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Abstract—Parsimonious parametric models for nonstationary
random processes are useful in many applications. Here, we
consider a nonstationary extension of the classical autoregressive
moving-average (ARMA) model that we term the time-frequency
autoregressive moving-average (TFARMA) model. This model uses
frequency shifts in addition to time shifts (delays) for modeling
nonstationary process dynamics. The TFARMA model and its spe-
cial cases, the TFAR and TFMA models, are shown to be specific
types of time-varying ARMA (AR, MA) models. They are attrac-
tive because of their parsimony for underspread processes, that is,
nonstationary processes with a limited time-frequency correlation
structure. We develop computationally efficient order-recursive
estimators for the TFARMA, TFAR, and TFMA model parameters
which are based on linear time-frequency Yule–Walker equations
or on a new time-frequency cepstrum. Simulation results demon-
strate that the proposed parameter estimators outperform existing
estimators for time-varying ARMA (AR, MA) models with respect
to accuracy and/or numerical efficiency. An application to the
time-varying spectral analysis of a natural signal is also discussed.

Index Terms—Cepstrum, nonstationary processes, para-
metric modeling, time-frequency analysis, time-varying ARMA
(TVARMA) models, time-varying spectral estimation, time-
varying systems, TVARMA, Yule–Walker equations.

I. INTRODUCTION

NONSTATIONARY random processes provide an appro-
priate mathematical framework for signals arising in

speech and audio, communications, image processing, com-
puter vision, biomedical engineering, machine monitoring, and
many other application fields. Because the statistics of non-
stationary random processes depend on time (or space), they
are more difficult to describe than the statistics of stationary

Manuscript received March 13, 2006; revised December 25, 2006. The asso-
ciate editor coordinating the review of this manuscript and approving it for pub-
lication was Dr. A. Rahim Leyman. Parts of this work have been previously pre-
sented in the Proceedings of the IEEE International Conference on Acoustics,
Speech and Signal Processing, Hong Kong, vol. VI, April 2003, pp. 125–128;
the Proceedings of the IEEE International Conference on Acoustics, Speech and
Signal Processing, Montreal, QC, Canada, vol. II, May 2004, pp. 757–760; the
Proceedings of the IEEE International Conference on Acoustics, Speech and
Signal Processing, Philadelphia, PA, vol. IV, March 2005, pp. 301–304; and
the Proceedings of the IEEE International Workshop on Statistical Signal Pro-
cessing, Bordeaux, France, July 2005, pp. 909–914.

M. Jachan is with the Freiburg Center for Data Analysis and Modeling, Uni-
versity Medical Center Freiburg, D-79104 Freiburg i. Br., Germany (e-mail:
michael.jachan@fdm.uni-freiburg.de).

G. Matz and F. Hlawatsch are with the Institute of Communications and
Radio-Frequency Engineering, Vienna University of Technology, A-1040 Vi-
enna, Austria (e-mail: gmatz@nt.tuwien.ac.at; franz.hlawatsch@nt.tuwien.ac.
at).

Digital Object Identifier 10.1109/TSP.2007.896265

processes. A parametric second-order description that is par-
simonious in that it captures the time-varying second-order
statistics by a small number of parameters is hence of par-
ticular interest. Here, we propose the use of frequency shifts
in addition to time shifts (delays) for modeling nonstationary
process dynamics in a physically intuitive way. The resulting
parametric models are shown to be equivalent to specific types
of time-varying ARMA (TVAR, TVMA) models. They are
parsimonious for nonstationary processes with small high-lag
temporal and spectral correlations (underspread processes),
which are frequently encountered in applications. We also pro-
pose efficient order-recursive techniques for model parameter
estimation that outperform existing estimators for time-varying
ARMA (TVAR, TVMA) models with respect to accuracy
and/or complexity.

A. Previous Work

Time-varying autoregressive moving-average (TVARMA)
models generalize the successful time-invariant ARMA
models [5], [6] to nonstationary environments [7]–[12]. Con-
sider a zero-mean nonstationary process defined for

. The TVARMA model of AR order
and MA order is given by

(1)

where and are the time-varying parameters of the
TVAR and TVMA part, respectively, and is stationary white
noise with variance 1 (the innovations process).

The TVMA and TVAR models are obtained as special cases
for and , respectively.

The TVARMA model uses different AR model parameters
and different MA model parameters at each time

instant , and thus the total number of model parameters is as
high as . Much better parsimony can be
achieved by imposing a finite-order basis expansion of the pa-
rameter functions, i.e.,

(2)

where is a predefined set of basis
functions [7]–[9], [13]–[19]. The time-varying parameter
functions are described by
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expansion coefficients that do
not depend on time. We will term the resulting TVARMA
model a B-TVARMA model. The basis expansion restricts the
temporal evolution of by a subspace constraint.
Various types of basis functions have been used, such as poly-
nomials [9], complex exponentials [7], [15], [18], and cosine
functions [20].

A central problem is the estimation of the (B-)TVARMA
model parameters or from one or
several realizations of the process . For B-TVAR models,
an estimator based on vector-Yule–Walker equations was
proposed in [8]; its complexity is [15]. The
vector-Yule–Walker equations involve quadratic terms of the
basis functions and do not generally admit an easy inter-
pretation in terms of the signal statistics. Also, estimation of the
time-varying innovations variance is problematic [21].
For B-TVARMA models, the B-TVAR part can be estimated
by extended vector-Yule–Walker methods; the B-TVMA part
can then be estimated by fitting a long intermediate B-TVAR
model and performing an inverse filtering to estimate the
innovations process and turn the nonlinear problem into
a linear one [7]. A method for simultaneous estimation of
the B-TVMA and B-TVAR parts (without inverse filtering)
has been proposed in [21]; this method has been adapted to
time-frequency ARMA parameter estimation in [4]. Subspace
methods for B-TVMA estimation use a numerically costly
eigenvalue or singular value decomposition of a matrix of
size [20], [22]. B-TVMA models have
been applied to time-varying channel modeling, estimation,
and equalization [22]–[26]. Maximum-likelihood, lattice, and
Schur decomposition methods for B-TVMA estimation [14] are
also quite complex. Cepstral methods for TVARMA estimation
have been discussed in [27].

