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Abstract—Two new rate-one full-diversity space-time block two groups for ML detection. However, for more than 4 Tx
codes (STBC) are proposed. They are characterized by tHewest  antennas, the decoding complexity of the rate-one STBC in

decoding complexity among the known rate-one STBC, arising _ ; i ;
due to the complete separability of the transmitted symbolsnto S]S'I['JI-B% increases significantly compared with OSTBC and

four groups for maximum likelihood detection. The first and
the second codes are delay-optimal if the number of transmit  In this paper, we propose two new rate-one STBC for any
antennas is a power of 2 and even, respectively. The exact pai number of Tx antennas. Compared with the existing rate-one
wise error probability is derived to allow for the performance  gTBC, our new codes have lowest decoding complexity since
optimization of the two_codes. Compared with existing low- the transmitted symbols can be decoupled into 4 groups (4Gp)
decoding complexity STBC, the two new codes offer several . . )
advantages such as higher code rate, lower encoding/decndi for ML detection. The first code is called 4Gp-QSTBC. The
delay and complexity, lower peak-to-average power ratio, md second code is derived from semi-orthogonal algebraicespac
better performance. time (SAST) codes [10] and thus called 4Gp-SAST codes. The
Index Terms—Orthogonal designs, performance analysis, first and the second codes are delay-optimal when the number
quasi-orthogonal space-time block codes, space-time blocodes. of Tx antennas is a power of 2 and even, respectively. The
equivalent transmit-receive signals are derived so thhérsp
decoders [11] can be applied for data detection. To achieve
I. INTRODUCTION full-diversity, signal rotations are required for the twodes.

Space-time block codes (STEChave been extensively_The exact pair-V\_/is_e error p_robability (PEP) of the two codes
studied since they exploit the diversity and/or the capacitS derived to optimize the signal rotations.
of multiple-input multiple-output (MIMO) channels. Among We compare the main parameters of our new codes and
various STBC, orthogonal STBC (OSTBC) [1]-[3] offer theseveral existing STBC for 6 and 8 Tx antennas in Table
minimum decoding complexity and full diversity. Howeverl Clearly, the new codes offer several distinct advantages
they have low code rates when the number of transmit (Ts}ich as higher code rate, low decoding complexity, and lower
antennas is more than 2 [3]. The rate of one symbol peRcoding/decoding delay. The two new codes also have lower
channel use (pcu) only exists for 2 Tx antennas and the r@@ak-to-average power ratio (PAPR) than OSTBC, QSTBC,
approaches 1/2 for a large number of Tx antennas [1]-[3].and minimum decoding complexity (MDC) QSTBC [12].

To improve the low rate of OSTBC, several quasiMoreover, simulation results show that our new codes also
orthogonal STBC (QSTBC) have been proposed (see [4]-igld significant SNR gains compared with the existing codes
and references therein). They allow joint maximum liketido  Notation Superscripts, *, and’ denote matrix transpose,
(ML) decoding of pairs of complex symbols. However, theonjugate, and transpose conjugate, respectively. Theitge
rate-one QSTBC exist for 4 Tx antennas only and the coded all-zero square matrices of proper size are denoted by
rate is smaller than 1 for more than 4 Tx antennas. Sevefahnd 0. The diagonal matrix with elements of vectaron
rate-one STBC have been proposed (e.g. [8]-[10]), in whithe main diagonal is denoted kyag(x). || X ||r stands for the
the transmitted symbols can be completely separated ifmbenius norm of matriX and® denotes Kronecker product
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random variable is written b¢ N (m,o?). R(X) and3(X) consists of the symbols from only one group. Thgroup

denote the real and imaginary parts.Xf respectively. decodable STBC is denoted b%p-STBC for short.
In the most general case, we assume that therg greups;
Il. SYSTEM MODEL AND PRELIMINARIES each group is denoted b§; (i = 1,2,...,I') and hasL;

— F . . 1
A. System Model symbols..ThusL =3 .., Li. Let ©; be the set of indexes of
symbols in the groug;.

