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Abstract—In this paper, we propose a novel correlation coef-
ficient based on order statistics and rearrangement inequality.
The proposed coefficient represents a compromise between the
Pearson’s linear coefficient and the two rank-based coefficients,
namely Spearman’s rho and Kendall’s tau. Theoretical deriva-
tions show that our coefficient possesses the same basic properties
as the three classical coefficients. Experimental studies based on
four models and six biosignals show that our coefficient performs
better than the two rank-based coefficients when measuring
linear associations; whereas it is well able to detect monotone
nonlinear associations like the two rank-based coefficients. Exten-
sive statistical analyses also suggest that our new coefficient has
superior anti-noise robustness, small biasedness, high sensitivity to
changes in association, accurate time-delay detection ability, fast
computational speed, and robustness under monotone nonlinear
transformations.

Index Terms—Atrial fibrillation, atrial flutter, concomitant,
Kendall’s tau, nonlinear association measure, order statistics,
Pearson’s coefficient, rearrangement inequality, Spearman’s rho.

I. INTRODUCTION

HERE has been great interest in measuring the associa-
Ttion between two time series, with application in many
areas including biosignal analysis. Association can be consid-
ered as the strength of relationship between the two time se-
ries. A measure of association should be large and positive if
there is a high probability that large (small) values of one time
series are associated with large (small) values of another. On
the other hand, if the direction is inverse, namely, large (small)
values of one time series occur in conjunction with small (large)
values of another time series, the measure should be large and
negative [1]. A multitude of methods have been used in the lit-
erature of biosignal processing for many years to measure the
association between two time series. Among these measures
the Pearson’s linear correlation coefficient [2]—-[4], Spearman’s
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rank-based coefficient (Spearman’s rho) [5] and Kendall’s con-
cordance coefficient (Kendall’s tau) [5] are perhaps the most
widely used [6]. The linear correlation coefficient is appropriate
mainly for indicating linear associations [1], while the other
two measures are invariant under linear or nonlinear increasing
monotone transformations [5]. Some authors have employed the
average amount of mutual information (AAMI) to measure the
association between two biosignals [7], [8], others used non-
linear regression coefficient (denoted by h2) [9] or contingency
table based methods (Cramer V') for such purpose [10].

There are many advantages and disadvantages to the mea-
sures mentioned before. Linear correlation coefficient is very
fast, however, it will yield misleading results if nonlinearity is
involved in the system [10]. On the other hand, the two rank
correlation coefficients, Spearman’s rho and Kendall’s tau, are
not as powerful and as fast as Pearson’s coefficient when mea-
suring linear associations between biosignals; nevertheless they
are independent of increasing nonlinear transformations which
makes them suitable for many nonlinear cases [1], [5], [6]. De-
spite their robustness for nonlinear association measurements,
the values of A% and V are between 0 and 1, meaning their in-
ability of distinguishing positive associations from negative as-
sociations. Furthermore, the computational load of AAMI and
h? are rather heavy, which makes them inappropriate in cases
when high computational speed is mandatory.

To overcome the problems of the existing measures of as-
sociation in different a priori unknown situations, we propose
a novel measure called order statistic correlation coefficient
which possesses the following advantages: 1) it can discriminate
positive associations from negative associations (admissible
range [—1, 1]); 2) its time complexity is of order O(N log(N)),
a little slower than Pearson’s coefficient but much faster than
Kendall’s tau, the nonlinear regression coefficient h2, and
AAMI,; 3) it has small biasedness in both linear and nonlinear
scenarios; 4) it is sensitive to changes of degree of associa-
tion; and 5) it possesses certain robustness under increasing
nonlinear transformations.

In Section II, we will give the definition and properties of our
new order statistic coefficient as well as the other three classical
indices of association. Section III depicts the models and perfor-
mance evaluation strategy we use in this study. In Section IV,
we present the simulated signals and the associated results of
four models used in our investigation. Section V is devoted to
discussions and interpretations of our new method. Finally, in
Section VI, we draw our conclusions on the novel order statis-
tics correlation coefficient.
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II. ORDER STATISTICS CORRELATION COEFFICIENT

A. Definition and Properties

Let (z;,¥;),% = 1,..., N, be two time series of length N.
Rearranging pairwise the two time series with respect to the
magnitudes of z, we get two new series denoted by (x(i)7 y[i]),
where z(;) < --- < x( are called the order statistics of
and y[1, .., yn) the associated concomitants [11]-[13]. Re-
versing the roles of x and y, we also define the order statistics
of y and the corresponding concomitants which are denoted by
Y(1)s - - -» Yy and Tpyp, - - -, T[N, respectively. As proposed by
Xu et al. [14], the order statistics correlation coefficient can be
defined as

M=

() — w(v=it1)) Y10

<.
[

21

ey

rx ($7 y) =
() — 2(v—it1)) Y0

Il
-

K2

Theorem 1: The order statistics correlation coefficient has the
basic properties of a correlation coefficient, as follows:

D-1<rx <1

2) rx(z,y) attains +1(—1) when z and y are in strict in-
creasing (decreasing) relationship;

3) rx(2',y') = rx(x,y) for &’ = k,x + const, and y/ =
kyy + const,, where k;, > 0 and k, > 0;

4) if x and y are mutually independent and each is inde-
pendent identically distributed (IID), the expectation
E{rx(z,y)} = 0 when N — ooc.