B. Main Contributions and Structure of This Paper

In this paper, we consider a special class of TVARMA
models that we term time-frequency ARMA (TFARMA) models.
Extending time-invariant ARMA models, which capture tem-
poral dynamics and correlations by representing a process as
a weighted sum of time-shifted (delayed) signal components,
TFARMA models additionally use frequency shifts to capture
a process’ nonstationarity and spectral correlations. The lags of
the time-frequency (TF) shifts used in the TFARMA model are
assumed to be small. This results in nonstationary processes
with small high-lag temporal and spectral correlations or, equiv-
alently, with a temporal correlation length that is much smaller
than the duration over which the time-varying second-order sta-
tistics are approximately constant. Such underspread processes
[28], [29] are encountered in many applications.

We will demonstrate that TFARMA models are a TF-sym-
metric reformulation of B-TVARMA models using a Fourier
(complex exponential) basis [7], [15]. The underspread as-
sumption used in this paper results in parsimony, and it will
be shown to allow an “underspread approximation” that leads
to new, computationally efficient parameter estimators. We
present two types of TFAR and TFMA estimators—based
on linear TF Yule–Walker equations and on a new TF cep-
strum—and we show how these estimators can be combined

to obtain TFARMA parameter estimators. In particular, TFAR
parameter estimation can be accomplished via underspread TF
Yule–Walker equations with Toeplitz/block-Toeplitz structure
that can be solved efficiently by means of the Wax–Kailath al-
gorithm [30]. Simulation results demonstrate that our methods
outperform existing TVAR, TVMA, and TVARMA parameter
estimators with respect to accuracy and/or complexity. For
processes that are not underspread (called “overspread” [28],
[29]), the models discussed here will not be parsimonious and
those estimators that involve an underspread approximation
must be expected to exhibit poor performance.

TFARMA models are physically meaningful due to their def-
inition in terms of delays and frequency (Doppler) shifts. This
delay-Doppler formulation is also convenient since the non-
parametric estimator of the process’ second-order statistics that
is required for all parametric estimators can be designed and
controlled more easily in the delay-Doppler domain. Further-
more, TFARMA models are formulated in a discrete-time, dis-
crete-frequency framework that allows the use of efficient fast
Fourier transform (FFT) algorithms. They can be applied in a va-
riety of signal processing tasks, such as time-varying spectral es-
timation (cf. [17]), time-varying prediction (cf. [1], [7], [15], and
[31]), time-varying system approximation [4], prewhitening of
nonstationary processes, and nonstationary feature extraction.

This paper is organized as follows. In Section II, we review
for later use some TF representations of linear time-varying
(LTV) systems and nonstationary random processes. Novel
complex TF cepstra (CTFC) of LTV systems and nonstationary
random processes are introduced in Section III. In Sections IV
and V, we present the TFMA model and the TFAR model,
respectively, and we propose associated parameter estimators.
In Section VI, we combine the TFMA and TFAR models
into the TFARMA model and extend our TFMA and TFAR
parameter estimators to the TFARMA case. Sections IV–VI
also present simulation results that compare the performance
and complexity of the proposed methods with that of existing
methods. In Section VII, we apply our models and parameter
estimators to the time-varying spectral analysis of a bat echolo-
cation signal.

II. TIME-FREQUENCY FUNDAMENTALS

The basic signal transformations underlying our models are
the time shifts and frequency shifts (mod-
ulations) . We assume our signals

to be complex (e.g., the complex representation of a real
bandpass signal) and periodic with period , so is actu-
ally a cyclic time shift operator (for simplicity of notation, we
avoid writing more explicitly ).
The cyclic/periodic time structure is a consequence of our dis-
crete-frequency framework, which allows efficient FFT-based
computations. We furthermore combine and into the
joint TF shift operator acting as

where both shift indices and are constrained to the range
.
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Next, we discuss some TF representations of LTV systems
and nonstationary processes that are based on the TF shift oper-
ator and will be used later.

A. TF Characterization of LTV Systems

Consider a causal LTV system that operates on dis-
crete-time, finite-length signals defined on the time
interval according to the input–output relation

Here, denotes the time-varying impulse response of
and the summation interval is due to causality. The
spreading function (SF) of the LTV system is defined as the
discrete Fourier transform (DFT) of with respect to
[32], [33]:

(3)

It is (to within a factor of ) the coefficient function in an
expansion of into TF shift operators , i.e.,

(4)

The time-varying transfer function of is defined as the DFT
of with respect to [33], [34]:

It is the symplectic two-dimensional (2-D) DFT of the SF, i.e.,

(5)

An LTV system is said to be underspread if it introduces TF
shifts with only small TF lags [33], [35], [36]. From (4), it fol-
lows that the SF of an underspread system is effectively zero
outside a small region about the origin of the delay-Doppler
plane ( plane). Furthermore, it follows from (5) that the
time-varying transfer function of an underspread system is a
smooth (lowpass) function.

B. TF Characterization of Nonstationary Random Processes

Next, consider a nonstationary random process with cor-
relation function , where

denotes expectation (ensemble average). The expected ambi-
guity function (EAF) of the process , denoted , is
defined as [28], [29]

(6)

where is the inner product of two sig-
nals and . Comparison with (3) shows that the EAF
is the SF of the correlation operator , which is the operator
whose kernel (impulse response) is the correlation . The
value of at a given TF lag point characterizes the
average statistical correlations of any two components of
separated by time lag and frequency lag . A nonstationary
process is said to be underspread if its TF correlations are
effectively zero for larger time and frequency lags [28], [29].
The EAF then is effectively zero outside a small region about
the origin of the plane.