We consider data transmission over a MIMO quasi-static yjen et al. [16, Theorem 1] have shown a sufficient
Rayleigh flat fading channel with/ Tx and N receive (RX) condition for a STBC to b&-group decodable. In fact, this
antennas [14]. The channel gaif,, (m =1,2,...,M;n = condition is also necessary. We will state these resultién t
1,2,...,N) between the(m,n)-th Tx-Rx antenna pair is fo|lowing theorem without proof for brevity.

assumed’V(0,1) and remains constant ovér time slots.  Thegrem 1: The necessary and sufficient conditions, so that
We assume no spatial correlation at either Tx or Rx array.gTgc isT-group decodable, are

The receiver, but not the transmitter, completely knows the

channel gains. _ o ClCy+CIC, =0 Vpe©;Vge0;i#j  (5)
A T x M STBC can be represented in a general dispersionNote that Theoreml 1 covers [17, Theorem 9] (single-symbol
form [14] as follows: decodable STBC) and can be shown similarly.

M=

X = (akAk + kak) (1)

IIl. FOUR-GROUPDECODABLE STBC DERIVED FROM
QSTBC

el
Il

1

where A, and By, (k = 1,2,--- ,K) areT x M constant _
matrices, commonly called dispersion matricgsandb, are A. Encoding
the real and imaginary parts of the symbgl We can use an

) In this section, we will study the new 4Gp-QSTBC. As we
equivalent form of STBC as

will see later, the general form of STBC inl (1) is convenient
L for studying 4Gp-QSTBC; hence Theoréin 1 can be restated
X = chCl (2) as follows.
=1 Lemma 1 ([18]): The necessary and sufficient conditions
where L is the number (not necessarily even) of transmifor @ STBC in(@) to becomel'-group decodable are(a)
ted symbols,c, are real-value transmitted symbols; are Aj4, + AfA, = 0, (b) B{B, + BjB, = 0, and (c)
dispersion matrices. The average energy of code matricesisBy + BjA, =0,Vp € ©;,Vge€ ©;,1 <i#j<T.
constrained such thaty = E[|| X ||3] = T We next consider another sufficient condition so that a
The received signalg,, of thenth antenna at timeé can be STBC is four-group decodable.
arranged in a matri¥” of sizeT x N. Thus, one can represent Theorem 2: Given a 4Gp-STBC fdd Tx antennas with
the Tx-Rx signal relation as [14], [15] code lengthl” and K sets of dispersion matricés!, By; 1 <
k < K), a 4Gp-STBC with code lengtT" for 2M Tx
Y =pXH+Z ®3) antennas, which consists @fX sets of dispersion matrices
where H = [h,] is the channel matrixZ = [z;,] is the denoted a_s(Ai,Bi),.l < i < 2K, can be constructed using
noise matrix of size’x IV, its elements.,, are independently, the following mapping rules:

identically distributed (i.i.d.fA/(0,1). The Tx power is scaled A 0 B 0
. . i _ . _ )

by p so that the average signal-to-noise ratio (SNR) at each Ag—1 = {0 A } , Ao = [ 0 B } 5
Rx antenna i, independent of the number of Tx antennas. Ak Bk

Let the data vector be = [c1 ¢ ...cL]T. The ML Boy_1 = j 0’“] , By, = g Ok . (6)
decoding of STBC is to find the solutianso that: Proof: Theofem[® can be proved by showing that