Proof:
1) According to the rearrangement inequality [15], it follows
that:
N N N
Z T(N—i+1)Y(i) < Z Ty < Z T()Y() 2
i=1 i=1 i=1
and

N N N
Z«T(Nfz#l)y(i) < Zx(NfiJrl)y[i] < Z$(i)y(i)~ 3)
i=1 i=1 i=1

Subtracting (3) by (4) and dividing the difference by
> (Ty — 2(N—i+1))Y(). we have —1 < rx < 1, hence
the result.

2) Assume y; = ¢(x;), 7 = 1,..., N.If ¢(e) is a strict in-
creasing function, we have yj;; = y(;) for all 7. Substituting
this into (1), we have rx = 1; and similarly rx = —1 if
¢(e) is a strict decreasing function.

3) Substituting ' and ¢’ into (1), we have

5 (af) -

> (xl(t) Ty - L+1)) Yy
_ kaby 3 (w6 — wv—ivn) Y + A
kaky 3 (206) — 2(v—it1)) Y0y + A

where A = k,const, Y [2() — r(v—i+1)] = 0. Hence,
we have rx(z/,y') = rx(z,y).

'(N—i+1>) Y

7"X'(xl? yl) =

“
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4) Denote the numerator and denominator of (1) by U and
V', respectively. An application of the Delta method [16]
yields

E(rx) =

EU) 1
) TONVT. Q)

(V)
In order to prove that F(ryx) = 0 (with N large), it is ade-
quate to show that E(U) is null when the assumptions are sat-

isfied. Imposing the independence assumption of = and y, we
have

E(U) =) [E(x@)

It is known [6] that when y is IID, the probability density
function (PDF) of y; is

— B (ev-in)] E () - ©)

911 (y / fylz) fiy(z ©)

where gj;1(y) denotes the PDF of yp;;, f(y|x) the conditional
PDF of y given z and f(;(z) the PDF of x(;). The conditional
PDF f(y|z) degenerates to f(y) if  and y are independent.
Then, we have

E(yu) = / Y9 (y)dy

/ /f ylo) fiy (x)dady
= / yf(y)dy / fiy(w)dz
= /yf(y)dy

=E(y). ®)

Substituting (8) into (6), we have E(U) =
E(rx) = 0 to the order of O(N~1).

0 and, thus,

B. Estimation of Correlation Coefficient in Normal Case

It will be shown in the following theorem that for samples
from a bivariate normal population with correlation coefficient
p, rx is an asymptotically unbiased estimation of p.

Theorem 2: If (z;,v;), 1 = 1,..., N is a pair of IID time
series from a bivariate normal distribution with correlation co-
efficient p, then A}im E{rx(z,y)} = p.

Proof: Without loss of generality, we assume that both x
and y have zero mean and unity variance. The order statistics
T (;) and y(;) can be expressed as

Ty =i T €
Yy = i + 6 ©

where 11; = E(x(;)) = E(yq) and E(e;) = E(6;) = 0. It is
obvious that ¢; and §; have identical distributions, and hence we
have

E ()

=FE (67). (10)
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The symmetry of the normal distribution yields [17], [18]

Hi = — HUN—
E (6?) =F (a?\,

i+1
(1)

—iv1)

It follows that the concomitants associated with x(;) can be
written as [11]

Y = prE) + 2 (12)
where x ;) and z; are mutually independent, the latter being IID

normal with mean zero and variance 1 — p2. Given (9)—(12), the
numerator in (1) can be expressed as

U= QZl‘iyz’ - Z(Plii +pe; + zi)(ei + en—it1). (13)

From (11), we have

Zﬂz g +eENn— 1+1 ZNN z—l—l(f‘:z +en— 1+1) (14)

Replacing N — ¢ + 1 by j in (14) leads to

Z,U'l & +en— L+1 Z,U'] Ej +en— ]-1—1) 0. (15)
Hence, (13) can be further simplified by
U=2 Z!Eiyi - Z(p*fi + z)(ei + en—it1)- (16)

Taking expectations on both sides of (16) and applying the mu-
tual independence facts mentioned before, we have

SE () + 3 Bleien- m}. )

E(U) = 2Np { o

An application of Cauchy—Schwarz inequality [15] and the fact
E(Eigj\f_i+1) > 0 [11] to (14) yields

2Np>E(U)>2Np[1— o, ] when p > 0

2Np<E(U)<2Np[1— e ] when p < 0.

(18)

It can be easily verified that the following two identities hold for
any two real numbers a and b:

ab== [a®+b* — (a—b)’]

—ab==[a®>+b” - (a+1b)?]. (19)

N =D =

Substituting (9)—(12) and (16) into the denominator in (1), we
arrive at

V=Y (@ ad) - e

(20)

1
6i)% — 3 Z(Ez +On—it1)?
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Applying elementary inequalities and taking expectation on
both sides of (17), we have

23 F (&2
IN l1 _ ZT(E) < E(V) < 2N. @1)
It is implied in [18] that
Y E(F)
ngléo N = 0. (22)

Substituting (15), (18), and (19) into (5) and letting N tend to
infinity, we have Nlim E{rx(z,y)} = p, hence, the result.

