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Abstract—The aim of this paper is to present a study on the
potential and limits of the S-transform and its inverses. The
S-transform is an extension of the short-time Fourier transform
with characteristics of the wavelet transform. It is mostly used
for time-frequency analyses. Two different inverse S-transforms
have been presented in the literature. We explain why the most
recent one is an approximation but a very good one. The level of
approximation is calculated in this paper. We then discuss the
relative merits of both inverses. A careful study enables us to
show that, although both inverses are nearly exact in the infinite
continuous domain, this is not true anymore in the practical finite
discrete domain. Side effects are quantified, and typical examples
are given. Time-frequency filtering is one of the main applications
of the S-transform. We evaluate the effects that occur when using
the S-transform and its inverses for filtering.

Index Terms—Local spectra, S-transforms, time-frequency
analysis, time-frequency localization, time-varying filters.

1. INTRODUCTION

N many applications such as seismology, speech processing,
I or astronomy, signals are not stationary, obliging to work
on local spectra rather than global ones. This can be achieved
with several techniques, among which one of the first has been
the short-time Fourier transform (STFT) [1]. The STFT is a
fixed-resolution analysis where sliding windows are used to ob-
tain time-localized spectra. One of the drawbacks of the STFT
is that it exhibits poor time resolution at high frequencies, and
it cannot accurately resolve low frequencies whose periods are
longer than the duration of the window. An extension of STFT,
lying between it and wavelets [2], is the S-transform (ST) [3]. In
this method, the frequency-dependent window allows for a fre-
quency-dependent resolution with narrower windows at higher
frequencies and wider windows at lower frequencies. This trans-
form has already been used in different applications ranging
from medicine [4], [5] to geophysics [6], [7].
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One of the advantages of the ST is that it is theoretically
perfectly invertible [3], although the practical implementation
(back transform) may lead to artifacts, when the local spectra
are modified. In [8], an alternative approach to compute the in-
verse is proposed. The motivation for this approach was to re-
duce artifacts caused in filter applications when the time-fre-
quency spectra are modified before the back transform. We show
in Section III that the definition of the inverse given by [8] con-
tains an approximation, which can, however, be made arbitrarily
small. In this paper, we also analyze and compare these two in-
verses, in the continuous domain (Section III). As will be dis-
cussed in Section IV, important side effects can occur when dis-
cretizing both the direct ST and its inverses. Before concluding,
we will study in Section V the effects of both inverse S-trans-
forms (ISTs) when filtering. But first, let us briefly recall the
properties of the S-transform in Section II.

II. THE S-TRANSFORM
The ST of a time series u(t) is defined as [3]

S(r, f) = 7 u(t)w(t — 7, fe” 2™ tdt 1)
where the window w needs to be 1 mean, as follows:
7w(t7f)dt =1 Vfel. 2)
The most usual chosen window w is the Gaussian one
w(t, f) = /1 e_% k>0 3)

k27 '

in which f is the frequency, ¢ and 7 the time variables, and &
a scaling factor that controls the number of oscillations in the
window. When £ increases, the frequency resolution increases,
with a corresponding loss of time resolution. It should be noted
that the Gaussian window has a frequency-dependent variance
o2 = (k/f)2

As shown in [3], (1) can be equivalently written in terms of
the Fourier transform (FT) of the signal, taking advantage of the
fact that the FT of a Gaussian is a Gaussian:

S(r, f) = / Ula+ fle” 77 e®maTde (4
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where U( f) is the Fourier transform of u(t) [see (5)]. This way
of writing the ST will be called the frequency ST in the fol-
lowing, whereas the other way, (1), will be called the time ST.

III. INVERSE S-TRANSFORM: CONTINUOUS CASE

As the ST contains redundant information, more than one in-
verse can exist. As illustrated in Fig. 1, the two inverses pre-
sented here are based on different philosophies: the frequency
IST (Section ITI-A) sums over time to yield the FT of the signal,
whereas the time IST (Section III-B) sums over frequency and
transforms directly back to the time domain.

