Minimax Approximation of Representation
Coefficients From Generalized Samples

Tsvi G. Dvorkind, Hagai Kirshnet,
Yonina C. Eldaff, Member, IEEEand Moshe Porét’, Senior Member, IEEE

Abstract—Many sources of information are of analog or required representation coefficients can be calculatededls w
continuous-time nature. However, digital signal processing ap- Our main focus here is on situations where the knowledge
plications rely on discrete data. We consider the problem of ¢ e continuous-time function is incomplete, so that only

approximating L. inner products, i.e., representation coefficients imati fth fi i . duct b
of a continuous-time signal, from its generalized samples. Taking 2PProximatons or the continuous-time inner proaucts can

a robust approach, we process these generalized samples in @btained. A well known example is the initialization protie
minimax optimal sense. Specifically, for the worst possible signal, in wavelet analysis. To initialize the pyramid algorithm] [5
we find the best approximation of the desired representation co- we need the representation coefficients of the continuous-
efficients by proper processing of the given sample sequence. Weime fynction x(¢), in the initial scale. Unfortunately, these

then extend our results to criteria which incorporate smoothness fficient tvoicall ilabl d v h th
constraints on the unknown function. Finally, we compare our coeiiicients are typically unavailable, and we only have the

methods with the piecewise-constant approximation technique, Samples ok(t), obtained at the output of an anti-aliasing filter.
commonly used for this problem, and discuss the possible A common practice in wavelet analysis is to assume that the

improvements by the suggested schemes. available samples are the required representation ceeffici
. This false assumption is also known in the literature as the
EDICS Category: DSP-SAMP, DSP-RECO sampling,  'wavelet crime’ [6]. In [7] the authors address this problem

extrapolation, and interpolation by suggesting a digital filter to process the available sampl
sequence, prior to applying the pyramid algorithm. In fétct,
I. INTRODUCTION can be shown that their result is compatible with a specisé ca

IGNAL processing applications are concerned mainl§f our derivations, presented in Section IV-B.

ith digital data, although the origin of many sources of A common approach to cope with incomplete knowledge of
information is analog. This is the case for speech and audiBe continuous-time signal(t) is to first interpolate the given
optics, radar, sonar, biomedical signals and more. In masgmples using some synthesis functions. Then, the required
cases, analysis of a continuous-time sigrél) is obtained L2 inner-products can be performed using the approximation
by evaluatingL, inner-products(w, (t),x(t))z, for a set of (see for example [8]). Unfortunately, the best choice of the
predetermined analysis functiodisv,, (t)}. For example, one synthesis functions is not always clear. See [9] for error
may calculate a Gabor [1] or wavelet [2] representation of@nalysis, when approximations of a function are performed
signal. in a shift invariant setup.

Typically, the analysis functiongw,, (¢)} are analytically ~ Yet another approach to approximate A inner-product
known. On the other hand, in many applications of digita$ to perform numerical integration by a Riemann-type sum.
signal processing, there is no knowledge of the continuoudssuming ideal and uniform sampling, convergence analysis
time signakx(t), but only of its sample sequence. Our probler@f such approximations was conducted in [10]. The ideal
is to approximate the requirefl, inner-products, by proper and uniform sampling case was also considered in [11],
processing of the available samples. [12]. There, in order to approximate a single represematio

In some cases the sampled version of a signal is sufficié@efficient (w(t),x(t))r,, it was suggested to calculate an
to calculate the original function. A well known example id2 inner producty  b[n|x(nT) instead. An upper bound for
the classical Whittaker-Shannon sampling theorem. See a8 approximation error was derived, and the sequence
[3], [4] for additional shift invariant settings. If the alog Was determined by minimizing that upper bound. In practice,
input can be determined from the sample sequence, then figgvever, ideal sampling is impossible to implement. A more

practical model considers generalized samples [4], [18]};]
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optimal sense. It turns out that the solutions to our robust | f||. All inner products are linear with respect to the second
objectives can also be interpreted as an interpolation ®f thrgument. For exampléx,y)., = [~ x(t)y(t)dt.
given samples, followed by an application of the analysis An easy way to describe linear combinations and inner prod-
functions {w,,(t)} to the interpolationx(¢). The nice thing ucts is by utilizing set transformations. A set transforiorat
is that the interpolation stage stems naturally from thesetV : I, — H corresponding to frame [22] vectofs,,(¢)} is
of the problem, rather than being pre-specified arbitrarilgefined byVa = " a[n]v,(t) for all a € I, . From the
Additionally, the division of the algorithm into interpdlan definition of the adjoint, ifa = V*y, thena[n] = (v,,y).
and analysis stages is more of conceptual rather than gahcti We define byS (W) the set transformation corresponding
nature; both stages can be performed simultaneously, liadigto the vectors{s,} ({w,}). Accordingly, the generalized
processing of the available samples. samplesc[n] = (s,,x)r, can be written as = S*x, and
Our results extend [11] in several ways. First, by considgri the desired representation coefficienfs] = (w,,,x)r, by
generalized samples our derivations are applicable tdipaac ¢ = W*x. We defineS to be the sampling space, which is
acquisition devices. Second, if there is prior knowledgat ththe closure okpan {s,,}. Similarly, W is the analysis space,
the generalized samples have been obtained from a smoalthained by the closure aban {w,, }.
function, then we show how to incorporate that constraint To handle well posed problems, we assume that the sample
into the proposed robust solution. Third, our derivations asequence: and the desired representation coefficientsave
applicable to a series of representation coefficients.lljivee finite energy,i.e., ¢,q € lo. This will assure that for any
analyze the performance of the suggested approach, givitgunded transformatiof¥ : [, — I, applied to the generalized
sufficient conditions for it to outperform piecewise-cargt samplesc, the error sequence — G(c) is in lo as well.
approximations. Accordingly, criteria that consider the norm of the error
The outline of the paper is as follows. In Section Il weequence are well defined. One way to enfateg € [ is
describe the notations and the mathematical preliminariég require that{s, } and {w,} form frames [22] forS and
Section Il discusses situations where the requifedinner W, respectively, which is an assumption made throughout this
products can be evaluated exactly, and establishes a minirpaper.
approximation criterion when this is not the case. The miim
objective is solved in Section IV. In Section V we consider th I1l. PROBLEM FORMULATION
problem of incorporating smoothness constraints. Spadlific  We are given the generalized samples of a continuous-time
if there is prior knowledge of the input to be smooth, thefunction x(¢), modeled by
we show how to alter the minimax solution by recasting the
problem in a proper Sobolev space [24], presenting [11] as c[n] = (sn (1), x(t)) .- (1)
a special setting of our derivations. Section VI discus&es taAn example is an analog to digital converter which performs
relations between the errors due to the suggested mininjseg-filtering prior to sampling, as shown in Fig. 1. In such a
approach and approximations by a Riemann-type summati@@tting, the sampling vectois,, (¢) = s(t — nT)} are shifted

We show the possible gain in performance by the proposgfld mirrored versions of the impulse response of the pe-filt
method and derive sufficient conditions for it to dominate th13).

summation approach. Finally, in Section VII, we concludéhwi
several simulations.