¢=argmin||Y — XH|Z. (4) if the dispersion matricesA4,, B,) (1 < ¢ < K) satisfy
c

Lemmall with (4,,B,)(1 < p < K) whereq ¢ ©,,
_ _ then the dispersion matricesla,—1, Bag—1, Azq, Bag) CON-
B. Algebraic Constraints of QSTBC structed from(A,, B,) using [6) will satisfy Theoreri]2 with
The key idea of QSTBC is to divide the (real) transmitted (Azp—1, Bap—1, A2y, B2p) constructed from(A,, B,) using
symbols embedded in a code matrix ifit@roups, so that the (6). The detailed proof is omitted here, as the steps aréneut
ML detection of the transmitted symbol vector can be decou- O
pled intoI" sub-metrics, each metric involves the symbols of The recursive construction of 4Gp-STBC specified in The-
only one group [6], [8], [10], [16]. We provide a definition oforem[2 suggests that we can start with the MDC-QSTBC for
STBC with this feature to unify the notation in this paper a4 Tx antennas proposed in [12] to construct 4Gp-STBC for
follows. 8, 16 Tx antennas and so on, because MDC-QSTBC is one
Definition 1: A STBC is said to bé&-group decodable of the STBC satisfying Lemmd 1; the resulting STBC is thus
STBC if the ML decoding metri@) can be decoupled into called 4Gp-QSTBC. For practical interest, we will illugga
a linear sum ofl" independent submetrics, each submetrihe encoding process of 4Gp-QSTBC for 8 Tx antennas from



IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. X, NO. X, X 200X 3

the MDC-QSTBC for 4 Tx antennas [12]. The code matrix afolumns is changed to (1, 3, 5, 7, 2, 4, 6, 8). This order
MDC-QSTBC for 4 Tx antennas is of permutations is also applied for the rows Bf. Let z; =
ar +jas,re2 = az +jag,r3s = b1 +jbs, r4 = b2 + jbg, 5 =

a1 +jas as+ja b1 +jb ba+]jb . . : .
LTias a2l RS CEE as +jar,x6 = a4 +jas, 7 = bs + jbr,xs = by + jbs be

—az+jas ar—jaz —ba+jby by —jb3

F, = by+jbs by +]bs 4 +jas as+jas @) LZz;nt()efrj;rmeS;ts\/vanables, we obtain a permutation-edemt
—by+jbs b1 —jb3 —ax+jas a1 —jas 8 )
wherej? = —1. D= _gl gf 9)
The code matrix of 4Gp-QSTBC for 8 Tx antennas from 2 7L
Fy using mapping rules i {6) is given below: where
[ a1+jas azs+jar ax+jag as+jas Ty Xz T3 T4 T5s Te Tr Ty
—az+jar a1 —jas —ag+jag as —jag Dy = T2 T1 X4 X3 . D= e Ty Ty T7
as+jag a4+jas a1 +jas asz—+jar T3 T4 T1 X2 T7 Tg Ts Te
Fe — —Q4 +ja8 az —jag —as +ja7 ay —jCL5 Ty T3 T2 I1 |8 T7 T Is
8= bi+jbs bs+jb;  by+jbs ba+jbs (10)
—b3 +jbr b1 —jbs  —ba+jbs b2 —jbe The sub-matrice®; andD- have a special form calldalock-
by+jbs  batjbs  bi+ibs by+jbr circulant matrix with circulant block$13].
[ “hatibs ba—jbs  —bs+jbr bi—jbs We next show how to decode the codle For simplicity,
by +jbs b3+jbr  ba+]jbs ba+]jbs a single Rx antenna is considered. The generalization for
—bz+jbr b1 —jbs —bs+jbs ba—jbs multiple Rx antennas is straightforward. Assume that the Tx
bo+jbs bat+jbs b1 +jbs bs+jbr symbols are drawn from a constellation with unit average
—bs+]jbs ba—jbs —bz+jbr b1—jbs power, the Tx-Rx signal model iJ(3) for the case of STBC
a1 +jas az+jar az+jas as+jas | D follows
—az+jar a1 —jas —ag+jasg az—jag
az+jas as+jag a1 +jas az+jag y = /p/8Dh + z. (11)
—ag+jas az—jag —az+jar a1 —jas T .
(8 Let = = E . O R =
The code rate of 4Gp-QSTBC for 8 Tx antennas is Orfl e Y U v # -
symbol pcu. In general, by construction, the rate of 4Gpé1 -+ %4 25 - %] . and
QSTBC for2M Tx antennas is the same as the rate of MDC- hy hy hs hy hs he hr hs
QSTBC for M Tx antennas. The maximal rate of MDC- ho hi he B he he he R
. . . 2 1 4 3 6 5 8 7
QSTBC is one symbol pcu [12], the maximal achievable raté{1 = hs ha hy ho|’ He = he hs hs he
of 4Gp-QSTBC is also one symbol pcu ff Tx antennas. If he he ho R he he he  he
4 3 2 1 8 7 6 5
the number of Tx antennas ¥ < 2™ (m = 2,3,...), then 12)