According to Theorem 2, we can estimate p using order sta-
tistics correlation coefficient by the following estimator:

pX =Tx. (23)

C. Comparison With Three Classical Correlation Coefficients

Asdefined in Section II-A, (1), . . . , z(1v) are the order statis-
tics of the time series x1, ..., xx. Suppose x; is at the kth posi-
tion in the sorted series (1), ..., Z(xn), the number 1 <k < N
is termed the rank of x; and is denoted by p;(= k). Similarly,
we can get the rank of y; denoted by g;. Such operation of ob-
taining the ranks of all elements in a series is called ranking [5].
Let (z;,y;) and (zj,y;) withi =1,...,Nandj = i+1,..., N
be two data-pairs from the original time series. If p; — p; and
¢; — ¢; have the same sign, we say that the two data-pairs are
concordant, otherwise, we say that they are discordant [5]. Let
P stand for the number of concordant pairs and () the number
of discordant pairs, it follows that P + Q = N(N — 1)/2. Let
T, Y, p, and g be the arithmetic averages of x, vy, p, and g, re-
spectively, Pearson’s correlation coefficient (rp), Spearman’s
rho (rs), and Kendall’s tau (g ) are defined as follows [1], [5]:

N
A Z( )(UL ﬂ)
re(w,y) S —== = (24)
¢§1( )? ;(y -9)?
6 Z(pz - QZ)
rs(z,y) 21— W (25)
ri(a,y) 2 %- (26)

If z and y are bivariate Gaussian with correlation coefficient p,
three reasonable estimators of p can be constructed as fol-
lows [5]:

pp =rp

1
ps = 2sin (67r7"5>
. 1
PK = Sl 27r1"K .

27)

Authorized licensed use limited to: The University of Hong Kong. Downloaded on June 9, 2009 at 04:09 from IEEE Xplore. Restrictions apply.



XU et al.: ORDER STATISTICS CORRELATION COEFFICIENT

For brevity, we will drop the circumflex throughout and use
pe, & = X, P, S, K to denote the four estimators. It is easy
to verify that 1) p. are monotonic with r¢; 2) three critical
values {—1,0,+1} are invariant under the transformations p;
and 3)pg¢ is also limited within [—-1, 41].

III. MODELS OF ASSOCIATION AND
PERFORMANCE EVALUATION

In this section, we propose three linear models and one non-
linear model to model the linear and nonlinear association be-
tween two time series. Several indices will also be proposed to
evaluate the performance of our order statistics correlation co-
efficient in comparison with the other classical correlation co-
efficients, in terms of their abilities to estimate the associations
between time series. In each model, a time series (%) is derived
from a pure signal s(7), and another signal y(%) is obtained as a
combination of the transformed pure signal and a white noise,
n(4). In all these models, the time index 4 runs from 1 to 1000.

A. Models of Association
1) Linear Model 1 (LM1): LM1 is constructed as

(i) = (i)

y(i) = s(i) + a - n(i)
where « € [0, 1] is increased from 0 to 1 with a step Aa = 0.1
to control the signal-to-noise ratio (SNR). With increasing «,
the association between = and y becomes smaller and smaller,
which means that r¢ (p¢) should have a decreasing relationship
with a. For a fixed «, the greater the magnitude of E(p¢), the
better its performance in the context of noise robustness.

2) Linear Model 2 (LM2): LM2 is a regression model of the

form [14]

(28)

(i) = s(i)

y(@) =p-s(i) + V1= p?-n(i)
where p € [—1,1] with a step Ap = 0.01 characterizing the
linear association. It follows by straightforward calculation that
E(pp) = p for any distribution of s(7). Unfortunately, the prop-
erty of unbiasedness does not hold for the other three estimators
px, Ps, and pg except for the bivariate normal case. The aim
of this model is to compare the biasedness of these three biased
estimators as well as their power to discriminate different p’s.

3) Linear Model 3 (LM3): LM3 is similar to LM1 except for
a time delay A = 30 introduced in channel ¥, as follows:

(i) = s(2)
y(i) =s(i — A) + a-n(3). (30)
4) Nonlinear Model (NM): NM is a nonlinear model used to

study the effect of nonlinear transformations to the signals on
the four coefficients, as follows [14]:

w(t) =T B - s(1)]

y(i) =T, [ {p-5() + V1= 7 -nli)}]
where T [e] and T),[e] are two increasing nonlinear functions.
The parameter § = 2,4,6,8,10 is used to control the extent

of nonlinearity (greater value of § corresponding to stronger
nonlinearity), while p has the same meaning as in LM2.

(29)

€1y

5555

B. Performance Evaluation

Several methods are used to evaluate the performance of r¢
under each of the four models previously mentioned.

1) Noise Robustness: Under LM1, we compare the de-
creasing rates of E(pg) with the increase of a.

2) Attenuation Measurement: We propose two indices called
absolute attenuation (AAT) and relative attenuation (RAT) to
measure the extent of biasedness, defined as

[ 1Beo) = pldp 1 ;
11 =7 |

AATe = Pe(p) = pldp  (32)
I J dpdpg 41
—-1-1
and
I peo)=2" (o) do
RATe = ‘11 s / [7c() =27 (0)| do
|| dpdpe “1
—1-1
(33)

where ﬁéL) (p) is the mean of pg under LM2. AAT is to measure
the extent of biasedness under LM2, while RAT is to measure
the biasedness caused by the nonlinearity involved in NM. For
Pearson’s coefficient, we have pp = p, thus AAT p = 0. For the
other three coefficients, AAT relates positively to their biased-
ness under LM2. Itis clear from (30) that under LM2 RAT, = 0
and under NM, a smaller RAT means lesser effect of the non-
linearity and hence better robustness.