A nonstationary process can be represented as the output of a
causal LTV system (an innovations system) whose input is
stationary white noise with unit variance (the innovations
process) [37], i.e.,

(7)

By inserting (7) into (6) and evaluating the expectation, the EAF
of is expressed as

(8)

The evolutionary spectrum is defined as [38], [39]

(9)

If is underspread in the sense of Section II-A, then
is underspread as well, and the evolutionary spectrum can be
approximated by the 2-D DFT of the EAF [28], [29], i.e.,

(10)

Conversely, if is underspread, one can always find an un-
derspread innovations system . Let us assume that is un-
derspread in the sense that the SF is effectively zero
outside the rectangle with . Due to
(8), the EAF will then be effectively zero outside the extended
rectangle . Furthermore, in the EAF ex-
pression (8), the phase factor can then be ap-
proximated by 1 because

(11)
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Hence, the EAF of the underspread process is approxi-
mated as

which is the cyclic 2-D autocorrelation of .

III. COMPLEX TIME-FREQUENCY CEPSTRA

The cepstrum of a linear time-invariant system can be used
to develop a nonlinear parameter estimator for time-invariant
ARMA models [40]. The cepstral method has been generalized
to LTV systems and TV(AR)MA models in [27]. In this section,
we introduce novel TF cepstra that will be used later to develop
TFMA and TFARMA parameter estimators that improve on the
methods of [27] in terms of accuracy and complexity [2].

A. Complex TF Cepstrum of LTV Systems

Consider a causal and minimum-phase1 LTV system . We
define a time-varying transfer function of in the complex

-biplane as the following 2-D -transform of the SF:

(12)

The function is analytic for all because of the finite
summation limits. We assume that in a region
defined by and with some
positive constant ; this guarantees that is ana-
lytic in . Note that the time-varying transfer function
in (5) is reobtained by sampling on the unit bicircle,
i.e., .

The complex TF cepstrum (CTFC) of the causal, minimum-
phase LTV system , denoted as2 , is now defined im-
plicitly by setting

(13)

It can be shown that for because is min-
imum-phase, and that has infinite length with respect
to both and but decays at least as and (cf. [41] for
the case of a time-invariant system).

For an approximate computation of the CTFC using DFTs,
we sample (13) on the unit bicircle, i.e., we set
and . We obtain

(14)

1An LTV system will be termed minimum-phase if its SF is a min-
imum-phase (and, thus, causal) sequence in for each .

2In what follows, we will use the tilde to indicate that a function is not
-periodic.

where , termed the cyclic CTFC, is a periodized ver-
sion of the CTFC, i.e.,

(15)

By inserting (5) into (14) and inverting the DFTs, we see that
the cyclic CTFC can be calculated as

(16)

If is sufficiently decayed for
, the cyclic CTFC is effectively equal to the

CTFC, i.e., for
.

B. Complex TF Cepstrum of Nonstationary Processes

In an analogy to (14), we define the cyclic CTFC of a nonsta-
tionary process , denoted as , by

(17)

[cf. (9) and (10)]. By inserting (10) into (17) and inverting the
DFTs, it is seen that for an underspread process, can
be calculated from the EAF by an expression that is
analogous to (16):

(18)

Taking the logarithm of (9), we obtain
, which implies via (17) and

(14)

(19)

This relation expresses the cyclic CTFC of the process in
terms of the cyclic CTFC of the innovations system (cf. [41]
for the case of a time-invariant system). Since was assumed
to be a minimum-phase system, vanishes for
and thus (19) implies

(20)

IV. TFMA MODELING AND PARAMETER ESTIMATION

In this and the next two sections, we present three different
parametric models and corresponding parameter estimation
methods for length- nonstationary random processes

. These models are all based on the TF shift
operator . We first discuss the TF moving average (TFMA)
model. TFMA models are especially suited for processes whose
spectra exhibit deep time-varying nulls but no spectral peaks.
An example of a signal that is well suited to a representation by
a TFMA model is shown in Fig. 1.
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Fig. 1. Spectral analysis of a blood pressure signal (http://spib.rice.edu): (a)
time-domain signal, (b) smoothed pseudo-Wigner distribution [42], [43], and
(c) TFMA spectral estimate as defined by (25). Logarithmic gray-scale
representations are used in (b) and (c).

A. TFMA Model

We define the TFMA model [2] by the input–output
relation

(21)

Here, the innovations process is stationary white noise
with variance 1; and denote the temporal (delay)
and spectral (Doppler) model orders, respectively; and the

constants
are the TFMA parameters. Fig. 2 depicts

the TFMA input–output relation (21) in the form
. This is a gener-

alized tapped delay line where the taps are in fact modula-
tion circuits. A different though mathematically equivalent
block diagram can be obtained by writing (21) as

. For , a cyclic
version of the classical time-invariant MA model [5], [6] is
obtained as a special case of the TFMA model.

According to its definition in (21), the TFMA
process is modeled as a linear combination of TF shifted
versions of the white noise . This is a special case of the
innovations system representation in (7); the
innovations system is given by the causal, nonrecursive
LTV system

(22)

Fig. 2. Block diagram of the TFMA model. Unfilled arrows denote
multiplication by constants (model parameters ).