A. Frequency Inverse S-Transform
We define the Fourier transform U ( f) of a signal u(¢) and its

inverse as

oo

Ui = [ ute = )
u(t) = / U(f)e2imItdf, ©)

As observed in [3], one of the nice properties of the ST is that
it is perfectly invertible. Indeed by summing over all times and
using (2), we obtain the FT of the original signal

[ stnar=vis) @

where U(f) is the FT of u(t).
Therefore, it is easy to go back to the original signal by sum-
ming over all frequencies. Finally, we obtain

J[ s

B. Time Inverse S-Transform

2ftArdf = u(t). )

Following [8], we start by defining the following set of
time—time functions:

f2r=1)?

zp(T,t) = u(t)e 22 . )
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It is obvious that Vf, x (¢,t) = u(t). Now, from z, it is pos-
sible to go back to the ST up to some constant factor

X(r. f) = / wy(r ) *”ffdt—’“ﬁ%( ). (10

It is important to notice that contrarily to what is written in [8],
this is not an FT due to the dependence of =5 on f. However, we
will show here that this inverse, although not completely exact,
is a very good approximation.

Based on (10), in [8], the following inverse is proposed:

a(r) = / X(7, f)e?™Tdf. (an
This equation can be rewritten in the following way:
a(r) = / / FURm 2inf(r=0) d £y (12)
_ S i bt
= u(t) e” 27 e df | de. (13)
If we set
° 2
I(z) = / e T etITdf (14)
we have
u(r) = ux I(7). (15)

For the inverse to be exact, I(7) should be equal to the Dirac
function. In the following, we calculate its value.
We can rewrite (14) as

oo

I(z) = / e T cos(2m fa)df +i / e BT sin(2n fa)df

(16)
where i = /—1. Let us set R( ) the real part of I(x) and
I;(z) its imaginary part. As e=(/"*"/2¥*) i5 even and sin (27 f )
is odd, we immediately obtain I7(z) = 0. On the other hand,
cos(27 fx) is even, so we get

I(z) = Z/e_ T cos(2n f)df. (17)
0
It can be shown [9] that
2,2 1
I(z) = V2rke ™ ¥ — VzeRR. (18)
C (k)
Let us set
€
Ie(z) = e|z|™" = — |z (19)
|z
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We know [10] that lim._,g I.(z) = 6(z). Letus set C(k) = €
in (18). For C(k) small enough, we can thus approximate I(z)
by I.(x) as || ~ 1 for e small. Therefore

(20)

for large C(k).

In reality, the constant term C(k) of I(x) (18) decreases
rapidly with k. For example, C(0.5) 0.9 x 1073,
C(1) ~ 1078 and C(1.5) ~ 107, Therefore, for k > 1,
C(k) ~ 0, and I(z) ~ é(x), where § is the Dirac function. We
thus have

~

w(r)=uxI(1) 2 uxb(r) =

u(r). Q1)

IV. COMPUTING THE S-TRANSFORM AND ITS INVERSES IN
THE DISCRETE CASE

In this section, we will discuss the artifacts that occur when
the ST and its inverses are discretized.

A. Discrete S-Transform

Let u[n] = u(nT), n = 0,..., N — 1 denote the discrete
time series, corresponding to u(t), with time sampling interval
of T. Let fs = 1/T be the sampling frequency and fy be the
frequency step, and M = fs/foandm = -M/2,... M/2—1
is the index of frequency range. We can then write the discrete
ST as

1(m(p—m)\?2 .
e—a(%) e—Z’LTr"]C}I

(22)

withp = 0, ..., N—1being the time index. In [3], the definition
of the ST in the frequency domain (4) is used to compute the ST
in the discrete case. It is thus computed as

M/2-1 m+q e
_9(zak)? 9;rap
3 U[T}e (55) 2imd: (23)
q=—M / 2
where U[m/M] is the discrete FT of u[n]. However, great care
should be taken as, while it is true that the continuous FT of
a Gaussian is a Gaussian, this is not necessarily true anymore
in the discrete case. In fact, to be exact, it would be necessary
to compute the discrete FT of the desired Gaussian functions
and not to use directly discrete Gaussians in the frequency do-
main. This can be understood in the following way: the flatter
the Gaussian is (i.e., the bigger the standard deviation is), the
more information will be lost as only a finite number of sam-
ples will be used to calculate the Fourier transform. Here, as
seen in Section III, the standard deviation of the Gaussian is
o = |k/f]|. Therefore, the loss on the FT of the Gaussian will
differ depending on the frequency. Fig. 2 illustrates this effect.
It represents the absolute value of the time [Fig. 2(b)] and fre-
quency [Fig. 2(a)] ST of a Delta function on the frequency axis,
using equations (22) and (23), respectively. We see that using
(23) leads to problems at low frequencies as explained above.
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Fig. 2. Comparison between the two ways of computing the ST. (a) Absolute
value of the ST of a Delta computed in the frequency domain; (b) absolute value
of the ST of a Delta computed in the frequency domain.

