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Abstract—The problem of distributed detection in a sensor net-
work over multiaccess fading channels is considered. A random-ac-
cess transmission scheme referred to as the type-based random ac-
cess (TBRA) is proposed and analyzed. Error exponents of TBRA
under noncoherent detection are characterized with respect to the
mean transmission rate and the channel-coherence index. For the
zero-mean multiaccess fading channels, it is shown that there ex-
ists an optimal mean-transmission rate that maximizes the detec-
tion-error exponents. The optimal mean-transmission rate can be
calculated numerically or estimated using the Gaussian approxi-
mation, and it gives a sensor-activation strategy that achieves an
optimal allocation of transmission energy to spatial and temporal
domains. Numerical examples and simulations are used to compare
TBRA with the conventional centralized time-division multiple ac-
cess (TDMA) scheme. It is shown that for the zero-mean multiac-
cess fading channels, TBRA gives substantial improvement in the
low signal-to-noise ratio (SNR) regime whereas for the nonzero
mean fading channels, TBRA performs better over a wide range
of SNR.

Index Terms—Distributed detection, multisensor systems, per-
formance analysis, signal processing for communications.

I. INTRODUCTION

N the classical setting of distributed detection, sensors in the

field sense a certain physical phenomenon and transmit their
observations to a fusion center, and the fusion center makes de-
cisions on the underlying phenomenon. The channel between
a sensor and the fusion center may be rate-constrained, and
local compressions of information are necessary. Typically, sen-
sors transmit their quantized measurements to the fusion center
through orthogonal channels, and the transmissions are assumed
perfect. The focus of the classical distributed detection is on the
design of the quantization rule at sensors and the global decision
rule at the fusion center. Such formulations are suitable for the
cases when sensors have wired connections to the fusion center,
and the number of sensors is not large. See [2]-[4].

The design of large wireless-sensor networks (WSN), how-
ever, must deal with challenges beyond the optimization of
the local and the global decision rules. Bandwidth has to
be allocated to accommodate a large number of sensor nodes;
transmissions must be made energy efficient to prolong network
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lifetime. Wireless transmissions make the medium-access con-
trol a crucial component. To this end, well-known deterministic
scheduling schemes such as the time-division multiple access
(TDMA) may not be appropriate; nodes may be sleeping,
faulty, or placed in locations with poor transmission conditions.
It is thus desirable to consider MAC schemes in the context of
detection that facilitate effective delivery of information from a
random number of nodes to the fusion center.

A. Scope of Work

We consider in this paper the problem of distributed detection
over a wireless-fading channel via random access. We will not
deal with the design of local quantization rules, which is a chal-
lenging problem even for the classical distributed detection. Our
focus is on the communication (or the random access) aspect of
the distributed detection, which to our knowledge has not been
treated in the past.

We model the number of sensors involved in each transmis-
sion as random with a certain average transmission rate \. There
are several reasons to consider random access. The sensors may
use a simple probabilistic wake-up strategy in which a sensor de-
cides to participate in transmission based on a simple coin-flip.
The sensor may also decide if a transmission is warranted ac-
cording to its measurement, transmitting only when the data is
“significant” [5]. Yet another possibility is that the fusion center
is a mobile-access point, and it travels to different regions of
the field to collect data, in which case the number of sensors in-
volved in each collection is random.

A schematic of our problem is illustrated in Fig. 1 with
detailed model definition and assumptions given in Section II.
The fusion center collects data in multiple slots, each involving
a random number of transmitting sensors. We couple the
so-called type-based multiple access (TBMA) [6], [7] with
a simple random access protocol analogous to the ALOHA.
Referred to as the type-based random access (TBRA), sensors
transmit probabilistically using a set of orthogonal waveforms
keyed to their measurements. Specifically, sensors with the
same data value will transmit (if they decide to do so) using
the same waveform on a multiaccess fading channel. The
bandwidth requirement of TBMA in the absence of fading, is
proportional to the number of local quantization levels, not to
the number of sensors. The use of orthogonal waveforms elim-
inates interference among users with different data values and
makes it possible to have coherent combining of transmissions
in the absence of fading. We will see, however, that simulta-
neous transmissions in fading is much more complicated, and
it may not always be desirable.
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Fig. 1. Distributed detection over multiaccess fading channel.

B. Summary of Main Results

Given the fixed local quantization rule and the available set
of orthogonal waveforms for transmission, the design of TBRA
reduces to the optimal choice of the mean transmission rate A.
Intuitively, if A is too small, not enough sensors transmit, and
performance suffers. On the other hand, if too many sensors
transmit, since they transmit on a multiaccess channel, it is not
obvious that the transmissions will not interfere with each other,
resulting in poor detection performance.

In searching for the optimal transmission rate A., we use the
detection error exponent F, a function of )\, to characterize
performance. We first establish that given the expected number
of transmissions p in [ collections, p £ \l, the detection error
probability P, decays exponentially in the form

P, = ¢ PExtol(p) (p — o0) )
where (o(p)/p) — 0as p — 0.

The form of E) varies depending on the type of detectors
(Bayesian or Neyman-Pearson) and the fading characteristics of
the multiaccess channel.