3) Sensitivity to Changes in p: We employ another index
called sensitivity ratio (SR) [4] to test the sensitivity of p¢ to
changes in p. For this purpose the Fisher’s z-transformation of
pe, denoted as z¢

_ 1 1+ Pe
=tanh™' ps = =1 34
3 an Pe 2 0g, 1—, 34
After such transformation, which maps [—1, +1] to

(—00,+00), the resultant z¢ follows approximately normal
distributions with constant variances (i.e., independent of the
means) [2], [4]. Given two distinct p; and pa (p2 > p1), we
have two sets of coefficients p¢1 and pgo, and their respective
Fisher’s z-transformation, z¢1 and z¢2. SR is then defined as

Zg2 — Zg1
Vi + 2
where Z; and v, denote the mean and standard deviation of z¢,
respectively. SR measures the ability of p, to detect the changes
of underlying p. A greater value of SR indicates better discrim-
ination sensitivity. SR is computed for the results of the linear
model LM2 and the nonlinear model NM.

4) Time Complexity Measurement: We analyze the time
complexities of 7¢ in the language of big Oh. We also estimate

the relationship between computational loads of r¢ versus the
length of signal N from 100 to 1000 with a step AN = 100.

SR, = (35)

IV. COMPARISON ON RESULTS FOR SIMULATED
AND REAL BIOSIGNALS

Signals derived from biological processes fall into two main
categories: deterministic and stochastic signals. The former are
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those that can be described by explicit mathematical relation-
ships; whereas the latter can be described only in statistical
terms. The deterministic group is further subdivided into peri-
odic, semi-periodic, and transient signals; the stochastic group is
subdivided into stationary and nonstationary signals [19], [20].
Recently, there has been growing evidence indicating that many
biosignals exhibit long range power-law correlations [21]. A
stochastic process is said to have long range correlation if its
autocorrelation function R(k) ~ k?H=2 as k — oo, where
0 < H < 1 is the Hurst parameter. The corresponding power
spectral density is proportional to f~(#=1) [22]. In order to
evaluate the feasibility of 7 in association studies, several sim-
ulated and real biosignals with respect to six types of previ-
ously mentioned biosignals are employed for investigation. For
notational convenience, the six signals are denoted uniformly
as s¢, ¢ = p,h,t,a,e,l, which represent periodic, semi-peri-
odic, transient, stationary, nonstationary, and long-range-corre-
lated signals. A number of 1000 independent white Gaussian
noise (1 = 0 and 0> = 1) are generated with a sampling rate
of 1000 Hz to serve as noise in the linear and nonlinear models.
Due to the 1000 noise involved, each r¢ becomes a random vari-
able and has a distribution, which allows us to perform statistical
analysis. Under each model, two channels of signals x and y are
generated from s; and the 1000 episodes of white noise. Four
sets of correlation coefficients between = and y are then com-
puted for comparative study.

A. Simulated and Real Biosignals

As remarked before, the following six representative biosig-

nals are included in our study:

1) sin wave sp(i) of frequency 5 Hz emulating periodic
biosignals;

2) real bipolar intra-atrial flutter signal s, (7) recorded during
electrophysiological procedure [23];

3) atrial action potential waveform s.(i) generated from a
mathematical model [24];

4) episode of alpha wave s,(7) simulated from a random
Gaussian noise filtered by a band-pass Butterworth filter
with passband 8 to 12 Hz [25];

5) second of real EEG signal s. (i) (sampling rate 256 Hz)
from a dataset provided by University of Tuebingen for
BCI Competition 2003 [26], [27];

6) segmentation s;(¢) of an artificial time series s;7(i) ex-
hibiting long range correlation with Hurst parameter H =
0.9 [21], [28], [29].

Fig. 1 illustrates the six biosignals. All the first four signals
contain 1000 samples (N = 1000). The EEG signal s.(7) is
up-sampled from 256 to 1000 Hz by linear interpolation. As
for the long-range-correlated signal s;¢(i) containing 217 sam-
ples, we use the first 1000 samples as s;(z) for association anal-
ysis. The whole time series s;(¢) is used when we demon-
strate the capability of rx for estimating the Hurst parameter
H. After these manipulations, all the six original biosignals s¢,
¢ = p, h,t,a,e,lcanbe considered of duration 1 s. Without loss
of generality (property c), s¢ are normalized to have mean zero
and variance unity before feeding them into the four models de-
scribed in Section III-B.

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 55, NO. 12, DECEMBER 2007
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Fig. 1. Tllustration of the four simulated signals and two real signals.
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Fig. 2. Noise robustness comparison of simulation results under LM1.

B. Comparative Study Under Linear Model LM 1

The results under LM1 are shown in Fig. 2. It is clear that
Pe () drops with increasing of . However, the decreasing rates
are quite different. Fig. 2(a)—(c) illustrate that the means of px
and pp descend more slowly than those of ps and pg, sug-
gesting the superiority of the former two coefficients when de-
terministic signals s,,, s5,, and s, are fed into LM 1. Furthermore,
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Fig. 3. Relations between p, and p under LM2.

px outperforms pp in cases with respect to s, and s;,. On the
other hand, the immaterial differences observed in Fig. 2(d)—(f)
indicating the equivalence of the four methods when the inputs
are stochastic signals s,, s., and s;. The overall noise robust-
ness performance thus can be ordered as rx, 7p > ri,and rg.

