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Abstract—
This paper introduces a new family of IIR adaptive notch

filters that forms multiple notches using a second-order factor-
ization of an all-pass transfer function. The new orthogonal real-
ization is amenable for adaptive filtering to obtain the unknown
frequencies of interest. Two new adaptive filtering algorithms are
presented that can achieve fast convergence at low computational
cost. Local convergence analysis for the new algorithms is per-
formed, and a detailed discussion of their properties is provided.
The new all-pass based notch realization introduces a different
compromise between bias and signal-to-noise ratio (SNR) when
compared with realizations previously reported in the literature.
Specifically, it achieves lower bias than other approaches at low
SNR. This property is particularly attractive for the estimation
and tracking of multiple sinusoids. Furthermore, the bias can
be made arbitrarily small or can be accurately estimated and
compensated for. Extensive computer simulations are provided
to illustrate performance of the proposed adaptive notch filters
in terms of bias, speed of convergence, and tracking capability.

I. INTRODUCTION

The classical problem of low complexity multiple sinusoid
frequency estimation can be traced back to the Adaptive Line
Enhancer [1] where mean-square error (MSE) minimization
was achieved using an FIR prediction filter structure. FIR
solutions have proved to be inefficient to recover sinusoids
in noise, mainly because a high-order filter is required to
model a deep notch filter. A more practical alternative is IIR
based adaptive notch filters (ANF) or narrow bandpass filters
with a very selective frequency characteristic. Although an
exact solution is not available, efficient approximations can
be obtained using IIR ANF realizations of adequate order.

IIR ANF are today a low-complexity alternative for fre-
quency estimation in many application areas. Examples of
communications systems applications are narrowband interfer-
ence cancellation in direct sequence spread spectrum signals
[2] and fast fading channel estimation [3][4].

A popular approach for IIR ANF, proposed in [5], utilizes
a canonical 1 direct-form realization of order 2M , M being
the number of unknown frequencies. The zeros of the ANF
are located on the unit circle, and the modulus of the poles
(with the same angles as the zeros but inside the unit circle) is
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1Minimum number of parameters corresponding to each of M unknown
frequencies to estimate

a user defined parameter. The properties and the accuracy of
the ANF in [5] have been extensively studied in the literature,
see, e.g., [6], [7], [8], [9], [10]. Although classical estimation
properties can be related to this model [11], the estimated fre-
quencies are not explicitly available and need to be recursively
computed from the roots of a high-order (2M ) polynomial.
Alternative ANF realizations based on the approach in [5] have
been studied in the past, see [12], [13], [14]. These works
proposed to use a cascade of second-order ANF to enable
simple calculation of the frequencies of interest. Two different
realizations for the second-order ANF with constant quality
factor or notch bandwidth can be considered. As concluded in
[12], the frequency estimates obtained with this kind of ANF
are biased due to input measurement noise.

In [15], a cascade of second-order all-pass based ANF
sections on a serial - sinusoid canceler configuration was
considered. The individual second-order sections are based
on constant bandwidth notch realizations. An ad-hoc updating
algorithm using local errors was proposed in [16]. The serial-
sinusoid canceling strategy for multiple sinusoid estimation
has low computational complexity. However, the use of local
errors in the ad-hoc updating algorithm may lead to an unstable
behavior, particularly in tracking applications at low signal-to-
noise ratio (SNR).

A different approach for low-complexity frequency esti-
mation follows the phase differences concept [17], [18]. A
representative algorithm, based on a high SNR assumption, is
the Multiple Frequency Tracker [9] that uses phase differences
to estimate the instantaneous frequencies of multiple sinusoids.
The generalized adaptive notch filter [19] is a recently pro-
posed family of algorithms that extend the phase differences
technique from signal to system modeling problems using the
classical basis function approach.

Local convergence analysis of both ANF approaches
(ARMA modeling and phase differences) have been performed
for the case of one or two sinusoids, e.g., [8], [20], [10],
[21]. The general requirement of minimum separation of
frequencies and high SNR seems to be necessary for all
realizations.

This paper proposes an ANF model for multiple sinusoid
estimation based on a high order all-pass filter factorized using
second-order all-pass sections. The model can be seen as a
generalization of the model discussed in [15] for frequency
estimation of real sinusoids, and for the single-sinusoid case
the model in [15] coincide with ours. The proposed factor-
ization have several advantages when compared with previous
approaches. In particular, the estimated notch frequencies are
not influenced in the mean by the measurement noise like
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previously proposed multiple notch IIR adaptive filters [12]
[13]. Also, the proposed ANF introduces a different source of
bias in the estimated frequencies. This bias is directly related
to the all-pass based realization and, if required, it can be
accurately estimated and removed. The proposed realization
guarantees unit gain maxima between notches. As a result,
good behavior at low SNR can be expected, which is not
the case for conventional cascaded notch realizations. We
also present two efficient adaptation algorithms that are based
on different minimization criteria. The algorithms use an
orthogonal basis (with respect to the measurement noise) that
leads to fast convergence. Computer simulations show that the
new model presents low bias and fast convergence even at low
SNR. Preliminary results related to the proposed realization
and one of the related algorithms were presented in [22].

The paper is organized as follows. Section II introduces
the new all-pass based model for IIR multiple notch filters,
and discusses its implementation using a set of orthogonal
basis functions. In Section III, two novel ANF algorithms are
derived; one using a recursive prediction error approach, and
the other using an iterative Steiglitz-McBride based approach.
In this section we also provide local convergence analysis of
the algorithms and detail their most important characteristics.
Section IV compares the proposed ANF with other ANF
available in the literature via computer simulations. Finally,
conclusions are presented in Section V.

