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Abstract— Many sources of information are of analog or
continuous-time nature. However, digital signal processing ap-
plications rely on discrete data. We consider the problem of
approximating L2 inner products, i.e., representation coefficients
of a continuous-time signal, from its generalized samples. Taking
a robust approach, we process these generalized samples in a
minimax optimal sense. Specifically, for the worst possible signal,
we find the best approximation of the desired representation co-
efficients by proper processing of the given sample sequence. We
then extend our results to criteria which incorporate smoothness
constraints on the unknown function. Finally, we compare our
methods with the piecewise-constant approximation technique,
commonly used for this problem, and discuss the possible
improvements by the suggested schemes.

EDICS Category: DSP-SAMP, DSP-RECO sampling,
extrapolation, and interpolation

I. I NTRODUCTION

SIGNAL processing applications are concerned mainly
with digital data, although the origin of many sources of

information is analog. This is the case for speech and audio,
optics, radar, sonar, biomedical signals and more. In many
cases, analysis of a continuous-time signalx(t) is obtained
by evaluatingL2 inner-products〈wn(t),x(t)〉L2

for a set of
predetermined analysis functions{wn(t)}. For example, one
may calculate a Gabor [1] or wavelet [2] representation of a
signal.

Typically, the analysis functions{wn(t)} are analytically
known. On the other hand, in many applications of digital
signal processing, there is no knowledge of the continuous-
time signalx(t), but only of its sample sequence. Our problem
is to approximate the requiredL2 inner-products, by proper
processing of the available samples.

In some cases the sampled version of a signal is sufficient
to calculate the original function. A well known example is
the classical Whittaker-Shannon sampling theorem. See also
[3], [4] for additional shift invariant settings. If the analog
input can be determined from the sample sequence, then the
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required representation coefficients can be calculated as well.
Our main focus here is on situations where the knowledge
of the continuous-time function is incomplete, so that only
approximations of the continuous-time inner products can be
obtained. A well known example is the initialization problem
in wavelet analysis. To initialize the pyramid algorithm [5]
we need the representation coefficients of the continuous-
time function x(t), in the initial scale. Unfortunately, these
coefficients are typically unavailable, and we only have the
samples ofx(t), obtained at the output of an anti-aliasing filter.
A common practice in wavelet analysis is to assume that the
available samples are the required representation coefficients.
This false assumption is also known in the literature as the
’wavelet crime’ [6]. In [7] the authors address this problem
by suggesting a digital filter to process the available sample
sequence, prior to applying the pyramid algorithm. In fact,it
can be shown that their result is compatible with a special case
of our derivations, presented in Section IV-B.

A common approach to cope with incomplete knowledge of
the continuous-time signalx(t) is to first interpolate the given
samples using some synthesis functions. Then, the required
L2 inner-products can be performed using the approximation
(see for example [8]). Unfortunately, the best choice of the
synthesis functions is not always clear. See [9] for error
analysis, when approximations of a function are performed
in a shift invariant setup.

Yet another approach to approximate anL2 inner-product
is to perform numerical integration by a Riemann-type sum.
Assuming ideal and uniform sampling, convergence analysis
of such approximations was conducted in [10]. The ideal
and uniform sampling case was also considered in [11],
[12]. There, in order to approximate a single representation
coefficient 〈w(t),x(t)〉L2

, it was suggested to calculate an
l2 inner product

∑
n b[n]x(nT ) instead. An upper bound for

the approximation error was derived, and the sequenceb
was determined by minimizing that upper bound. In practice,
however, ideal sampling is impossible to implement. A more
practical model considers generalized samples [4], [13]–[18],
which are represented as the inner products of the signal with
a set of sampling functions{sn(t)}. Thus, thenth sample can
be written asc[n] = 〈sn(t),x(t)〉L2

. This sampling model is
general enough to describe any linear and bounded acquisition
device (Riesz representation theorem [19], [20]).

In this paper we take an approach that is similar in spirit
to the works in [7], [16] and generalize it according to [11].
Given the generalized samples, we approximate the desired
representation coefficients{〈wn(t),x(t)〉L2

} in a minimax
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optimal sense. It turns out that the solutions to our robust
objectives can also be interpreted as an interpolation of the
given samples, followed by an application of the analysis
functions {wn(t)} to the interpolationx̂(t). The nice thing
is that the interpolation stage stems naturally from the setup
of the problem, rather than being pre-specified arbitrarily.
Additionally, the division of the algorithm into interpolation
and analysis stages is more of conceptual rather than practical
nature; both stages can be performed simultaneously, by digital
processing of the available samples.

Our results extend [11] in several ways. First, by considering
generalized samples our derivations are applicable to practical
acquisition devices. Second, if there is prior knowledge that
the generalized samples have been obtained from a smooth
function, then we show how to incorporate that constraint
into the proposed robust solution. Third, our derivations are
applicable to a series of representation coefficients. Finally, we
analyze the performance of the suggested approach, giving
sufficient conditions for it to outperform piecewise-constant
approximations.

The outline of the paper is as follows. In Section II we
describe the notations and the mathematical preliminaries.
Section III discusses situations where the requiredL2 inner
products can be evaluated exactly, and establishes a minimax
approximation criterion when this is not the case. The minimax
objective is solved in Section IV. In Section V we consider the
problem of incorporating smoothness constraints. Specifically,
if there is prior knowledge of the input to be smooth, then
we show how to alter the minimax solution by recasting the
problem in a proper Sobolev space [24], presenting [11] as
a special setting of our derivations. Section VI discusses the
relations between the errors due to the suggested minimax
approach and approximations by a Riemann-type summation.
We show the possible gain in performance by the proposed
method and derive sufficient conditions for it to dominate the
summation approach. Finally, in Section VII, we conclude with
several simulations.

II. N OTATIONS AND MATHEMATICAL PRELIMINARIES

We denote continuous-time signals by bold lowercase let-
ters, omitting the time dependence, when possible. The el-
ements of a sequencec ∈ l2 will be written with square
brackets,e.g.c[n]. XF (ω) =

∫
x(t)e−jωtdt is the continuous-

time Fourier transform ofx and Cf (ω) =
∑

n c[n]e−jωn is
the (2π periodic) discrete-time Fourier transform (DTFT) of
the sequencec. The operatorPA represents the orthogonal
projection onto a closed subspaceA, andA⊥ is the orthogonal
complement ofA. TheMoore-Penrose pseudo inverse[21] and
the adjoint of a bounded transformationT are written asT †

andT ∗, respectively.< stands for the real part.
Inner products and norms are denoted by〈a, b〉H and‖a‖H,

respectively. Here,H stands for the Hilbert space involved.
Usually, we will considerH to be L2, l2 or the order-
one Sobolev spaceW 1

2 , which will be discussed in detail
in Section V. When the derivations are general enough to
describe inner products and norms within any Hilbert space,
we will omit the space subscript from the notations,i.e., 〈f, g〉

or ‖f‖. All inner products are linear with respect to the second
argument. For example,〈x,y〉L2

=
∫ ∞

−∞
x(t)y(t)dt.