Next, we characterize the behavior of the error exponent E
for different cases. It turns out that £y crucially depends on the
coherence index «y defined by

_ ()P

7= Cov(H) @

where H is the effective fading coefficient between a sensor
and the fusion center.! Intuitively, higher ~y leads to better SNR
gain from simultaneous transmissions at the fusion center. II-
lustrated in Fig. 2 are sketches of error exponents as functions

I'The dependencies of inference performance on the coherence index has been
observed in the past [6], [8].
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Fig. 2. Error exponent £, as a function of transmission rate A for different
channel-coherence indices v [see (2)].

of A and ~y. The shapes of these curves will be justified by analyt-
ical and numerical results in Sections III and IV. We see that for
low coherence indices, there exists an optimal A, for which the
error exponent is maximized. This implies that there is an op-
timal sensor-activation probability so that the average number of
transmitting sensors is optimal. The intuition is that for fading
channels with zero-mean (y = 0), sensors transmitting simulta-
neously using the same waveform tend to cancel each other (in
the mean), which is the reason that TBMA schemes involving
a single data collection fail [6], [9], [7]. A sharp contrast is the
extreme case when the channel is deterministic without fading
(v = o00). We show that there does not exist an optimal A,
which means that the optimal strategy is to have simultaneous
transmissions, in order to take advantage of the channel co-
herency. This paper aims to provide insights into the optimal
tradeoff, for the case when the expected number of transmis-
sions p goes to infinity.

We show the existence of an optimal average transmission
rate A, when the channel-coherence index -~y is small. We also
provide the characterization of the error exponent when A is
large. It is in fact the behavior of Fy as A — oo that helps us
to describe the shape of error exponent curve in Fig. 2. By let-
ting A — oo, we employ a version of the central limit theorem
(CLT) involving a random number of summands. The limiting
distribution allows us to characterize F, analytically. For large
transmission rates \, Gaussian approximation can be used to ob-
tain estimates of the error exponent. Perhaps more importantly
in practice, the Gaussian approximation provides \., an approx-
imation to the optimal rate \,.

Our numerical evaluation and simulations are also informa-
tive. We numerically evaluate £, under different conditions
to confirm our theory. We present a performance comparison
between TBRA and TDMA, under a fixed energy constraint.
The simulation confirms the analysis and our intuition: the two
schemes have different operation regimes for the zero-mean
(y = 0) multiaccess channels (if complexity is not part of
the consideration). At low SNR, TBRA performs considerably
better than TDMA because of its optimal allocation of transmis-
sions over time and across sensors, to obtain a significant SNR
gain. At high SNR, on the other hand, SNR gain is not needed
and the deterministic scheduling of TDMA shows an advantage
as it avoids the possibility of interfering transmissions due to
random access. On the other hand, under large-y regime, TBRA
performs better than TDMA for a wide range of SNR values, by
exploiting channel coherency.
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C. Related Work

The problem of classical distributed detection has been inves-
tigated in considerable detail. See [2]-[4]. These earlier results,
however, assume perfect channels between sensors and the fu-
sion center. In the context of power and bandwidth-constrained
WSN, Chamberland and Veeravalli used large-deviation tech-
niques for the optimal design of local quantization rules [10],
[11]. See also Aldosari and Moura [12]. We too use large-de-
viation techniques, but for the design of multiaccess communi-
cations. Distributed detection in the presence of channel fading
is considered in [13] and [14], where each user has a dedicated
channel to the fusion center.

The problem of distributed detection on multiaccess channels
are more recent [6], [7], [9], [15]. The transmission scheme used
is the so-called TBMA proposed independently by Mergen and
Tong [6], [9] and by Liu and Sayeed [7]. The positive result
of TBMA is that when there is no fading, the asymptotic per-
formance of TBMA (as the number of sensors approaches in-
finity) is same as that when the fusion center has direct access to
sensor observations. The negative result, however, is that when
the channel has zero-mean fading, TBMA fails to be consis-
tent for a single data collection. Furthermore, these results apply
only for a fixed number of sensor. In [16], we proposed TBRA
as a multiaccess scheme for nonzero mean fading channels, in-
corporating random number of sensors. We used large-devia-
tion approaches and compared the detection error exponents of
TBRA and TBMA for nonzero mean fading channels.

While TBRA is used in this paper among transmitting sen-
sors, it differs from the existing approaches in several signifi-
cant aspects. This paper allows the fading channels to have zero
mean and detectors to be noncoherent. This scenario is relevant
since it may be difficult to estimate a large number of fading
coefficients at the receiver. Also, it may be difficult to synchro-
nize transmissions among geographically distributed nodes to
achieve phase coherency at the receiver. By having the expected
number of transmissions p go to infinity, the exponential decay
of error probabilities is achieved. Under the formulation of this
paper, the large-deviation approaches considered in [6], [7], [9],
[16] are not applicable.

D. Organization

In Section II, we explain the system model in detail and give
the problem statement. In Section III, we explain the receiver
structure and present the expressions of the error exponent
with respect to the expected number of transmissions. Both
Neyman-Pearson and Bayesian detectors are considered. We
present a characterization of asymptotic behavior of error
exponents when the average number of transmissions goes to
infinity. We also discuss the use of Gaussian approximation to
investigate behaviors of error exponents. In Section IV, we pro-
vide numerical evaluations of error exponents and simulation
results on the detection error probability where we compare
TBRA with deterministic TDMA scheduling. Conclusions and
comments are made in Section V.
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II. MODEL AND PROBLEM FORMULATION

A. TBRA: Transceiver and Sufficient Statistics

We assume the global statistical model as simple binary hy-

potheses

Ho:0 =0y versus Hip:0=0,.
As illustrated in Fig. 1, the fusion center collects data in multiple
time slots indexed by <. In each collection, there are [V; sensors
involved in the transmission, where IN; is a random variable
with mean \ and probability-mass function (pmf) g(n,\) =
Pr(N; = n). We assume that the sequence N; is i.i.d.