Comparing with (4), we see that the SF of is given by

elsewhere
(23)

where . That is, the SF of is zero
outside a rectangle about the origin, and the nonzero SF values
are (up to a factor) the TFMA parameters . For later conve-

nience, we define for .
The TFMA model is easily seen to be a special case of the

B-TVMA model. Indeed, it is a special case of (1) and (2) with
and the Fourier (complex exponential) basis

[7]. The time-varying MA parameters in
(1), (2) are given by

(24)

This means that the functions are band-limited with
bandwidth , resulting in a time variation that is smooth
but may still be rapid for sufficiently large Doppler order .
The Fourier basis has the advantage that inner products can be
computed by FFT methods with a complexity of
(instead of ). The zero-delay parameter can be
interpreted as a time-varying standard deviation of the inno-
vations and is hence constrained to be positive for all ; this
means that is an autocorrelation function in . Our formu-
lation in terms of TF shifts provides a new interpretation of
B-TVMA models, and it suggests the application of TF signal
representations and TF concepts (SF, time-varying transfer
function, EAF, underspread systems and processes) for efficient
estimation of the TFMA parameters . This will be worked
out in the rest of this section.

The EAF of a TFMA process is obtained from
(21) and (6) as
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Note that there are temporal correlations up to time lag
and spectral correlations up to frequency lag . The evolu-
tionary spectrum (9) is given by (recall that )

(25)

B. TFMA Parameter Estimation Based on the CTFC Recursion

We now present a nonlinear method for estimating the TFMA
parameters from a realization of the process . This
method is based on the CTFC introduced in Section III and
assumes a minimum-phase innovations system . Following
the approach for time-invariant ARMA estimation in [40], we
first derive a cepstral recursion for the ’s that involves the
cyclic CTFC . Subsequently, we express this recursion
in terms of an estimate of the cyclic CTFC , in which
form it can be used for TFMA parameter estimation. The re-
sulting estimator is more accurate and less complex than the
method proposed in [27], due to the smaller number of param-
eters to be estimated (see Section IV-D). An alternative TFMA
parameter estimator involving a high-order intermediate TFAR
model will be presented in Section IV-C.

1) CTFC Recursion: We start by specializing the CTFC def-
inition (13) to the TFMA system in (22), as follows:

where (12) and (23) have been used. Differentiating this equa-
tion with respect to yields

Using the index transformations and
on the right-hand side, approximating by the cyclic
CTFC [cf. (15)], matching coefficients in and ,
and using the fact that for , we
obtain the CTFC recursion

(26)

Later, we will express this recursion in terms of .
2) Initialization: The above recursion allows an -recursive

calculation of the TFMA parameters . It is initialized by
, which can be calculated as follows. The time-varying

MA parameters in (24) can
be factored as , where is

a time-varying amplitude and (i.e., cor-
responds to a monic system ). We then obtain for the
time-varying transfer function , with

. Taking the logarithm
yields . Inserting
this relation into (14), we obtain the cyclic CTFC as

(27)

Because was assumed minimum phase, is minimum phase
as well. It can be shown that the CTFC of a monic minimum-
phase LTV system vanishes for , and thus
(cf. [41] for the case of a time-invariant system). Hence, (27)
evaluated for becomes

Solving for finally yields the desired initialization of (26) as

(28)

3) TFMA Parameter Estimator: Next, we express the CTFC
recursion (26), (28) in terms of the second-order statistics of the
TFMA process . Using (20), the CTFC recursion (26) can
be written in terms of as

(29)

which is initialized by [cf. (28)]

(30)

A practical estimator for the TFMA parameters is finally
obtained by treating the approximations (29) and (30) as exact
equations, and replacing by an estimate that is de-
rived from an estimate of the EAF according to (18)
(note that the latter step is based on the underspread assumption

). Using this method, estimates of the TFMA
parameters are calculated recursively in .

The computational complexity of this parameter esti-
mator—not counting estimation of the EAF—is as follows.
Calculation of the CTFC estimate from the EAF estimate
according to (18) requires FFTs of length and real
logarithms. The CTFC recursion (29) (the initialization (30) has
negligible complexity) requires operations (mul-
tiplications). Thus, the overall complexity per signal sample
is operations plus logarithms. In
the underspread case is small and
our method is less computationally intensive than the cepstral
TVMA estimator [27], whose complexity per signal sample is

operations plus logarithms. This will be
verified experimentally in Section IV-D.
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4) EAF Estimation: The above TFMA parameter estimator
uses an estimate of the EAF . A widely used type of
EAF estimator is given by [42], [44], [45]

(31)

where is the ambiguity function

of the observed signal (note that )
and is a 2-D taper function that attenuates
for larger lags . (Here, as always, is short
for the cyclic definition .) The taper
function has to satisfy the normalization property
and the symmetry property
(because the latter property is satisfied by the EAF). For
CTFC-based parameter estimators, the TF taper also needs to
be positive definite. A method for taper design is presented in
[42]. When observations of the process are available,
the EAF estimator (31) is modified by replacing with

.

C. TFMA Parameter Estimation Based on an Intermediate
TFAR Model

A second TFMA parameter estimator uses an intermediate
high-order TFAR model and inverse filtering (cf. [7] and
[46]–[48] in the time-invariant case). Let us form the inner
product of (21) with and take expectations

(32)

The left-hand side is recognized as the EAF in (6). On
the right-hand side,

with the cross-EAF .
Considering (32) for and ,
we then obtain

(33)

These are linear equations in
the unknowns (TFMA parameters)

. The overall estimation method follows a
system identification approach because the ’s are estimated
from the output and the (estimated) input of the inno-
vations system. Indeed, this method can be shown to be essen-
tially equivalent—up to border effects due to our cyclic frame-
work that have little influence on accuracy and complexity—to
the B-TVMA estimator of [7].