II. ALL-PASS BASED NOTCH FILTERS

This section first describes the notch filtering problem and
briefly reviews the approach of using second-order notch
filter sections as building blocks. Thereafter, a new all-pass
based factorization is presented. Finally, orthogonal realiza-
tions are discussed that have good properties in presence
of measurement noise, and render fast converging adaptive
implementations (see Section III.)

A. Problem description

Consider a signal u(n) formed by M sinusoids that is buried
in additive broadband (white) noise ν(n) with variance σ2

ν :

u(n) =
M∑
i=1

pi sin(woin + ηi) + ν(n)

where pi is the amplitude, woi is the frequency and ηi is the
phase of sinusoid i, respectively. This signal is processed by a
linear filter H(z) to obtain an output signal y(n) that is ideally
free of noise, i.e., composed only by the sinusoids. Therefore,
H(z) has to be a multiple notch or multiple narrowband
adaptive filter with capability to detect and track the input
signal. The notch or passband frequencies are related to the
roots of the numerator and the denominator polynomials of
H(z). Finding these roots means solving high order poly-
nomials (2M), which is a costly operation considering the
dynamic nature of H(z). The process of root finding is greatly
simplified if H(z) is built from a cascade of second order
filters. A new all-pass based form is also possible. These two
realizations are detailed in the following.

B. Cascaded second order notch filter

The overall transfer function has the form

HC(z) =
M∏
i=1

Hi(z) (1)

where Hi(z) is the transfer function of a suitably parameter-
ized second-order notch filter [16]. An efficient and popular
realization for the second order sections is the lattice form,

Hi(z) =
1
2
[1 + Vi(z)]

with Vi(z) = Di(z)
Di(z) = s2i+s1i(1+s2i)z

−1+z−2

1+s1i(1+s2i)z−1+s2iz−2 .
The parameters s1i and s2i are related with the two lattice

parameters θi
1 and θi

2 of each section through the equalities
s1i = sin θi

1 and s2i = sin θi
2, 1 ≤ i ≤ M . Furthermore,

s1i and s2i relate to the notch frequency and the 3 dB notch
bandwidth Bi as

s1i = − cos woi s2i =
1− tan(Bi/2)
1 + tan(Bi/2)

(2)

In order to obtain a fast initial convergence, a predefined
exponential profile can be associated with s2i to tune each
section [5]. It is common to use the following exponential
profile:

s2i(n + 1) = ρis2i(n) + (1− ρi)s∞2i (3)

where ρi is related to the exponential decay time constant and
s∞2i is the asymptotic value of s2i.

Let φi(w) denote the phase of each section when evaluated
on the unit circle. Then Vi(ejw) = ejφi(w) is given by

Vi(ejw) =
{
cos2[φi(w)/2]− sin2[φi(w)/2]...

+j2 sin[φi(w)/2] cos[φi(w)/2]}2

where the phase relates to the coefficients of the section as

cos
[
φi(w)

2

]
= (1 + s2i)

(s1i + cos w)
|Di(w)|

(4)

sin
[
φi(w)

2

]
= −(1− s2i)

sinw

|Di(w)|

with |Di(w)|2 = (1 + s2i)2(s1i + cos w)2 + (1− s2i)2 sin2 w.
The all-pass section Vi(z) can also be related to Hi(z) and
Gi(z), i.e., the transfer functions of the second-order notch
and narrowband filters, respectively. On the unit circle, these
functions can be described using the lattice parameters of Eq.
(4)

Hi(ejw) =
1
2

[
1 + Vi(ejw)

]
= cos [φi(w)/2] ejφi(w)/2

(5)

Gi(ejw) =
1
2

[
1− Vi(ejw)

]
= −j sin [φi(w)/2] ejφi(w)/2
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C. Factorized all-pass based notch filter

In this paper we propose to use a factorized all-pass based
realization (Factorized Adaptive Notch Filter, FANF) for the
multiple notch filter. This realization is described by

HA(z) =
1
2

[1 + V (z)] =
1
2

[
1 +

M∏
i=1

Vi(z)

]
(6)

Evaluating Eq. (6) on the unit circle gives

HA(ejw) = ejφi(w)/2ejφi(w)/2 cos
{

1
2

[
φi(w) + φi(w)

]}
(7)

where φi(w) =
∑M

k=1,k 6=i φk(w) is the sum of all the contri-
butions to the phase of V (z) except the one corresponding to
the ith section. From this equation it is possible to verify that

‖HA(ejw)‖2 = cos2
{

1
2

[
φi(w) + φi(w)

]}
(8)

Below we will discuss important properties of the FANF
model in Eqs. (6)–(8). In particular, we provide details on
how the notch frequencies relate to the lattice parameters and
properties of the frequency response.

1) Model parameters: The notch frequencies wi, 1 ≤ i ≤
M of the factorized all-pass IIR notch filter can be obtained by
solving the M th-order polynomial in cos w in (8). Considering
an adaptive implementation, it is more efficient to exploit the
relationship that exists between the notch frequencies wi and
3 dB bandwidth Bi of the signal model and the parameters of
the FANF realization (i.e., s1i and s2i).