II. NOTATIONS AND MATHEMATICAL PRELIMINARIES

We denote continuous-time signals by bold lowercase let-
ters, omitting the time dependence, when possible. The el-
ements of a sequence € [, will be written with square
bracketse.g.c[n]. XF(w) = fx(t)e_j“’tdt is the continuous- Fig. 1. Filtering with impulse responsg—t) followed by ideal sampling.
time Fourier transform ok and C/(w) = >°, c[n]e™7“" is The sampling vectors args (¢ —n)}.
the @ periodic) discrete-time Fourier transform (DTFT) of
the sequence. The operatorP, represents the orthogonal
projection onto a closed subspadeand. A+ is the orthogonal
complement ofd. TheMoore-Penrose pseudo inverf@i] and qln] = (Wn, X)L, @
the adjoint of a bounded transformatiGhare written asl™ where the analysis functiongw,} are analytically known.
and T*, respectively® stands for the real part. The inputx is known only through its generalized samptes
Inner products and norms are denoted&yb), and||a||,,, of (1). Our goal is to approximate the required represesati
respectively. Here{ stands for the Hilbert space involved.coefficientsq by proper processing of the sample sequence
Usually, we will considerH to be Lo, I; or the order- A natural question to be first considered is whether there is
one Sobolev spacéV), which will be discussed in detail an unavoidable error due to our partial knowledgex(f), or
in Section V. When the derivations are general enough ¢an we evaluatexactly the requiredL inner products, based
describe inner products and norms within any Hilbert spacen the generalized samples. The following theorem addsesse
we will omit the space subscript from the notations,, (f,g) this preliminary question.

We wish to evaluate a set of continuous-time inner products
q defined by



Theorem 1:Let x be an arbitrary function, satisfying= In order to assure a certain level of performance for each
S*x. It is possible to obtain the coefficients= W*x by function from D, we take a robust approach by considering
proper processing of the sample sequencé and only if the minimax objective
W C S. In that caseqg = W*S(S*S)e.

Proof: See Appendix I. O
In some cases, we may have additional prior knowledge onyj the next sections, we derive a solution frand compare

x, such that not all signals if.; should be considered. Byiis performance with the piecewise-constant approximatio
restricting our attention to a proper subgroup, it is pdssib approach given in (5).

obtain a zero error, even ¥V ¢ S. This is true whenever the
knowledge ofx allows us to determine a bijection (injective IV. MINIMAX APPROXIMATION
and surjective transformation) betwegft) and its samples.
To illustrate this point, suppose that € A, where A is a

closed subspace of, satisfying the direct sum condition
Ly = A® St (i.e., Ly can be described by the sum s
{a+v; ac A veSt} with the propertyd N S+ = {0}).

Then, we can perfectly reconstrugt from its generalized
samples by mdin

x = A(S*A)'c, 3)
i . . where W and S are bounded set transformations with range
whereA is any bounded set transformation with rang¢l16]. 4, 51 S, respectively. The (unique) solution is
As a result, we can also perfectly evaluate the coefficients
q = W*x by d=W*S(S*S)e. (10)
q=W*A(S*A)te (4) Before going into the details of the proof, note that we have
. . L . not specified the exact Hilbert space in which the bojjsagi <
Aqother example in which a blje_ct|on t_)e.tWETen the. S|gn% and the inner product§*x, W*x are calculated, since the
and |_ts gengrallzed samples exists is the finite innovatase ¢ derivations are general enough to be applicable to any Hilbe
considered in [23.]' - space. In Section V we will show how smoothness constraints
Nevertheless,.m. the general case, the con(_jang S can be incorporated by applying Theorem 2 to different Htlbe
may not be satisfied, or t.here n:ay be no prior knowmd%%aces. Additionally, the upper norm bouhds not expressed
of x(t). Thug, the coefficientdV"x cgnnot be computeq in the solution (10). Thus, one only has to be sure that the
exactly and instead must be approximated from the g'vgﬂgnal has a finite norm, while its exact value is irrelevant t

samplesc. A common practice is 10 perform Riemann-typefhe computation ofl. The value ofL will be used, however,
sum approximations [10]: in Section VI for analyzing the performance of the proposed

(w(t),x(t)r, ~ T clnw(n), (5) algorithm.

n Proof: First we note that anyk in D of (8) is of the
if one implicitly assumes that the generalized samples &M x =S (S*S)" ¢ + v for somev € G where
x are close to the mean valu_e of the input S|gnal,_ within G = {v Ivest|v| < L’}, (11)
an interval of lengthT. Alternatively, we may approximate
the continuous-time inner products by choosing a seque
d which minimizes the squared norm of the error vector L'= \/L2 — [|S(5*S)te|. (12)
e = W*x — d. Sincex satisfiesc = S*x, by decomposing

minmax ||IW*x — dHl2 . 9
d x€D 2

The minimax problem of (9) is closely related to the
generalized sampling problem considered in [16, Theorem
3]. Relying on results obtained in that context leads to the
e1Iollowing theorem.

Theorem 2:Consider the problem

max [|W*x —d||}
c=5*x,||x||<L 2

alongS and S+ the error can be written as Thus, S
e=WS(57S) e+ W Psix —d, ©  mxlvix—di, = (13)
where we usePsx = S(5*S)Te. This leads to the following = max |[W*S(5*S)Te—d+W*v [i
objective r
9 = maxl|laqg+ W v||l2
min [[W*S(5*S) e + W*Psix —dlf . @) veo

2 2
= max ||a + 2R {(aq, W*Vv), } + [|[W* v ,
Unfortunately, the solution of (7) depends @t.x, which veg (” all, H{aa S HZZ)

is unknown. To eliminate the dependency &n we may where we definedi; = W*S(S*S)fc — d. As a result, the
instead consider a robust approach, where the sequéfe maximum in (13) is achieved when

optimized for the worst possible input Valid inputs must be

consistent with the known samplé., must satisfyc = $*x. R{(aa, W), } = [{aq, W)y, |. (14)
Additionally, if the norm of the input is unbounded, then sthdeed, letv € G be the vector for which the maximum

is the error. Therefore, to define a well posed problem, g achieved. If(aq, W*v),, = 0 then (14) is trivially true.
assume thak is norm bounded by a positive constditand  Otherwise, we can define

ossible inputs are N
p p <W v, ad>l2

D= {x; |z < Lc=5"x}. ®) W, aa,| (15)