(2™ — M) columns of the code matrix fa2™ Tx antennas
can be deleted to obtain the code fof antennas. Thushe We have an equivalent expression [ofl(11) as
maximum rate of 4Gp-QSTBC is one symbol pcu and it is

achievable for any number of Tx antenndslditionally, the 7 \/E [
4 x 4 code maFrixF4 is square. By recursive constructién (6), 8

the code matrices of 4Gp-QSTBC are also squareTormx H
antennas; and therefore, 4Gp-QSTBC are delay optimal if ti@e that 1
number of Tx antennas &™ [17].

H1 H2 N
. 13
i —H*{]m” 13)

and 7{», are block-circulant matrices with
circulant-blocks [13]. Thus, they are commutative and so do
#* and 7{;. We can multiply both sides of {1L3) witf' to

B. Decoding get
We know that the symbolsy, s9, s3,s4 of Fy can be * *
) ’ ’ S 14 + 0 =71 A
separately detected [12]. Therefore, from Theotém 2, the’ﬁdTy = \/; {Hl H OH2 He i HL+ HE Ho c+Hz.

groups of 8 symbols offy can be detected independently. 3
These 4 groups arg, s2), (3, 54), (55, s¢), and(s7, sg). The (14)
ML metric given in [4) can be derived to detect the 4 9rOURP can be shown that the noise elements of vectoare

of symbols of F5. However, to provide more insights Intocorrelated with covariance matrﬁﬂ}‘[. Thus this noise vector

the decoding of 4Gp-QSTBC, we will derive an equivalent, .\ hitened by multiplying both side df{14) with the
code and the equivalent channel Bf. Furthermore, using matrix (ﬂTﬂ),l/Q. Let 7 — % 11 + 3 Ho. After the noise

the equivalent channel ofg, we can use a sphere decoder, .. =~ . . i ) }
. hit tep, (14 lent to the foll a
[11] to reduce the complexity of the ML search. whitening step,[(14) is equivalent to the following equatio

The equivalent code ofy is obtained by column per- L -1/2 . [pa1/2 _ .
mutations for the code matrix ofy in (8): the order of H i =\/gH TTE (i=1,2), (15)
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_ _ _ _ T . .
where y, = [jai—s Usi—2 Usi1 Ya] » x; = the eigenvalues off;. ThenA; = diag (Xi 1, Xi2, Ai3, Aia)-
[I4i,3 Tai—2 Tai—1 I4i}T, the noise vectors Let /6 = OR4, we have

;
Z; = H 7 |Zai-3 Zai—o Zaio1 Za] are uncorrelated ) I
P(d—dlft) =Q Pz 21 Fi o) . (18)

and have elements CA/(0,1). G
At this point, the decoding of the 8 transmitted symbols of

the codeD can be readily decoupled into 2 groups. However, 1o derive a closed form of[{18), we need to evaluate

since the code is a 4Gp-STBC, we can further decompggR distribution of ;. The eigenvectors ofy; is the

them into 4 groups in the following. columns of the matrix® = 17, ® F». Thus, the eigen-
Denote the2 x 2 (real) discrete Fourier transform (DFT)vaIues of 14, are: [/\171 Mo A /\174]T — (P

. 1 1 . .
matrix by 7 = ll _11. The block-circulant matrice${; Fa) [h1 hy hs th_ Since h; ~ CA(0,1) for (j —
and7{> can be diagonalized by a (real) unitary matéix= 1,...,4), thusA; ; ~ CA(0,4) and so doX, ;.