If is underspread, i.e., , we can use a bound
similar to (11) to show that the phase factor in
(33) can be approximated by 1. Then, (33) simplifies to the 2-D
convolution relation

(34)

Using suitable stacking, both the exact equations (33) and the
underspread approximation (34) can be written in matrix-vector
form as , where the length- vector contains
the TFMA parameters and the matrix and
length- vector contain appropriate samples of and ,
respectively. A specific stacking will be discussed in a different
context in Sections V-B and V-C. Using this stacking, the system
matrix corresponding (34) has a Toeplitz/block-Toeplitz
(TBT) structure. This allows the use of the Wax–Kailath algo-
rithm [30] for efficient solution of the underspread equations
with a complexity of multiplications. The recursive
structure of the Wax–Kailath algorithm results in an order-
recursive estimator (recursive in the delay order ). Thus, we
are able to successively estimate all TFMA models
with ranging from 0 to a prescribed maximum order.

For a practical TFMA estimator, and
are estimated from a process realization (we note that
the EAF estimator (31) can be extended to the cross-EAF).
For estimation of , we first have to estimate the
innovations signal from . To this end,
the TFMA model underlying is approximated by an in-
termediate high-order TFAR model, i.e., we fit a TFAR model
(see Section V-A) to . The TFAR order can be determined
as discussed in [3], and the TFAR parameters can be estimated
by means of the methods presented in Section V. The estimated
TFAR parameters are then used to calculate an estimate of
the innovations signal from by inverse filtering,
i.e., , where is the innovations system
corresponding to the estimated intermediate TFAR model.

Compared with the TVMA estimator of [27], this TFMA
estimator has a similar accuracy but significantly higher com-
plexity. Thus, we will not consider it any further in the TFMA
context. However, we will see in Section VI-D that the method
has a good accuracy in the TFARMA context.

D. Simulation Results

We compare the TFMA parameter estimator based on the
CTFC recursion (see Section IV-B) with the cepstral recursion
method for TVMA models proposed in [27]. (The latter method
was actually formulated in [27] for the more general TVARMA
case.) The TFMA estimator from Section IV-C and the—es-
sentially equivalent—B-TVMA estimator of [7] are not consid-
ered in this simulation study because of their significantly higher
complexity as discussed above. The CTFC estimates were de-
rived from an EAF estimate of the form (31) that was computed
from a single process realization. This EAF estimate was also
used for the TVMA technique instead of the evolutionary peri-
odogram [49] used in [27].

We simulated TFMA processes of various lengths and or-
ders . For each choice of , and , the TFMA
parameters were randomly generated such that they were
minimum-phase in the sense of [3]. Parameter estimation was
then performed for 100 process realizations, using the true orders

. From the 100 sets of estimated parameters
, we calculated the normalized mean-square error (MSE)

MSE (35)
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Fig. 3. Normalized MSE of the CTFC-based TFMA estimator (solid line) and
the TVMA estimator of [27] (dotted line): (a) variable;
(b) variable; and (c)
variable.

Fig. 4. Spectral analysis of a flat-fading mobile radio channel [50]: (a) Fading
coefficient (windowed); (b) smoothed pseudo-Wigner distribution [42], [43];
and (c) TFAR spectral estimate as defined by (42). Logarithmic gray-
scale representations are used in (b) and (c).

The results are shown in Fig. 3. The MSE tends to decrease
with growing and increase with and ; thus, it is lower
for TFMA models that are more underspread. Our CTFC-based
estimator outperforms the TVMA estimator of [27] by 2–5 dB,
which can be explained by the smaller number of parameters
estimated.

We furthermore measured the complexities (flop count using
Matlab 5.2 implementations) of the two parameter estimators.
These complexities account for all computations needed to es-
timate the model parameters for known model orders
from the basic EAF estimate. Within the simulated ranges of

, and , we observed the proposed CTFC method to be
about 23% less complex than the TVMA method.

V. TFAR MODELING AND PARAMETER ESTIMATION

In this section, we present the TF autoregressive (TFAR)
model and corresponding parameter estimation methods. This
model is especially suited for processes whose time-varying
spectra exhibit sharp peaks but no deep nulls. An example of
a signal that is well modeled by a TFAR model is shown in
Fig. 4; this signal consists of several time-varying narrowband
components (time-varying spectral peaks).

Fig. 5. Block diagram of the TFAR model. The input is the
innovations process multiplied by the time-dependent amplitude factor

.

A. TFAR Model

The TFAR model [1] is defined by the
input–output relation

(36)

where is again stationary white noise with variance 1;
and denote the delay and Doppler model orders, respec-
tively; denotes the Doppler model order of a degenerate
zero-delay TFMA part; the constants

are the TFAR parameters;
and the constants are
zero-delay TFMA parameters. A block diagram of (36) is de-
picted in Fig. 5. For , the TFAR model reduces
to a cyclic form of the time-invariant AR model [5], [6].

The first term in (36), ,
is a linear combination of delayed and frequency-shifted
versions of . It is a “pure TFAR” component that
corresponds to the feedback loop in Fig. 5. The second
term, , is a linear combination of fre-
quency-shifted versions of the innovations process
that corresponds to a degenerate, zero-delay TFMA
model. We can write this latter component as with

. The factor models a
time-varying input variance that cannot be modeled by
the pure TFAR part.

The input–output relation (36) can be expressed as
with the causal LTV systems

(37)

where (i.e., is a monic system). Thus, the innova-
tions system representation of the TFAR process is

with
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We note that the SFs of and are given by [cf. (23)]

elsewhere
(38)

and
elsewhere

(39)

where .
The TFAR model is a special case of the B-TVARMA model

(1), (2) with , the Fourier (complex exponential) basis
[7], and TVAR and (zero-delay) TVMA

parameter functions given by

(40)
Hence, and have bandwidth and , respec-
tively. Again, our formulation in terms of TF shifts provides a
new interpretation and leads to new efficient parameter estima-
tors exploiting the underspread property.