Vo =



Clearly, ||v|| = [[ve| andv2 € G. In addition, [W*v]|,, = value. The minimax objective is then lower bounded by
[W*val,, and (aq, W*v2)i, = [(aq, W*v)i,| so that the

objective in (13) atv, is larger than the objective at unless mjn(e‘g(ﬁ)f + (22)
(14) is satisfied. x
Combining (14) and (13), our problem becomes gleag(HPSLXHQ +2[(Psix, PsiR)| + ”PSL)A{”2)>

. 2 * * 2
minmas (flaal, +2[{aa, W*V)ul+ [WVIE) . (18) > max | Pecx?,

v ~ x€D
Denoting the optimal objective value by, and replacing the

L L here we used the fact that for allwe must havéjes (x)||* >
order of minimization and maximization, we get a lower boung

and 2 |(Ps.x, Ps.%)| + ||Ps.%|* > 0. The proof then

. 2 * (]2 follows by noticing thatx = Psx is the minimizer which
4 2 glggmdm (”ad”l? 2 l{aa, W) | + [|W V”l2> achieves this lower bound. Furthermore, it is unique, since
= Inax||W*v||122, (17) from (22) the optimal solution must satistys.x = 0 and
veg es(x) = 0. O
where we used the fact thﬁhdlli + 2 {ag, W*v),| > 0, We cqnclude t_hat the_probler_n_of approximating the rep-
with equality ford of (10). Thus, for any choice df, resentation coefficients in a minimax sense could be split
into two parts; first obtaining the minimax approximation
min ma |aq — wrv|? > rgleaécﬂW*lei. (18) of x itself, then applying the analysis operatidf* to that

approximation.
The proof then follows from the fact that given by (10)
achieves the lower bound (18). Uniqueness! dbllows from
(16), as the optimal solution must satisfy = 0. O]
Note that (10) resembles the solution of the Wiener-Hopf In Theorem 2, we approximate a set of representation
equations, where the Gramian matrix of the autocorrelatioooefficients W*x, by optimizing (in a minimax sense) the
is first inverted (pseudo-inverted), and the cross-catiigla squared norm of the error sequenidéx — d. Instead, one
Gramian matrix is then applied. Another interesting intefp may consider alternative objectives which combine theientr
tation of (10) is obtained by noticing thdsx = S(S*S)Tc.  of the error sequence in dp normi.e., |[IW*x — dl|;, or the

A. Element-Wise Optimality

This leads to the following corollary. loo nOrM [|[W*x —d||, . We now show that the suggested
Corollary 1: The solution (10) can be written as solution (10) is optimal according to all the above criteria
as it is minimax optimal element-wise.
d=W"Psx. (19) Theorem 3:The sequencd = W*S(S*S)Tc is a solution

T.his means that our robust_ approach first approx_imates Bemin, max,—g-x |x|<z [|W*x — d||, , for any naturalp.
signal by its orthogonal projection onto the sampling space  prqof: First assume that a single representation coeffi-

and then applies the analysis functiof,, }. Thus, we can gjent is to be approximated in a minimax sense
also conclude that the suggested approximation methotisesu

in zero error ifW_ g S or if the pripr knowledgex € S e_xists. min  max ‘<W x) ﬂz | 23)
In fact, by identifying A of (4) with S, the solutions indeed d c=5"x|x|<L
coincide. InterestinglyPsx is the minimax approximation of ~ .
x over the setD of (8), as incorporated in the following Whered is a scalar. Degenerating the result (10) of Theorem 2

proposition. by letting W be the set transformation of the single function
Proposition 1: The unique solution of w(t), the solution of (23) is
mjnmag”x—)?:HQ, d=(w,S(5*S)"c).

Since (10) satisfieg[n] = (w,, S(S*S)c) for each entry
of the vectord, we conclude that it is element-wise optimal,
implying that the solution will not change if we combine the

Ix — x| = 15(5*S)te — Psx|” + || Psox — Ps.%|%. (20) individual errors inly, I, or anyl, norm. O

with D of (8) is x = Psx.
Proof: Projectingx — x onto S and S+ we have

The maximization is then . .
B. The Shift Invariant Case
SN2 SN\ (12 o112 . . . .
max [|x — X[ = [les(%)[|" + max [ Ps1x — Ps1 %] The approximation (10) was derived for general sampling
—le (fi)HQ 4 1) and analysis subspaces. An interesting special case of this
s ) ) setup is when in additior§ andW are real shift invariant (Sl)
+max (HPSJ-X” — 2R(Ps1x, Ps1 %) + || Ps. X ) ; subspaces, each spanned by shifts of lefigibf some fixed
generating function [13], [16]. In this case, as we will show
wherees(x) = S(5*S)'c — Psx. Similarly to the proof of the approximation sequendecan be obtained by discrete-time
Theorem 2, we can replace2R(Ps. x, P51 %) by its absolute filtering of the sample sequence



Let s(t) and w(t) be the real generators & and WV, Sobolev spaces are natural candidates to describe smooth-

respectively. Then, the Sl subspaces are ness. For simplicity, our main discussion will concern the
Sobolev space of order one [24].
S = {f(t) £(t) = Za[n]s(t —nT),a € 52}; Definition 1: The Sobolev space of order on€; is the
~ Hilbert space of functions which have a finife, norm, and

so is their first derivative. A possible choice of inner produ
} . (24) in this space is

W = {f(f)| f(t) = Za[n}w(t— nT),a € ly

b)Yy = (a, by, 1) p® 29
In this SI case, the sample§], which are given by (a,bjwy = (a,b)L, +(a L2 (29)

wherea™ andb(®) stand for the first derivative of andb,
cln] = /S(t —nT)x(t)dt = x(t) * s(—t)|t=nT, (25) respectively.
. ) ) If we have prior knowledge that the input and its first
correspond to ideal sampling at times= nT" of the output qerivative are of finite energy (which in particular impligmt

of a filter with an impulse response(—¢), with x(¢) as x is continuous), we may consider the set of possible inputs
its input (see Fig. 1). Herg(t) = z(t) denotes continuous- g pe

time convolution between the signalg(t) and z(t), and D— {X 1S x = ¢, x|y < i}, (30)

Y(#)|i=nT = y(nT). _ ) :
To ensure that the functios(t — nT)} and{w(t — nT)} whereL is an upper bound on th&’; norm of x. This leads

form frames forS and )V respectively, a simple condition canto the following minimax objective:
be verified in the frequency domain [22]: )
, min max |[W*x —d||;, - (31)
a < R{;v,w(w) <B, welw; d xeD

7= Ré sw)<n, welTs, (26) To solve (31) we may use 'Theorem 2 as ?ts derivations are
’ general enough to be applicable to any Hilbert space. Note
for some0 < o < 3 < oo and0 < v < n < co. Here we however that objective (31) contains mixed inner products

denote, and norms;S*x and W*x describeL, inner products, while
1 &S (ot ok w 2k Ix[|,y2 < L is a Sobolev norm constraint. Hence, we will first
Rj;B(w) =7 Z AF (T) B¥ ( T ) , recast the whole problem into the order one Sobolev space,
k=—o0 and then apply the results of Theorem 2.