Only low frequencies are presented in Fig. 2 as, at high frequen-
cies, results are equivalent for both inverses.

B. The Discretized Version of the Frequency Inverse
S-Transform

In its discrete form, we define the following inverse discrete
FT:

M/2—1
2iTtmn

u[n]:% S Ufme®
m=—M/2

(24)

for any u and where U is the FT of u.
In order to compute the inverse ST, [3] uses the formula of
the ST in the frequency domain (4). They then obtain

N-1
Ulm] =Y S[p,m] (25)
p=0
where U is the estimate of U and
1 M/2—-1 N-1 N
ifn] = 5 > > Slpymle W (26)

m=—M/2 p=0

In order to compute (26), we need (4). But, in the previous sec-
tion, we have explained that (4) is only valid in the continuous
domain as in the discrete case, it leads to some side effects seen
in Fig. 2.

Furthermore, because of the use of the FT, as many frequency
samples as time samples (N = M) are required. In the case of
geophysics applications for example, this is a major drawback
as we have to deal with a long time series whereas only a few fre-
quencies are relevant. Consequently, many redundant frequency
samples are calculated, leading to an inefficient algorithm.

C. Discretized Version of the Time Inverse
In the discrete case, @(t) (11) can be rewritten as
M/2-1

S )

N-1 1

ifn] = 3 ulp) -
p=0 m=—M/2
~ e—Ziﬂ% (p—n)

=u® I4[n]

27)
(28)
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where (® is the circular convolution and

M/2-1

Id[n]:% Y el

m=—M/2

2
mn i
Mk ) e2imarm,

(29)

In the continuous case, we have shown that I (14), the equiva-
lent of I, is nearly a Dirac function. In the discrete case, I is
an approximation of the Kronecker Delta function, the approxi-
mation coming from the one of I and from the fact that there is
a finite number of samples. The creation of artifacts is discussed
in the following.

We can rewrite (28) as

N-1

afn] = u[n]lal0] + Y ulpllaln - p]

p=0,p#n

and I4[0] = (1/M) 2%42__1\2/2 1 = 1 so the error is
Z;\:&p 4n u[plLa[n — p]. But I4[n] has an upper limit of
| Mo ,
Lafnl| <57 > e B[] a0)
m=—M/2
M/2-1 ,
<+ o3 (5%) 31)
m=—M/2

Equation (31) is a sum of Gaussians with standard deviation of
|Mk/n|. As it is a sum of positive numbers, we get

k27

Ii[n] < Vn € IN* (32)
where the IN* stands for the set of positive integers. Going back
to (30), we see that I;[n] has local maxima when e7 (/M) —
1i.e., when mn/M € IN or whenn = aM, a € IN as m € IN.
We easily see that the artifacts are small but with peaks at each
n = aM being smaller with a increasing. The relation between

the first maximum and the second one is

> (33)

As in the continuous case, the precision of the method depends
on the choice of k but, in the discrete case, we also have to take
into account the sample numbers. Equation (33) is an impor-
tant feature since it helps for the choice of M and & for each
application.

In order to have a better idea of the function I;, we have
plotted it for M = 101 and for k£ = 0.5 to 5 in Fig. 3. It shows
a zoom on the horizontal and vertical axis for visual purposes.
Note that the amplitude of the middle sample is 1 for all values of
k and that the curves are very similar outside the window shown
in Fig. 3. We can see how close it is to a Kronecker Delta. Only
k = 0.5to 2.5 are pointed out as the other ones are too close to a
Delta to be really distinguishable. As explained in Section III-B
for the continuous case, for £k > 1, I (or I) is a very good
approximation of a Delta (or Dirac) function.
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Fig. 3. Effect of the discretization of the time inverse ST: I; for
M = 101 points with k& = 0.5 to 5 (horizontal zoom between —5 and
5, vertical zoom was applied as all curves behave as a Delta function at the
middle sample). If perfect, I; should be equal to a Delta.
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Fig. 4. Time-domain Delta function, transformed to time-frequency domain
and back to time domain using the four possible combinations of ST-IST pairs
mentioned in this paper.

D. Comparing the Side Effects Between Both Inverses

In order to further illustrate the problem of the side effects,
we will show the simple case of a Delta function in Fig. 4.
We will compute its ST both time (22) and frequencywise (23).
We then use both inverses, (26) and (27). If perfect, the result
should thus be the original Delta function. In the plot, “freq.
ST” corresponds to (23), “time ST” to (22), “freq. inverse” to
(26), and “time inverse” to (27). Interesting conclusions can be
drawn from this figure: the side effects of the frequency ST and
of the frequency inverse nearly cancel out when the signal is not
modified.