An easy way to describe linear combinations and inner prod-
ucts is by utilizing set transformations. A set transformation
V : l2 → H corresponding to frame [22] vectors{vn(t)} is
defined byV a =

∑
n a[n]vn(t) for all a ∈ l2 . From the

definition of the adjoint, ifa = V ∗y, thena[n] = 〈vn,y〉.
We define byS (W ) the set transformation corresponding

to the vectors{sn} ({wn}). Accordingly, the generalized
samplesc[n] = 〈sn,x〉L2

can be written asc = S∗x, and
the desired representation coefficientsq[n] = 〈wn,x〉L2

by
q = W ∗x. We defineS to be the sampling space, which is
the closure ofspan {sn}. Similarly, W is the analysis space,
obtained by the closure ofspan {wn}.

To handle well posed problems, we assume that the sample
sequencec and the desired representation coefficientsq have
finite energy, i.e., c, q ∈ l2. This will assure that for any
bounded transformationG : l2 → l2 applied to the generalized
samplesc, the error sequenceq − G(c) is in l2 as well.
Accordingly, criteria that consider thel2 norm of the error
sequence are well defined. One way to enforcec, q ∈ l2 is
to require that{sn} and {wn} form frames [22] forS and
W, respectively, which is an assumption made throughout this
paper.

III. PROBLEM FORMULATION

We are given the generalized samples of a continuous-time
function x(t), modeled by

c[n] = 〈sn(t),x(t)〉L2
. (1)

An example is an analog to digital converter which performs
pre-filtering prior to sampling, as shown in Fig. 1. In such a
setting, the sampling vectors{sn(t) = s(t − nT )} are shifted
and mirrored versions of the impulse response of the pre-filter
[13].

x(t) - s(−t) -�
�

?
c[n]

t = nT

Fig. 1. Filtering with impulse responses(−t) followed by ideal sampling.
The sampling vectors are{s(t − nT )}.

We wish to evaluate a set of continuous-time inner products
q defined by

q[n] = 〈wn,x〉L2
, (2)

where the analysis functions{wn} are analytically known.
The inputx is known only through its generalized samplesc
of (1). Our goal is to approximate the required representation
coefficientsq by proper processing of the sample sequencec.

A natural question to be first considered is whether there is
an unavoidable error due to our partial knowledge ofx(t), or
can we evaluateexactly the requiredL2 inner products, based
on the generalized samples. The following theorem addresses
this preliminary question.
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Theorem 1:Let x be an arbitrary function, satisfyingc =
S∗x. It is possible to obtain the coefficientsq = W ∗x by
proper processing of the sample sequencec if and only if
W ⊆ S. In that case,q = W ∗S(S∗S)†c.

Proof: See Appendix I.
In some cases, we may have additional prior knowledge on
x, such that not all signals inL2 should be considered. By
restricting our attention to a proper subgroup, it is possible to
obtain a zero error, even ifW * S. This is true whenever the
knowledge ofx allows us to determine a bijection (injective
and surjective transformation) betweenx(t) and its samples.
To illustrate this point, suppose thatx ∈ A, whereA is a
closed subspace ofL2 satisfying the direct sum condition
L2 = A ⊕ S⊥ (i.e., L2 can be described by the sum set{
a + v; a ∈ A,v ∈ S⊥

}
with the propertyA ∩ S⊥ = {0}).

Then, we can perfectly reconstructx from its generalized
samples by

x = A(S∗A)†c, (3)

whereA is any bounded set transformation with rangeA [16].
As a result, we can also perfectly evaluate the coefficients
q = W ∗x by

q = W ∗A(S∗A)†c. (4)

Another example in which a bijection between the signal
and its generalized samples exists is the finite innovation case
considered in [23].

Nevertheless, in the general case, the conditionW ⊆ S
may not be satisfied, or there may be no prior knowledge
of x(t). Thus, the coefficientsW ∗x cannot be computed
exactly and instead must be approximated from the given
samplesc. A common practice is to perform Riemann-type
sum approximations [10]:

〈w(t),x(t)〉L2
≈ T

∑

n

c[n]w(nT ), (5)

if one implicitly assumes that the generalized samples of
x are close to the mean value of the input signal, within
an interval of lengthT . Alternatively, we may approximate
the continuous-time inner products by choosing a sequence
d which minimizes the squared norm of the error vector
e = W ∗x − d. Sincex satisfiesc = S∗x, by decomposingx
alongS andS⊥ the error can be written as

e = W ∗S(S∗S)†c + W ∗PS⊥x − d, (6)

where we usedPSx = S(S∗S)†c. This leads to the following
objective

min
d

∥∥W ∗S(S∗S)†c + W ∗PS⊥x − d
∥∥2

l2
. (7)

Unfortunately, the solution of (7) depends onPS⊥x, which
is unknown. To eliminate the dependency onx, we may
instead consider a robust approach, where the sequenced is
optimized for the worst possible inputx. Valid inputs must be
consistent with the known samples,i.e., must satisfyc = S∗x.
Additionally, if the norm of the input is unbounded, then so
is the error. Therefore, to define a well posed problem, we
assume thatx is norm bounded by a positive constantL, and
possible inputs are

D = {x; ‖x‖ ≤ L, c = S∗x} . (8)

In order to assure a certain level of performance for each
function from D, we take a robust approach by considering
the minimax objective

min
d

max
x∈D

‖W ∗x − d‖
2
l2

. (9)

In the next sections, we derive a solution ford, and compare
its performance with the piecewise-constant approximation
approach given in (5).

IV. M INIMAX APPROXIMATION

The minimax problem of (9) is closely related to the
generalized sampling problem considered in [16, Theorem
3]. Relying on results obtained in that context leads to the
following theorem.

Theorem 2:Consider the problem

min
d

max
c=S∗x,‖x‖≤L

‖W ∗x − d‖
2
l2

,

whereW and S are bounded set transformations with range
W andS, respectively. The (unique) solution is

d = W ∗S(S∗S)†c. (10)
Before going into the details of the proof, note that we have

not specified the exact Hilbert space in which the bound‖x‖ ≤
L and the inner productsS∗x,W ∗x are calculated, since the
derivations are general enough to be applicable to any Hilbert
space. In Section V we will show how smoothness constraints
can be incorporated by applying Theorem 2 to different Hilbert
spaces. Additionally, the upper norm boundL is not expressed
in the solution (10). Thus, one only has to be sure that the
signal has a finite norm, while its exact value is irrelevant to
the computation ofd. The value ofL will be used, however,
in Section VI for analyzing the performance of the proposed
algorithm.

Proof: First we note that anyx in D of (8) is of the
form x = S (S∗S)

†
c + v for somev ∈ G where

G =
{
v | v ∈ S⊥, ‖v‖ ≤ L′

}
, (11)

and

L′ =

√
L2 − ‖S(S∗S)†c‖

2
. (12)

Thus,

max
x∈D

‖W ∗x − d‖
2
l2

= (13)

= max
v∈G

∥∥W ∗S(S∗S)†c − d + W ∗v
∥∥2

l2

= max
v∈G

‖ad + W ∗v‖
2
l2

= max
v∈G

(
‖ad‖

2
l2

+ 2<{〈ad,W
∗v〉l2} + ‖W ∗v‖

2
l2

)
,

where we definedad = W ∗S(S∗S)†c − d. As a result, the
maximum in (13) is achieved when

<{〈ad,W
∗v〉l2} = |〈ad,W

∗v〉l2 | . (14)

Indeed, letv ∈ G be the vector for which the maximum
is achieved. If〈ad,W

∗v〉l2 = 0 then (14) is trivially true.
Otherwise, we can define

v2 =
〈W ∗v, ad〉l2
|〈W ∗v, ad〉l2 |

v. (15)
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Clearly, ‖v‖ = ‖v2‖ and v2 ∈ G. In addition,‖W ∗v‖l2
=

‖W ∗v2‖l2
and 〈ad,W

∗v2〉l2 = |〈ad,W
∗v〉l2 | so that the

objective in (13) atv2 is larger than the objective atv unless
(14) is satisfied.