» » ) ) ) (@7) To this end, note tha#¥j inner products (29) can be

whereW+* (w), S*' (w) are the continuous-time Fourier trans’compactly written in the Fourier domain by
forms of the generators(t), w(t), andZyy,Zs are the set of -
frequenciesu for which Riy w (w) # 0 and R g(w) # 0, (s, K)s = —
respectively. T om

Letting S andW be the set transformations (¢t — nT)}
and {w(t —nT)} respectively, it is easy to see thH{*Sa
is equivalent to filtering the sequende(r]} by a discrete-
time LTI filter having the frequency responsE{,V,S(w).
Similarly, the pseudo-inverse operat@*S)’ takes the form
of applying a filter with DTFTL/ R &(w) for w € Zs and zero (a(t),b(t))r, = (a(t) xu(t),b(t))wa, (33)
otherwise. Combining the above, we have that the sequen

e . .
d = W*S(5*S)te can be obtained by filtering the sampIeW erex stands for the convolution operation and

SF(w)XF (w) (14+w?)dw, (32

where S¥ (w) and X*(w) are the Fourier transforms eft)
and x(t), respectively. As introduced in [11], we can use
(32) to rewrite Ly inner products as¥.} inner products.
Specifically, for anya € Ly, b € W4

sequence: with a digital filter u(t) = %eflt\ (34)
Ry s(®) Te: . . . 5
Gl (w)={ R’ w e Ls; (28) s the inverse Fourier transform of (1 + w*).
0, ' wéIs. Using (33), we can replace the, inner productsi?*x

. . i and S*x using their Sobolev counterparts, which leads to the
We point out that by a proper choice of the sampling a%llowing theorem.

analysis functions, the filter (28) is compatible with the Theorem 4:Consider the problem

solution for the 'wavelet crime’ problem obtained in [7]. )
min max |[W*x —d||;, (35)
d  zeD 2

V. IMPOSING SMOOTHNESS BY SOBOLEV SPACES . .
where W and S are bounded set transformations with range

The objective in Theorem 2 considers functions within th9v and S, respectively and is given by (30). The (unique)
setD = {x|S*x =c, [|x|| < L}. However, sometimes We ¢.| ion is '

have prior knowledge that the input signal is 'smooth’. If we d=W*5(55)te (36)
could restrict the set of possible inputs to include only stho ’

functions, then the performance of the robust objective mayhere the inner products described by (36) are computed in
be improved. the order one Sobolev spac®, IV are the set transformations



of {§, =s, *xu} and {w,, = w,, xu} respectively, and the is composed of finite energy functions withfinite energy
function u(t) is given by (34). derivatives; Wy inner products can be written ds, b)w; =
Before stating the proof, note that (36) describ®s inner >, _ (a® b)), . where the(k) superscript stands for the
products. In practice, this means that thgth element of the kth derivative. Thus, we can obtain similar results, whiclyon
matrix W*S' is require the replacement of the functiaiit) of (34) with the
inverse Fourier transform aof/(1 + w? + w? ... + w?").

(Wi 8j)wy = (Wi, 80, = (Wi i+ W, (7)) 7 pc concluding remark, we note that our solution takes
with u as in (34). Similarly, thei, jth element of$*S is the form of applying the analysis functiorfsw,} to x =
computed by Psx = Ez g.%, which is the minimax approximation of

_— . 38 within the spaceS. This space is determined by the sampling
(8:8i)wy = (i * u)L,. (38) functions{s,, } and the smoothness constraint (manifested by
Proof: Using (33), we can rewrite (35) as u). Thus, we have obtained a nice counterpart to methods that
R 9 arbitrarily choose the interpolation space.
min max HW*X— d L
2

d o—ge i . .
e=8mxlxllwy <L A. Smoothness and the Shift Invariant Case

where S and IV are the set transformation @§,, = s, * u} Consider the result of Theorem 4, while assuming the
and {w, = w,, xu}, respectively, andi(t) is given by (34). special case wher§ and)V are real Sl subspaces, as stated
Since the derivations of Theorem 2 apply to any Hilbert spad8 (24). Then, the sample sequencenay be processed by a
the solution has the same form as in (10), resulting in (36jigital filter in order to obtain the minimax approximation
O (36). Let u(t), as given by (34), be the inverse Fourier
The result of Theorem (4) can be interpreted in severansform of1/(1 + w?) and defines = s « u. In this Sl
ways. RewritingPzx = S(5*5)"5*x = S(5*S)fc and using setup with smoothness constraint, the frequency respose o

(37), we obtain the following corollary. the optimal filter then takes the form
Corollary 2: The solution (36) can be written as B (w
w.s () w € ZIs;
d = W"Psx, (39) Gl w)=q Rls@) a (41)
0, w ¢ Is,

whereS is the closure ofpan {8, } and Pgx standsjor the - P o )
orthogonal projection of, in the W3 sense, ontaS. The where 3 f‘“) = S (‘.‘})/(1 + w’) is the F?urler trans-
operatoriV* describes the usudl, inner products with the fo;m of S(tf)' s def|ne§ the suppprt Offts s(w), and
analysis functions. Rw,s(w)’ Rs,s(w) are defined according to (27).