C. Comparative Study Under Linear Model LM?2

The relationships between p, and p for the six original signals
s¢ are shown in Fig. 3. Itis easily observed that 1) =1 < pe <1
(Property 1); 2) pe = £1(re = £1) as p = =£1, respectively
(Property 2); 3) p = 0 (7¢ = 0) as p = 0 (Property 4); and 4)
Pe (T¢) is an increasing function of p. Noticing that the closer
the distance of pe to the diagonal line, the smaller the associ-
ated biasedness, we also observe that when the model inputs
are deterministic signals excepting s,,, the unbiasedness perfor-
mance can be ordered as rp > rx > ri > rg; whereas for the
stochastic signals, there is no substantial difference among the
four methods. This phenomenon is quantitatively highlighted in

5557

TABLE 1
AAT COMPARISON RESULTS AMONG FOUR METHODS

AATy (%) AAT, (%) AAT (%) AATy (%)

S, 0.88 0.07 0.55 0.33
S, 2.34 0.02 7.53 7.12
s, 3.75 0.01 6.95 12,12
S, 0.09 0.01 0.13 0.13
S, 0.04 0.02 0.23 0.16
S 0.02 0.01 0.03 0.03

Table I which summarizes the AAT, with respect to the six orig-
inal signals s¢. As for the performance of detecting changes
in the underlying p, we tabulate the sensitivity ratios (SR) in
Table II, showing that the capability of discriminating changes
in p can be ordered as rp > rx > rg > rg, the same as that
of unbiasedness performance.

D. Comparative Study Under Linear Model LM3

Under this model, ¢ is computed as a function of time-shift
K, say, which varies from —100 to 100 ms. For each « and
each episode n(7) of 1000 white noises, 7¢(«, k) is calculated
and the time-shift with respect to the maximum of r¢(«, k) is
the estimate of the time-delay A and denoted by ka. Limited
by the length of this paper, we only present the results with
respect to s, here. Fig. 4(a) shows four typical waveforms of
re(a, k) in the presence of a 50% SNR (« = 1). All the four
coefficients can correctly detect the time-delay between z and
y giving kAo = 30 ms which equals the true time-delay A. In
Fig. 4(b), we present the statistical results of x versus the un-
derlying « from O to 1 with A« = 0.1. The levels of rectangular
bars represent the means % A and the error bars represent 3X vy,
with v,,, denoting the standard deviation of k. It can be ob-
served from Fig. 4(b) that K A slightly increases with increase of
noise levels and so does the standard deviation v,;, for all four
r¢. The performances of 7x and rp are better than those of two
rank-based methods s and 7 g in the sense that the former two
coefficients have smaller deviations. However, the performance
of time-delay detection is not further compared since the max-
imal error is only 2 ms in all cases for all the four methods. In
other words, we do not consider that there are significant differ-
ences between the four methods in the aspect of detecting time
delays.

E. Comparative Study Under Nonlinear Model NM

The nonlinear model NM is constructed on the linear model
LM2 by introducing two increasing nonlinear transformations
T,[e] = sgn(e) - (¢)? and T}j[8] = exp(e). Besides the asso-
ciation parameter p carrying the same meaning as in LM2, we
employ another parameter 3 = 2,4, 6,8, 10 to control the ex-
tent of nonlinearity. It is noteworthy that T, [e] and T} [e] have
no effect on the rank-based measures rs and 7 g because rank-
ings are invariant under strictly increasing transformations.

Fig. 5 shows the relationships between p, and p with respect
to the six biosignals s¢ with nonlinearity parameter 3 = 2. We
observe that 1) for periodic signal s,,, px performs comparably
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TABLE II
SRs COMPARISON OF THE RESULTANTS OF LM2

P1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
P2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
SRx 22295 22899 24286 2.6697 3.0628 3.7103 4.8474 7.1243 13.1615
s SEp 22301 22916 24317 2.6754 3.0746 3.7386 4.9257 73876 14.3773
P SRs 21470 22032 23390 2.5796 29761 3.6249 4.7660 6.9956 11.8843
SRk 2.1459 22022 23369 2.5730 29579 3.5827 4.6581 6.6673 11.0515
SRx 22082 22665 23955 2.6144 29626 3.5175 44560 62641 10.8761
S SRp 22387 23011 24424 2.6880 3.0899 3.7581 4.9525 7.4295 14.4629
% SRs 15498 15433 15415 15476 15699 1.6228 1.7580 2.1406 3.4626
SRk 1.5508 1.5493 1.5556 1.5722 1.6087 1.6789 1.8356 22493 3.6324
SRx 1.9265 1.9686 2.0616 22160 24528 2.8147 33906 4.4035 6.6993
S SRp 22821 23454 24892 2.7393 3.1485 3.8290 5.0456 7.5686 14.7325
" SRs 1.6928 1.7098 1.7427 1.7932 1.8643 1.9614 2.0913 22770 2.7136
SRk 1.6920 1.7096 1.7442 1.7977 1.8741 1.9821 2.1356 23810 2.9659
SRx 22326 22949 24359 2.6805 3.0802 3.7436 4.9265 7.3708 14.2385
s SRp 22313 22934 24341 2.6787 3.0790 3.7444 49337 7.3994 14.3982
@ SRs 21590 22187 23507 2.5813 29461 3.5381 4.5339 6.4251 11.0119
SRk 2.1571 22177 23520 2.5872 29648 3.5873 4.6611 6.7816 122714
SRx 22965 23595 2.5026 2.7510 3.1563 3.8265 5.0136 5.0136 14.0770
S SRp 23022 23663 25118 2.7645 3.1782 3.8662 5.0966 5.0966 14.9067
¢ SRs 22352 22953 24333 2.6654 3.0398 3.6439 4.6804 4.6804 11.8162
SRk 2.2359 22965 24371 2.6732 3.0580 3.6863 4.7813 4.7813 12.6448
SRx 22445 23069 2.4486 2.6947 3.0974 3.7668 4.9636 7.4481 14.5038
S SRp 22457 23082 24501 2.6967 3.1004 3.7720 4.9735 7.4678 14.5614
© SRs 2.1617 22138 23385 25521 2.8966 3.4566 4.4232 63403 113488
SRk 2.1615 22166 2.3461 2.5694 29336 3.5311 4.5755 6.6912 12.4021