Combining (14) and (13), our problem becomes

min
d

max
v∈G

(
‖ad‖

2
l2

+ 2 |〈ad,W
∗v〉l2 | + ‖W ∗v‖

2
l2

)
. (16)

Denoting the optimal objective value byA, and replacing the
order of minimization and maximization, we get a lower bound

A ≥ max
v∈G

min
d

(
‖ad‖

2
l2

+ 2 |〈ad,W
∗v〉l2 | + ‖W ∗v‖

2
l2

)

= max
v∈G

‖W ∗v‖
2
l2

, (17)

where we used the fact that‖ad‖
2
l2

+ 2 |〈ad,W
∗v〉l2 | ≥ 0,

with equality ford of (10). Thus, for any choice ofd,

min
d

max
v∈G

‖ad − W ∗v‖
2
l2
≥ max

v∈G
‖W ∗v‖

2
l2

. (18)

The proof then follows from the fact thatd given by (10)
achieves the lower bound (18). Uniqueness ofd follows from
(16), as the optimal solution must satisfyad = 0.

Note that (10) resembles the solution of the Wiener-Hopf
equations, where the Gramian matrix of the autocorrelations
is first inverted (pseudo-inverted), and the cross-correlation
Gramian matrix is then applied. Another interesting interpre-
tation of (10) is obtained by noticing thatPSx = S(S∗S)†c.
This leads to the following corollary.

Corollary 1: The solution (10) can be written as

d = W ∗PSx. (19)
This means that our robust approach first approximates the
signal by its orthogonal projection onto the sampling space,
and then applies the analysis functions{wn}. Thus, we can
also conclude that the suggested approximation method results
in zero error ifW ⊆ S or if the prior knowledgex ∈ S exists.
In fact, by identifyingA of (4) with S, the solutions indeed
coincide. Interestingly,PSx is the minimax approximation of
x over the setD of (8), as incorporated in the following
proposition.

Proposition 1: The unique solution of

min
x̂

max
x∈D

‖x − x̂‖
2
,

with D of (8) is x̂ = PSx.
Proof: Projectingx − x̂ onto S andS⊥ we have

‖x − x̂‖
2

=
∥∥S(S∗S)†c − PS x̂

∥∥2
+ ‖PS⊥x − PS⊥ x̂‖

2
. (20)

The maximization is then

max
x∈D

‖x − x̂‖
2

= ‖eS(x̂)‖
2

+ max
x∈D

‖PS⊥x − PS⊥ x̂‖
2

= ‖eS(x̂)‖
2
+ (21)

+max
x∈D

(
‖PS⊥x‖

2
− 2<〈PS⊥x, PS⊥ x̂〉 + ‖PS⊥ x̂‖

2
)

,

whereeS(x̂) = S(S∗S)†c − PS x̂. Similarly to the proof of
Theorem 2, we can replace−2<〈PS⊥x, PS⊥ x̂〉 by its absolute

value. The minimax objective is then lower bounded by

min
x̂

(
‖eS(x̂)‖

2
+ (22)

max
x∈D

(
‖PS⊥x‖

2
+ 2 |〈PS⊥x, PS⊥ x̂〉| + ‖PS⊥ x̂‖

2)
)

≥ max
x∈D

‖PS⊥x‖
2
,

where we used the fact that for allx̂ we must have‖eS(x̂)‖
2
≥

0 and 2 |〈PS⊥x, PS⊥ x̂〉| + ‖PS⊥ x̂‖
2

≥ 0. The proof then
follows by noticing thatx̂ = PSx is the minimizer which
achieves this lower bound. Furthermore, it is unique, since
from (22) the optimal solution must satisfyPS⊥ x̂ = 0 and
eS(x̂) = 0.

We conclude that the problem of approximating the rep-
resentation coefficients in a minimax sense could be split
into two parts; first obtaining the minimax approximation
of x itself, then applying the analysis operatorW ∗ to that
approximation.

A. Element-Wise Optimality

In Theorem 2, we approximate a set of representation
coefficientsW ∗x, by optimizing (in a minimax sense) the
squared norm of the error sequenceW ∗x − d. Instead, one
may consider alternative objectives which combine the entries
of the error sequence in anl1 norm i.e., ‖W ∗x − d‖l1

or the
l∞ norm ‖W ∗x − d‖l∞

. We now show that the suggested
solution (10) is optimal according to all the above criteria,
as it is minimax optimal element-wise.

Theorem 3:The sequenced = W ∗S(S∗S)†c is a solution
of mind maxc=S∗x,‖x‖≤L ‖W ∗x − d‖lp

, for any naturalp.
Proof: First assume that a single representation coeffi-

cient is to be approximated in a minimax sense

min
d̃

max
c=S∗x,‖x‖≤L

∣∣∣〈w,x〉 − d̃
∣∣∣
2

, (23)

whered̃ is a scalar. Degenerating the result (10) of Theorem 2
by letting W be the set transformation of the single function
w(t), the solution of (23) is

d̃ = 〈w, S(S∗S)†c〉.

Since (10) satisfiesd[n] = 〈wn, S(S∗S)†c〉 for each entry
of the vectord, we conclude that it is element-wise optimal,
implying that the solution will not change if we combine the
individual errors inl1, l∞ or any lp norm.

B. The Shift Invariant Case

The approximation (10) was derived for general sampling
and analysis subspaces. An interesting special case of this
setup is when in addition,S andW are real shift invariant (SI)
subspaces, each spanned by shifts of lengthT of some fixed
generating function [13], [16]. In this case, as we will show,
the approximation sequenced can be obtained by discrete-time
filtering of the sample sequencec.
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Let s(t) and w(t) be the real generators ofS and W,
respectively. Then, the SI subspaces are

S =

{
f(t) | f(t) =

∑

n

a[n]s(t − nT ), a ∈ `2

}
;

W =

{
f(t) | f(t) =

∑

n

a[n]w(t − nT ), a ∈ `2

}
. (24)

In this SI case, the samplesc[n], which are given by

c[n] =

∫
s(t − nT )x(t)dt = x(t) ∗ s(−t)|t=nT , (25)

correspond to ideal sampling at timest = nT of the output
of a filter with an impulse responses(−t), with x(t) as
its input (see Fig. 1). Hereg(t) ∗ z(t) denotes continuous-
time convolution between the signalsg(t) and z(t), and
y(t)|t=nT = y(nT ).