In the sth data collection, a sensor involved in the transmis-
sion,? say sensor k, has measurement X; € {1,...,M}, ie.,
quantized to M levels. We assume that the sensor data {X; 1 }
are conditionally i.i.d. across time and sensors, given £, with
pmf pg( - ). In vector notation, we have

i.i.d.

Xix ~ po=(pe(1),--+,pa(M)), 0 €{0o,01}.

In the ith collection, sensor k encodes its measurement X, j,
to a certain waveform and transmits it over a multiaccess fading
channel. As in TBMA, a set of M orthonormal waveforms
{dm(t),m = 1,...,M} are used, each corresponding to a
specific data value. Specifically, the baseband signal transmitted
by sensor k in collection i is given by

Six(t) = VEox, (1)

where £ is the energy of the transmission.

The channel coefficients (f[,k € C) are time-varying, i.i.d.
across sensors and time. We assume coarse synchronization in
the sense that at the fusion center, there is no intercollection in-
terference. Such synchronization can be derived by letting fu-
sion center transmit a synchronization beacon. It can also be
accomplished by adding sufficient guard time between consec-
utive data collections. For low rate applications, this assumption
is reasonable.

The received complex-baseband signal after collecting [ sam-
ples is given by

N

Yi(t) = ZHi,kSi,k(t —Tig) +Wi(t), i=1,...,1

k=1

where we assume that the channel-state information {}Mll Kk} is
not known at the receiver. 7; ; are the random delays for dif-
ferent sensor transmissions and the noise W;(t) is assumed to
be complex white zero-mean Gaussian, with power density o2.
We define the sensor signal-to-noise ratio (SNR) by SNR 2
(€/0?).

Under the narrow-band signal assumption, the flat-fading ap-
proximation which neglects the time dispersion in the signal
is valid. Therefore, the delay is only through the carrier phase
ie., Sik(t — Tig) = Six(t)exp(—j2nfer;x), where f. is
the carrier frequency. Denoting the effective fading statistic by
H; £ Flzk exp (—j2m fo7i ) with mean p g £ E(H; ) and

2Without loss of generality, we will only consider those sensors involved in
the transmission.
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. A
covariance o3 = Cov(H;
by

k), the received signal is thus given

ZHz kSlk

where we assume that { H; , } are proper complex Gaussian, and
are unknown at the fusion center.

Sufficient statistics {Y;} are generated from the bank of fil-
ters matched to the orthogonal basis {¢,,(t)}. For the ith col-
lection

Y+ Wit), i=1,..., (4

Yié [<YL<)¢1()>77<Y1(>7¢M()>]

“5l-

=) Hrex,, +W; )
1

>
Il

where (Y;(-), ¢m(-)) is the output of the matched filter corre-
sponding to ¢, (t), e,, the unit vector with nonzero entry at the
mith position, and W; RR (0, (1/SNR)I).

To see the intuition behind the coherence index « defined in

(2), we explicitly write the mthentry of Y; = [Yi,l: o 7)/1,A[]T
N;

m = Z Hilix, ,=m} + Wim (6)
k=1

where 1 4 is the event-indicator function. The extreme case is
when the channel is deterministic with H; , = 1(y — o0).
Transmissions from those sensors observing data value m add
up coherently, and Y; ,,, is the number of sensors that observe
data level m (plus noise), which gives rise to notion of type-
based transmission.3 On the other hand, wheny = 0, (ug = 0),
the transmissions add up noncoherently, and the mean of Y,
contains no information of the model.

B. Spatio-Temporal Tradeoff and Problem Formulation

The design of TBRA reduces to finding the optimal-activation
strategy that minimizes detection-error probability. For sensors
that are activated probabilistically either by themselves or by
the beacon from the fusion center, a TBRA scheme reduces to
finding the mean number of transmissions A = E(NN;). To this
end, we need to connect A with the detection error probability.

If the fusion center collects data using TBRA for [ time slots,
the expected number of transmissions is p = Al, which is also
proportional to the total energy consumption. Fixing p, there is
a spatio-temporal tradeoff between the average number of trans-
missions per slot and the total number of time slots. Should
energy be allocated mostly to simultaneous transmissions by
making A large? Or should we rely on taking more data col-
lections by choosing a large . The optimal design of TBRA is
to achieve optimal tradeoff between A and /.

We will consider two types of detector: the Bayesian
detector and the Neyman-Pearson detector. The explicit char-
acterizations of error probabilities for these two cases are
not tractable. We thus examine the case when the expected
number of transmissions p is large. Let P.(p, A) be the detec-

3Given X; x = ®;,1, N; = n; and the observation Y; =y, in the absence
of noise, the type of z; . is (1/‘ni)yi. [17], [18].
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tion-error probability (either the misdetection probability of the
Neyman-Pearson detector or the average of the misdetection
and the false-alarm probabilities in the Bayesian setup). We
will optimize TBRA through the error exponent

Ey 2 - lim 11ogpe(p,A) (7
p—o0 p
which is equivalent to saying that P.(p, \) decays exponentially
with respect to p with rate F, a function of A, as in (1). The jus-
tification of exponential decay of P, will be given in Section III
using standard arguments involving the Cramér’s theorem and
the Stein’s lemma. Next, we optimize TBRA by seeking

A« = argsup E). ®)
A>0
Although E\ can be evaluated numerically for a given statistical
model of hypotheses and fading, it is of theoretical and practical
significance to establish that A, is finite and bounded. To this
end, we need to characterize F, as A — 0 and A\ — oo.