Using the method proposed in [51], the time-varying impulse
response of the TFAR innovations system can be
computed with a high complexity of . However, in
the following, we will use an approximate evaluation of
that is based on the approximative transfer function calculus
described in [35]. In the framework of this calculus, the time-
varying transfer function of is approximated as

(41)

(In practical calculations, this division has to be stabilized, e.g.,
by replacing the quotient by 0 when for a suitably
chosen threshold .) The approximation (41) is justified if the
operators and are jointly underspread, i.e., if and

are effectively zero outside a common rectangle about
the origin of the plane with area much less than [35],
[36]. Because of (38) and (39), this means that
and is not much larger than . Based on (41), the evolu-
tionary spectrum (9) can be approximated by

(42)

These underspread approximations become exact for
(i.e., for a time-invariant AR model).

B. TFAR Parameter Estimation Based on the TFYW Equations

We now present a TFAR parameter estimator [1] that gener-
alizes the Yule–Walker method for time-invariant AR models
[5], [6] and is a computationally efficient special case of the
vector-Yule–Walker method [7]. Calculating the inner product
of (36) with and taking expectations yields

or, equivalently

Using the innovations representation (7), it can be shown
that . Furthermore,

for . We thus obtain

(43)

In what follows, we consider these equations for
and . Because the right-hand side

of (43) vanishes for , we obtain (recall that )

(44)

These linear equations in the un-
knowns will be termed the TF Yule–Walker (TFYW) equa-
tions. For , the TFYW equations reduce to the conven-
tional Yule–Walker equations [5], [6].

A compact matrix-vector formulation of the TFYW equations
can be obtained by means of a suitable stacking. Let us define
the Toeplitz matrices of size , as shown
in (45) and (46) at the bottom of the page. Here, the notation

toep

...
...

. . .
...

(45)

and

toep (46)
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toep means that the elements of the di-
agonals of the Toeplitz matrix ordered from southwest
to northeast are . We also define the
Toeplitz-block matrix

...
...

. . .
...

(47)

where denotes the Hadamard (elementwise) matrix product.
Note that the blocks of are Toeplitz matrices but their arrange-
ment does not have Toeplitz structure. Finally, we define the fol-
lowing vectors of length

with

(48)

and

with (49)

The TFYW (44) can then be compactly written as

(50)

This linear equation has to be solved for the TFAR parameter
vector .

A different 2-D 1-D stacking leads to alternative TFYW
equations with block-Toeplitz structure (i.e., the arrangement
of the blocks is Toeplitz but the blocks themselves are not)
[1], which allow the use of an efficient solution algorithm
with multiplications [52]. However, the stacking
presented above will be shown in Section V-C to lead to a
parameter estimator that is order-recursive and has a similar
complexity.

A TFAR parameter estimator results from the TFYW equa-
tions (44) and (50) if the EAF is replaced by an es-
timate (see (31) with ; we note that a TF taper is
not required in the TFAR context). This TFAR estimator is sim-
ilar to the TVAR autocorrelation method [7] for a Fourier basis,
except that we use a cyclic estimator of the autocorrelation func-
tion in (31). The difference corresponds to border ef-
fects that have little influence on accuracy and complexity.

C. TFAR Parameter Estimation Based on the Underspread
TFYW Equations

Let us assume that is underspread, i.e., . The
phase factor in (44) can then be approximated by
1 [cf. (11)], whereby the TFYW equations (44) simplify to the
underspread TFYW equations

(51)

In stacked form, these equations read

(52)

with the TBT matrix

toep

...
...

. . .
...

(53)

and the vectors and as defined in (48) and (49). The
underspread TFYW equations reduce to the conventional
Yule–Walker equations [5], [6] for .

The TBT matrix is an underspread approximation to the
Toeplitz-block matrix in (47) that is obtained by omitting
the phase matrices in the definition of . Note that
is not a Toeplitz matrix itself, but its blocks are Toeplitz
matrices and the arrangement of these blocks within has
Toeplitz structure as well. This TBT structure allows the use of
the Wax–Kailath algorithm [30] for an efficient solution of the
underspread TFYW equations (52) with multiplica-
tions. (The multichannel Levinson algorithm [5] cannot be used
because the blocks are not symmetric in general.) The recur-
sive structure of the Wax–Kailath algorithm results in an order-
recursive estimator (recursive in the delay order ). Thus, we
are able to recursively estimate all TFAR models
with ranging from 1 to a prescribed maximum TFAR order.
The savings in complexity due to the underspread approxima-
tion will be assessed experimentally in Section V-E.

Again, a different 2-D 1-D stacking leads to an alternative
TBT form of the underspread TFYW equations for which the
Wax–Kailath algorithm requires multiplications.
Even though this is the same complexity order as for the exact
TFYW equations with alternative stacking [1], the actual com-
plexity is reduced by a factor of 2. However, the stacking we
used is advantageous in that the Wax–Kailath algorithm here
results in an order-recursive estimator, which is not true for the
alternative stacking [1].

D. Estimation of the Zero-Delay TFMA Parameters

It remains to estimate the parameters of the degenerate
TFMA component. This can be done by means of the
CTFC relation (30). An alternative method is related to the
TFYW approach and does not require calculation of the CTFC.
Recall that the parameters model the positive time-varying
innovations amplitude [cf. (40)].
The time-varying innovations variance can be expressed as

(54a)

with

(54b)
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Fig. 6. Normalized MSE of the TFAR estimator based on the underspread
TFYW equations (solid line), the TFAR estimator based on the exact TFYW
equations (dashed line), and the B-TVAR covariance method [7] (dotted line):
(a) variable; (b)
variable; and (c) variable.

The equations (43) for and can be
written in terms of the ’s as

This shows how the ’s can be calculated from the (previously
estimated) TFAR parameters . We can then calculate
via (54) and, thus, obtain . Finally, the ’s are com-
puted by inversion of (40). Alternatively, one can use spectral
factorization techniques [53] to directly compute the ’s from
the ’s.