Note that we implicitly assume that the possibly infinite sum

involved in the computation oPzx is well defined. This can B. Extension of the Ideal Sampling Results

be assured if the functioni,, } form a frame for the closure | this section, we show how Theorem 4 extends the results

of their span. We address this question in Appendix . of [11], [12]. In these works it was assumed that a single
Another interesting interpretation of Theorem 4 is evidefgpresentation coefficieritv(¢), x(¢)) 1., is to be approximated

by rewriting all the inner products in the, space. Combining py |inearly processing the ideal sample sequepceiT)} of

(38) with (39) we obtain the following corollary. some functionx € W, . Denoting by Sy the ideal sampling
Corollary 3: The solution (36) can be written as operator
d=W*S(S*9)1S"x = W Eg 5. x, (40) Srx = {x(nT)}, (42)

where E; .. stands for the oblique projection operator [16]the Processing is performed by calculating/amner product
’ {b,STx);, with some sequencé. Then, the approximation

[92?], in the L, sense, with a range spaceand a null space error was upper bounded by
In analogy to Proposition IV it can be shown thagx = [(w(t),x(t))L, — (b, STx)i,| < BIx|lyy;

E~75Lx is the unique solution of

S whereB is a constant that depends ©nb, w and the function

u(t) of (34). Finally, B was minimized with respect to the
processing sequende

Corollary 3 implies that the problem of Theorem 4 could Reinterpreting the derivations in [11], the approximation
be split into two parts; first obtaining the Sobolev minimagroblem of [11, Thr. 3] can be restated as a minimax objective
approximation ofx itself (which is an oblique projection in min max _|(w,x)p, — (b, S7x)5,|, (43)
the L, space), and only then applying the analysis operator b lxllyy <L

W* to that approximation. . o .
In this section we have considered the Sobolev space ‘¥fereL is some (finite) upper bound on th&, norm of x.
order one. It is possible to extend the derivations to hight [11] it is found that the optimal sequenéesatisfies
prder Sobolev spaces, if a sufficient degree of smoothness Zu(t—nT)b[n] = Py (w+u), (44)
is known to be present. The order Sobolev spacely

arg min max ||x — chf/Vl .
X x€D 2

n



where P, is the orthogonal projection, in tHé’J sense, onto and

U, which is the closure ofpan {u(t — nT)}. aln] = (W, S(S*9)e) 1, — T(Srwn, c),. (52)
We now show that this result of [11] is a special case of pyqt- Using (47) and (49) we can relate the two error

Theorem 4. First, defin to be the set transformation of thesequences by

function set{u(t — nT)}. It is not hard to show that of/3,

U is the adjoint of the ideal sampling operat®f, i.e., using Csum = @1 Cma, (33)

operator notations with a given by (52). Note that since the sample sequerise

available, and so ar€, S andW, the sequence is known as

We note thatU (as well asU* = Sy) is a well defined Well. Furthermores € I. The latter is evident by rewriting
bounded operator iV} [9, Appendix C]. Additionally, the @ = W~ (S(S*f)T - 7:5?2 c. S"’lce_c € Iy, it is sufficient
single representation coefficiefw, x) 1, can be written as the 0 show thati’ (S(8*8)T - TST)l is a bounded operator.
order one Sobolev inner produtit *x, with W being the set /ndeed, sinceSr is bounded onV; [9, Appendix C], so is

transform ofw(t) = w(t) * u(t). Identifying § with U, we S7- Additionally, S(S*S)_T and W* are bounded due to the
have from (36) frame assumptions. Taking the squared norm of both sides of

(53) and rearranging terms, we get

Srx = U*x. (45)

d=W*UU*U) e = (w,UU V) )y

2

= (U U)'U*W, c)i, = (b, )iy, (46) lesumllz, = lemallz, = lally, + 2R {(a, ema)1,}

where we denoté = (U*U) U*w. As a resultUb is exactly The bounds (51) then follow from

the orthogonal projection o = w * u onto the spacé/,
which is compatible with (44). — @, ema )i < R{(a, ema)is} < [0, ema)ts |-

We now show that the bounds are tight. Assume to the
VI. ERRORANALYSIS contrary that for alkx € D,
In this section we investigate the error resulting from the
minimax method. We then derive sufficient conditions for our R{(a,ema)io} < [{a; ema)is]-
method to outperform the sum approximation (5). Although Lot (WP x.a) )
we use theS and W operators (as opposed to their SoboleP€finexa = 5(575)"c + mpﬁx using some
counterpartsS, W), all derivations are applicable to Sobolew € D. Clearlyx, € D. However,e,,, = W* P51 x, satisfies
spaces by considering the appropriate inner products.
Let ?R{(a, W*PSLX2>12} = |<a7 W*P$*X2>l2‘ )
eme = Wix —d “47 thus contradicting our initial assumption. The proof ofhtig
be the error sequence due to the minimax approach, whergess for the lower bound is similar. O
is given by (10). Using (19) we can express the error as Since the tight upper bound; is nonnegative for all
choices ofe,,,, we conclude that the sum approximation
ema = W' Pg1x. (48)  methodcannot outperform the proposed minimax approach,

Define e, to be the error sequence due to the sum approf>9-r aI.I possible inputs. On the other hand, in some cases, it is
imation method (5). Theith element ofe,,,, satisfies possible to have_better performance by the minimax approach
for all possible inputs. To assure this, the lower bousgd
esum[n] = (Wn, Xy, — T{(STWy, C)i,, (49) must be positive. In the following lemma, we provide a tight
i i ) upper bound onle,,.||,, assuming that the setw,,(t)} is
where Sy is the ideal sampling operator (42). Note tal.  orthonormal. Using this bound, we then state a sufficient

ande,,, depend on the input signal However, to simplify - ition for the minimax method to outperform the standard
the exposition, we omit this dependence from the notationsy ., approximation approach for alle D.

We 2now exam|2ne the COﬂdI.tIOI’]S. which will assure_ that Lemma 2:Let {w.,(¢)} be an orthonormal set, and lete
llemz Iy, < llesum l;, for all possible inputs. In the following

lemma we first introduce tight bounds for the difference Then
Hesum||l22 - \|em$||122. Clearly, if the difference is positive, then lemall, < Bma = /1 —cos2 (W, 8)L, (54)
the minimax method is preferable to the sum approximation T
method, and vice versa. where
Lemma l:Letx € D = {x; ||x[|,, < L,c= S*x}. Then I \/L2 15%(5%8) el (55)
2 2
Br < llesumli; = llemali; < Brr, (50) is the norm ofPs. x andcos (W, S) = infyew |yj=1 || Psy |-
where the bounds are tight. Here, Before giving the proof, we mention thabs (W, S) is
9 related to the largest angle [13], [16] between the spacas. A
By = lal, = 2[{a; ema)is ] 1) explicit expression foros (W, S) in the case of S| spaces is
By = lal} +2l{a, ema)i] given in [13].