Furthermore, the artifacts of the frequency ST sum with those
of the time IST as does the time ST with the frequency IST. The
last combination, i.e., time ST with time IST, leads to the small
side effects already studied in Fig. 3 (Section IV-C).

We thus see that the choice of which ST and which inverse, al-
though equivalent in the continuous infinite domain, is far from
being neutral in the discrete finite case. Out of Fig. 4, it seems
to be better not to mix frequency and time method, i.e., either
the frequency ST and frequency inverse should be applied or the
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Fig. 5. Original chirp used in [8, Fig. 2] and its ST. Inside the dotted lines, a
0-weight will be applied. Outside the dotted lines, a 1-weight will be applied.

time ST and time inverse. Obviously, none of the combinations
completely avoid all the artifacts.

In order to have an insight on the practical implications of
these effects, the example of Fig. 2 of [8] is taken: a limited time
chirp is used as the basic signal (see the top graph of Fig. 5). Its
time ST is plotted in the bottom graph of Fig. 5, with the dotted
lines representing the mask that will be applied on it. The mask
equals 1 everywhere except inside the rectangle where it is null.
Therefore, only the part inside the rectangle should be removed.

The side effects that occur when filtering are somewhat dif-
ferent to [8] and shown in Fig. 6(a) and (b). More details on the
consequences of the use of the ST when filtering are detailed
in the following section. This example clearly shows the dif-
ferent consequences of the discretization when using the time
or frequency ST and its inverses. The lack of time localization
is clearly seen on both top plots where oscillations occur outside
of the limits of the chirp. Furthermore, we see the importance
of using the time ST when using the time IST.

Note that in parallel and independently to this contribution,
[11] has studied the error made when using the discrete-time
IST. However, he used the discrete-frequency ST in combina-
tion with the discrete-time IST, introducing some low-frequency
error as shown in the bottom plot of Fig. 6(a). The frequency er-
rors in Figs. 1(c) and 2(c) of [11] could have been avoided by
using the time ST-IST combination.

V. FILTERING WITH S-TRANSFORM

One of the interests of the ST lies in the capacity of filtering
a signal in the time-frequency domain before going back to the
time-filtered signal. After filtering with a filter F'(¢, f), we are
led to the following signals:

upy(t) = / / S(r, [)F(r, )™ tdrdf — (34)
ups(t) = kv2r / SGRILIUE) (t’fﬁﬁ U1) pimrias  3s)

where w1 and upo are the filtered versions of w using the fre-
quency (8) and time (11) inverses, respectively. In the following,
we are going to study the correctness of using ST for filtering.
In order to get some insights on the effects, we will study two
specific cases: a time filter and a frequency filter. Here, we
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define the time and frequency filters as bandpass, which act
either on time or frequency without affecting the other vari-
able. It should be noticed that the side effects shown in the
next two sections would be the same if a separable time-fre-
quency filter F'(t, f) were applied, i.e., if it could be written as

F(t, f) = Fi(t)Fa(f).

A. Time Filtering

In this section, we consider a filter that is only time dependent.
Therefore, the ST is in reality not necessary to filter the signal,
and we expect the following result:

up(t) =u(t)F(t). (36)

The FT of ur is of the form
Up(f) =U(]) * E(f) (37)
= / U(f - a)F(a)da (38)

where F' is the FT of the filter F.

1) Using the Frequency Inverse: As this IST computes the
FT of the signal first, we will directly study the effect of filtering
on the FT of the signal.

oo

| / S(r, f)F(r)dr

— 00

Ur1(f) (39)

7 27242 .
/ / U(f +a)e #2777 2™ F(r)drda  (40)

oo

= / U(f —a)e *’2;’ / e 2meT B(r)drda (41)
— [ Ui - e B Playa “2)

where we made a change of variable from « to —« to go from
(40) to (41).