To ensure that the functions{s(t − nT )} and{w(t − nT )}
form frames forS andW respectively, a simple condition can
be verified in the frequency domain [22]:

α ≤ Rf
W,W(ω) ≤ β, ω ∈ IW ;

γ ≤ Rf
S,S(ω) ≤ η, ω ∈ IS , (26)

for some0 < α ≤ β < ∞ and 0 < γ ≤ η < ∞. Here we
denote,

Rf
A,B(ω) =

1

T

∞∑

k=−∞

AF

(
ω + 2πk

T

)
BF

(
ω + 2πk

T

)
,

(27)
whereWF (ω),SF (ω) are the continuous-time Fourier trans-
forms of the generatorss(t),w(t), andIW , IS are the set of
frequenciesω for which Rf

W,W(ω) 6= 0 and Rf
S,S(ω) 6= 0,

respectively.
Letting S andW be the set transformations of{s(t − nT )}

and {w(t − nT )} respectively, it is easy to see thatW ∗Sa
is equivalent to filtering the sequence{a[n]} by a discrete-
time LTI filter having the frequency responseRf

W,S(ω).
Similarly, the pseudo-inverse operator(S∗S)† takes the form
of applying a filter with DTFT1/Rf

S,S(ω) for ω ∈ IS and zero
otherwise. Combining the above, we have that the sequence
d = W ∗S(S∗S)†c can be obtained by filtering the sample
sequencec with a digital filter

Gf (ω) =





Rf

W,S
(ω)

Rf

S,S
(ω)

, ω ∈ IS ;

0, ω /∈ IS .
(28)

We point out that by a proper choice of the sampling and
analysis functions, the filter (28) is compatible with the
solution for the ’wavelet crime’ problem obtained in [7].

V. I MPOSINGSMOOTHNESS BYSOBOLEV SPACES

The objective in Theorem 2 considers functions within the
set D = {x | S∗x = c, ‖x‖ ≤ L}. However, sometimes we
have prior knowledge that the input signal is ’smooth’. If we
could restrict the set of possible inputs to include only smooth
functions, then the performance of the robust objective may
be improved.

Sobolev spaces are natural candidates to describe smooth-
ness. For simplicity, our main discussion will concern the
Sobolev space of order one [24].

Definition 1: The Sobolev space of order oneW 1
2 is the

Hilbert space of functions which have a finiteL2 norm, and
so is their first derivative. A possible choice of inner product
in this space is

〈a,b〉W 1

2

= 〈a,b〉L2
+ 〈a(1),b(1)〉L2

, (29)

wherea(1) andb(1) stand for the first derivative ofa andb,
respectively.

If we have prior knowledge that the inputx and its first
derivative are of finite energy (which in particular impliesthat
x is continuous), we may consider the set of possible inputs
to be

D̃ =
{
x | S∗x = c, ‖x‖W 1

2

≤ L̃
}

, (30)

whereL̃ is an upper bound on theW 1
2 norm ofx. This leads

to the following minimax objective:

min
d

max
x∈D̃

‖W ∗x − d‖
2
l2

. (31)

To solve (31) we may use Theorem 2 as its derivations are
general enough to be applicable to any Hilbert space. Note
however that objective (31) contains mixed inner products
and norms;S∗x andW ∗x describeL2 inner products, while
‖x‖W 1

2

≤ L̃ is a Sobolev norm constraint. Hence, we will first
recast the whole problem into the order one Sobolev space,
and then apply the results of Theorem 2.

To this end, note thatW 1
2 inner products (29) can be

compactly written in the Fourier domain by

〈s,x〉W 1

2

=
1

2π

∫ ∞

−∞

SF (ω)XF (ω)
(
1 + ω2

)
dω, (32)

whereSF (ω) and XF (ω) are the Fourier transforms ofs(t)
and x(t), respectively. As introduced in [11], we can use
(32) to rewrite L2 inner products asW 1

2 inner products.
Specifically, for anya ∈ L2,b ∈ W 1

2

〈a(t),b(t)〉L2
= 〈a(t) ∗ u(t),b(t)〉W 1

2

, (33)

where∗ stands for the convolution operation and

u(t) =
1

2
e−|t| (34)

is the inverse Fourier transform of1/(1 + ω2).
Using (33), we can replace theL2 inner productsW ∗x

andS∗x using their Sobolev counterparts, which leads to the
following theorem.

Theorem 4:Consider the problem

min
d

max
x∈D̃

‖W ∗x − d‖
2
l2

, (35)

whereW and S are bounded set transformations with range
W andS, respectively and̃D is given by (30). The (unique)
solution is

d = W̃ ∗S̃(S̃∗S̃)†c, (36)

where the inner products described by (36) are computed in
the order one Sobolev space,S̃, W̃ are the set transformations
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of {s̃n = sn ∗ u} and {w̃n = wn ∗ u} respectively, and the
function u(t) is given by (34).
Before stating the proof, note that (36) describesW 1

2 inner
products. In practice, this means that thei, jth element of the
matrix W̃ ∗S̃ is

〈w̃i, s̃j〉W 1

2

= 〈wi, s̃j〉L2
= 〈wi, sj ∗ u〉L2

, (37)

with u as in (34). Similarly, thei, jth element ofS̃∗S̃ is
computed by

〈s̃i, s̃j〉W 1

2

= 〈si, sj ∗ u〉L2
. (38)

Proof: Using (33), we can rewrite (35) as

min
d

max
c=S̃∗x,‖x‖

W1
2

≤L̃

∥∥∥W̃ ∗x − d
∥∥∥

2

l2
,

where S̃ and W̃ are the set transformation of{s̃n = sn ∗ u}
and{w̃n = wn ∗ u}, respectively, andu(t) is given by (34).
Since the derivations of Theorem 2 apply to any Hilbert space,
the solution has the same form as in (10), resulting in (36).

The result of Theorem (4) can be interpreted in several
ways. RewritingPS̃x = S̃(S̃∗S̃)†S̃∗x = S̃(S̃∗S̃)†c and using
(37), we obtain the following corollary.

Corollary 2: The solution (36) can be written as

d = W ∗PS̃x, (39)

where S̃ is the closure ofspan {s̃n} andPS̃x stands for the
orthogonal projection ofx, in the W 1

2 sense, ontoS̃. The
operatorW ∗ describes the usualL2 inner products with the
analysis functions.
Note that we implicitly assume that the possibly infinite sum
involved in the computation ofPS̃x is well defined. This can
be assured if the functions{s̃n} form a frame for the closure
of their span. We address this question in Appendix II.

Another interesting interpretation of Theorem 4 is evident
by rewriting all the inner products in theL2 space. Combining
(38) with (39) we obtain the following corollary.

Corollary 3: The solution (36) can be written as

d = W ∗S̃(S∗S̃)†S∗x = W ∗ES̃,S⊥x, (40)

whereES̃,S⊥ stands for the oblique projection operator [16],

[25], in the L2 sense, with a range spacẽS and a null space
S⊥.

In analogy to Proposition IV it can be shown thatPS̃x =
ES̃,S⊥x is the unique solution of

arg min
x̂

max
x∈D̃

‖x − x̂‖
2
W 1

2

.

Corollary 3 implies that the problem of Theorem 4 could
be split into two parts; first obtaining the Sobolev minimax
approximation ofx itself (which is an oblique projection in
the L2 space), and only then applying the analysis operator
W ∗ to that approximation.

In this section we have considered the Sobolev space of
order one. It is possible to extend the derivations to higher
order Sobolev spaces, if a sufficient degree of smoothness
is known to be present. The orderr Sobolev spaceW r

2

is composed of finite energy functions withr finite energy
derivatives;W r

2 inner products can be written as〈a,b〉W r
2

=∑r
k=0〈a

(k),b(k)〉L2
, where the(k) superscript stands for the

kth derivative. Thus, we can obtain similar results, which only
require the replacement of the functionu(t) of (34) with the
inverse Fourier transform of1/(1 + ω2 + ω4 . . . + ω2r).