Using (5) and (6) it is easy to show that at a notch frequency
wi the following must hold

cos wi = −s1i +
(

1− s2i

1 + s2i

)
sinwi tanφi(wi)/2

Since φi(wi) ∼= 2πk when s2i → 1, we have tanφi(wi)/2 ∼=∑M
j=1,j 6=i tanφj(wi)/2. Therefore, the previous equation can

be well approximated by

cos wi
∼=−s1i +

(
1− s2i

1 + s2i

)2

sin2 wi

M∑
j=1,j 6=i

(
1

s1j + cos wi

)
(9)

For the case when s2i → 1, the second term of Eq. (9)
becomes negligible and we get cos wi

∼= −s1i. When s2i < 1,
the frequencies woi are different than wi. However, Eq. (9)
can be used to obtain an improved estimate (bias removal) if
necessary (more details in Section IV).

Finally, the s2i parameters can be related to the 3 dB
bandwidth parameters Bi using Eq. (2). In fact, the true Bi

related to the FANF realization are upper bounded by Eq.
(2) [23].

2) Frequency response: The phase of a stable all-pass filter
φ(w) decreases monotonically from 0 to −2Mπ when 0 ≤
w ≤ π [24]. Based on the all-pass characteristic of the FANF
model, we conclude that there exist M frequencies w1 < w2 <
· · · < wM with φ(wi) = −(2i− 1)π (for i = 1, · · · ,M ) that
correspond to the minima of (7), i.e.,

HA(ejwi) = cos {φ(wi)/2} = 0 (10)

There are also M + 1 frequencies 0 ≤ w1 < · · · < wM

with φ(wi) = −2iπ (for i = 1, · · · ,M ) that correspond to
the maxima of Eq. (7), i.e., H(ejwi) = 1. Those frequencies
can be obtained by

tan {φ(wi)/2} = 0 (11)

As a consequence of the parameterization, the frequency
response of Eq. (6) is different from that of the cascaded
notch filter described by Eq. (1). The FANF realization always
provides maxima of unit magnitude, while the maxima of the
cascaded notch realization will be smaller. Therefore, FANF
provides a better isolation of notch frequencies which is an
important property when considering a low SNR.

D. Orthogonal FANF

One advantage of the FANF model is the possibility to
implement it using an orthogonal set of functions, Fi(z) that
can be generated from the all-pass sections. Thus, enabling
adaptive implementations that provide fast convergence at low
computational cost.

Since the basic construction blocks for the FANF are
second-order sections, there are many ways to build the com-
plete filter. A possible solution is to use the set of orthogonal
functions proposed in [25] (see also [26])

Fi(z) =
z−1

Di(z)

M∏
k=1,:k 6=i

Dk(z)
Dk(z)

(12)

or the set considered in [14]

F ′
i (z) =

z−1

Di(z)

i−1∏
k=1

Dk(z)
Dk(z)

(13)

where, as before, Di(z) is the corresponding denominator of
the second-order all-pass Vi(z). Note that each second-order
section is related to a different sinusoid. Therefore, both basis
functions Fi(z) and F ′

i (z) are equivalent.
The orthogonality of these realizations introduces useful

properties when measurement noise is present, which is the
typical case in notch filtering applications. Consider the min-
imization of the output signal variance, defined as

E[y2(n)] = 〈HA(z),HA(z)〉Su
+ 〈HA(z), Sν(z)HA(z)〉 (14)

where the first term describes the inner product induced by
the signal components, i.e.,

〈HA(z),HA(z)〉Su
=

M∑
i=1

p2
i |HA(ejwi)|2 (15)

and the second term is the standard inner product in L2,

〈HA(z), Sν(z)HA(z)〉 =
1
2π

∫ π

−π

Sν(ejw)|HA(ejw)|2dw (16)
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with Sν(z) denoting the power spectral density of the white
noise sequence ν(n). Using Eqs. (15) and (16), Eq. (14) can
be written as

E[y2(n)] =
M∑
i=1

p2
i |HA(ejwi)|2 + σ2

ν‖H(z)‖2
2 (17)

where the noise-induced term (assuming s2 = s2i, 1 ≤ i ≤ M
for clarity)

σ2
ν‖H(z)‖2

2 = σ2
ν‖1 +

M∏
i=1

Vi(z)‖2
2 =

σ2
ν

2
[
1 + sM

2

]
(18)

is independent of the lattice parameter θi
1, i.e., independent

of s1i = sin θi
1. Therefore, the measurement noise only

introduces a change in the residual noise when an orthogonal
structure is used. This is different to the case of using a cas-
cade realization, where white measurement noise introduces a
noise-induced component in the parameter descriptions [12].

Next section considers an efficient adaptive notch filtering
algorithms based on the factorized all-pass IIR notch model
that uses the orthogonal realization Fi(z) in Eq. (12).

III. ADAPTIVE ALGORITHMS FOR FANF

A family of all-passed based ANF can be developed as in
[27]. Two types of algorithms are proposed here: the first
algorithm is designed using a Recursive Prediction Error
(RPE) approach (similar to [5]), and the second minimizes
an iterative criterion that can be related to the Steiglitz-
McBride error (SME) [28]. As a consequence of the orthogo-
nal realization used here, the considered normalized stochastic
gradient implementations will enjoy fast convergence at low
computational cost.