III. OpTIMAL TBRA

The key step towards optimal TBRA is the characterization
of detection error exponent defined in (7). The form of error
exponent is well known in the theory of large-deviation anal-
ysis [17]: the Chernoff information for the Bayesian detector,
and the Kullback-Leibler (KL) distance (relative entropy) for
the Neyman-Pearson detector. We first present the optimal de-
tector and then give the general characterizations of the error
exponents with respect to the expected number of transmissions
p. Next, we state a result on the existence of optimal A, that
maximizes the error exponent. We then consider the limiting
case when A — co. The asymptotic analysis not only gives the
key argument for the existence of a finite optimal \,, but also
provides a qualitative assessment of the error exponents and a
computationally tractable way of estimating ..

A. Optimal Noncoherent Detector

The optimal detector given the matched filter output {Y;}
is the likelihood-ratio detector under both the Bayesian and
Neyman-Pearson settings. With the i.i.d. assumption, the de-
tector is given by

l

Z fia(Yi) o

<<
% for(Yo)

where f A(y) is the probability density function (pdf)* of Y;
under hypothesis Hj, [ is the number of data collections and the
threshold 7 is chosen according to the prior for the Bayesian de-
tector or the false-alarm rate for the Neyman-Pearson detector.

The receiver only needs to compute the likelihood ratio in
(9). In practice, the likelihood ratio may not have a closed-form
expression,> and numerical evaluation is necessary. However,
since the receiver is noncoherent, it does not have a RAKE struc-
ture. Therefore, the complexity of the receiver is not limited by
the number of simultaneous transmissions.

T &)

4We will assume that the likelihood function is well defined.

SFor the special case of Poisson number of sensors with Gaussian fading, an
infinite-sum expression is available.
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B. Detection-Error Exponents

In the following theorem, we give the expressions for the
detection-error exponents. These are direct applications of the
Cramér’s theorem and the Stein’s lemma with only a trivial
modification that changes time index in the standard setting to
the expected number of transmissions p.

Theorem 1 (Error Exponents): Given expected number of
transmissions p and mean transmission rate )\, let P2(p, \) be
the average error probability of the Bayesian detector under any
prior, and PNF(p, \) be the misdetection-error probability of
the Neyman-Pearson detector under any fixed size «. The error
exponents for the two detectors are given by

ENP()\) £ — lim 1log PXP(p,\) =

p—00 p

1
EB(\) 2 — lim —log PR(p,\) =

p—00 p

Dx(follfr) (10)

%CA(fmfl) (1)
where D (fol|| f1) is the Kullback-Leibler distance and
Cx(fo, f1) the Chernoff information.

Proof: See [17] and [18, pp. 92-94]. (|

While this theorem provides the basis for investigating error
exponents, it says little about the behavior of error exponents as
functions of A, especially about whether there exists an optimal
A«. The following theorem gives the results for the two extreme
cases: v = 0 and v = oo.

Theorem 2 (Existence of Optimal \): Let X be the mean trans-
mission rate and let f; x(y) be the pdf of the matched-filter
output Y, under the hypothesis H;. Assume the following:

1) for the Neyman-Pearson detection, pdf fo \ and fi ) are
differentiable functions of A\ almost everywhere;

2) for the Bayesian detection, the above assumption and in
addition, the optimizing parameter v, is differentiable in A
almost everywhere, given by

Vi () =arg mln log/f())\ 1 Y (y)dy. (12)

In addition, assume that the pmf of NV, g(n, A) is differentiable
in A and satisfies the following properties:

;gr}]g(n,/\) = l{n=0} (13)
d
1131 Y g(n,\) = —alyu—gy +alg—1y, a>0 (14)

where 1 4 is the event-indicator function. The following results
hold:
1) if the channel has zero-mean fading, i.e., v = 0, then

lim ENP()) = Jim ENP(N) =0 (15)
lim EB(\) = lim E®()\) =
lim EZ(X) = lim EZ(A) =0 (16)
which imply that there exist ANF AP such that
0 < AN AB < o0 and
1
sup BNV () = ANP D(foxyr L fipye) (A7)
A>0
sup BP(A) = AB Clfos I frae); (18)
A>0
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2) if the channel is deterministic, i.e., Cov(H) = O ory =
00, then there does not exist a bounded optimal A, that
maximizes the error exponents. In particular

ENP(N) =0()), EBN)=0()), as A—oo (19
where the notation © means that ) is an exponentially tight
bound.¢
Proof: The proof for the above theorem relies on the

analysis of the extreme cases under the regularity assump-
tions of the KL distance and the Chernoff information. See

Appendix, Section A. ]

In the above theorem, the assumptions on the pmf of N (13)
and (14) imply that at low ), there is utmost one transmission.
Examples include Poisson distribution and the binomial distri-
bution B(n, p) for a fixed n with p — 0.

The continuity assumption for the Neyman-Pearson detec-
tion is easily satisfied for many well-behaved distributions. On
the other hand, the assumption for Bayesian detection in (12) is
harder to satisfy in practice.