%]—"2 ® F» [13, Theorem 5.8.2, p. 185]. Note thé&' = ©, We now use the Craig’s formula [20] to derive the condi-
therefore,}{; = OA,0 and X, = ©A,0, whereA; and A, tional PEP in[(IB).
are dlagonal matrices, Wlth e|ger1values7@j; and7-[2T in the i p(Zg 24 520 2)
main diagonal, respectively. Thug, = O(A]A; + AJA2)O, P(d— dlf) =Q i=1 22j=1 P51\,
and alsofy'/* = ©(ATA; + AlA,)1/20. Sincedr? is a real 16

matrix, (I%) becomes

L (e B
W R = S R + ), =126 x| eXP( 32si o do (9

~—1/2 _ ~1/2 _ .
#2S(,) = VolsH P S(@) + S(2:), i =1,2(16b) Applying a method based on the moment generating func-
Note thatR(z;) — [al 4 by bﬂT — d, i.e. R(ar) is tion [19], we obtain the unconditional PEP as:

only dependent on the complex symbelsands,. Similarly, B 1 /2[4 B2 -2
R(x2), S(x1), and S(z2) depend on(ss, s4), (ss,s6), and  Pld—d) = ;/ H (1 + m) da.  (20)
(s7, ss), respectively. 0 i=1

Eg. (16) shows that the decoding of 8 transmitted symbolss B #0Vi=1,...,4, thenl + pBY o PB4t high

- S
8sin? a 8sin? a

of STBC D is separated into the decoding of 4 groups, ea&NR, the approximation of the exact PEP[in](20) is

with two symbols (thus the search space size has been reduced o4 _s )2 4
from Q3 to 4Q? where( is the transmit constellation size). A P(d— d)~ <2 p / (sin a)wda> H 18,7
sphere decoder [11] can also be used to reduce the complexity m 0 bl
of the ML search for each group. The ma'[r,ﬁz(l/2 can be 97161 ,—8 2
considered as thequivalent channebf the 4Gp-QSTBCD. = 8'7; H 1B:] 4. (21)
i=1
C. Performance Analysis The exponent of SNR in[(21) is -8. This indicates that

In (I8), the PEP of the four transmit symbol vectors affi€ maximum diversity order of 4Gp-QSTBC is 8 and it

; ; : 4
the same. We thus need to consider the PEP of one of theAchievable if the product distandg,_, 5 (see [21] and
vectorsd; = R(z1) = [a1 a2 b bQ]T, For notational "€ferences therein) is nonzero for all possible data vector

simplicity, the subindext of d; is dropped. Additionally, we Furthermore, at high SNR, the asymptotic PEP becomes very

can introduce redundancy on the signal space by usihg & :ir?ht to Jhet exatcfthEP_. Rtﬁcall thg :dGBi(Cti' —d); :husf
. . T e product matri is the combined rotation matrix for
real unitary rotation't to the data VeCtOEal TaQ b bﬂ " data vectord. Since®© is a constant matrix, we can optimize
Thus the data vectad = R[ay az b1 bo] . the matrix R so that the minimum product distandg imin =
From [Eh)! the PEP of_ the pairandd can be expressedmmvw_ . Hi:l 3|, where8 = [OR(d" — d’)] is nonzero
by the Gaussian tail function as [19] and maximized

) ||7A{1/QR5H2 If the complex signals are drawn from QAM, the (real)
Pd—dl#H)=Q plirt 9lle elements ofl are in the sef+1, +£3,+5,...}. The best known
8 4No rotations for QAM in terms of maximizing the minimum
product distance are provided in [21], [22]. Denoting the
P [JTRTGT(AIAl +A£A2)®Ré} rotation matrix in [21], [22] byRpoyv, the signal rotation
= 16 . for our 4Gp-QSTBC is given by
R =0ORpov. (22)

(17) Simulations show that the above vector signal rotationgrerf
whereé = d — d, Ny = 1/2 is the variance of the elementsbetter than the symbol-wise rotation proposed in [18] (teta
of the white noise vectoft(z;) in (164). omitted for brevity). We have presented important properti