We thus see that, instead of the expected result (38), the FT
of the signal isaweigthd at each frequency by a Gaussian-type
function e~ (¥°7*”/f*) Note that due to the dependence on
a/ f of the Gaussian, Ur1 (f) cannot be written as a convolution
anymore. First, independently of the chosen signal, the effect of
filtering is illustrated in Fig. 7 where a simple square box filter is
chosen. The figure represents the FT of the filter with a solid line
while the dashed—dotted lines are the FT of the filter weighted
by the Gaussian at different frequencies: e=(2%° ™ o*/1*) ()
as shown in (42). It can be seen that the filter changes a lot with
the frequency and that it always loses some oscillations. Figs. 8
and 9 illustrate this effect on a couple of examples. Fig. 8 rep-
resents a simple Delta that has been filtered by a square box
ranging from —15 to 15, whereas Fig. 9 is a chirp on which the
same filter has been applied. On both of them, the top part rep-
resents the time version of the filtered signal while the bottom
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Fig. 6. Comparison of the use of the two ST-IST’s procedures on the time-limited chirp Fig. 5. (a) Filtered chirp used in [8, Fig. 2]. Top plot uses a frequency ST
and a frequency IST. Bottom plot uses a frequency ST and a time IST. (b) Filtered chirp used in [8, Fig. 2]. Top plot uses a time ST and a frequency IST. Bottom

plot uses a time ST and a time IST.

03 b

0.25

0.2

0.15

0.1

-0.05

Fig. 7. Simple rectangular filter was chosen for this example. The solid line
represents the FT of the filter. The dashed—dotted lines are the FT of the filter
weighted by different Gaussian functions depending on the output frequency.
They represent the filters used in the frequency IST instead of the desired one.

one represents its FT. On the top part of Fig. 8, a zoom has been
applied for the sake of clarity.

In time domain, using Parseval’s theorem, we can rewrite the
filtered signal (42) in the following way:

T |f| _@=m2s2 2im f(T—t)
= F 2k2
wen (1) / / ur) P () e o dfdr
(43)
=up(t) x h(t) (44)
where
M) = —— /oolfle‘%e””ftdf (45)
k\/ﬂi ’

Zoom of the filtered Delta

0.5¢ 1
0 - 2] \«4 i
Ti
(Time}-10 0 Expected filtered signal
1.5 A '=="Filtered signal using freq. IST
1 <"— ~,
;' \,
L4 A
0.5 ; .
(Freq-)o FFT of the filtered Delta
-50 0 50

Fig. 8. Filtering of a Delta: expected result (solid line) and result through fre-
quency IST (dashed—dotted line). The top plots represent a zoom of the filtered
signal in the time domain. The bottom plots represent the filtered signal in the
frequency domain.

We can show that the integral of h(¢) can be calculated and
gives

1

where C is a constant subject to

C = k(\/2/7 — 2kme™>" ¥ erfi(v/2kr)).

When k = 1 for example, C' ~ —2.2 % 10~2. The filtered signal
is thus not only multiplied by the time filter F'(¢) as expected but
also convoluted by C'/t? where the value of h(t) is independent
of F'(t). This means that there is an extra windowing operation
that affects the expected filtered output u(t). Although h(t) is
well localized due to its 1/t? dependence, the final filter output
is smeared by the convolution with h(¢).
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Filtered chirp

-0.5F

(Time)_50 0

Expected filtered signal
10 == Filtered signal using freq. IST

-10
(Freq.) =50 50

0
FFT of the filtered chirp

Fig. 9. Filtering of a chirp: expected result (solid line) and result through fre-
quency IST (dashed—dotted line). The top plots represent the filtered signal in
the time domain. The bottom plots represent the filtered signal in the frequency
domain.

2) Using the Time Inverse: Applying (35) with F(¢, f) =
F(t) gives

g [ SEDEW ainge
pa(t) = k2 ZO L if @
=a(t)F(t) ~ u(t)F(t) (48)

which is the expected result.

B. Frequency Filtering

When a filter F' is only frequency dependent, it could be di-
rectly applied on the Fourier transform signal without using the
ST. Therefore, the expected results are the following ones:

(49)
(50)

Ur(f) =U(HE(S)
up(t) =u(t) * F(t)

where F is the inverse FT of the filter F.
1) Using the Frequency Inverse:

F(t, f) = F(f), we get

Applying (34) with

Uri(f) = / S(r. [)F(f)dr

(5D
=U(NF(f) (52)
which is the expected result.
2) Using the Time Inverse:
ups(t) = kv2r / wemﬂd f (53)
=uxl F_(t) (54)

where, by analogy with (11), we have defined Ip(t) =
ffo e—(f2t2/2k2)62i7rftF(f>df.