Theorem 2 establishes the general shape of E) as shown in
Fig. 2, for the extreme values of coherence index, v = 0 and
~ = oo. The role of v in F is embedded in the KL distance or
the Chernoff information through the pdfs (f; A(y), 7=10,1),
which are typically continuous functions of ~y. Therefore, one

can infer the behavior of £ for small and large ~

C. Asymptotic Distribution and Gaussian Approximation

A key step in proving Theorem 2 is the investigation of E
as A — oo. The idea is to use the continuity argument coupled
with a version of the central limit theorem (CLT) to calculate
the KL distance and the Chernoff information. We elaborate this
approach here for two reasons. First, the calculation of F, is
needed in proving Theorem 2; this is accomplished by the use
of CLT. Second, from a practical stand-point, the Gaussian ap-
proximation via CLT gives a computationally tractable way to
approximate the error exponent. This is especially useful when
we try to find the optimal sensor activation rate \,.. The accu-
racy of such an approximation of course, depends on the specific
distributions of the sensor measurements and the channel, and
we will demonstrate its performance in Section I'V.

We shall focus in this section on the single collection model,
and evaluate the error exponents using the limiting distribution
as A — oo. For ease of notation, we drop the time index i in (5),
and consider the model

N
k=1

(20)

where we have a random summand N, with pmf g(n, \) and
mean E(N) = .

Theorem 3 (Limiting Distribution of Y ): Assume that the
effective channel gains {H}} are independent and identically
distributed (i.i.d.) with mean p g and covariance U%{, and that
the number of sensors N has pmf g(n, A), with mean A. Also,

60 (a(X)) = {b(N) :

1,0, Ao > 0.

0 < cra(X) < b(A) < caa(X), YA > A, } for some
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assume that N/ converges to a constant 17 > 0 in distribution,
i.e.,
N
Tim as A — 0o, 1)
When the pmf of sensor measurements pg(m) > 0,V m =
{1,...,M} and 6 = {69, 61}, the shifted and scaled matched-
filter output Y satisfies the central limit theorem and has the

limiting complex-normal distribution according to

Y —nlunpe d
— =7 5 N_(0,Cov(H ex
\/7]—)\ - ( ’ OV( 1e}$1)) as

A — 0.

(22)

In addition, if IV is Poisson, then each entry of vector Y is
independently asymptotically Gaussian, given by

Y(m) — /\/J'HPG(m) d Nc(()l)

o/ Apg(m) -

Vm=1,...,M.

Proof: The proof of the above is an application of CLT with
arandom summand. We use the fact that = 1 for Poisson. See
Appendix, Section B for details. O

Evaluating the covariance matrix in (22), we have

as A — o

(23)

Cov(Hiex,) = o3 Diag(ps) + |nul|” (Diag(ps) — Pop; ) -
(24)

However, the result for the Poisson distribution in (23) is
stronger than for a general pmf g(n,)\) in (22), since the
asymptotic distribution is independent across the quantization
levels. This is due to the property of marking, which implies
that the number of sensors transmitting a particular data-level
is independently Poisson. Moreover, by (24), under zero-mean
fading (ug = 0), the asymptotic distribution is independent
across the data-levels for any general pmf g(n,\). In this
section, we assume that IV is Poisson, for the ease of evaluation
of the exponents under the limiting distribution.

Since Y is asymptotically Gaussian, in the large-\ regime,
the hypothesis-testing problem can be cast as the testing of bi-
nary hypotheses with

o2
¥i = Aoy diag(py,) + —1.

5 (26)

Wi = ALHPS, ;

The effect of the channel coherency is more evident in the
asymptotic distribution. For any positive v (ug > 0), the mean
of Y in (26) contains information about the underlying hypoth-
esis H;. As X increases, the two hypotheses are more separated
and the error probability decays exponentially. When pg = 0
(y = 0), on the other hand, the information is in the covariance,
and the error probability for a single-data collection converges
to a constant value as A — oo [6]. However, as mentioned in
Section III-B, in this paper, we let the expected number of trans-
missions p go to infinity. In this case, there is exponential decay
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of error probability, and we, therefore, need to characterize the
exponents.

We now characterize the error exponents, defined by (10) and
(11), for the Gaussian distribution. It turns out that the Gaussian
Chernoff-information C' and the Kullback-Leibler distance
D have closed-form expressions, enabling us to evaluate the
asymptotic limits of the true exponents.

Lemma 1 (Gaussian Error Exponents): Let J%{ be the
channel variance, - is the channel-coherence index, SNR be

the sensor SNR and A 2 pg, (k) — pg, (k). Denote

A
= A 27
k= No%, SNRpe, (k) +17 “F = @7)
and let 3 be the positive root of the quadratic equation,’
wranfi + (o — 1) — log gy — wy, = 0. (28)

The error exponents ENPP () and EBP()) under the Neyman-
Pearson and the Bayesian settings, for the Gaussian distribution
in (25), are given by

- M
ENP() = 20 = 23 (- logan
k=1
+ (14 wp)(ar —1)) (29)
[BD éAv 1 -
EPP(N) = =3 = 1 D (= log B + fi
k=1
(Br — 1)2agwy, )
- 1. 30
+ (on —1) (30)

Proof: The proof is derived using Kullback-Leibler dis-
tances for Gaussian distributions. See Appendix, Section C. [
Given the closed-form expressions for the Gaussian error ex-
ponents ENPP()\) and EBP()), we can evaluate the various
limits.