with ps and pg; 2) in cases with respect to other two determin-
istic signals, px has the smallest biasedness; 3) for the three sto-
chastic signals, px and pg surpass px; and 4) pp has the largest
biasedness in all cases. Moreover, rp never approaches £1 as
p — =1, that is, rp underestimates the strength of association
when nonlinearity is involved. On the other hand, ry = +1
as p — =1, which indicates the validity of property 2 under
increasing nonlinear transforms. Table III shows the effect of
nonlinearity on px and pp, elucidating that with increase of
[, the biasedness (RAT) caused for px is significantly smaller
than that for pp. Sensitivity ratios (§ = 2) tabulated in Table IV
show that in most cases, px performs best; in almost all cases,
pp has the lowest SR, indicating the limitation of rp in non-
linear scenarios.

F. Comparison of Time Complexities

The time complexities of r¢ are analyzed and summarized
in Table V based on the definitions. The fastest method is
Pearson’s coefficient rp having a linear time complexity of
O(N). Our new method rx and Spearman’s rho are of the
same order O(N log N), since sorting operation dominants the
computational time of both methods. However, because of the
extra procedure of ranking involved in the calculation of rg, we
can expect that rx is a little faster than rg. Kendall’s tau rg
is the slowest method compared to the other three coefficients.
The core operation of rx is to calculate the number of concor-
dant and discordant pairs, which requires C3, = N(N — 1)/2
operations. Therefore, the time complexity of rx is of O(N?2).

To confirm this result, we estimate the relationship between
computational loads of ¢ versus the length of signal NV, where
N begins at 100 and increases by steps of 100 until N = 1000.
All the computational speed tests were performed in MATLAB
7.0 in a Pentium PC. For each pair of time series of size NV,

the algorithms of r¢ were run for 1000 times. The results are
presented in Fig. 6, which is consistent with our analysis.

V. DISCUSSION

A. Rationality of Selection of Comparison Objects

Apart from the three methods used in our comparative study,
some authors have used other techniques, such as the AAMI [7],
[8], the nonlinear regression coefficient h? [9], and the contin-
gency table-based method V' [10]. However, we did not include
these methods into our comparative studies due to 1) AAMI is
unbound [9] and hence is incomparable to our new method and
2) the admissible values of A% and V are confined from O to 1,
that is, they cannot distinguish positive associations from nega-
tive associations. Moreover, the analytical relationship between
V(h?) and p under bivariate normal model is unknown, which
prevents us from doing calibration as in (23) and (27). On the
other hand, Pearson’s coefficient, Spearman’s ko and Kendall’s
tau have similar meaning as our new measure, thus making it
possible to compare their behaviors.

B. Estimation of the Hurst Parameter H by rx

As remarked before, the power spectral density of a long-
range-correlated signal is proportional to f~H—1) where 0 <
H < 1 is the Hurst parameter. Therefore, we can estimate H
from the power density which is defined by the Fourier trans-
form of the corresponding autocorrelation function R(k), k >
0. Noticing that rp(k) is the normalized version of R(k) and
rx (k) behaves similarly with rp(k) under linear models, we
can estimate the power density S(f) based on the Fourier trans-
form of rp(k) as well as rx (k). The Hurst parameter H can
then be measured with the slope of log(S(f)) against log(f).
In Fig. 7, we present the results on the full version of the long-
range-correlated signal s;7(¢). For clarity, the waveforms of rp
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Fig. 4. Results of simulations under LM3 with respect to s.. (a) Magnitudes
of r¢ associated with time-shift x varying from — 100 to 100 ms in the presence
of a 50% SNR (a = 1). (b) Statistical results of £ versus the underlying «
from O to 1 with a step 0.1.

in Fig. 7 are vertically shifted down, since otherwise the wave-
forms of rx and r p will be almost coincident and, therefore, un-
clear to observe. The corresponding power densities are plotted
in a double-log scale in Fig. 7(b), where 6 = 2H — 1. It can
be easily obtained that Hy = 0.8962 and Hp = 0.8960, very
close to the real value H = 0.9.