If we compare (54) with the timg—domain filtering (SQ), we
see that the inverse FT of the filter F'(t) = [*_ F(f)e*™ftdf

is weighted by a time-frequency-dependent Gaussian
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Fig. 10. Simple rectangular filter in the frequency domain was chosen for this
example. The solid line represents this filter. When using the time IST (11),
instead of a product of the FT of the original signal by this filter, the FT of the
signal is multiplied by the filter shown in dashed—dotted line.

Filtered FFT cos

(Freq.)—50 0 Expected filtered signal
----- Filtered signal using time IST

0.3

0.2F

01F

0
(Time)-50

50

0
Filtered cos

Fig. 11. Filtering of an IFT of a cos: expected result (solid line) and result
through time IST (dashed—dotted line). The top plots represent the filtered signal
in the frequency domain. The bottom plots represent the filtered signal in the
time domain.

e (FP/2K")  We first illustrate this effect independently
of the chosen signal, plotting a square-box frequency filter
F(f) (solid line) and the FT of the function I using the same
filter in Fig. 10. It can be seen from this figure that the edges
of the square-box frequency window have been smoothed in
a symmetric manner and similarly to a taper. Thus, the filter
can be understood as a frequency taper. In any case, this can be
a welcome process in order to lower Gibbs effect when going
back to the time domain.

Figs. 11 and 12 show this filtering on, respectively, an IFT of
a cosine and on an IFT of a chirp. In each figure, the top plots
represent the filtered FT of the signal whereas the bottom plots
represent the filtered time signal. The smoothing effect of I is
clearly seen on these plots.

C. Example of Time-Frequency Filtering

The purpose of this part is to illustrate the side effects that
occur when filtering using the ST and its inverses on some more
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Fig. 12. Filtering of an IFT of a chirp: expected result (solid line) and result
through time IST (dashed—dotted line). The top plots represent the filtered signal
in the frequency domain. The bottom plots represent the filtered signal in the
time domain.
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Fig. 13. Original signal and its time ST. (a) Original signal: the central part
between the vertical lines is a sum of three sines. The side parts are random
noise. (b) ST of the original signal.

realistic case. The chosen signal is a sum of three sines of fre-
quencies 2.3, 3.5, and 4.3 Hz. We just kept the central part (be-
tween —11 s and 11 s), concatenating some noise on the side
parts. The original signal and its ST are plotted in Figs. 13, with
the vertical lines representing the limits of the sum of sines.
We then apply the square time-frequency weighting function of
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Fig. 14. Mask that will be applied on the original signal [Fig. 13(b)].
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Fig. 15. Time-frequency filtering a noisy sum of sines [Fig. 13(a)], using the
frequency IST on the top plot and the time IST on the bottom plot. (a) Filtering
using the frequency IST; (b) filtering using the time IST.

Fig. 14 on this signal. We thus expect to obtain only the central
part of the signal, i.e., the sum of sines. The results are presented
in Figs. 15 and show the different artifacts that occur using
the frequency IST [Fig. 15(a)] and the time IST [Fig. 15(b)].
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This example is a good illustration of what was pointed out in
Section III-B, namely that the time localization of the phasor
has been lost using the frequency IST because of the averaging
performed in frequency. Indeed, this leads to some oscillations
outside of the mask window in Fig. 15(a) which do not appear
in Fig. 15(b).

For further practical examples of the filtering with the ST and
its inverses, the reader can look at [12].

VI. CONCLUSION

This paper has allowed a better understanding of the S-trans-
form and its two existing inverses ([3] and [8]). In the contin-
uous case, we have shown that the frequency inverse is exact and
that the time inverse is nearly exact, with the error being neg-
ligible for £ > 1 (which is the most usual case), i.e., after ap-
plying the ST and any of its inverses on a signal, we are led back
to the original signal. However, in the finite discrete case, we
show that one should be careful on how to compute the ST. We
also explain why none of the inverses are exact in the finite dis-
crete domain and quantify the different artifacts that occur when
discretizing the two inverses. Moreover, we emphasize another
drawback of the frequency IST: it obliges the calculation of as
many frequency slots as time slots, which can be a major incon-
venience when dealing with big data sets such as in geophysic
applications. For the discrete-time IST, the level of approxima-
tion depends on the number of points and on the tunable scaling
factor, k. For reasonable values, the discretizes version of the
time IST has nearly no side effect.