Theorem 4 (Limiting Properties of Error Exponents): The
Chernoff information C. \,~ and the KL distance D A,y are mono-
tonically increasing functions of the coherence index v, trans-
mission rate A and sensor SNR. For finite -, the error exponents
ENPD()\) and EBP()) converge to a finite limit, proportional
to the coherence index v, as A — oo given by

M A
lim ENPP()\) = — 31
Jim. ) 7;p91(k) (31)
~ M
Jim EBP(N) =) (Vpe, (k) — v/pe, (). (32)
k=1

Proof: We establish the monotonicity and evaluate
the limits using expressions in (29) and (30). Also note,
(32) is a scaled version of Hellinger distance [19]. See
Appendix, Section D. O

We also investigate the case when the channel is perfectly
coherent: uy = 1l and o — 0, or v — oo.

7Exactly one positive root exists for the case when po, (k) # po, (k).
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Theorem 5 (Error Exponent for Perfectly Coherent Chan-
nels): In the absence of fading, the error exponents of the NP
and Bayesian detectors for the limiting distribution are given by

M
lim ENPP(X) = ASNR )~ A% (33)
M
Jim EBP()) = % > oA (34)
k=1

Proof: Substituting oy = 0, we derive the expressions by
finding the KL distance and Chernoff information between the
distributions, V. (Apg, , 0%) and N..(Apg, , 02). O

To contrast the perfectly coherent case, we examine the case
when the channel is noncoherent, i.e., pg = 0 (v = 0). Inter-
estingly, the dependencies of the Chernoff information and the
KL distance on the transmission rate )\, the sensor SNR, and the
channel variance 0% can be summarized using a single param-
eter—the average SNR at the receiver

X £ Ao SNR. (35)

Theorem 6 (Error Exponents for Noncoherent Channels):
For the noncoherent channels (g = 0), the Chernoff informa-
tion C, and the KL distance D, are functions of x = A\o%SNR,
and have the following properties.

1) éx and Dx are monotonically increasing concave func-

tions of x.

2) As x — o0,C, and D, converge to finite limits when

pe, (k) > 0 Vi, k.

3) Normalized functions (C\ /x) and (D, /x) have unique

maxima, which are only functions of pg, and pg, .

Proof: See Appendix, Section E.

The compact parameter y provides additional insights and
design options. The optimal error exponents can be achieved
with a combination of choices of sensor activation and sensor
SNR. At small SNR, for example, more sensors are needed to
obtain SNR gain. On the other hand, at high SNR, fewer sensors
transmit to avoid the noncoherent cancelation of the signals (on
an average). The optimal ), is chosen so as to balance these
opposing effects of the multiaccess fading channel.

The error exponents ENPP(\) and EBP (1)) in (29) and (30)
of the limiting Gaussian distributions are good approximations
for the true exponents at large A, due to the continuity prop-
erty. We shall demonstrate this with a numerical example below,
which is a qualitative representation for the general case.

IV. NUMERICAL RESULTS AND SIMULATIONS
In this section, we resort to numerical and simulation tech-

niques to validate the theories developed in this paper. We con-
sider binary quantized measurements with pmf
pe, = [0.7,0.3], pg, =10.3,0.7].

For the Bayesian setting, we assume equally likely priors.
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Fig. 3. Error exponent versus transmission rate. (a) SNR = 7 dB, %, = 0.1.
b)y =0,0% = 1.

We assume that the channel fading is Gaussian® H j b
N (g, 0% ) with the mean and the variance varying according
to different simulation conditions. The number of sensors in-
volved in each transmission NNV; is i.i.d. Poisson.

The error exponents are evaluated numerically (without using
the Gaussian approximation), and the detection-error probabil-
ities are estimated using Monte Carlo simulations.

A. Evaluation of Error Exponents

Since the central limit theorem is applicable only in the
large-\ regime, in order to draw conclusions for finite A we
numerically evaluate the Chernoff information and the Kull-
back-Leibler distance. We found that the Chernoff information
and Kullback-Leibler distance have similar shapes. Therefore,
only the behavior of Chernoff information is presented here.

Fig. 3(a) and (b) show the behavior of the actual error expo-
nent ) versus A, one Fig. 3(a) with varying channel-coherence

8For proper Gaussian variables, the real and imaginary parts are independent.
Therefore, it suffices to limit to real variables
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Fig. 4. Gaussian approximation. (a) Gaussian error exponent versus transmis-
sion rate. (v = 0,0% = 1.). (b) Optimal transmission rate versus SNR in dB.

(y =0,0% =1.).

index ~ for a fixed SNR, and the other with varying SNR for
v = 0. The existence of optimal \, is evident for small ~. To
see the similarity and difference between the actual E\ and the
Gaussian approximated E\, we plot Eyin Fig. 4(a). The curves
in Figs. 3(b) and 4(a) have similar shapes and share the same
trend with respect to both A and SNR. The actual values of the
error exponents are indeed different, with the Gaussian approx-
imation giving a more conservative estimate of the true error
exponent.

Fig. 4(b) shows the actual optimal transmission rate A, and
the suboptimal rate A. [obtained via optimizing the Gaussian
error exponents in (29) and (30)]. The optimal /~\>,= obtained from
the Gaussian approximation appears to provide a reasonable ap-
proximation for the true \.. We observe that as SNR decreases,
the suboptimal A approaches the true .. This behavior is the
result of CLT, since the value of A, increases as the SNR de-
creases. Moreover, even at high SNR, the absolute error of ap-
proximation is fortunately quite small, since the value of A, de-
creases as the SNR increases.
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B. Performance and Discussion

We compare the TBRA scheme with the conventional TDMA
scheme, in which one sensor is scheduled to transmit in a data
collection, with energy £. We fix the expected number of trans-
missions p = [\ in the comparison. Our comparison is fair since
both TBRA and TDMA have the same total energy budget.

