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Abstract— Two new rate-one full-diversity space-time block
codes (STBC) are proposed. They are characterized by thelowest
decoding complexity among the known rate-one STBC, arising
due to the complete separability of the transmitted symbolsinto
four groups for maximum likelihood detection. The first and
the second codes are delay-optimal if the number of transmit
antennas is a power of 2 and even, respectively. The exact pair-
wise error probability is derived to allow for the performan ce
optimization of the two codes. Compared with existing low-
decoding complexity STBC, the two new codes offer several
advantages such as higher code rate, lower encoding/decoding
delay and complexity, lower peak-to-average power ratio, and
better performance.

Index Terms— Orthogonal designs, performance analysis,
quasi-orthogonal space-time block codes, space-time block codes.

I. I NTRODUCTION

Space-time block codes (STBC1) have been extensively
studied since they exploit the diversity and/or the capacity
of multiple-input multiple-output (MIMO) channels. Among
various STBC, orthogonal STBC (OSTBC) [1]–[3] offer the
minimum decoding complexity and full diversity. However,
they have low code rates when the number of transmit (Tx)
antennas is more than 2 [3]. The rate of one symbol per
channel use (pcu) only exists for 2 Tx antennas and the rate
approaches 1/2 for a large number of Tx antennas [1]–[3].

To improve the low rate of OSTBC, several quasi-
orthogonal STBC (QSTBC) have been proposed (see [4]–[7]
and references therein). They allow joint maximum likelihood
(ML) decoding of pairs of complex symbols. However, the
rate-one QSTBC exist for 4 Tx antennas only and the code
rate is smaller than 1 for more than 4 Tx antennas. Several
rate-one STBC have been proposed (e.g. [8]–[10]), in which
the transmitted symbols can be completely separated into
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1The term "STBC" stands for space-time block code/codes/coding, depend-
ing on the context.

two groups for ML detection. However, for more than 4 Tx
antennas, the decoding complexity of the rate-one STBC in
[8]–[10] increases significantly compared with OSTBC and
QSTBC.

In this paper, we propose two new rate-one STBC for any
number of Tx antennas. Compared with the existing rate-one
STBC, our new codes have lowest decoding complexity since
the transmitted symbols can be decoupled into 4 groups (4Gp)
for ML detection. The first code is called 4Gp-QSTBC. The
second code is derived from semi-orthogonal algebraic space-
time (SAST) codes [10] and thus called 4Gp-SAST codes. The
first and the second codes are delay-optimal when the number
of Tx antennas is a power of 2 and even, respectively. The
equivalent transmit-receive signals are derived so that sphere
decoders [11] can be applied for data detection. To achieve
full-diversity, signal rotations are required for the two codes.
The exact pair-wise error probability (PEP) of the two codes
is derived to optimize the signal rotations.

We compare the main parameters of our new codes and
several existing STBC for 6 and 8 Tx antennas in Table
I. Clearly, the new codes offer several distinct advantages
such as higher code rate, low decoding complexity, and lower
encoding/decoding delay. The two new codes also have lower
peak-to-average power ratio (PAPR) than OSTBC, QSTBC,
and minimum decoding complexity (MDC) QSTBC [12].
Moreover, simulation results show that our new codes also
yield significant SNR gains compared with the existing codes.

Notation: SuperscriptsT, ∗, and† denote matrix transpose,
conjugate, and transpose conjugate, respectively. The identity
and all-zero square matrices of proper size are denoted by
I and0. The diagonal matrix with elements of vectorx on
the main diagonal is denoted bydiag(x). ‖X‖F stands for the
Frobenius norm of matrixX and⊗ denotes Kronecker product
[13]. A mean-m and variance-σ2 circularly complex Gaussian

TABLE I

COMPARISON OFSEVERAL LOW COMPLEXITY STBCFOR 6 AND 8

ANTENNAS. THE NUMBERS IN THE PARENTHESESINDICATE THE CODES’

PARAMETERS FOR8 TX ANTENNAS.

Codes Maximal rate Delay Real symbol decoding

OSTBC [3], [24] 2/3 (5/8) 30 (56) 1 or 2 (1 or 2)

CIOD [17] 6/7 (4/5) 14 (50) 2 (2)

MDC-QSTBC [12] 3/4 (3/4) 8 (8) 2 (2)

QSTBC [6] 3/4 (3/4) 8 (8) 4 (4)

2Gp-QSTBC [8] 1 (1) 8 (8) 8 (8)

SAST [10] 1 (1) 6 (8) 6 (8)

4Gp-QSTBC (new) 1 (1) 8 (8) 4 (4)

4Gp-SAST (new) 1 (1) 6 (8) 3 (4)

http://arxiv.org/abs/0707.3959v1
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random variable is written byCN (m,σ2). ℜ(X) andℑ(X)
denote the real and imaginary parts ofX , respectively.