In the end of each section, an analysis of the stationary
points and local convergence is provided. The convergence
study is performed using the associated ordinary differential
equation (ODE) method [11]. The general ODE approach
to convergence analysis comes from the field of stochastic
approximation theory, and changes the convergence study of
a stochastic nonlinear equation by a stability study of the
solutions to a deterministic differential equation. As a conse-
quence, the convergence properties of the discrete parameter
adaptation algorithm are strongly related to the stability of
the solutions to the differential equation. Two different kind
of algorithms can be studied in this form: 1) vanishing gain
algorithms (i.e., with the stepsize µ → 0), mostly oriented to
estimation in a stationary environment, and; 2) constant gain
algorithms, where the stepsize µ is kept constant to enable
tracking studies. Our interest here is to study the latter case
of constant gain for which the ODE method guarantees that
the adaptation algorithm converges in probability (not with
probability one as with vanishing gain algorithms).

The ODE association introduces certain regularity condi-
tions that needs to be verified for the proposed algorithms.
These conditions are related to the differentiability and bound-
edness of the criterion and the average direction used. They are
easily verified in general, as discussed in [12] for the cascaded

realization and in [8] for the direct-form realization, since the
only difference with these approaches is related to the notch
filter realization. Due to space limitations, we refer the reader
to [8] and [12] for the technical details of the ODE association.

A. RPE factorized all-pass IIR ANF (RFANF)

Similarly to the ANF in [5], we can derive a FANF whose
parameters minimize the recursive prediction error (RPE)
criterion. The updating equations of the resulting normalized
stochastic gradient based algorithm, referred to as the Recur-
sive Prediction Error all-pass IIR ANF (RFANF), are given
by

θi
1(n + 1) = θi

1(n)− µrpe

ri
rpe(n)

Ψθi
1
(n)y(n)

ri
rpe(n + 1) = (1− λ)ri

rpe(n) + µrpe|Ψθi
1
(n)|2

where Ψθi
1
(n) is the regressor

Ψθi
1
(n) = −(1 + s2i)c1iGi(q)Fi(q)u(n− 1),

where c1i = cos θi
1, λ is the forgetting factor (0 < λ < 1) and

µrpe
∼= 1− λ is the step size. The RFANF algorithm, without

the terms Gi(z) (see discussion in the following section), is
summarized in Table I.

The computational complexity of this realization is similar
to (slightly lower than) that of [12] and [13]. Due to the
interchangeability of the sections, the RFANF algorithm has
a multimodal mean square error surface (M ! equivalent min-
ima). Thus, the order in which each section converge depends
on the initial conditions. This is a common characteristic of
adaptive algorithms related to cascaded realizations [12], [13].

Characterization and properties: As previously discussed,
the noise-induced term that contributes to the signal variance
(17) is independent of the parameters θi

1. Therefore, we study
only the signal-induced part of E[y2(n)]. From Eq. (8) we get

∂θi
1(t)
∂t

= −2
〈

∂HA(z)
∂θi

1

,HA(z)
〉

Su

= −
M∑

k=1

p2
k cos

{[
φi(wok) + φi(wok)

]
/2

}
×{[

∂

∂θi
1

cos φi(wok)/2
]

cos φi(wok)/2

−
[

∂

∂θi
1

sinφi(wok)/2
]

sinφi(wok)/2
}

Assuming that |θi
1| < π/2, i.e., c1i > 0 gives

∂θi
1(t)
∂t

= −
M∑

k=1

p2
k

(1 + s2i)c1i

|Di(ejwok)|
sinφi(wok)/2×

cos
{[

φi(wok) + φi(wok)
]
/2

}
×

sin
{[

φi(wok) + φi(wok)
]
/2

}
(19)
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As expected, the stationary points of this algorithm, i.e., the
solutions when the previous equation is equal to zero, coincide
with the minima and the maxima of the FANF realization, Eqs.
(10) and (11), respectively.

In order to compare the RFANF with the algorithms in
[12], [13], we need the ODE associated to the RPE algorithm
employing a cascade realization (1). This ODE is given by

∂θi
1(t)
∂t

= −
M∑

k=1

p2
k

(1 + s2i)c1i

|Di(ejwok)|
sinφi(wok)/2× M∏

n=1,n 6=i

cos2 φn(wok)/2

 cos φi(wok)/2 (20)

Using Eq. (1), we realize that the term(∏M
n=1,n 6=i cos2 φn(w)/2

)
in the cascaded algorithm

can be written as
(∏M

n=1,n 6=i |Hn(ejw)|2
)

. The counterpart
of this term in Eq. (19) has the form cos φi(w)/2. Both terms
have a similar behavior for s2i → 1.

The term sinφi(wok)/2 in (19) and (20) can be associated
to the narrow passband transfer function Gi(ejw) and can be
eliminated in a practical simplified implementation [16]. Since
this term reduces the magnitude of the gradient component,
faster convergence can be expected if it is left out.

Furthermore, if the term sinφi(wok)/2 is left out, we
can perform an approximate local convergence analysis.
In a neighborhood of a stationary point, we can assume
that cos

{[
φk(w) + φk(w)

]
/2

} ∼= 0 for all k 6= i (and
sin

{[
φk(w) + φk(w)

]
/2

} ∼= 1). As a consequence, Eq. (19)
can be rewritten as

∂θi
1(t)
∂t

∼=−p2
i

(1 + s2i)c1i

|Di(ejwoi)|
cos

{[
φi(w) + φi(w)

]
/2

}
=−p2

i

(1 + s2i)c1i

|Di(ejwoi)|
[
cos φi(woi)/2 cos φi(woi)/2

− sinφi(woi)/2 sinφi(woi)/2
]

(21)

Note that the second term in Eq. (21) tends to zero faster
than the first term when s2i → 1. A similar behavior is
expected for the cascade realization when s2i → 1. Invoking
this assumption, Eq. (21) will in a neighborhood of a stationary
point reduce to

∂θi
1(t)
∂t

∼= −p2
i

(1 + s2i)c1i

|Di(ejwoi)|
cos φi(woi)/2 cos φi(woi)/2 (22)

Equation (22) corresponds (when s2i → 1) to the ODE
obtained with the RPE methodology for a second-order sec-
tion. We can, therefore, conclude that it converges to s1i

∼=
− cos woi [16]. Since only s1i is involved in the computation
of the gradient component i, the gradient components at a
stationary point are approximately orthogonal. Therefore, the
Hessian matrix related to a general recursive prediction error
algorithms is diagonal. This justifies the normalization factor
ri
rpe(n), 1 ≤ i ≤ M included in the RFANF algorithm.