Remember thad; is a diagonal matrix with eigenvalues ofof 4Gp-QSTBC. In the next section, we will investigate 4Gp-
H1 on the main diagonal. Let; ; (i =1,2;j =1,2,3,4) be SAST codes.
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IV. FOUR-GROUP DECODABLE STBC DERIVED FROM Applying permutatioril in (24) for the column matrixy,,
SAST CODES we obtain
A. Encoding [yl} = [H(y*l)}
B Yo Y2
The SAST code matrix is constructed fbf = 2/ Tx an- p [I(X1) II(X5)] [s1 II(z1)
tennas using circulant blocks. Two lengifi-data vectors; = = M[ X X, ] 32} +[ 2 ]
T T
[31 S3 ... SM} ands; = [SMH Siri2 .- SQM] o [H, Hy] [s 2
are used to generate twdl-by-M circulant matrices [13]. = ’/M [HT —HT] [S } + [z (27)
Note that the first row of circulant matrig(x) copies the <2 1 Loz 2
row vectorx; the ith row is obtained by circular shift - 1) H
times to the right the vectoe. The SAST code matrix is where H, = C(hT), Hy = C(h}), 21 = Ii(21), 25 = z}.
constructed as The elements ok, and z, are ~ CN(0,1), as elements of
c(sh)  e(sh) z1 andeg. We nTow multiply" with both sides of[(27). Let
S= _ei(s) ci(sh]” (23) 4 = H]H, + H}H,, we get
A — o~ O _ —
By construction, 4Gp-SAST codes have rate of one symbol | 2| = #1 |Y1] = \/ LA Ol sy g |2
) . Y Yo M |0y H| |82 Z2
pcu; the code matrices for an even number of Tx antennas . A
are square; thus 4Gp-SAST codes are delay-optimal for even - | [ H OM} 31] + {1] ) (28)
number of Tx antennas. M Oy H | [82 2

z

The covariance matrix of the additive noise vectoris

E[,%,%T] = 0}{ 071_‘[4] . Therefore, the noise vectots andz,

Slmllar to 4Gp-QSTBC, the decoding of 4Gp-SAST C0de:§re uncorrelated and have the same covariance nyatridhus
requires two steps. First, the two data vectersand s, are

and s, can be decoded separately usipg= #s; + Z;,
decoupled [10]; then, the real and imaginary parts of veator 51 2 P y USBD= 743+ 2

. ; ) i = 1,2. The noise vectorg; andz, can be whitened by the
and s, are separated. We provide the detail decoder with onl L A —1)2 . .
o . me whitening matrixy . The equivalent equations for
one Rx antenna as generalization for multiple Rx antennas

be easily done. “Fx-Rx signals are

.We introduce another type of circulant matrix (;alled left 7[1/2171. = /p/M}]l/Qsi +¢[1/2zy, i=1,2. (29)
ciculant, denoted b¢y,(x), where theith row is obtained by . _ _
circular shifts { — 1) times to the left for the row vectat. At this point, the decoding of SAST codes becomes the

Let us define a permutatidii on an arbitran\/ x M matrix detection of 2 group of complex symbais (i = 1,2); this
X such that, thé M — i + 2)th row is permuted with théth 1S similar to the detection of 4Gp-QSTBC ih{15). Our next

row fori = 2,3, ..., {%1 where[(-)] is the ceiling function. step is to separate the real and imaginary parts of vestors
One can verify that to obtain 4 groups of symbols for data detection.