We run simulations with values specified in the beginning
of the Section IV. We consider two regimes of v and SNR,
with four possible scenarios. For the TBRA scheme, from
Section I'V-A, the optimal performance is at A.. We also con-
sider the performance of TBRA under 5\*, obtained by Gaussian
approximation. We also include the TBRA scheme with A = 1,
which enables us to study the random-access aspect of TBRA
under different conditions.

Fig. 5(a) and (b) are simulations for nonzero mean fading
channels. For the case shown in Fig. 5(a), the optimal strategy
is single-shot transmission (all sensors transmitting simultane-
ously), since A, > p, for the values of p used in the simula-
tion. We see that the optimal TBRA scheme performs better
than TDMA. However, for the TBRA scheme with A = 1 the
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Fig. 6. Error probability versus expected number of transmissions. Fading with
zero mean. (a)y = 0,07 = 1,SNR = —4dB. (b)y = 0,07 = 1,SNR =
4 dB.

performance is similar to TDMA. This suggests that the gain
for TBRA comes mainly from coherence. In Fig. 5(b), at high
SNR, the optimal strategy is still single-shot transmission, due
to the high value of . This suggests that at large -y, the optimal
strategy is to have as many simultaneous transmissions as al-
lowed by the network, in order to exploit the channel coherency.

Fig. 6(a) and (b) shows simulations under zero-mean fading.
Fig. 6(a) shows that TBRA performs better than TDMA at low
SNR. In Fig. 6(b), we see that TDMA does slightly better at high
SNR, under zero-mean fading.

We observe that there is not much performance gap between
the optimal rate A, and suboptimal A, from Gaussian approx-
imation. Also, we have ignored the communication overheads
involved in each data collection. This is significantly higher for
TDMA, since it has more data collections than TBRA, for a
fixed p.

Some intuitions on the comparison of TBRA and TDMA are
in order. At large -y, the optimal rate A, is also large. The gain
from coherence suggests that at large v, TBRA will do better
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than TDMA for a wide range of SNR values. Moreover, the total
number of dimensions used by TBRA is just the number of data
levels M (for single-shot transmission), which is far less than
the number of dimensions used by TDMA, given by M p. Thus,
TBRA is also bandwidth efficient at large .

Under the zero-mean fading, A, is inversely proportional to
the sensor SNR. Therefore, at high SNR, )\, is small, in order to
avoid canceling effects of zero-mean fading Fig. 4(b). However,
there are still some collisions between the transmissions, due to
random access. In contrast, TDMA schedules exactly one sensor
to transmit. We, therefore, expect TDMA to do better at high
SNR, under zero-mean fading.

However, at low SNR, simultaneous transmissions counter
noise more effectively. Therefore, we expect TBRA to perform
better than TDMA. Moreover, at low SNR, TBRA has signif-
icantly lower number of data collections than TDMA leading
to a quicker detection at fusion center. Also, the total number of
dimensions used by TBRA (M p/)\,) is far less than the number
of dimensions used by TDMA (M p). Thus, at low SNR, TBRA
is also bandwidth efficient under zero-mean fading.

V. CONCLUSION

In this paper, we focus on the communication as-
pect—random access in particular—of distributed detection for
large sensor networks. We employ TBRA which inherits most
of the attractive features of TBMA, e.g., the efficient bandwidth
scaling and the asymptotic optimality under ideal channel
conditions. The main advance of this paper is the removal of
the requirement of channel coherency and the ability to handle
random number of sensors, transmitting simultaneously in a
slot. By examining a number of extreme cases, we are able to
obtain a general characterization of the error exponents as il-
lustrated in Fig. 2. From a practical stand-point, the approaches
using the Gaussian approximation, presented in Section III-C,
seem to give the correct insight into an optimal design. Such
a characterization is a valuable guide, as a network designer
pursues practical solutions.

In this paper, we assume homogeneity in the signal field and
hence the spatio-temporal samples are i.i.d. This may not be
true for many applications, e.g., those requiring sensor ID or
location information; or when the sensors are placed in different
noise levels. Although restrictive, the i.i.d. assumption gives us
some important insights (e.g., spatio-temporal tradeoffs). The
large-deviation analysis of error exponents applies to a large
class of models [17], although closed-form expressions may be
intractable. In [20] and [21], we obtain the expression for the
error exponent, when the sensor measurements are correlated
according to a Gauss-Markov random field model.

We have left several important problems open. We have con-
sidered a spatio-temporal allocation scheme under the total en-
ergy constraint. For applications under other constraints (e.g.,
time), our formulation does not hold. We have not dealt with
the design of local quantization rule. Given that the large-devi-
ation analysis is used in this paper, as well as in several related
work [7], [11], [12] dealing with different aspects of the problem
a “cross-layer” optimization of local quantization, communica-
tions and global inference should be of interest.
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APPENDIX

A. Proof of Theorem 2

Let o(\) represent a function such that (o(A)/A) — Oas A\ —
0.

For the pmf of N, g(n, A), applying Taylor’s expansion for A
near zero, we have P(N; = 1) = aA + o(\) and P(N; > 1) =
o(A).