Finally, we note that the RFANF estimates are obtained by
means of a stochastic gradient variant of a general recursive

prediction error algorithm [11]. Therefore, we can expect low
variance of the MSE for a parameter close to the minimum. On
the other hand, recursive prediction error algorithms like the
RFANF can be sensitive to initial conditions. An alternative
approach that overcomes this problem is developed in the
following section.

B. SME factorized all-pass IIR ANF (SFANF)

Using the factorized all-pass model an a posteriori off-line
error, linear in the parameters, can be used to minimize the
output signal variance. The minimization of the following error
is considered

e(n + 1) =
1
2

[
M∏
i=1

D
n+1

i (q)
Dn

i (q)
+

M∏
i=1

Dn+1
i (q)
Dn

i (q)

]
u(n) (23)

In order to obtain an on-line algorithm that is suitable
for adaptive notch filtering, the a priori error obtained from
Eq. (23) can be written as

e(n) =
1
2

[
1 +

M∏
i=1

D
n

i (q)
Dn

i (q)

]
u(n)

Following the instantaneous gradient of the on-line MSE,
the regressor is given by

Ψθi
1
(n) = −

[
q−1

Di(q)
+ Fi(q)

]
u(n) (24)

where the set of orthogonal functions Fi(z) previously intro-
duced are used. Finally, the update equations for the Steiglitz-
McBride Factorized all-pass based IIR ANF (SFANF) are

θi
1(n + 1) = θi

1(n)− µsm

ri
sm(n)

e(n)Ψθi
1
(n)

ri
sm(n + 1) = (1− λ)ri

sm(n) + µsm|Ψθi
1
(n)|2 (25)

where 0 < λ < 1 is the forgetting factor and µsm
∼= 1− λ is

the step size. A summary of SFANF algorithm is provided in
Table II.

A justification for the normalization factor ri
sm(n) will be

given in the analysis provided below. The SFANF algorithm
can be seen as an efficient implementation of the approach in
[28]. The good behavior for low SNR scenarios reported in
[28] is also inherited by the SFANF algorithm.

Characterization and properties: To study the SFANF
stationary points and convergence properties we consider the
ODE associated to (25), without normalization. Employing the
inner product notation gives us the following ODE

∂θi
1(t)
∂t

= −
〈[

z−1

Di(z)
+ Fi(z)

]
, [1 + V (z)]

〉
Su

−σ2
ν

〈[
z−1

Di(z)
+ Fi(z)

]
, [1 + V (z)]

〉
(26)
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which is formed by a signal-induced part and a noise-induced
part, respectively. Using the fact that Fi(z) is an orthogonal
basis related to V (z) [16][26], we get for the noise-induced
part 〈[

z−1

Di(z)
+ Fi(z)

]
, [1 + V (z)]

〉
=〈

z−1

Di(z)
, 1

〉
+

〈
z−1

Di(z)
,

M∏
k=1

Vk(z)

〉
+〈

z−1

Di(z)

M∏
k=1,k 6=i

Vk(z), 1

〉
+〈

z−1

Di(z)

M∏
k=1,k 6=i

Vk(z),
M∏

k=1

Vk(z)

〉
=〈

z−1

Di(z)
, 1

〉
+ 2

〈
1, z−1Fi(z)

〉
+

〈
z−1

Di(z)
, Vi(z)

〉
= 0

The first two terms are zero because they are inner products
that involve projections of strictly causal functions on a
constant. The last term is zero due to the orthogonality of
the basis function with respect to the corresponding all-pass
section [16]. This indicates that the noise-induced term does
not have any influence on the stationary points. As mentioned
before, this is not the case with the multiple notch IIR ANF
previously reported in literature.

Using the second-order section all-pass phase φi(w), the
signal-induced part can after some algebraic manipulations be
written as (assuming |θi

1| < π/2, i.e., c1i > 0),

∂θi
1(t)
∂t

= −
M∑

k=1

p2
k

(1 + s2i)c1i

|Di(wok)|
cos

[
φi(wok)/2

]
×(27)

cos
[
φi(wok)/2 + φi(wok)/2

]
(28)

where, as before, φi(w) =
∑M

m=1,m 6=i φi(w).
From (28) we conclude that the stationary points of the

SFANF, i.e, cos
[
φi(w)/2 + φi(w)/2

]
= 0, coincide with the

notch frequencies of the factorized all-pass based IIR notch
realization.