As a concluding remark, we note that our solution takes
the form of applying the analysis functions{wn} to x̂ =
PS̃x = ES̃,S⊥x, which is the minimax approximation ofx

within the spacẽS. This space is determined by the sampling
functions{sn} and the smoothness constraint (manifested by
u). Thus, we have obtained a nice counterpart to methods that
arbitrarily choose the interpolation space.

A. Smoothness and the Shift Invariant Case

Consider the result of Theorem 4, while assuming the
special case whereS andW are real SI subspaces, as stated
in (24). Then, the sample sequencec may be processed by a
digital filter in order to obtain the minimax approximation
(36). Let u(t), as given by (34), be the inverse Fourier
transform of1/(1 + ω2) and defines̃ = s ∗ u. In this SI
setup with smoothness constraint, the frequency response of
the optimal filter then takes the form

Gf (ω) =





Rf

W,S̃
(ω)

Rf

S,S̃
(ω)

, ω ∈ IS ;

0, ω /∈ IS ,
(41)

where S̃F (ω) = SF (ω)/(1 + ω2) is the Fourier trans-
form of s̃(t), IS defines the support ofRf

S,S(ω), and

Rf

W,S̃
(ω), Rf

S,S̃
(ω) are defined according to (27).

B. Extension of the Ideal Sampling Results

In this section, we show how Theorem 4 extends the results
of [11], [12]. In these works it was assumed that a single
representation coefficient〈w(t),x(t)〉L2

is to be approximated
by linearly processing the ideal sample sequence{x(nT )} of
some functionx ∈ W 1

2 . Denoting byST the ideal sampling
operator

ST x = {x(nT )} , (42)

the processing is performed by calculating anl2 inner product
〈b, ST x〉l2 with some sequenceb. Then, the approximation
error was upper bounded by

|〈w(t),x(t)〉L2
− 〈b, ST x〉l2 | ≤ B ‖x‖W 1

2

,

whereB is a constant that depends onT, b,w and the function
u(t) of (34). Finally, B was minimized with respect to the
processing sequenceb.

Reinterpreting the derivations in [11], the approximation
problem of [11, Thr. 3] can be restated as a minimax objective:

min
b

max
‖x‖

W1
2

≤L̃
|〈w,x〉L2

− 〈b, ST x〉l2 | , (43)

whereL̃ is some (finite) upper bound on theW 1
2 norm of x.

In [11] it is found that the optimal sequenceb satisfies
∑

n

u(t − nT )b[n] = PU (w ∗ u) , (44)
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wherePU is the orthogonal projection, in theW 1
2 sense, onto

U , which is the closure ofspan {u(t − nT )}.
We now show that this result of [11] is a special case of

Theorem 4. First, defineU to be the set transformation of the
function set{u(t − nT )}. It is not hard to show that onW 1

2 ,
U is the adjoint of the ideal sampling operatorST , i.e., using
operator notations

ST x = U∗x. (45)

We note thatU (as well asU∗ = ST ) is a well defined
bounded operator inW 1

2 [9, Appendix C]. Additionally, the
single representation coefficient〈w,x〉L2

can be written as the
order one Sobolev inner product̃W ∗x, with W̃ being the set
transform ofw̃(t) = w(t) ∗ u(t). Identifying S̃ with U , we
have from (36)

d = W̃ ∗U(U∗U)†c = 〈w̃, U(U∗U)†c〉W 1

2

= 〈(U∗U)†U∗w̃, c〉l2 = 〈b, c〉l2 , (46)

where we denoteb = (U∗U)†U∗w̃. As a result,Ub is exactly
the orthogonal projection of̃w = w ∗ u onto the spaceU ,
which is compatible with (44).

VI. ERRORANALYSIS

In this section we investigate the error resulting from the
minimax method. We then derive sufficient conditions for our
method to outperform the sum approximation (5). Although
we use theS and W operators (as opposed to their Sobolev
counterpartsS̃, W̃ ), all derivations are applicable to Sobolev
spaces by considering the appropriate inner products.

Let
emx = W ∗x − d (47)

be the error sequence due to the minimax approach, whered
is given by (10). Using (19) we can express the error as

emx = W ∗PS⊥x. (48)

Defineesum to be the error sequence due to the sum approx-
imation method (5). Thenth element ofesum satisfies

esum[n] = 〈wn,x〉L2
− T 〈ST wn, c〉l2 , (49)

whereST is the ideal sampling operator (42). Note thatemx

andesum depend on the input signalx. However, to simplify
the exposition, we omit this dependence from the notations.

We now examine the conditions which will assure that
‖emx‖

2
l2

≤ ‖esum‖
2
l2

for all possible inputs. In the following
lemma we first introduce tight bounds for the difference
‖esum‖

2
l2
−‖emx‖

2
l2

. Clearly, if the difference is positive, then
the minimax method is preferable to the sum approximation
method, and vice versa.

Lemma 1:Let x ∈ D =
{
x; ‖x‖L2

≤ L, c = S∗x
}

. Then

BL ≤ ‖esum‖
2
l2
− ‖emx‖

2
l2
≤ BH , (50)

where the bounds are tight. Here,

BL = ‖a‖
2
l2
− 2 |〈a, emx〉l2 | , (51)

BH = ‖a‖
2
l2

+ 2 |〈a, emx〉l2 | ,

and

a[n] = 〈wn, S(S∗S)†c〉L2
− T 〈ST wn, c〉l2 . (52)

Proof: Using (47) and (49) we can relate the two error
sequences by

esum = a + emx, (53)

with a given by (52). Note that since the sample sequencec is
available, and so areT, S andW , the sequencea is known as
well. Furthermore,a ∈ l2. The latter is evident by rewriting
a = W ∗

(
S(S∗S)† − TS∗

T

)
c. Since c ∈ l2, it is sufficient

to show thatW ∗
(
S(S∗S)† − TS∗

T

)
is a bounded operator.

Indeed, sinceST is bounded onW 1
2 [9, Appendix C], so is

S∗
T . Additionally, S(S∗S)† and W ∗ are bounded due to the

frame assumptions. Taking the squared norm of both sides of
(53) and rearranging terms, we get

‖esum‖
2
l2
− ‖emx‖

2
l2

= ‖a‖
2
l2

+ 2<{〈a, emx〉l2} .

The bounds (51) then follow from

− |〈a, emx〉l2 | ≤ <{〈a, emx〉l2} ≤ |〈a, emx〉l2 | .

We now show that the bounds are tight. Assume to the
contrary that for allx ∈ D,

<{〈a, emx〉l2} < |〈a, emx〉l2 | .

Define x2 = S(S∗S)†c +
〈W∗P

S⊥x,a〉l2

|〈W∗P
S⊥x,a〉l2 |

PS⊥x using some

x ∈ D. Clearlyx2 ∈ D. However,emx = W ∗PS⊥x2 satisfies

<{〈a,W ∗PS⊥x2〉l2} = |〈a,W ∗PS⊥x2〉l2 | ,

thus contradicting our initial assumption. The proof of tight-
ness for the lower bound is similar.