Proof: From the definition of,,,,, To conclude, when the space¥ and S are close (such
thatcos (W, S) is close to one), or when most of the signal’s

2 * *

llemall;, (W"Ps1x, W"Ps.x)1, energy lies within the sampling spacge (such thatLZ’ is
= (Psix,WW*Ps.x) small), then the minimax method will outperform the standar
= (Psix, PyPs.x) approach. Similarly, for large sampling intervels |[laf,,

can become large enough, assuring better performance by the
= (PP PP !
(PwPs.x, 2W 5 minimax method.
= |[PwPsx|”, (56)
where we utilized the orthonormality of the analysis set VII. SIMULATIONS

{wn(t)} to write WIW* = Py. For anyx € D we have In this section we simulate an example of approximating
| Ps:x|| < L', whereL’ is given by (55). Thus we can bounda single representation coefficieritv, x);,. The analysis
function w(t) | dulated and lized Gaussi
[P Psx]| < sin (S, 05) I, unction w(t) is a modulate 2an normalized Gaussian

t) = ae”" /% cos(4nt 60
where sin (SL,WL) = SUDy s |y|=1 ||Pwy|| From [13]’ W( ) ae COS( 7T )7 ( )
[27] sin (S, W) = /1 —cos? (W,S) and the proof fol- With a chosen such thatw||,, = 1. The inputx is set to be
lows. O 2 2

__—50t2 _ _—50(t—0.75)

Corollary 4: Let {w,(t)} be an orthonormal set. A suffi- x(t)=e € ) (61)

cient condition for the minimax method to outperform the sufe. it is composed of two Gaussians, synchronized with
approach for allk € D is ||al|,, > 2By, wherea and By the analysis functionw(t) (see Fig. 3). For this example

are given by (52) and (54), respectively. (w,x)r, ~ 0.2. We will consider two separate sampling
Proof: Using Lemma 1, the Cauchy-Schwartz inequality
and Lemma 2, we have 15 ‘

2 2
By, 2 |lall, — 2llally, lemall,, = llally, —2[lall,, Bma

from which the proof follows. O
The error analysis is summarized in Figure 2.

llesum |l = llemell

| |
: : (Lemma 1)
| |

By, By >0

||eTan < Bz (Lemma 2)

Bine <lall, /2= B >0 (Corollary4)

Fig. 2. Regions oflesum|| — |lemz]|| for the case wherdw, (¢)} is an s = = 2 1 0 1 2 B 2 5
orthonormal set. If the maximal norm of the minimax error (54) is l&ena Time [sec]

than||al|;, /2, then the minimax approach is superior to the sum method, for

all possibQIe inputs. Fig. 3. The analysis functiow(¢) and the input signak(t).

Another interesting case, which is easy to evaluate, is wheghemes; ZOH (zero-order-hold) and RC (resistor-capacito
a single representation coefficief,x) is to be approxi- In both schemes we approximate the single representation
mated. In this settinge,ne, esum and a are all scalars. It coefficient(w,x), based on the generalized samples.
can then be shown that the minimax method and the sum
approximation approach are tightly upper bounded by A. ZOH Sampling

lemz] < Bpme =L'||Psiwl|| Assume that the generalized samplesx¢f) are obtained
lesum| < Bsum = |a| + By, (57) bAy :i;l\éeraging the value of(¢) within a small interval of length
where the input that achieves both upper bounds is o] = 1 nT+A (b}t 2
A :
. al’ nT
Xuorst = 5(3 S)TCJF lal HPSLwHPSLW' 58 In this setting, thenth sampling vectos, (¢) of (1) is
A sufficient condition for the minimax method to outperform su(t) = { /A, te[nT,nT + Al; 63)
the sum approach becomes " 0, otherwise.
la| > 2L’ | Ps.w] . (59) BY processing the generalized samplggn| = (s,,x)r,}

using the transformation (10), we obtain the minimax approx
The proof is provided in Appendix IIl. mation of (w, x),,. The approximation can be obtained in the



L, space, or transformed into a proper Sobolev space using ‘ ‘ _T=0.10 [sec] A=0.05 [sec].
(36), when smoothness is of concern. Note that the inputkign 1+
of the example (61) indeed satisfigse W, . Subsequently,
as we will show, the minimax solution with the smoothness
constraint outperforms the standard minimax method.
Interpreting the minimax solutions as the application @& th o4
analysis operatoV* to the approximate®sx and £z 51X sl
((19) and (40) respectively), it is interesting to obserkze t
signal approximations. Fig. 4 depicts the generator foneti
so(t) € S and 3p(t) € S for A = 0.05. In Fig. 5 we plot a -ozr

-0.4f

0.8

0.6

0

5

-0.6 q

e S
a5k _ st i
-0.81 4
4t i

1 . . . , . . . . .
-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6
351 b Time [sec]

il Fig. 5. A section ofx and its approximation in the sampling space; The
25k ] orthogonal projection ontS yields rectangular pulses. The oblique projection
onto S yields a smooth function, which is very close to the origimgiit.

2r 1 i
.

15r o . 1 Concrete errors (A=0.05)
”/ . 0.2 T T

L . . ]
1 Lo’ S~ —=C€um

. S~ Sl A (L)

05+ - ~- i mx

1
r- b r e (W A
! ! ! ! ! 010 mx( 2) S

-
-

Fig. 4. ZOH sampling withA = 0.05. Shown areso(t) (63) andso(t) = 012 o
s0(t)=e It /2, which are the generators for the shift invariant spaceand oal If
S, respectively. For presentation purposes the plots ardesca ' ;

0.08

section ofx with its projections onto the appropriate sampling |
spaces. The parametefs and A were set to0.1[sec] and
0.05[sec], respectively. In this example, the sp@eaptures ooy ¥
most of the signal’s energy. Indeed, as can be seen in Fig. 5,00} , 1

the approximatiorEg’SLx is very close to the original input. . £ ‘ ‘ ‘
0 0.05 0.1 0.15 0.2 0.25
T [sec]

For comparison, we also processed the samples using the
standard sum approach (5). In Fig. 6 we present the erréig 6. The errors as a function @f for the specific input (61).
for the input (61) using several choices 'Bf The minimax
solution is optimized for the worst possible input withireth
considered set, which is different than (61). As a result, fof the signals energy lies within the spaSe(alternatively,
some sampling intervals, the suggested robust solutioms &f is small). As a result, the approximatidisx = Eg 5. X
better, while for others they are outperformed by the sudescribes well the original input. '
approximation. Note that in all cases, the worst inputs look the same for the