C. Sufficiency of Signal Length Used in this Study

It can be shown that the variances of rx, 7p, g, and 7x
are all of the order of O(N~1) [2], [5], [30], where N is the
length of the signals. In other words, the larger the sample size,
the smaller the variances, and the more accurate the four coeffi-
cients. For signals consisting of 1000 sample points, the vari-
ances of the four coefficients are already very small (of the
order of 0.001), which means that a sample size of 1000 is suffi-
cient for studying the behaviors of these coefficients. For the
long-range-correlated time series whose length is far greater
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Fig. 5. Relations between p, and p under NM. All subplots illustrate the infe-
riority of 7p in this nonlinear model. The wandering from positive (negative)
unity of pp ( T P) when p = =£1 reveals the misleading results of » » when non-
linearity involved.

than 1000, the variances of the four cross-correlation coeffi-
cients are very close to zero, thus assuring the accuracy of the
four measurements of association.

D. Solution to Asymmetry of rx

In general, our new measure 7x iS not symmetric, namely,
rx(z,y) # rx(y,z) although E{rx(z,y)} = E{rx(y,z)}.
This problem can be easily solved using a revised version
v (z,y) = [rx(z,y) + rx(y,z)]/2 when symmetry is a
critical feature in practice.

E. Clinical Application of rx

It is of great clinical importance for speedy and reliable
detection of atrial fibrillation (AF) and atrial flutter (AFL) in
automatic implantable atrial defibrillators [23]. AF is a type
of arrhythmia (abnormal heart rhythm) exhibiting rapid and
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TABLE III
RAT COMPARISON UNDER NONLINEAR MODEL NM BETWEEN 7x AND 7 p

Sp Sy S,

Sa Se SZ

RATx RATp RATx RATp RATx RATp RATyx RATp» RATx RAT» RATx RATp

) (o) (o) (o) (B (%)

) o) ) ) (B (%)

093 568 0.84 1279 437 797
296 825 261 1603 503 11.03
450 978 3.69 17.63 547 12.39
553 10.83 432 1848 579 1327
10 629 1160 472 19.00 6.04 1392

0 N BN

3.04 826 174 857 357 11.60
551 1234 415 12.64 545 17.10
6.87 1451 549 14.68 598 1897
7.77 1593 637 1594 6.19 19.87
841 1693 7.02 1683 628 20.38

TABLE 1V
SRS COMPARISON OF THE RESULTANTS OF NM. THE MAXIMA AND MINIMA ARE HIGHLIGHTED WITH GRAY AREAS AND WHITE BOXES, RESPECTIVELY

P1 0.0 0.1 0.2 0.3
P2 0.1 0.2 0.3 0.4

0.4 0.5 0.6 0.7 0.8
0.5 0.6 0.7 0.8 0.9

SRx 1.9808 2.0212 2.1149 2.2729

2.5144 28715 3.4170 4.4060 7.1379

s SEp [1.7324] [1.7513] [1.7989 [1.8794]

£.0017 P.1883 [.5027] PB.1359 [4.8094

P SRs 2.1470 22032 23390 2.5796
SRg  2.1459 22022 23369 2.5730

29761 3.6249 4.7660 6.9956 11.8843
29579 3.5827 4.6581 6.6673 11.0515

SRx 1.5219 1.5283 1.5456 1.5755

1.5975 1.5978 1.6121 1.7553  2.3737

SEp [0.9321] 0.9152] [0.9054 [0.9011]

[0.8900] [0.8546¢] 0.7897] [0.7104 [0.6533]

Sh SRs 15498 1.5433 1.5415 1.5476
SRk 15508 1.5493 1.5556 1.5722

1.5699 1.6228 1.7580 2.1406  3.4626
1.6087 1.6789 1.8356 2.2493 3.6324

SRx [0.7710] [0.7942] [0.8415] [0.9037]

0.9843 1.1082 1.3222 1.7187 2.6497

s SRp 09064 0.8863 0.8891 0.9200
t SRs 1.6928 1.7098 1.7427 1.7932
SRk 1.6920 1.7096 1.7442 1.7977

[0.9696] [1.0323] [1.1083] [1.2123] [1.4081]|
1.8643 19614 2.0913 22770 2.7136
1.8741 1.9821 2.1356 2.3810  2.9659

SRx 1.7298 1.7375 1.7771 1.8586

2.0021 2.2485 2.6880 3.5533 5.6944

SRp [1.321¢ [1.3213] [1.329¢ [1.3529

[1.4024 [1.4977 [L.6745 R.0101] P.733¢

Sa SRs 21590 22187 23507 2.5813
SRg 21571 22177 23520 2.5872

29461 3.5381 4.5339 6.4251 11.0119
29648 3.5873 4.6611 6.7816 12.2714

SRy 1.9998 2.0313 2.1101 2.2460

24591 27911 3.3468 4.4269 7.2043

SRp [1.5529 [1.5642] [1.5881] [1.6248]

L6769 [1.7529 [1.8789] p.1231] P.6991]

Se SRs 22352 22953 24333 2.6654
SRk 22359 22965 24371 2.6732

3.0398 3.6439 4.6804 6.6980 11.8162
3.0580 3.6863 4.7813 6.9522 12.6448

SRx 14193 13968 13618 1.3481

1.3825 1.4963 1.7389 2.2406 3.4734

SRp [1.0233] [0.9999 [0.9652] [0.9401]