Since the tight upper boundBH is nonnegative for all
choices of emx, we conclude that the sum approximation
methodcannot outperform the proposed minimax approach,
for all possible inputs. On the other hand, in some cases, it is
possible to have better performance by the minimax approach,
for all possible inputs. To assure this, the lower boundBL

must be positive. In the following lemma, we provide a tight
upper bound on‖emx‖l2

assuming that the set{wn(t)} is
orthonormal. Using this bound, we then state a sufficient
condition for the minimax method to outperform the standard
sum approximation approach for allx ∈ D.

Lemma 2:Let {wn(t)} be an orthonormal set, and letx ∈
D. Then

‖emx‖l2
≤ Bmx =

√
1 − cos2 (W,S)L′, (54)

where

L′ =

√
L2 − ‖S∗(S∗S)†c‖

2 (55)

is the norm ofPS⊥x andcos (W,S) = infy∈W,‖y‖=1 ‖PSy‖.
Before giving the proof, we mention thatcos (W,S) is

related to the largest angle [13], [16] between the spaces. An
explicit expression forcos (W,S) in the case of SI spaces is
given in [13].
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Proof: From the definition ofemx,

‖emx‖
2
l2

= 〈W ∗PS⊥x,W ∗PS⊥x〉l2

= 〈PS⊥x,WW ∗PS⊥x〉

= 〈PS⊥x, PWPS⊥x〉

= 〈PWPS⊥x, PWPS⊥x〉

= ‖PWPS⊥x‖
2
, (56)

where we utilized the orthonormality of the analysis set
{wn(t)} to write WW ∗ = PW . For anyx ∈ D we have
‖PS⊥x‖ ≤ L′, whereL′ is given by (55). Thus we can bound

‖PWPS⊥x‖ ≤ sin
(
S⊥,W⊥

)
L′,

where sin
(
S⊥,W⊥

)
= supy∈S⊥,‖y‖=1 ‖PWy‖. From [13],

[27] sin
(
S⊥,W⊥

)
=

√
1 − cos2 (W,S) and the proof fol-

lows.
Corollary 4: Let {wn(t)} be an orthonormal set. A suffi-

cient condition for the minimax method to outperform the sum
approach for allx ∈ D is ‖a‖l2

≥ 2Bmx, wherea andBmx

are given by (52) and (54), respectively.
Proof: Using Lemma 1, the Cauchy-Schwartz inequality

and Lemma 2, we have

BL ≥ ‖a‖
2
l2
− 2 ‖a‖l2

‖emx‖l2
≥ ‖a‖

2
l2
− 2 ‖a‖l2

Bmx,

from which the proof follows.
The error analysis is summarized in Figure 2.

‖emx‖ ≤ Bmx (Lemma 2)

BL BH ≥ 0

(Lemma 1)
‖esum‖ − ‖emx‖

Bmx ≤ ‖a‖l2
/2 ⇒ BL ≥ 0 (Corollary4)

Fig. 2. Regions of‖esum‖ − ‖emx‖ for the case where{wn(t)} is an
orthonormal set. If the maximal norm of the minimax error (54) is smaller
than‖a‖

l2
/2, then the minimax approach is superior to the sum method, for

all possible inputs.

Another interesting case, which is easy to evaluate, is when
a single representation coefficient〈w,x〉 is to be approxi-
mated. In this setting,emx, esum and a are all scalars. It
can then be shown that the minimax method and the sum
approximation approach are tightly upper bounded by

|emx| ≤ Bmx = L′ ‖PS⊥w‖

|esum| ≤ Bsum = |a| + Bmx, (57)

where the input that achieves both upper bounds is

xworst = S(S∗S)†c +
aL′

|a| ‖PS⊥w‖
PS⊥w. (58)

A sufficient condition for the minimax method to outperform
the sum approach becomes

|a| ≥ 2L′ ‖PS⊥w‖ . (59)

The proof is provided in Appendix III.

To conclude, when the spacesW and S are close (such
that cos (W,S) is close to one), or when most of the signal’s
energy lies within the sampling spaceS (such thatL′ is
small), then the minimax method will outperform the standard
approach. Similarly, for large sampling intervalsT , ‖a‖l2
can become large enough, assuring better performance by the
minimax method.

VII. S IMULATIONS

In this section we simulate an example of approximating
a single representation coefficient〈w,x〉L2

. The analysis
function w(t) is a modulated and normalized Gaussian

w(t) = αe−t2/2 cos(4πt), (60)

with α chosen such that‖w‖L2
= 1. The inputx is set to be

x(t) = e−50t2 − e−50(t−0.75)2 , (61)

i.e., it is composed of two Gaussians, synchronized with
the analysis functionw(t) (see Fig. 3). For this example
〈w,x〉L2

≈ 0.2. We will consider two separate sampling

−5 −4 −3 −2 −1 0 1 2 3 4 5
−1.5

−1

−0.5

0

0.5

1

1.5

Time [sec]

w
x

Fig. 3. The analysis functionw(t) and the input signalx(t).

schemes; ZOH (zero-order-hold) and RC (resistor-capacitor).
In both schemes we approximate the single representation
coefficient〈w,x〉L2

based on the generalized samples.

A. ZOH Sampling

Assume that the generalized samples ofx(t) are obtained
by averaging the value ofx(t) within a small interval of length
∆, i.e.,

c[n] =
1

∆

∫ nT+∆

nT

x(t)dt. (62)

In this setting, thenth sampling vectorsn(t) of (1) is

sn(t) =

{
1/∆, t ∈ [nT, nT + ∆];
0, otherwise.

(63)

By processing the generalized samples{c[n] = 〈sn,x〉L2
}

using the transformation (10), we obtain the minimax approxi-
mation of〈w,x〉L2

. The approximation can be obtained in the
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L2 space, or transformed into a proper Sobolev space using
(36), when smoothness is of concern. Note that the input signal
of the example (61) indeed satisfiesx ∈ W 1

2 . Subsequently,
as we will show, the minimax solution with the smoothness
constraint outperforms the standard minimax method.

Interpreting the minimax solutions as the application of the
analysis operatorW ∗ to the approximatesPSx and ES̃,S⊥x

((19) and (40) respectively), it is interesting to observe the
signal approximations. Fig. 4 depicts the generator functions
s0(t) ∈ S and s̃0(t) ∈ S̃ for ∆ = 0.05. In Fig. 5 we plot a

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

t

s(t)             
s(t)*e−| t |/2

Fig. 4. ZOH sampling with∆ = 0.05. Shown ares0(t) (63) and s̃0(t) =
s0(t)∗e−|t|/2, which are the generators for the shift invariant spacesS and
S̃, respectively. For presentation purposes the plots are scaled.

section ofx with its projections onto the appropriate sampling
spaces. The parametersT and ∆ were set to0.1[sec] and
0.05[sec], respectively. In this example, the spaceS̃ captures
most of the signal’s energy. Indeed, as can be seen in Fig. 5,
the approximationES̃,S⊥x is very close to the original input.

For comparison, we also processed the samples using the
standard sum approach (5). In Fig. 6 we present the errors
for the input (61) using several choices ofT . The minimax
solution is optimized for the worst possible input within the
considered set, which is different than (61). As a result, for
some sampling intervals, the suggested robust solutions are
better, while for others they are outperformed by the sum
approximation.