On the other hand, the term cos
[
φi(w)/2

]
in Eq. (28) is

zero if φi(w) = (2n−1)π, for some integer n, n = 1, · · · ,M .
Due to the phase constraint of the FANF realization this
implies that cos [φi(w)/2] = 0. However, from Eq. (11) we
see that the particular solution for θi

1 that fulfill this condition
is not a zero related to the FANF realization. Therefore, the
term cos

[
φi(w)/2

]
does not introduce any stationary points

in Eq. (28).
The main difficulty to perform a conventional convergence

analysis that follows the Liapunov second method [16] is
the existence of multiple equivalent stationary points in the
SFANF algorithm. In order to overcome this problem we
follow a local convergence study showing that for s2i →
1, s1i

∼= cos wok, for i, k = 1, · · · ,M are locally stable
stationary points of Eq. (28). After that, it is shown that the
only attractive stationary points correspond to those of the
FANF realization.

Using Eq. (4), Eq. (28) can be written as

∂θi
1(t)
∂t

= B1i + B2i

where

B1i= −
M∑

k=1

p2
k

(1 + s2i)2c1i

|Di(wok)|2
cos2

[
φi(wok)

2

]
(s1i + cos wok)

B2i=
M∑

k=1

p2
k

(1− s2
2i)c1i

|Di(wok)|2
cos

[
φi(wok)

2

]
sin

[
φi(wok)

2

]
sinwok

The term B2i represents a deterministic bias (for a constant
woi), that can be asymptotically eliminated using s2i → 1.
This is directly related to the factorized all-pass based model
as stated previously.

Let us assume that cos2 φi(w)/2 6= 0 and |Di(wok)|2 non-
zero at woi, i.e., all sections converge except the ith section
as s2i → 1. Then, the dominant term in B1i is

∂θi
1(t)
∂t

∼= −p2
i

(1 + s2i)2c1i

|Di(woi)|2
(s1i + cos woi) (29)

which has as stable solution s1i
∼= − cos woi [16]. There exist

M stationary points as determined by the factorized all-pass
based realization and, at least locally, all are attractive.

Since only s1i appears in Eq. (29) (i.e., the gradients are
approximately orthogonal at the stationary points), then a
normalized stochastic gradient algorithm will have similar
convergence behavior to a complete Gauss-Newton algorithm
[13]. This justifies the choice of the normalization factor
ri
sm(n). To illustrate this behavior, the solutions of Eq. (28) for

s11 and increasing values of s2i are depicted in Figure 1. As
can be observed, there are four possible solutions for the ODE
of the FANF realization. We see that only one solution has
appreciable magnitude. This is different to what happens with
the partial cascaded realization [15], where similar gradient
magnitude is obtained for each solution. An exponential profile
for s2i, as the one in (3), can be used to overcome the gradient
regions with low magnitude (right part of Figure 1). Also,
we can use different parameters for each profile to reduce
problems related with multiple equivalent minima.

It can be verified that the simplified version of the RFANF
algorithm (without the narrow passband filters at each re-
gressor component) has the same stationary point equation
as obtained in Eq. (28) for SFANF. However, the simplified
RFANF is an approximate prediction error algorithm, whereas
SFANF is not. Therefore, local convergence properties may be
similar but the general convergence properties are in general
different.

If computational complexity is a concern, certain simplifi-
cations can be done to reduce the complexity of the SFANF
algorithm. For example, the regressor computation can be
reduced to the essential filtering verified at the stationary point,
i.e., by replacing Eq. (24) by

Ψθi
1
(n) = −

[
q−1

Di(q)

]
u(n)
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that for the single sinusoid case coincides with the algorithm
proposed in [17]. However, such simplifications (and other
ones too) will lead to poor performance at low SNR or in a
tracking scenario with several sinusoids. Therefore, simplifi-
cations of the SFANF algorithm will not be considered here.

By replacing cos φi(w)/2 by
∏M

n=1,n 6=i cos φi(w)/2 in (26),
we can conclude that the notch frequencies can be accurately
estimated as s2 → 1. For the case when s2 < 1, an
efficient correction to obtain woi can be found from Eq. (9),
as discussed in the next section.

IV. EVALUATION AND COMPARISONS

In this section, a complete performance study is presented
for the new FANF model and its related adaptive filtering
algorithms. In particular, we study how the bias is affected by
the SNR and filter parameters, and how to accurately estimate
it if needed. We also illustrate the good isolation of notches
obtained by the new FANF model, which is a useful property at
low SNR. Finally, convergence and tracking properties (chirps
and frequency jumps) of the new algorithms are illustrated.
For comparison purposes, the algorithms of [12] and [20] were
implemented.

A. Frequency response and bias properties of FANF

This example illustrate important properties of the proposed
FANF realization. Firstly, the phase and magnitude responses
are studied. Thereafter, we show how the bias relates to
parameter s2,i and the filter order. Finally, we show how to
successfully estimate the bias.

Figure 2 shows magnitude and phase responses of the
proposed FANF realization and the cascade realization of [12],
both having an order of eight (i.e., M = 4 notches). To
better visualize the differences, parameter s2i is kept fixed
and chosen to 0.6. We see that the FANF realization con-
firms the results in Section II and have minima (notches)
and maxima fixed on the unit circle. The maxima between
notch frequencies is lower for the cascade-realization. This
property becomes important in low SNR contexts. For these
cases the good isolation between notches provided by the
FANF realization can reduce the risk that sections exchange
equivalent estimated parameters. Note that the bias of the
FANF is large due to the choice of the user-defined parameter
s2i. Next we illustrate that the bias approaches zero as s2i

takes on more practical values.
Figure 3 shows the normalized bias as a function of s2i

for three realizations of order 4, 6 and 8 (i.e, with M = 2,
M = 3 and M = 4 frequency notches). The bias is calculated
by finding the roots of (8). The frequencies were chosen
uniformly distributed in (0, π).