It is also of interest to examine the signals that causequisition device, as they both produce the same genedaliz
the highest value of the cost function. In Fig. 7 we plotamples. To illustrate the last point, in Fig. 8 we plot aisect
these worst inputs. In both cases, the worst possible inmitx and the worst possible inputs (for tig and thelV; sets).
is calculated according to (58), and is given by a projectidn addition, we present the orthogonal projectiBgx, in the
of x onto the sampling space, and a vectorSh, which Ly sense, which is composed of rectangular pulses describing
has the smallest angle with the analysis functieit). As the integration zone due to the sampling functions (63). As
can be seen in Fig. 7(a), the worst possible input in tlg@n be seen, all signals yield the same generalized samples,
setD = {x | Ixll;, < L,c= S*x} is a highly non smooth as they all have the same area within the rectangular pulses.
function. This input is indeed possible in tlig space, butit  In Fig. 9 we plot the upper bounds of the performance for
is not likely to appear if we know the signal to be smoothhe different approximation methods. The upper two curves a
If we consider only order one Sobolev functions, the worstue to (57). If in addition the input is known to be smooththe
input is a smooth function and is much closer to the originale can perform all the inner products and norms in the order
input, as depicted in Fig. 7(b). The exceptionally good ltssuone Sobolev space. As a result, the value of the upper bound
of Fig. 7(b) are due to the fact that for this example, mog®,,. changes, and so doék,.,, (the lower two curves of Fig.
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T=0.10 [sec] A=0.05 [sec] T=0.10 [sec] A=0.05 [sec]
1 T T E T T I I 15 T T T T T T T
: ——worstx (L) —worst x (L,)
0.8 Ly H 2
““““ X
06f 1 i —o P ]
0.4t B
0.5F . -
0.2 - I
1 ol —ead
-02f —
-0.41 B -05 B
_o06l |
b i
-0.8f |
s ” = = o 0 2 3 P 5 -15 ! ! ! ! ! ! . . L . .
Time [sec] -025 -02 -015 -0.1 —o.o;imeo[sec?.os 01 015 02 025
(@) (a)
T=0.10 [sec] A=0.05 [sec] T=0.10 [sec] A=0.05 [sec]
1 T T T T T T | |
1 T —= T T i i
N 1 L)
05l worst x (W2) | : — worstx (W;)
X 0.8 N | -
0.6 i 1
) 06 1
1
04t B i
0.4 R
0.2 4 !
0.2 1
1
o R ;
_02f |
-02f 4
-0.41 4
—04l i
-06f —
-06f g
-0.8f B
-08F g
T4 s 2 a0 1 2 s 4 s I EE S SR
Time [sec] -025 -02 -015 -0.1 —o.oz_al_imeo[sec?.os 01 015 02 025
b

Fig. 7. The original input and the worst possible counterpafa) Lo, (b)

Sobolev space of order one. Fig. 8. A section ofx and the worst possible counterpart in &), (b)

Sobolev space of order one. Both are plotted agalfsk to describe the
integration zones.

9). The upper bounds are obtained by the worst possiblesnput
plotted in Fig. 7. Specifically, the signal of Fig. 7(b) ackds 08

Upper error bounds (A=0.05)

the lower two curves of Fig. 9 (with the lowest curve for the =By (L)
minimax method with the smoothness constraints, and the one®’[| ™" B (Lz)l
above it for the sum approach). Similarly, when smoothness || * Pam ™)
is not of concern, the signal of Fig. 7(a) achieves the top two Binx (W)

error bound curves of Fig. 9 (with the higher curve for the ost
sum approximation).

__________
—

0.4l ~A

B. RC Sampling 0af —

As an additional example, suppose that the acquisition | |
device is a low pas&C circuit, followed by an ideal sampler *
with interval T' (Fig. 10). Here, the frequency response of | / ‘ ,
the acquisition filter is given by /(1 + jwRC), and thenth ! o
sampling vector is shifted and mirrored version of the inspul % e = e = s
response T [sec]

Fig. 9.  Upper error bounds according to equation (57). Thapiag

RC)~le'we", t<nT;
sn(t) = { (RC)™ e = (64)  functions are given by (63).

0, otherwise.



11

Concrete error (RC=0.05)
T T

0.2 —

Fig. 10. AnRC circuit, followed by ideal sampler, serves as the acquisitio 015

o /’/--‘I
0.1 i
T=0.2 f RC=0.5 0.05 / g/é>§ 7
1 T T T T
| ——x . N L I I I

0
08 \ ! 0.04 0.06 008 01 012 014 016 018 0.2 022
worst X in L2 T [sec]
CY
Concrete error (RC=0.5)
0.35 T T
-0 oum
= (),

03f | L emy) 1

0251 B

0.2 —0 B

. . . b .
-3 -2 -1 0 1 2 3 0.15[ B
Time [sec]
() |
T=0.2,RC=0.5
1 . . A . . 0051 i
L - ==X
0.8
worst x in W2
L 2 0 | . | | I I
. 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22
T [sec]

Fig. 12. Concrete approximation errors for the input (61)cpesed by the
RC circuit. (a) RC = 0.05, (b) RC = 0.5.

do not always outperform the Rieman sum approximation (Fig.
12(a)). However, by considering the worst possible inpug, t
superiority of the minimax methods is guaranteed. In Fig. 13

£ ) 1 o 1 2 3 we show the upper error bounds for several valueg afnd
Time [sec] RC. As expected, the robust approaches outperform the sum

(b) counterpart. Additionally, when we restrict the set of oles
Fig. 11. The original input and the worst possible counterppa(a) L2, (b) inputs to order on_e Sobolev f'ijtlor_‘S’ the_ worst case errors
Sobolev space of order one. The sampling functions are giyeit4). are smaller. As with the previous simulation, the presented

error bounds are tight. For example, the worst case inputs of
Fig. 11 achieve the error bounds of Figure 13(b).
Fig. 11 is similar to Fig. 7, when using the RC circuit AS a final remark, note that the worst-case signal (58)
sampling function (64) withRC' = 0.5. Here as well, the depends on the sampling and analysis functions. Therefore,
sampling functions posses discontinuities, giving risa ton- When either of them is non-smooth, the worst-case function
smooth worst-case function, as shown in Fig. 11(a). When Waght be non-smooth as well, being the sum of functions with
expect the input to be smooth, the minimax objective with tdiscontinuities. As a result, if we have prior knowledgettha
smoothness constraint can be used. For such a criterion, ¥ inputx(t) is smooth, it is recommended to implement the
worst-case input function behaves accordingly (Fig. J1(b) minimax solution with the smoothness constraint.
Fig. 12 shows the approximation error for the input)
of (61). Sincex(t) is a smooth function, imposing the VIII. SUMMARY
smoothness constraint indeed improves the performandeof t A minimax approach has been introduced for approximating
minimax methods. Here as well, the proposed robust critefimer-product calculations within the continuous-timerdan,
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Upper error bounds (RC=0.05)
T

0.45 , ; , below.
Assumel C S and letd = Gc¢ where

G=W*S(S*9)". (65)

We now show thatl = W*x. Indeed, since for any function
f, W*f = W*P,f we have Ge = W*PWS(S*S)Tc.
8 Substitutinge = 5*x,

] d=Gc= W*Pwpgx = W*wa = W*X, (66)

1 where we used the fact th#&t, Ps = Py sinceW C S.