E. Simulation Results

We compare the TFYW method (Sections V-B and V-D), the
underspread TFYW method (Sections V-C and V-D), and the
B-TVAR covariance method of [7] using a Fourier basis. We
simulated TFAR processes with various , and .
The TFAR parameters were generated randomly such that they
were stable in the sense of [3]. They were then estimated from
a single process realization using the true model orders.
This estimation was carried out for 100 realizations, and the
normalized MSE [cf. (35)] was calculated. Fig. 6 shows that the
MSEs of all estimators are quite similar, apart from a smaller
MSE of the B-TVAR method for small Doppler order. As in
the TFMA case, the MSE is lower for models that are more
underspread. Fig. 7 shows the computational savings (measured
in % of flops) of the underspread TFYW method relative to the
exact TFYW method and the B-TVAR covariance method of
[7] (we note that the complexities of these latter two methods
are effectively equal). These savings are seen to depend on

, and ; they are about 30% on average but can
be as high as 40%. They are due to the fact that the inversion
of a TBT matrix required by the underspread TFYW method is
about twice as fast as the inversion of a block-Toeplitz matrix
required by the B-TVAR method.

VI. TFARMA MODELING AND PARAMETER ESTIMATION

The TFARMA model is a combination of the TFMA and
TFAR models. It is able to model both time-varying spectral
nulls and time-varying spectral peaks. An example of a signal
suited to TFARMA modeling will be considered in Section VII.

Fig. 7. Flop savings of the TFAR estimator based on the underspread TFYW
equations relative to the TFAR estimator based on the exact TFYW equations
(the complexity of this latter estimator is effectively equal to that of the B-TVAR
covariance method of [7]): (a) variable; (b)

variable; and (c)
variable.

Fig. 8. Block diagram of the TFARMA model.

A. TFARMA Model

A TFARMA process is defined as [3]

(55)

where is again stationary white noise with variance
1. As shown in Fig. 8, the TFARMA
model is a concatenation of a TFMA model
and a TFAR model. It is characterized by the

TFMA parameters
and the

TFAR parameters .
For , the TFARMA model reduces to a cyclic
version of the time-invariant ARMA model [5], [6].
Further special cases are the TFMA model (obtained
for ) and the TFAR model
(obtained for ).

The TFARMA model is a special case of the B-TVARMA
model (1), (2) with the Fourier (complex exponential) basis

[7]. The TVAR parameters and
TVMA parameters are given by (40) and (24), respec-
tively; they are band-limited with bandwidth and ,
respectively.

The input–output relation (55) can be written as
with the causal LTV systems and given by (37)

and (22), respectively. The innovations system representation
of is thus obtained as

with

The nonzero values of the SF of and are given by
and , respectively [cf. (38) and (23)].

If the operators and are jointly underspread (see
Section V-A), the time-varying transfer function of the
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TFARMA innovations system can be approxi-
mated as

(56)

which generalizes (41). An underspread approximation of the
evolutionary spectrum is then given by

(57)

where .

B. Estimation of the TFAR Part

The TFAR parameters can be estimated by extensions of
the TFYW methods discussed in Sections V-B and V-C. Com-
puting the inner product of (55) with and taking ex-
pectations yields [cf. (43) and (33)]

(58)

where .
Because for , the right-hand side of (58)
vanishes for . Restricting to

and , we thus obtain the following set
of equations that do not contain the TFMA parameters [cf.
(44)]:

(59)

These linear equations in the un-
knowns will be termed the extended TFYW equations.
They can be written as

with the Toeplitz-block matrix [cf. (47)] shown
at the bottom of the page, where and were de-
fined in (45) and (46), respectively. Furthermore, is a
length- vector defined as

with , and is as in
(49). The resulting estimator is essentially equivalent, up to
border effects, to the time-varying extended YW method of
[7]. For , the extended TFYW equations reduce to the
conventional extended Yule–Walker equations [6].

If is underspread, i.e., , we can again approx-
imate the phase factor in (59) by 1. This yields
the underspread extended TFYW equations [cf. (51)]

or compactly , with the TBT matrix
toep

[cf. (53)]. These TBT equations can again be solved with
multiplications by means of the Wax–Kailath algo-

rithm. This results in an order-recursive estimator (recursive in
the delay order ).

C. Estimation of the TFMA Part

Next, we present a CTFC-based estimator for the TFMA pa-
rameters . As in Section IV-B, we extend the time-invariant
approach of [40] to derive a cepstral recursion for the TFMA
parameters that involves the cyclic CTFC . We
assume that and are jointly underspread. Recall that the
time-varying transfer function equals in
(12) evaluated on the unit bicircle, i.e., for and

. We can extend the underspread approximation
(56) to a small neighborhood of the unit bicircle, as follows:

(60)

This extension to is justified because the numerator
and denominator are polynomial functions and thus
do not vary rapidly when we move a little away from the unit
bicircle. A corresponding underspread approximation of the
CTFC, denoted , is then defined according to (13),
i.e.,

We insert (60) and proceed similarly as in Section IV-B
by differentiating the result with respect to and ap-
proximating by the cyclic underspread CTFC

...
...

. . .
...
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. We
then use and (20) to obtain the fol-
lowing CTFC recursion for

with . This recursion can be initialized by
(30). It allows us to calculate the TFMA parameters , as-
suming that the TFAR parameters were previously calcu-
lated as discussed in Section VI-B.

Finally, has to be replaced by an estimate that is
derived from an EAF estimate of the form (31). The resulting
( -recursive) estimator of the TFMA part is less complex
than the cepstral estimator of [27], which estimates

parameters via the evolutionary periodogram [47] and
the time-varying innovations variance by a separate procedure
(cf. our discussion in Section IV-B). For , our es-
timator reduces to the method for time-invariant ARMA models
presented in [40], but with a more sophisticated initialization.