The last part of this paper gives insights on the effect of these
approximations when the ST of a signal is filtered and then
back-transformed. In order to obtain a better understanding, we
specifically studied the case of time filters and of frequency fil-
ters. We show that the use of the frequency ST-IST combina-
tion for time-dependent filtering leads to some time localization
problem. On the other hand, the use of the time ST-IST combi-
nation for frequency-dependent filtering leads to some (some-
times desirable) smoothing effects.

The inverses differ due to their different strategies so care
should be taken in the application of them, the best one de-
pending on the application. The time approach may often be the
better choice if one is interested in time-domain postprocessing
or interpretations. Conversely, the frequency inverse transform
can be of advantage whenever frequency separation is more im-
portant than time separation.

REFERENCES

[1] D. Gabor, “Theory of communication,” J. Inst. Elect. Eng., vol. 93, pp.
429-457, 1946.

[2] S.Mallat, A Wavelet Tour of Signal Processing, U. London, Ed. New
York: Academic, 1998.

[3] R. G. Stockwell, L. Mansinha, and R. P. Lowe, “Localization of the
complex spectrum: The S transform,” IEEE Trans. Signal Process.,
vol. 44, no. 4, pp. 998-1001, Apr. 1996.

[4] S. Assous, A. Humeau, M. Tartas, P. Abraham, and J. L’Huillier,
“S-transform applied to laser Doppler flowmetry reactive hyperemia
signals,” IEEE Trans. Biomed. Eng., vol. 53, no. 6, pp. 1032-1037,
Jun. 2006.

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 55, NO. 10, OCTOBER 2007

[5] S.Andino, R. Menendez, C. Lantz, O. Blank, C. Michel, and T. Landis,
“Non-stationary distributed source approximation: An alternative to
improve localization procedures,” Human Brain Mapping, vol. 14, pp.
81-95, 2001.

[6] M. Schimmel, J. Gallart, and C. Simon, “An alternative inverse
S-transform for filters with time-frequency localization,” in Proc. 4th
IEEE Symp. Image Signal Processing Analysis (ISPA), Barcelona,
Spain, 2005, pp. 424-429.

[7] C.Pinnegar and L. Mansinha, “The S-transform with window of abri-
trary and varying shape,” Geophysics, vol. 68, no. 1, pp. 381-385, 2003.

[8] M. Schimmel and J. Gallart, “The inverse S-transform in filters with
time-frequency localization,” IEEE Trans. Signal Process., vol. 53, no.
11, pp. 4417-4422, Nov. 2005.

[9] L S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Prod-
ucts, 6th ed. New York: Academic Press, 2000.

[10] J. Spanier and K. B. Oldham, An Atlas of Functions.
Hemisphere, 1987.

[11] C.R. Pinnegar, “Comments on ‘The inverse s-transform in filters with
time-fequency localization’,” IEEE Trans. Signal Process., vol. 55, no.
10, pp. 5117-5120, Oct. 2007.

[12] M. Schimmel and J. Gallart, “Frequency-dependent phase coherence
for noise suppression in seismic array data,” J. Geophys. Res., vol. 112,
no. B4, 2006, B04303.

Bristol, PA:

Carine Simon was born in Pont de Beauvoisin,
France, in 1972. After a degree in mathematics,
she received the Engineering degree in
telecommunications and signal processing from the
Ecole Nationale Supérieure des Télécommunications
de Bretagne, France, in 1996 and the Ph.D. degree
from Laboratoire Systtme de Communication,
University of Marne-la-Vallée, France, in 1999.
Her Ph.D. dissertation focused on blind source
separation for convolutive mixtures. She then
worked on mobile communications and in particular

in mobile localization.

She is now at the Technology Marine Unit from the Spanish National
Council, Barcelona, Spain, and her main interests are in design of filters for
large nonstationary datasets, seismic signal detection and identification, and
multiresolution methods.

Sergi Ventosa was born in Vilafranca del Penedes,
Spain, in 1976. He received the B.S. and M.Sc.
degrees in electronics and telecommunication engi-
neering from the Technical University of Catalonia,
Barcelona, Spain, in 1999 and 2002. He is currently
working toward the Ph.D. degree in signal processing
applied to geophysics at the Marine Technology
Unit of the Spanish Research Council, Barcelona,
Spain. His main interests are nonstationary signal
analysis, multidimensional signal processing and
pattern recognition techniques.

Martin Schimmel received the degree in geo-
physics from the University of Karlsruhe, Karlsruhe,
Germany, in 1992 and the Ph.D. degree from the
University Utrecht, Utrecht, The Netherlands, in
1997.