Now, assume thatV ¢ S and suppose that there exits a
transformationd = G(c) achievingd = W*x. Consider the
1 signalx defined byx = xs. + xy, wherexgs. is in St but
not in W+ (such a function always exists sint& ¢ S) and
Xy € W. For this choicee = S*x = S*xyy but W*x —
W*xy = W*xg. # 0. Since we assumell’*x = G(5*x)

0.22

Upper error bounds (RC=0.5) and W*XW == G(S*XW) we a|SO have
0.35 T T T T T T T T
- Bun 9, Wrxsi = G(S*x) — G(S*xy) =0, (67)
0.3 -a-B::W(L)Z 7 . . . . .
- B W) which implies thatxg. € W+, contradicting our assumption.

FRAME CONDITION IN THE SOBOLEV SPACE

In this appendix we address the following question: As-
suming that the sampling functiods,, (¢)} constitute a frame
| for S C Lo, do the modified function$s,, (t) = s, (t) x u(t)}
constitute a frame fo C W, ? As we will show, this is not
always the case, but we give a sufficient condition for this to

0151

0.1

02 1 APPENDIXII

hold.
8os * 005 oo 01 o.‘uTlsec]o.‘u o6 o018 02 0.22 Since the sampling function&n (t)} form a frame for the
closure of their span, there exi8t< A, B < oo such that
®) vxeS

Fig. 13. Upper error bounds. The sampling functions are gixe(64) with 5 5 5
(@) RC = 0.05, (b) RC = 0.5. Allx]7, <> [sn. %)L, |° < Bxl7, - (68)
n

while having the generalized samples of the signal as tH)efmmg th(_a mc_)dmed functions to b{Es.“(»tv) S”St) u(b)},
. . . . whereu(t) is given by (34), and setting C W, to be the
only available data. We have shown that if the input signal | - : 4
gsure ofspan {8,,}, we wish to examine whether for all

; g
known mooth function, then moothn nstrain < =
own to be a smooth function, then a smoothness constra € S there are constants< A, B < oo such that
> 2
<Bllylli; - (69)

can be incorporated into the minimax criterion. The latter
was achieved by recasting the problem into a proper Sobolev b 2 - 2
y g the p prop Ayl <D 6w yiwg

space. A comparison of our proposed robust methods with a
piecewise-constant approximation has been presentedr Err _ . . . L
bounds for the different methods were derived, showing the/rSt note that if the number of sampling functions is finite,
possible improvement by the minimax methods. The derivi1e" (69) always holds, as any finite set of functions which

tions presented herein extend recent results concerniag ﬁqansS is a frame forS. However, in the infinite dimensional

ideal sampling case, allowing for practical acquisitionides ¢85 t.his is no longer true. . . -
to be inco?po?ated g P d We first show that the upper bound in (69) is always satisfied

with B = B. To see this, lely € S. Recalling that for any
y € W3, we have(s,,y)r, = (Sn,y)wz, we can rewrite the
middle term of (69) a3, (S, ¥) L, |°. Since{s, } is a frame
for S,

APPENDIX |
PROOF OFTHEOREM 1

In this appendix we show that for a generml € H, 9 9 9
satisfyingc = S*x, it is possible to obtain the required inner Al PsyllL, < Z [(sn,¥)1,1" < Bl|PsyllL, -
productsqg = W*x if and only if W C S. The proof of this "
claim is similar to the proof of a sampling problem, consater Using
in [16, Sec. 3]. For completeness, we detail the derivations B|Psyl;, <Blyl;, <B HyH?/Vle
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we conclude that withB = B, the upper bound in (69) is for all w € Zs. Therefore,
always satisfied. K

Unfortunately, satisfying the lower bound of (69) is notp/ () > 1 Z gF <w+27rk> 1 .
always possible. As an example, consider the case where for>*S T k=K. T 1+ (%2”’“)
eachn, s,(t) has the Fourier transform | K 4oork\ |2

> = 3 |s” (u) D(K.)
sf(w):{1 newsntl T !
0 otherwise _ Rés(Ke,w)D(Ke),

This is an orthonormal set of sampling functions, and henggere we define the strictly positive constamt(K,) =
it is a tight frame forS with frame boundsA = B = 1. (1 n (2”2,{](6)2)*1 Combining with (74)

However, there is no strictly positive lower bourdsatisfying T
the left hand side inequality of (69); notice that for the ickeo ; ; A
y(t) = 3n(t) Ry (W) 2 (Rg s(w) — €)D(Ke) 2 5 D(Ke),
5l = i/”“ v where we used = A/2 and the frame boundt} ¢(w) >
Yilwg = on n 1+ w? A, Yw € Is of S in the last inequality. ' O
. Defining b,, = ||yHW21 we have from the orthonormality of
the expansion, APPENDIXIII
2 ERROR BOUNDS FOR THE SCALAR CASE

=b2. (70)

Z ’<S”’y>W21 In this appendix we prove (57), (58) and (59).

" To prove (57), note that for a single representation coeffi-
Recalling (69), its left hand side should satisfip, < b2 cient we have
for this particular example. However, by increasingwe

can construct a sequen¢g, }, which is strictly positive, and [ema] |{w, Ps1.)|
converges to zero. Thus, for this example we must bave0. = |(Psiw,Psix)|
Nevertheless, assuming that the sampling functions have a < ||Psiw| L, (75)

shift invariant structure,e., that for eachn, s,,(t) = s(t—nT)
(and naturally alsé,,(t) = §(t—nT)), we can state a sufficient
condition that will assure the existence of a strictly pesit
lower boundA.

where we used the Cauchy-Schwartz inequality and the norm
constraint||Ps.z|| < L/, with L' given by (55). The bound
is tight, since

Proposition 2: Let {s(t —nT)} be a frame forS. If the x = S(5*S)Te+ Psiw I/ (76)
partial sums N | Ps.wl|
| X 2 is a valid input which achieves (75) with equality. Simijarl
i P (@ 2k bound th due to th hod. Using (53
RS’S(K,w) =7 Z S —T (71) we can bound the error due to the sum method. Using (53),
k=—K

lesum| < lal + |ema| < |af + || Psow]| L. (77)

converge .umformly, theds(t —nT)} is a frame fo_rS_. . This upper bound is obtained by settiRg= x5t as in (58).
Proof: Relying on kno_v_vn res~u_lts f°T the S.h'ft mvanantln fact, the signak,,..s; of (58) also achieves the uper bound
setup [22], the frame condition fa is satisfied if in (75). Thus, there is a valid input which makes both the sum

0< A< R (w) < B< 0, weZs, (72) and the minimax methods to operate as worst as possible.
- 88 N To prove (59), we must find a sufficient condition that
where ensures that the lower bound, of (51) is positive. Using
;& 9k |2 1 (51) and (75) we have tha;, > |a|’ —2|a| | Ps. w]| L’ from
R (w) == 3 |sF (ST which (59) follows.
S,S T T 1 M 27
k=—00 + (<)
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