Define the conditional pdf of matched filter output Y; under
hypothesis Hy as fr.(-|N = 0) £ w(-), fu(-|]N = 1), = h(-)
and fr(-|N > 1) £ ¢x(-), where w(-) is the pdf of White
Gaussian noise. Marginalizing over /V, we have the pdf of Y,
under hypothesis Hy,

fr(+) =1 =Aa—o(A)w(-)

+(Aa+o(A)hi(-) +o(Xex(-). (36)

Now we have the KL distance [18]
ENPD()\) — D(fO || fl)

(37

A
1 fo(y)
= X/yfo(}f)log i dy.

y)

Using (36) we have

ygE”%»:a/waw—mw»wzu

For Chernoff information, we have [18]

€= D 11 fo) = DU I 1)
RO
M= o way

Thus, we have, for kK = 0,1

lim D(vllfe) = / va(ho(y) + h1(y) — 2w(y))dy = 0.

(38)

A—0 A

Therefore, from (38), we have limy_,o EBP(\) = 0. For the
case when A — o0, we first show that the limit coincides with
exponents of limiting distribution. From assumption (1) stated
in Theorem 2, the integrand in (37) is differentiable with re-
spect to A implying that the integral is differentiable [22]. This
implies that the limit in (37) exists as A — oo and coincide
with the Gaussian exponent. Similar argument holds for (38).
For expressions of Gaussian exponents for vy = 0 and v = oo,
refer Theorems 6 and 5. Although these theorems have results
for Poisson N, the exponents for any general pmf g(n, A) co-
incide with Poisson, for v = 0. For v = oo, the claim can be
easily shown for a general pmf g(n, A). O

B. Proof of Theorem 3

Recall the CLT with random number of summands [23, p.
369]. Let X1, Xo,..., be i.i.d. random variables with mean 0
and variance 02, and S,, = Z?Zl X;. For each positive ¢, let
v be a random variable assuming positive integers as values;

not necessarily independent of X,,. Suppose, there exist positive
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d
constants a; and 7 such that a; — oo, (v4/a;) — nast — oco.
Then

Sllf d
e ()

In our case, parameter a; corresponds to \,v; to N. We have
(N/A) % 5 > 0and (1/y7A)W 5 0as A — oo. By
Slutsky’s theorem [23], (W /y/n)) L 0as )\ — . Extending

the above to complex domain and to random vectors using mul-
tivariate central limit theorem [23, p. 385], we obtain

S (Hrex, — pmps) d
= N, (0, Cov (H .
\/ﬂ - ( OV( 16X1))

When N is Poisson, let N (m) be the number of sensors trans-
mitting data level 7. Since N(™) is a thinning Poisson process
[24, p. 317], N (m) ig independent for different data levels and

Su,

oy/nag

< N(0,1). (39)

N ~ Poiss(Apg(m)).

Therefore, the vector Y has independent entries. Applying the
aforementioned central limit theorem for random summands, to
each entry of the vector we obtained the needed result.

C. Proof of Lemma 1

Let f; ~ Ne(p, 3;). The KL distance D( fo|| f1) is given by
Yi(k, k
D(follh) =3 (m%
- ;
Yo(k, k) + [po(k) = pa(F)[?
+( Za(k, b) -1))-

Define density function f, by

_ foy) i)Y
H)= [ foy) fi(y)t7dy’

The Chernoff information is given by [18],

C(fo, 1) = D(f+-[1fo) = D(f

f1)-

Solving the above equation yields the expression for Chernoff
information. For our setup, we find expressions for u; and ¥;.
]

D. Proof of Lemma 4

a) To prove the monotonicity of D A, and CNBW with respect
to A and ~y, we see that

0D _ §~ (0D dox 0D d
aA_kzl dap, ON  Odwy OX |7

From the expressions of ay, and wj, we find that

oD 1 oD
_— = ———|—1+wk 7—:Olk—1.
day, g Owy,
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We see that A < 0 implies oy, < 1,wg < 0, (O /ON) <
0 and (Owy, /OX) < 0. Similar results can be obtained for
aj > 1. Combining the above, (0D /0A) > 0. Similarly

we obtain
oD
— = ar — 1AA >0
n zk:( k—1)
oD oD day
= — 0.
OsNR ; Oay, OsnNr

Similar results can be obtained for Cl .

b) As A —  oo,ar —  (pg,(k)/pe,(k)) and
limy oo (wi(ap —1)/X) = (vA2%/pe, (k)). This gives
the result for ENFP()). As A — o0, B — (1/\/ax)
and, hence, the result for EBP()).

E. Proof of Theorem 6

Define
f(z) £ (<logz + —1)
a logx a za+1
g(z) = Pt h(z,a,b) = 1
For the zero-mean fading, we have
M
D= Zf(ak) ap = h(XapGo (k)7p91 (k))
k=1

M
C= Zf(ﬂk) Br = g(ag).
k=1

a) Monotonicity: g'(z) < 0 and

Qﬂamm{

o.w. ox

a>b
0.0,

<0 z<1,
>0

/ >0
f'@){ 0
Combining the above results, we obtain C;( > 0 Similarly,
we obtain C; < 0.

Limits: We find C by substituting, limy_,o ar =
(pe, (k) /pe, (k)) and see that Cy < o0 for pg, (k) >
0 Vi, k.

Extremal Points: Let Iy = (Cy/x). Now, £ = 0 im-
plies

b)

c)

(40)

We have £y = 0 and £, = 0 and F is differentiable. This
implies that solution exists for (40). Let x.. be the solution. Then
the double derivative at ., is given by

Therefore, x is the unique maximum. Similar results follow for
D,. O
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