The normalized bias is defined as

Bi =

√√√√∑M
k=1(w

i
ok − wi

ok)2∑M
k=1 wi

ok
2

where wi
ok is the kth notch frequency that corresponds to

the ith-order FANF realization, and wi
ok is the true kth notch

frequency of an ith-order cascade realization. We see that the
bias is mostly independent of the order of the realization. This
indicates that only proximity between notch frequencies will
affect the FANF frequency notches. This is common for the
available algorithms for frequency estimation [10]. The bias
related to a FANF realization that uses practical values of s2i

(0.95 and higher) is usually very low.
If required, Eq. (9) can be used for bias correction. The bias

estimate for each notch frequency can be obtained as

Biaswi
∼= K

(
1− s2i

1 + s2i

)2

c2
1i

M∑
j=1,j 6=i

(
1

s1j − s1i

)
(30)

by substituting the unknown frequencies cos wi with the
available parameters s1i in (9), i.e, cos ŵi

∼= −s1i. The bias
estimate will be more accurate when the frequency separation
increases. To account for this fact we introduced a constant K
in Eq. (30). Computer simulations verify that, for high SNR,
K ∼= 1. To illustrate the performance of the bias estimation,
Figure 4 shows the actual bias of an eighth order FANF with
uniformly chosen frequencies and the bias estimated using
(30). We see that Eq. (30) can accurately estimate the bias.

B. Bias versus SNR

The bias in the SFANF algorithm is reduced as s2i → 1,
and its mean value is not related to the input SNR (see
Section III.B). This is not the case with the algorithms in
[12], [13]. To illustrate the performance in terms of bias, the
solutions of the ODE associated to the SFANF algorithm and
to that of the algorithm in [12] were evaluated, and the bias
was calculated for different SNRs. We consider a fourth order
realization and an eighth order realization.

As in the previous example, the bias of the SFANF al-
gorithm can be obtained from the stationary points of (28),
since they coincide with those of (8). The bias related to the
algorithm of [12] can calculated from

Bias =
1
2

[1 + s2i] [2s1iri(0) + ri(1)]

where

ri(m) =

〈
zm−1

∣∣∣∣∣
∏M

k=1,k 6=i Hk(z)
Di(z)

∣∣∣∣∣
2

, Sν(z)

〉
, i = 1, · · · ,M

and Sν(z) is white noise with unit variance (σ2
ν = 1). Figures

5 and 6 show the results for the fourth order and eighth order
cases, respectively. We see that the solutions obtained for the
algorithm of [12] depend on the SNR. The SFANF algorithm
has a lower bias at low SNRs. These results show, at least
from the point of view of the consistency of the estimates,
that in low SNR contexts the new algorithm should have a
competitive (if not better) performance when compared with
that of the cascade realization in [12].
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C. Adaptive implementations: convergence and tracking be-
havior

In this example, the proposed SFANF and RFANF algo-
rithms are used for estimating four sinusoids buried in white
measurement noise. We consider the cases of high and low
SNRs, and stationary and non-stationary environments. For
the high SNR case, convergence speed and bias properties
of the algorithms are evaluated for a stationary environment.
The low SNR case consider the tracking of time-varying
frequencies. The results are compared with those obtained with
the stochastic gradient version of the algorithm in [20]. In our
simulations, both algorithms employ the exponential profile
in Equation (3) for the s2i parameters (for all sections). The
parameters used with Equation (3) and additional algorithm
constants are given in Table III. The parameters were chosen
to optimize convergence speed. The notch frequencies were
initialized to zero, which corresponds to the worst situation
for both the cascade and the FANF realizations.

For the stationary case, the input signal is modeled by
four sinusoids with normalized notch frequencies wo1 = 0.1,
wo2 = 0.2, wo3 = 0.3 and wo4 = 0.4. The SNR was
set to 80 dB. The learning curves obtained by averaging
100 independent runs are shown in Figure 7. The figure
clearly shows the improved convergence speed obtained by
the FANF algorithms. As previously discussed, the increased
convergence speed is achieved at the expense of a large bias
in the estimated frequencies. Figure 8 plots the normalized
bias in the estimated frequencies (expressed in dB) versus the
number of iterations for different values of s∞2i parameters, i.e.,
0.95, 0.98 and 0.99. The corresponding MSE learning curves
are plotted in Figure 9. A similar behavior in terms of MSE
learning curves is verified for the algorithm of [20], except that
for each case convergence is slower. Despite that lower bias
is obtained using larger s∞2i , as can be observed in this figure,
the values are for most cases acceptable. After convergence
has taken place, the bias can be reduced by 15 dB using (30).

A more difficult scenario for frequency estimation is to
consider low SNR. Two time-varying frequency cases with
the example of four sinusoids are now considered: 1) in-
stantaneous jumps and; 2) linear variations in the sinusoid
frequencies (chirps). The SNR was set to 0 dB.

In the first case, instantaneous jumps are introduced at
frequencies wo2 and w04. The objective is to study the
recovering capabilities of the algorithms when subject to these
abrupt changes. The step size µ was chosen equal to 0.02.
The remaining constants are chosen as before. Figures 10–
12 show the results obtained with the SFANF algorithm, the
RFANF algorithm, and the algorithm of [20], respectively.
The fast convergence of the SFANF and RFANF algorithms is
maintained even when operating in this difficult environment.
In addition, the SFANF and RFANF are seen to track abrupt
frequency changes better than the algorithm of [20].

Finally, to illustrate the capability to follow slow changes
in the estimated parameters we consider the case when each
sinusoid frequency vary linearly with time.