It is also of interest to examine the signals that cause
the highest value of the cost function. In Fig. 7 we plot
these worst inputs. In both cases, the worst possible input
is calculated according to (58), and is given by a projection
of x onto the sampling space, and a vector inS⊥, which
has the smallest angle with the analysis functionw(t). As
can be seen in Fig. 7(a), the worst possible input in the
setD =

{
x | ‖x‖L2

≤ L, c = S∗x
}

is a highly non smooth
function. This input is indeed possible in theL2 space, but it
is not likely to appear if we know the signal to be smooth.
If we consider only order one Sobolev functions, the worst
input is a smooth function and is much closer to the original
input, as depicted in Fig. 7(b). The exceptionally good results
of Fig. 7(b) are due to the fact that for this example, most

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time [sec]

T=0.10 [sec]  ∆=0.05 [sec]

P
s
x (L

2
)

P
s
x (W

2
1)

x

Fig. 5. A section ofx and its approximation in the sampling space; TheL2

orthogonal projection ontoS yields rectangular pulses. The oblique projection
onto S̃ yields a smooth function, which is very close to the original input.
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0

0.02
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0.1
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0.2
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Concrete errors (∆=0.05)

e
sum

e
mx

 (L
2
)

e
mx

 (W
2
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Fig. 6. The errors as a function ofT for the specific input (61).

of the signals energy lies within the spacẽS (alternatively,
L′ is small). As a result, the approximationPS̃x = ES̃,S⊥x

describes well the original input.
Note that in all cases, the worst inputs look the same for the

acquisition device, as they both produce the same generalized
samples. To illustrate the last point, in Fig. 8 we plot a section
of x and the worst possible inputs (for theL2 and theW 1

2 sets).
In addition, we present the orthogonal projectionPSx, in the
L2 sense, which is composed of rectangular pulses describing
the integration zone due to the sampling functions (63). As
can be seen, all signals yield the same generalized samples,
as they all have the same area within the rectangular pulses.

In Fig. 9 we plot the upper bounds of the performance for
the different approximation methods. The upper two curves are
due to (57). If in addition the input is known to be smooth, then
we can perform all the inner products and norms in the order
one Sobolev space. As a result, the value of the upper bound
Bmx changes, and so doesBsum (the lower two curves of Fig.
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Fig. 7. The original input and the worst possible counterpart in (a) L2, (b)
Sobolev space of order one.

9). The upper bounds are obtained by the worst possible inputs
plotted in Fig. 7. Specifically, the signal of Fig. 7(b) achieves
the lower two curves of Fig. 9 (with the lowest curve for the
minimax method with the smoothness constraints, and the one
above it for the sum approach). Similarly, when smoothness
is not of concern, the signal of Fig. 7(a) achieves the top two
error bound curves of Fig. 9 (with the higher curve for the
sum approximation).

B. RC Sampling

As an additional example, suppose that the acquisition
device is a low passRC circuit, followed by an ideal sampler
with interval T (Fig. 10). Here, the frequency response of
the acquisition filter is given by1/(1 + jωRC), and thenth
sampling vector is shifted and mirrored version of the impulse
response

sn(t) =

{
(RC)−1e

t−nT
RC , t ≤ nT ;

0, otherwise.
(64)
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Fig. 8. A section ofx and the worst possible counterpart in (a)L2, (b)
Sobolev space of order one. Both are plotted againstPSx to describe the
integration zones.
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Fig. 9. Upper error bounds according to equation (57). The sampling
functions are given by (63).



11

x(t) - R -�
�

?

t = nT

C

c[n]

Fig. 10. AnRC circuit, followed by ideal sampler, serves as the acquisition
device.
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Fig. 11. The original input and the worst possible counterpart in (a) L2, (b)
Sobolev space of order one. The sampling functions are given by (64).

Fig. 11 is similar to Fig. 7, when using the RC circuit
sampling function (64) withRC = 0.5. Here as well, the
sampling functions posses discontinuities, giving rise toa non-
smooth worst-case function, as shown in Fig. 11(a). When we
expect the input to be smooth, the minimax objective with the
smoothness constraint can be used. For such a criterion, the
worst-case input function behaves accordingly (Fig. 11(b)).

Fig. 12 shows the approximation error for the inputx(t)
of (61). Since x(t) is a smooth function, imposing the
smoothness constraint indeed improves the performance of the
minimax methods. Here as well, the proposed robust criteria
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Fig. 12. Concrete approximation errors for the input (61) processed by the
RC circuit. (a)RC = 0.05, (b) RC = 0.5.

do not always outperform the Rieman sum approximation (Fig.
12(a)). However, by considering the worst possible input, the
superiority of the minimax methods is guaranteed. In Fig. 13
we show the upper error bounds for several values ofT and
RC. As expected, the robust approaches outperform the sum
counterpart. Additionally, when we restrict the set of possible
inputs to order one Sobolev functions, the worst case errors
are smaller. As with the previous simulation, the presented
error bounds are tight. For example, the worst case inputs of
Fig. 11 achieve the error bounds of Figure 13(b).

As a final remark, note that the worst-case signal (58)
depends on the sampling and analysis functions. Therefore,
when either of them is non-smooth, the worst-case function
might be non-smooth as well, being the sum of functions with
discontinuities. As a result, if we have prior knowledge that
the inputx(t) is smooth, it is recommended to implement the
minimax solution with the smoothness constraint.

VIII. S UMMARY

A minimax approach has been introduced for approximating
inner-product calculations within the continuous-time domain,
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Fig. 13. Upper error bounds. The sampling functions are givenby (64) with
(a) RC = 0.05, (b) RC = 0.5.

while having the generalized samples of the signal as the
only available data. We have shown that if the input signal is
known to be a smooth function, then a smoothness constraint
can be incorporated into the minimax criterion. The latter
was achieved by recasting the problem into a proper Sobolev
space. A comparison of our proposed robust methods with a
piecewise-constant approximation has been presented. Error
bounds for the different methods were derived, showing the
possible improvement by the minimax methods. The deriva-
tions presented herein extend recent results concerning the
ideal sampling case, allowing for practical acquisition devices
to be incorporated.

APPENDIX I
PROOF OFTHEOREM 1

In this appendix we show that for a generalx ∈ H,
satisfyingc = S∗x, it is possible to obtain the required inner
productsq = W ∗x if and only if W ⊆ S. The proof of this
claim is similar to the proof of a sampling problem, considered
in [16, Sec. 3]. For completeness, we detail the derivations

below.
AssumeW ⊆ S and letd = Gc where

G = W ∗S (S∗S)
†
. (65)

We now show thatd = W ∗x. Indeed, since for any function
f , W ∗f = W ∗PW f we have Gc = W ∗PWS (S∗S)

†
c.

Substitutingc = S∗x,

d = Gc = W ∗PWPSx = W ∗PWx = W ∗x, (66)

where we used the fact thatPWPS = PW sinceW ⊆ S.
Now, assume thatW * S and suppose that there exits a

transformationd = G(c) achievingd = W ∗x. Consider the
signalx defined byx = xS⊥ + xW wherexS⊥ is in S⊥ but
not in W⊥ (such a function always exists sinceW * S) and
xW ∈ W. For this choice,c = S∗x = S∗xW but W ∗x −
W ∗xW = W ∗xS⊥ 6= 0. Since we assumedW ∗x = G(S∗x)
andW ∗xW = G(S∗xW) we also have

W ∗xS⊥ = G(S∗x) − G(S∗xW) = 0, (67)

which implies thatxS⊥ ∈ W⊥, contradicting our assumption.