Recall that#y = HIH, + H]H,, and bothH, and H,

B. Decoder of 4Gp-SAST codes

(C.(z)) = C(x). (24) &€ circulant. Hence{ is also circulant [13]. LetA; =
[Ai1 A2 ... Aim] be them eigenvalues ofH; (i =
Let _ [ T T]T _ [ 7}T 1,2). We can diagonalizél; by DFT matrix asi; = F' A; F.
Y il v =W W2 U] Thusd = FHATA + ALAL) F. Let ATA + ATA, = A, then
Yo = [QMH Yar+2 - yM} v ho= [hI hg] » b1 = A has real and non-negative entries in the main diagonal and
[h1 ha ... hM]T: hy = [hiry1 hyrye - th}T, #'? = FIAV2 Fanddy P = FIAV2
z = [z] zg]T, z1 = [21 =z ... ZM]T, 29 = We assume thas; is pre-multiplied (or rotated) by an
oo Zaiss - ZQM]T_ We can write the Tx-Rx signal [DFT matrix Fi of proper size. Substituting; by ]—'T_si and
relation as multiplying both sides of[{29) with the DFT matrig, we
obtain
{Zj - \/% {—CCTEZ; CCTE:;] m i [2] . (29 A2 Fg = /M Fi P Frei+ AV F
=\/p/MA?s; + \"YV2F 2. (30)
An equivalent form of[(25) is —
v, o [X1 Xo] [s; 2 SinceA'/? is a real matrix, the real and imaginary partssof
[y§] = \/% |:X3 X4] [32} + [zg] (26) (i =1,2) can now be separated for detection.

A Y2R(Fg,) =/ p/MAYV*R(s;) + R(3;), 3la
where Xl _ CL(hI),XQ — CL(h-Qr),Xg _ CT(h-Qr),X4 _ (]:yz) p/ (8 ) (Z ) ( )
—Ct(h]). ATVES(F ;) = Vo/MA?S(s:) +S(2:). (31b)
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We finish deriving the general decoder for 4Gp-SAS *©
codes. Using[(31), one can use a sphere decoder to deteci
transmitted symbols. Thequivalent channebf 4Gp-SAST

T T T
—O— MDC-QSTBC, 16QAM, 3 bits pcu
. i —O- QSTBC, 16QAM, 3 bits pcu
s R —+ 4Gp-SAST, 8QAM-R, 3 hits pcu
SRS —0- SAST, 8QAM-R, 3 bits pcu

—>- 4Gp-QSTBC, 8QAM-R, 3 bits pcu

. 102E S8 —A- 4Gp-QSTBC, 8QAM-S, 3 bits pcu |4
codes |SA1/2- \%ﬁ Sso A osPch, 8QAM-R, 2 bits pcu g
~OSs —>- OSTBC, 8QAM-S, 2 bits pcu
NN —— 4Gp-QSTBC, 4QAM, 2 bits pcu
RN —%— 4Gp-SAST, 4QAM, 2 bits pcu

C. Performance Analysis

Note that the eigenvalues of x m matricesH; and H,
can be found easily using unnormalized DFT of the chanr
vectorsh, andh, [13]. Therefore, the eigenvalues &f and .

s
N —B- SAST, 4QAM, 2 bits pcu

H have distribution~ CA (0, m). RN

Similar to the case of 4Gp-QSTBC, we can introduce a re \\\\\}%
orthogonal transformatiotR to the data vector&(s;) and ol N NN
S(s;) (i = 1,2) to improve the performance of 4Gp-SAST TN

codes. Thus the actual signal rotation of 4Gp-SAST codes
]:TR' 107°
Since the PEP of vector®(s;) and 3(s;) (1 = 1,2) are 10 12 14 R 20 22 24
the same, we only calculate the PEP of the vedtgs,).
Let d = R(s1). The PEP of distinct vectord and d can Fig. 1. Performances of 4Gp-QSTBC and 4Gp-SAST codes capsith
be calculated in a similar manner to that of 4Gp-QSTBC 3STBC, MDC-QSTBC, QSTBC and SAST codes, 6 Tx and 1 Rx antennas
Section IlI-C. details are omitted for brevity. The PEP of4G 2 and 3 bits peu.
SAST codes is given below.