[0.9388 [0.972¢ [1.0573] [1.2269 [1.5849

S SRg 21617 22138 23385 2.5521
SRk 2.1615 22166 23461 2.5694

2.8966 3.4566 4.4232 6.3403 11.3488
29336 3.5311 4.5755 6.6912 12.4021

TABLE V
TIME COMPLEXITY ANALYSIS FOR FOUR METHODS

Operation 7y Tp g Ty
+ O(N) o) O(N) O(N?)
X, O(N) O(N) 0(1) O(N?
() — o) el) —
v — o) — —

Sort O(NlogN) e O(NlogN) O(NlogN)
Ranking — O(N) O(N)
TC O(NlogN) O(N) O(NlogN) O(N?)

random patterns. AFL is another kind of arrhythmia caused
by electrical activity propagating through the atria in a fast
and regular manner. Some researchers have employed 7p as

CPU Time (Logarithmic Scale)

Fig. 6. Results of comparative CPU time test for four coefficients studied. A
logarithmic scale is used for better visual effect.

an index to detect these two intra-atrial electrograms [31].
Now, we show that rx can serve as a useful alternative to
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Fig. 7. Estimation of the Hurst parameter H with respect to the long-range-
correlated signal s, (i) by rx and rp. The waveforms of rp are vertically
shifted down for a better visual effect.

rp in discriminating AF from AFL. Bipolar intra-atrial elec-
trograms (available on physioBank [29]) from one AF patient
and one AFL patient are included in this example. The con-
tinuous recordings are parsed into nonoverlapping segments
of 1-s duration (1000 samples). After a series of prepro-
cessing steps as diagrammed in Fig. 8(a) and detailed in [31],
three cross-correlation functions rx (k), rp(k), and rs(k) of
time-shift —100 < k < 100 are calculated with respect to
each pair of preprocessed signal segments from two channels.
Three maximal values with respect to rx (k), rp(k), and rg(k)
are then extracted as discriminatory indices. This operation is
repeated sequentially over the entire dataset so that statistical
analysis can be performed. It can be observed in Fig. 8(b) that
the variance of rx is the lowest and the average of rx with
respect to AFL is the highest, indicating the superiority of rx
over rp and rg. Such advantage of rx can be quantitatively
confirmed by the sensitivity ratios of rx, rp, and rg, being
11, 10, and 6, respectively.
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Fig. 8. Correlation analysis technique and comparison results among r x, 7 p,
and r 5. (a) Demonstration of the filtering and correlation determination between
a pair of simultaneous signal segments. In a parallel manner, the two data seg-
ments are first preprocessed by 1) third-order Butterworth band-pass filtering;
2) absolute valuing; and 3) low-pass filtering. Three maximal values are then
extracted as discriminatory indices with respect to three cross-correlation func-
tions rx (k), rp(k), and r s (k) of time-shift —100 < k < 100. (b) Statistical
results of rx (k), rp(k), and rs(k). For AF data, the indices congregate near
zero; whereas for AFL data, the indices congregate near unity. The larger vari-
ance of rs for AFL data indicates the low discriminatory power of s in this
case.

E Summary of Main Advantages of Order Statistics
Correlation Coefficient

The numerical results presented allow us to claim the fol-
lowing advantages of rx as a method of quantification of as-
sociation between biosignals.

1) Noise Robustness: The index rx decreases slowly as the

noise strength increases.

2) Small Biasedness: Although rx is not an unbiased esti-
mator of linear association, the biasedness is very small
compared to rank correlations rs and 7 i . In this aspect, rp
is optimal, whereas rg and 7 have limited power in mea-
suring linear associations of spiky biosignals (see Fig. 3).

3) High Sensitivity to Changes in Association: Under linear
models, rx has sensitivity to changes in p similar to that
of rp and much higher than those of rs and 7.

4) High Accuracy for Time Delay Detection: The index rx
has almost perfect performance to detect time delays be-
tween two biosignals.
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5) Fast Computational Speed: The computational load of rx
is relatively light, being much faster than rg and 7 and a
little slower than rp.

6) Good Performance for Nonlinear Association Estimation:
Unlike rs and rg, rx is not invariant under increasing
nonlinear transforms, but it always performs substantially
better than rp and for spiky signals even better than rg and

TK.

VI. CONCLUSION

In this paper, we propose a new order statistics correlation
coefficient and investigate its properties and applicability to
biosignals. The proposed measure was evaluated using simu-
lated and real biosignals and four models emulating linear and
nonlinear situations. We also compared the behavior of our
measure with three other correlation coefficients commonly
used in the literature. The comparative studies demonstrate that
our new measure rx plays the role of a “missing link” between
Pearson’s coefficient and Spearman’s rho and Kendall’s fau.
It enjoys the advantages of all the other three coefficients. In
most cases, 7y is not optimal, but it usually is the second
best compared to rp, s, and 7x. This suboptimal feature at
least avoids the worst results in practice when one has no prior
knowledge as to whether nonlinearity exists in the system. The
new method can be applied to a wide spectrum of biosignal
processing, such as organizational indexing of atrial fibrillation
[22], [23], atrial fibrillation detection [19], EEG association
analysis [7]-[9], etc. In fact, the proposed measure can be used
in all the fields where the other three classical methods are
applicable, although our comparative studies are conducted in
the context of biosignal processing.
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