APPENDIX II
FRAME CONDITION IN THE SOBOLEV SPACE

In this appendix we address the following question: As-
suming that the sampling functions{sn(t)} constitute a frame
for S ⊆ L2, do the modified functions{s̃n(t) = sn(t) ∗ u(t)}
constitute a frame for̃S ⊆ W 1

2 ? As we will show, this is not
always the case, but we give a sufficient condition for this to
hold.

Since the sampling functions{sn(t)} form a frame for the
closure of their span, there exist0 < A,B < ∞ such that
∀x ∈ S

A ‖x‖
2
L2

≤
∑

n

|〈sn,x〉L2
|
2
≤ B ‖x‖

2
L2

. (68)

Defining the modified functions to be{s̃n(t) = sn(t) ∗ u(t)},
whereu(t) is given by (34), and setting̃S ⊆ W 1

2 to be the
closure of span {s̃n}, we wish to examine whether for all
y ∈ S̃ there are constants0 < Ã, B̃ < ∞ such that

Ã ‖y‖
2
W 1

2

≤
∑

n

∣∣∣〈s̃n,y〉W 1

2

∣∣∣
2

≤ B̃ ‖y‖
2
W 1

2

. (69)

First note that if the number of sampling functions is finite,
then (69) always holds, as any finite set of functions which
spansS̃ is a frame forS̃. However, in the infinite dimensional
case, this is no longer true.

We first show that the upper bound in (69) is always satisfied
with B̃ = B. To see this, lety ∈ S̃. Recalling that for any
y ∈ W 1

2 , we have〈sn,y〉L2
= 〈s̃n,y〉W 1

2

, we can rewrite the
middle term of (69) as

∑
n |〈sn,y〉L2

|
2. Since{sn} is a frame

for S,

A ‖PSy‖
2
L2

≤
∑

n

|〈sn,y〉L2
|
2
≤ B ‖PSy‖

2
L2

.

Using
B ‖PSy‖

2
L2

≤ B ‖y‖
2
L2

≤ B ‖y‖
2
W 1

2

,
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we conclude that withB̃ = B, the upper bound in (69) is
always satisfied.

Unfortunately, satisfying the lower bound of (69) is not
always possible. As an example, consider the case where for
eachn, sn(t) has the Fourier transform

SF
n (ω) =

{
1 n < ω ≤ n + 1,

0 otherwise.

This is an orthonormal set of sampling functions, and hence
it is a tight frame forS with frame boundsA = B = 1.
However, there is no strictly positive lower bound̃A satisfying
the left hand side inequality of (69); notice that for the choice
y(t) = s̃n(t)

‖y‖W 1

2

=
1

2π

∫ n+1

n

1

1 + ω2
dω

. Defining bn = ‖y‖W 1

2

we have from the orthonormality of
the expansion,

∑

n

∣∣∣〈s̃n,y〉W 1

2

∣∣∣
2

= b2
n. (70)

Recalling (69), its left hand side should satisfỹAbn ≤ b2
n

for this particular example. However, by increasingn we
can construct a sequence{bn}, which is strictly positive, and
converges to zero. Thus, for this example we must haveÃ = 0.

Nevertheless, assuming that the sampling functions have a
shift invariant structure,i.e., that for eachn, sn(t) = s(t−nT )
(and naturally alsõsn(t) = s̃(t−nT )), we can state a sufficient
condition that will assure the existence of a strictly positive
lower boundÃ.

Proposition 2: Let {s(t − nT )} be a frame forS. If the
partial sums

R̂f
S,S(K,ω) =

1

T

K∑

k=−K

∣∣∣∣S
F

(
ω + 2πk

T

)∣∣∣∣
2

(71)

converge uniformly, then{s̃(t − nT )} is a frame forS̃.
Proof: Relying on known results for the shift invariant

setup [22], the frame condition for̃S is satisfied if

0 < Ã ≤ Rf

S̃,S
(ω) ≤ B̃ < ∞, ω ∈ IS , (72)

where

Rf

S̃,S
(ω) =

1

T

∞∑

k=−∞

∣∣∣∣S
F

(
ω + 2πk

T

)∣∣∣∣
2

1

1 +
(

ω+2πk
T

)2 ,

(73)
is the DTFT of the correlation functionrs̃,s[n] =
〈s̃(t − nT ), s(t)〉L2

and IS are the set of frequenciesω for
which Rf

S̃,S
(ω) 6= 0. We now show that if the infinite

sum 1
T

∑∞
k=−∞

∣∣SF
(

ω+2πk
T

)∣∣2 converges uniformly, then the
lower bound in (72) is satisfied. Indeed, chooseε = A/2,
where A is the lower frame bound ofS. Then, there is
an index Kε, such that the partial sum̂Rf

S,S(Kε, ω) =
1
T

∑Kε

k=−Kε

∣∣SF
(

ω+2πk
T

)∣∣2 satisfies

Rf
S,S(ω) − R̂f

S,S(Kε, ω) < ε (74)

for all ω ∈ IS . Therefore,

Rf

S̃,S
(ω) ≥

1

T

Kε∑

k=−Kε

∣∣∣∣S
F

(
ω + 2πk

T

)∣∣∣∣
2

1

1 +
(

ω+2πk
T

)2

≥
1

T

Kε∑

k=−Kε

∣∣∣∣S
F

(
ω + 2πk

T

)∣∣∣∣
2

D(Kε)

= R̂f
S,S(Kε, ω)D(Kε),

where we define the strictly positive constantD(Kε) =(
1 +

(
2π+2πKε

T

)2
)−1

. Combining with (74),

Rf

S̃,S
(ω) ≥ (Rf

S,S(ω) − ε)D(Kε) ≥
A

2
D(Kε),

where we usedε = A/2 and the frame boundRf
S,S(ω) >

A, ∀ω ∈ IS of S in the last inequality.

APPENDIX III
ERROR BOUNDS FOR THE SCALAR CASE

In this appendix we prove (57), (58) and (59).
To prove (57), note that for a single representation coeffi-

cient we have

|emx| = |〈w, PS⊥x〉|

= |〈PS⊥w, PS⊥x〉|

≤ ‖PS⊥w‖L′, (75)

where we used the Cauchy-Schwartz inequality and the norm
constraint‖PS⊥x‖ ≤ L′, with L′ given by (55). The bound
is tight, since

x = S(S∗S)†c +
PS⊥w

‖PS⊥w‖
L′ (76)

is a valid input which achieves (75) with equality. Similarly,
we can bound the error due to the sum method. Using (53),

|esum| ≤ |a| + |emx| ≤ |a| + ‖PS⊥w‖L′. (77)

This upper bound is obtained by settingx = xworst as in (58).
In fact, the signalxworst of (58) also achieves the uper bound
in (75). Thus, there is a valid input which makes both the sum
and the minimax methods to operate as worst as possible.

To prove (59), we must find a sufficient condition that
ensures that the lower boundBL of (51) is positive. Using
(51) and (75) we have thatBL ≥ |a|

2
−2 |a| ‖PS⊥w‖L′ from

which (59) follows.
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