From 1997 to 2001, he was a Postdoctoral Re-
searcher at the Department of Geophysics, IAG,
University of Sao Paulo, Brazil. Since 2001, he has
been contracted as a Researcher at the Institute of
Earth Sciences Jaume Almera of the High Spanish
Council for Scientific Research (CSIC), Barcelona,
Spain. His current research areas are seismic signal detection and identification,
seismic wave propagation, and seismic tomography and migration.




SIMON et al.: THE S-TRANSFORM AND ITS INVERSES: SIDE EFFECTS OF DISCRETIZING AND FILTERING

Alexander Heldring was born in The Netherlands
in 1966. He received the Master’s degree in engi-
neering from the faculty of Applied Physics of the
Polytechnic University of Delft, The Netherlands,
and the Ph.D. degree from the Polytechnic University
of Catalunya, Spain.

After completing his Master’s degree, he spent
four years in the Sensors, Radar Technologies and
Cyber-Security Unit (SERAC) Group at the Joint
Research Centre of the European Union in Ispra,
Italy. Since 2002, he has been working at the Signal
and Processing and Communications Group of the Polytechnic University
of Catalunya, Spain. His main interests include antenna modelization and
numerical simulation of electromagnetic phenomena.

Juan Jo Danobeitia was born in Santa Cruz Tenerife,
Spain, in 1955. He received the M.Sc. degree from
the Madrid Complutense University, Spain, and the
Ph.D. degree from the Vening Meisnez Laboratory,
University of Utrecht, Holland, both in physics.

He has been an Assistant Professor at the Univer-
sity of Barcelona, Spain, from 1988 to 1990 and the
Politechnical University of Catalunya, Spain, from
1992 to 1994. Since 1992, he has been a Researcher in
the Spanish National Council, Barcelona, Spain. He
was Director of the Department of Geophysics from
1997 to 2000. Since 2001, he has been Director of the Marine Technology Unit.
He is author or coauthor of over 70 referred publications. His main research in-
terests are in geophysical modeling, seismology, marine technology, continental
margin process, and deep oceanic structure.

Dr. Dafobeitia has organized international symposia, and he has been in-
volved in over 30 European or national projects.

4937

Josep Gallart was born in Barcelona, Spain, in 1954.
He received the Physics degree from the University of
Barcelona, Spain, in 1976, the Ph.D. degree in earth
sciences at the University Pierre et Marie Curie, Paris,
France, in 1980, and the Ph.D. degree in geophysics
from the University of Barcelona, Spain, in 1981.

He worked at the Institut de Physique du Globe de
Paris. In 1985, he joined the University of Barcelona
as Professor and moved in 1988 to a research position
at the Institute of Earth Sciences-CSIC, Spain, where
he has held a Research Professorship since 1999.

He has accomplished internationally recognized research in earth sciences,
focused on studies on the Earth structure and dynamics, based on techniques of
seismology, seismic imaging, and tectonophysics. He has led and coordinated
over 20 national and international projects in different tectonic environments,
studying the structure and dynamics of the lithosphere, continental margins, sub-
duction zones, volcanic systems, etc. He has supervised ten Ph.D. dissertations.

Dr. Gallart has been a member of the ORFEUS Board of Directors since 1989,
and a Spanish representative in the Commission of Controlled Source Seis-
mology (CCSS) of the International Association of Seismology and Physics of
the Earth Interior (IASPEI) since 1996. He has been a member and Spanish rep-
resentative in the European initiatives EuroArray and Topo-Europe since 2005.
He has been Vice-Director of the Institute of Earth Sciences and Head of the
Geophysics Department of that Institute. He has been a member of the Earth
Sciences Evaluation Panel of the Spanish Agency (ANEP) since 2004.

Antoni Manuel was born in Barcelona, Spain, in
1954. He received the telecommunication engi-
neering degree and the Ph.D. degree in telecommu-
nication engineering from the Technical University
of Catalonia, Spain, in 1980 and 1996, respectively.

Since 1988, he has been an Associate Professor
in the Department of Electronic Engineering at the
Technical University of Catalonia, where he has been
Director of the research group Remote Acquisition
Systems and Data Processing (SARTI) since March
2001. He is also the Coordinator of the Tecnoterra
associated unit of the Scientific Research Council through the Jaume Almera
Earth Sciences Institute and Marine Science Institute. His current research inter-
ests are in applications of automatic measurement systems based on the concept
of virtual instrumentation and oceanic environment. He is currently involved
in more than ten projects with the industry and seven funded public research
projects.



