the th iteration.

If , then . Thus, any
choice of constants such that and will sat-
isfy (34).

Suppose now that equals the Hessian matrix at the th
iteration, and can therefore be expressed as .
In this case

(35)

Therefore, since is positive definite, is full-rank. We also
claim that is and is invertible. To see this,
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note that since is full rank, the number of its rows has to be
at least (the number columns is by definition ). This
means that there are at least zeros to the error function at
the th iteration. However, from Theorem 2, we know that the
number of zeros cannot exceed , and therefore must
be an matrix. In addition, by the property of
the set of functions is invertible
[36]. Applying Lemma 3 with and , we obtain

From Lemma 3 with and (33) we therefore have

Thus, the choice of satisfies
the lower bound in (34). To obtain note that by Lemma 3, we
have

However, from Lemma 5 and (35) we get that

establishing .
Finally we have to consider the case when is equal to

the modified Hessian. In this case, it can be shown that the
Cholesky decomposition results in a bounded condition number
of [47].

APPENDIX V
PROOF OF THEOREM 6

We complete the proof of Theorem 6 by showing that
is Lipschitz continuous in a neighborhood of

, that is for x and in

(36)

for some , where is a matrix norm. To see this we
shall use the matrix norm given by

(37)

Let be the set of zeros corre-
sponding to , and similarly for . We set

. Now

(38)

The first equality is a substitution of the definition of in (37)
using the function . In the second one we denote the in-
dexes of the maximal element by , whereas in the third
inequality we use the triangle inequality and bound each ele-
ment by the maximal element, whose index we denote by .

We wish to show that the expression in (38) is not greater
than for some . By the assumption that at

all the zeros are simple, and by continuity, all the zeros in
the neighborhood are simple as well. Thus, we can
assume without loss of generality that for all

. If is Lipschitz continuous in (it is, for ex-
ample, when it is constant, which is the common case),
is Lipschitz continuous in (as a function from ). To see
this, note that is a product of three Lipschitz contin-
uous functions of . In particular, is Lipschitz by assump-
tion, whereas and are also of that type since
they have bounded derivatives. Finally,
in , where it also has a bounded derivative, and there-
fore Lipschitz continuous in as well.

Using the proof of Theorem 3, we know that equals
, which is bounded, and thus is Lipschitz

continuous in . As a result, is Lipschitz continuous in
(as a function from ), i.e., there exists an ,

such that

Combining this last inequality with (38) we conclude that

(39)

for , establishing a second order rate of
convergence.
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