~ 1 /2 [m 32 —2 We compare the performance of our new codes with OSTBC

—d)=— : o an codes for a spectral efficiency o its pcu. To

P(d — d) 1 S 5 d (32) d SAST codes fi | effici f 2 bi T
TJo o s get this bit rate, 8QAM signals are combined with rate-2/3

where [[31 By ... ﬂm}T — R(d — d). One can find the OSTBC, while 4QAM is used for the SAST, 4Gp-QSTBC and

ISZ‘p—SAST codes. Two columns (4 and 8) of 4Gp-QSTBC
or 8 Tx antennas is deleted to create the code for 6 Tx
antennas. From Fid.] 1, 4Gp-SAST codes gains 0.8 and 1.6

asymptotic PEP of 4Gp-SAST codes at high SNR in a simil
fashion to the case of 4Gp-QSTBC [n[21) as follows.

o[ 2fmpTEm 2 G dB over OSTBC with 8QAM-S and 8QAM-R, respectively,
Pld = d)~ ( T /0 (sin.a) "da Hﬁi while the decoding complexity slightly increases (see &dpl
6m —om 1@ ™ =t The performance improvement of 4Gp-QSTBC is even better,
— i&ngﬂl. (33) 1 dB compared with OSTBC (using 8QAM-S) and 0.2 dB
217 818l Lo compared with 4Gp-SAST codes. Note that for 6 antennas,

the decoding complexity of 4Gp-QSTBC is slightly higher

than that of 4Gp-SAST codes (see Table ).
In Fig.[d, the performance of 4Gp-QSTBC and 4Gp-SAST
can be used to minimize the worst-case PEP. codes with 3 bits pcu is also co_mpared with that of the radle-3/
Remark It is interesting to recognize that, the optimal rotaQ,STBC and MPC'QSTBC (using 16QAM). 4Gp-SAST code
tion matrices of 4Gp-QSTBCH — ©Rpov) and 4Gp-SAST yields a 0.3 dB |mprovemen_t_over MDC-QSTBC anq performs
the same as QSTBC. Specifically, 4Gp-QSTBC using 8QAM-

codes R = F Rpov) have a similar formula. The precoding o
matrices® and £ are added to diagonalize the channels of t% performs much better than the QSTBC; it produces a 1.2
t

two codes. Thus each real symbol is equivalently transchittdE 92in over QSTBC with the same decoding complexity.
Further simulations for 5 and 8 Tx antennas also confirm

in a separate channel, but full diversity is not achievable
real rotation matrixRgov is applied to the data vectors sothat 4Gp-QSTBC and 4Gp-SAST codes perform better than

that the real symbols are spread over all the channels, aisd fffSTBC, MDC-QSTBC, QSTBC’ a'j'd SAST codes. Due to
full diversity is achievable. the lack of space, we omit the details.

Thus, if the product distancg[!", 3; is nonzero, 4Gp-
SAST codes will achieve full-diversity. Similar to 4Gp-
QSTBC, with QAM, the signal rotation®goy in [21], [22]

V. SIMULATION RESULTS VI. CONCLUSIONS

Simulation results are presented in Hig. 1 to compare theWe have presented two new rate-one STBC with four-
performances of 4Gp-QSTBC and 4Gp-SAST codes with O§roup decoding, called 4Gp-QSTBC and 4Gp-SAST codes.
TBC, MDC-QSTBC [12], QSTBC [6], and SAST codes [10]They offer the lowest decoding complexity compared with the
for 6 Tx and 1 Rx antennas. To produce the desired bit ratesjsting rate-one STBC. Their closed-form PEP are derived,
two 8QAM constellations are used. The first constellatiognabling the optimization of signal rotations. Comparethwi
is rectangular, denoted by 8QAM-R, and has signal pointgher existing low decoding complexity STBC (such as OS-
{£1+},4+3+j}. The other constellation, denoted by 8QAM-TBC, MDC-QSTBC, CIOD, and QSTBC), our newly designed
S, has the best minimum Euclidean distance; its geometri&IBC have several additional advantages including higher
shape is depicted in [6, Fig. 2(c)]. code rate, better BER performance, lower encoding/degodin
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delay, and lower peak-to-average power ratio (PAPR) b&cayzo] J. W. Craig, “A new, simple and exact result for calcingt the

zero-amplitude symbols are avoided in the code matrices.
Recent results in [23] present a flexible design of multiegro
STBC. However, the code rate is still limited by 1 symbol pcuyz1]
Thus, the systematic design of high-rate multi-group STBC i

still an open research problem.
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