The constants for each algorithm and the SNR scenario are
the same as in previous example. Figures 13 and 14 show the

results obtained with the SFANF algorithm and the algorithm
of [20], respectively. We observe that both algorithms are able
to follow the frequency variation having a small tracking error.
Also, the recovering capability for the SFANF algorithm is
better than for that of the algorithm of [20]. The performance
of the RFANF algorithm is for this example almost identical
(plots not shown here).

V. CONCLUSIONS

This paper presented a new family of IIR adaptive notch
filters (ANF). A cascade of second-order all-pass sections
is used to form multiple notches. A characterization of the
main properties of the new realization is detailed. One of
the advantages of the new ANF approach is that it guar-
antees unit maxima between notches. Therefore, we obtain
a better isolation of notch frequencies when compared with
other approaches available in literature, which is an important
property at low SNR. Furthermore, the new realization can
be implemented using orthogonal functions that have good
properties in the presence of measurement noise and enable
efficient adaptive implementations. Two low-complexity adap-
tive algorithms were addressed. A study of their stationary
points and a local convergence analysis was also provided.
The new ANF realization introduces a small bias that can
be made arbitrarily small or be accurately estimated and
removed after algorithm convergence. Simulations carried out
for both stationary and nonstationary scenarios indicate that
the proposed ANF can provide favorable results in terms of
convergence speed, tracking capability, and notch separation.
Further research is being performed to analyze the tracking
performance of the adaptive implementations.

REFERENCES

[1] B. Widrow et. al, “Adaptive noise canceling: principles and applications,
Proc. IEEE, vol. 63, pp. 1692-1716, Dec. 1975.

[2] J. W. Choi, N. I. Cho, “Suppression of narrow-band interference in
DS-spread spectrum systems using adaptive IIR notch filter,” Signal
Process., vol. 82, pp. 2003-2013, 2002.

[3] J. Bakkoury, D. Roviras, M. Ghogho, F. Castanie, “Adaptive MLSE
receiver over rapidly fading channels,” Signal Process., vol. 80, pp.
1347-1360, 2000.

[4] M. K. Tsatsanis, G. B. Giannakis, “Modeling and equalization of fast
fading channels,” Int. J. Adaptive Contr. Signal Proc., vol.10, pp. 159-
176, 1996.

[5] A. Nehorai, “A minimal parameter adaptive notch filter with constrained
poles and zeros,” IEEE Trans. Acoust., Speech, Signal Process., vol. 43,
pp. 983-996, Aug. 1985.
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[9] P. Tichavsky and P. Händel, “Two algorithms for adaptive retrieval
of slowly time-varying multiple cisoids in noise,” IEEE Trans. Signal
Process., vol. 43, pp. 1116-1127, May 1995.

[10] P. Tichavsky and A. Nehorai, “Comparative study of four adaptive
frequency trackers,” IEEE Trans. Signal Process., vol. 45, pp. 1473-
1484, June 1997.
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TABLE II
STEIGLITZ-MCBRIDE BASED FACTORIZED ALL-PASS ADAPTIVE NOTCH

FILTERING ALGORITHM (SFANF).

Definitions:
u(n), y(n), ANF input and output signals
HA(q), following Eq. (7). Fi(q), 1 ≤ i ≤ M , following Eq. (13)

Parameters:
M , number of frequencies to estimate
λ, forgetting factor (0 < λ < 1)
µsm, step size (∼= 1− λ)
s∞2i , asymptotic value of s2i(n) (typically 0.98)
ρi, exponential decay time constant (typically 0.9)

Initialization (for 1 ≤ i ≤ M )
θi
1(0) = 0, Ψθi

1
(0) = 0, ri

rpe(0) = 0, s2i(0) = 0

For each n = 1, 2, · · ·
y(n) = HA(q)u(n)
For 1 ≤ i ≤ M ,

θi
1(n + 1) = θi

1(n)− µsm

ri
sm(n)

Ψθi
1
(n)y(n)

Ψθi
1
(n) = −

h
q−1

Di(q)
+ Fi(q)

i
u(n)

ri
sm(n + 1) = (1− λ)ri

sm(n) + µsm|Ψθi
1
(n)|2

s2i(n + 1) = ρis2i(n) + (1− ρi)s
∞
2i

TABLE III
CONSTANTS USED WITH EACH ALGORITHM.

[12] RFANF SFANF
s∞2i 0.92, 0.93, 0.94, 0.95 0.92, 0.93, 0.94, 0.95 0.92, 0.93, 0.94, 0.95
ρi 0.99 0.99 0.99
λ 0.9 0.9 0.9
µ 0.1 0.1 0.1
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Fig. 1. ODE solutions associated to SFANF for an eighth order example.
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Fig. 8. Bias curves for SFANF algorithm using (a) s∞2i = 0.95, (b) s∞2i =
0.98 and (c) s∞2i = 0.99.
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Fig. 9. MSE learning curves for SFANF algorithm using (a) s∞2i = 0.95,
(b) s∞2i = 0.98 and (c) s∞2i = 0.99.
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Fig. 10. Frequency estimation using the SFANF algorithm (eighth order
example).
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Fig. 11. Frequency estimation using the RFANF algorithm (eighth order
example).
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Fig. 12. Frequency estimation using the algorithm of [20] (eighth order
example).
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Fig. 13. Frequency estimation using SFANF algorithm in a tracking
application (eighth order example).
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Fig. 14. Frequency estimation using the algorithm of [20] in a tracking
application (eighth order example).