D. Simulation Results

We simulated two different TFARMA parameter estimators.
For estimation of the TFAR part, both estimators use the un-
derspread extended TFYW method of Section VI-B with an
additional stabilization as discussed in [3]. For estimation of
the TFMA part, one estimator uses the extended CTFC-based
method of Section VI-C, while the other uses the TFMA method
based on an intermediate high-order TFAR model discussed in
Section IV-C. As a reference method, we also simulated the
cepstral recursion method for TVARMA models proposed in
[27], which estimates all TVARMA param-
eters and . (The B-TVARMA method of [7] is not
considered in this simulation study. This is because, as men-
tioned in Section VI-B, it is equivalent up to border effects to our
TFARMA method using the TFYW technique for estimation of
the TFAR part and an intermediate high-order TFAR model for
estimation of the TFMA part.)

These three estimation methods were applied to TFARMA
processes with various lengths and orders
and . For each process, the TFARMA parameters
were estimated from a single process realization , using
the true model orders. This was repeated for 100 realizations,
and the normalized MSE was calculated. From Fig. 9, it is seen
that our methods outperform the method of [27] by up to 5 dB,
because of the smaller number of parameters to be estimated.

Fig. 9. Normalized MSE of TFARMA and TVARMA parameter estimators:
(a) variable; (b)

variable; and (c)
variable. Solid line: extended underspread TFYW-based TFAR

estimator and extended CTFC-based TFMA estimator, dashed line: extended
underspread TFYW-based TFAR estimator and TFMA estimator based on an
intermediate high-order TFAR model; dotted line: TVARMA estimator of [27].

Furthermore, we observed that, within the simulated ranges of
, and , the estimator using the

extended CTFC-based method is about 36% less complex than
the TVARMA method of [27] (cf. Section IV-D). The estimator
using an intermediate high-order TFAR model has a similar
MSE performance as the estimator using the extended CTFC-
based method. We also note that it is similar, with respect to
both MSE performance and complexity, to the B-TVARMA
method of [7] (not shown in Fig. 9); however, both the esti-
mator using an intermediate high-order TFAR model and the
B-TVARMA method of [7] are significantly more complex than
our CTFC-based method.

VII. APPLICATION EXAMPLE

In previous sections, we studied the accuracy of the proposed
TFAR, TFMA, and TFARMA parameter estimators by applying
them to signals synthetically generated according to the respec-
tive model. We will now apply the TFAR, TFMA, and TFARMA
models and, for each model, the best parameter estimator to the
time-varying spectral analysis of the quasi-natural signal shown
in Fig. 10(a). This signal, of length , is the sum of two
echolocation chirp signals emitted by a Daubenton’s bat (http://
www.londonbats.org.uk). A smoothed pseudo-Wigner distribu-
tion (SPWD) [42], [43] of this signal is shown in Fig. 10(b).

We performed TFAR, TFMA, and TFARMA analyses on this
signal using the parameter estimators indicated in Table I. From
the estimated TFAR, TFMA, or TFARMA parameters, we com-
puted the corresponding parametric spectral estimates, i.e., es-
timates of the evolutionary spectrum [TFMA case, see
(25)] or of its underspread approximation [TFAR and
TFARMA cases, see (42) and (57), respectively]. The model or-
ders were estimated by means of the AIC [3], [54]; the resulting
orders are indicated in Table I. All parameters were stabilized
by means of the technique described in [3], with stabilization
parameter .

The spectral estimates are depicted in Fig. 10(c)–(e). It is
seen that the TFAR spectrum displays the two chirp components
fairly well, although there are some spurious peaks (this effect
is well known from AR models [5]) and the overall resolution
is poorer than that of the nonparametric SPWD in Fig. 10(b).
The TFMA spectrum, as expected, is unable to resolve the time-
varying spectral peaks of the signal. Finally, the TFARMA spec-
trum exhibits better resolution than the SPWD, and it does not
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TABLE I
MODEL ORDERS ESTIMATED AND PARAMETER ESTIMATION METHODS USED FOR THE TWO-COMPONENT BAT SIGNAL

Fig. 10. Time-varying parametric spectral analysis of the sum of two bat
echolocation signals: (a) Time-domain signal; (b) smoothed pseudo-Wigner
distribution; (c) TFAR spectral estimate; (d) TFMA spectral esti-
mate; and (e) TFARMA spectral estimate. The parameter estimators
employed are indicated in Table I. Logarithmic gray-scale representations are
used in (b)–(e).

contain any cross terms as does the SPWD [43]; on the other
hand, the TF localization of the components deviates slightly
from that in the SPWD. It should be noted at this point that these
parametric spectra involve only 30 (TFAR and TFARMA) or 42
(TFMA) parameters.

VIII. CONCLUSION

TFARMA models for nonstationary random processes, with
TFAR and TFMA models as special cases, were presented and
shown to be a TF-symmetric reformulation of time-varying
ARMA (AR, MA) models using a Fourier basis. This reformu-
lation is physically intuitive because it uses time shifts (delays)
and frequency shifts to model the nonstationary dynamics of a
process. TFARMA (TFAR, TFMA) models are parsimonious
for the practically relevant class of processes with a limited
time-frequency correlation structure (underspread processes).

For estimating the parameters of TFARMA, TFAR, and
TFMA models, we proposed methods that are based on a novel
time-frequency cepstrum or on time-frequency Yule–Walker
equations. In either case, the parameter estimators are order-re-
cursive with respect to the delay order. Some of our estimators
rely on “underspread approximations” that exploit the un-
derspread property to achieve a reduction of computational
complexity. Our simulation results demonstrated that the pro-
posed methods outperform existing methods for time-varying
ARMA (AR, MA) modeling in terms of accuracy and/or
complexity. The application of the proposed methods to the
time-varying spectral analysis of a quasi-natural signal showed
that the TFARMA spectral estimate is able to improve on the
smoothed pseudo-Wigner distribution in terms of resolution
and absence of cross terms, even though it involves only a small
number of parameters.
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