II. SYSTEM MODEL AND PRELIMINARIES

A. System Model

We consider data transmission over a MIMO quasi-static
Rayleigh flat fading channel withM Tx andN receive (Rx)
antennas [14]. The channel gainhmn (m = 1, 2, . . . ,M ;n =
1, 2, . . . , N) between the(m,n)-th Tx-Rx antenna pair is
assumedCN (0, 1) and remains constant overT time slots.
We assume no spatial correlation at either Tx or Rx array.
The receiver, but not the transmitter, completely knows the
channel gains.

A T ×M STBC can be represented in a general dispersion
form [14] as follows:

X =

K∑

k=1

(akAk + bkBk) (1)

whereAk and Bk, (k = 1, 2, · · · ,K) are T × M constant
matrices, commonly called dispersion matrices;ak andbk are
the real and imaginary parts of the symbolsk. We can use an
equivalent form of STBC as

X =

L∑

l=1

clCl (2)

where L is the number (not necessarily even) of transmit-
ted symbols,cl are real-value transmitted symbols,Cl are
dispersion matrices. The average energy of code matrices is
constrained such thatEX = E[‖X‖2F] = T .

The received signalsytn of thenth antenna at timet can be
arranged in a matrixY of sizeT ×N . Thus, one can represent
the Tx-Rx signal relation as [14], [15]

Y =
√
ρXH + Z (3)

whereH = [hmn] is the channel matrix;Z = [ztn] is the
noise matrix of sizeT×N , its elementsztn are independently,
identically distributed (i.i.d.)CN (0, 1). The Tx power is scaled
by ρ so that the average signal-to-noise ratio (SNR) at each
Rx antenna isρ, independent of the number of Tx antennas.

Let the data vector bec =
[
c1 c2 . . . cL

]T
. The ML

decoding of STBC is to find the solution̂c so that:

ĉ = argmin
c

‖Y −XH‖2F . (4)

B. Algebraic Constraints of QSTBC

The key idea of QSTBC is to divide theL (real) transmitted
symbols embedded in a code matrix intoΓ groups, so that the
ML detection of the transmitted symbol vector can be decou-
pled intoΓ sub-metrics, each metric involves the symbols of
only one group [6], [8], [10], [16]. We provide a definition of
STBC with this feature to unify the notation in this paper as
follows.

Definition 1: A STBC is said to beΓ-group decodable
STBC if the ML decoding metric(4) can be decoupled into
a linear sum ofΓ independent submetrics, each submetric

consists of the symbols from only one group. TheΓ-group
decodable STBC is denoted byΓGp-STBC for short.

In the most general case, we assume that there areΓ groups;
each group is denoted byΩi (i = 1, 2, . . . ,Γ) and hasLi

symbols. ThusL =
∑Γ

i=1
Li. Let Θi be the set of indexes of

symbols in the groupΩi.
Yuen et al. [16, Theorem 1] have shown a sufficient

condition for a STBC to beΓ-group decodable. In fact, this
condition is also necessary. We will state these results in the
following theorem without proof for brevity.

Theorem 1: The necessary and sufficient conditions, so that
a STBC isΓ-group decodable, are

C†
pCq + C†

qCp = 0 ∀p ∈ Θi, ∀q ∈ Θj , i 6= j. (5)
Note that Theorem 1 covers [17, Theorem 9] (single-symbol

decodable STBC) and can be shown similarly.

III. F OUR-GROUPDECODABLE STBC DERIVED FROM

QSTBC

A. Encoding

In this section, we will study the new 4Gp-QSTBC. As we
will see later, the general form of STBC in (1) is convenient
for studying 4Gp-QSTBC; hence Theorem 1 can be restated
as follows.

Lemma 1 ([18]): The necessary and sufficient conditions
for a STBC in (1) to becomeΓ-group decodable are: (a)
A†

pAq + A†
pAq = 0, (b) B†

pBq + B†
pBq = 0, and (c)

A†
pBq +B†

pAq = 0, ∀p ∈ Θi, ∀q ∈ Θj, 1 ≤ i 6= j ≤ Γ.
We next consider another sufficient condition so that a

STBC is four-group decodable.
Theorem 2: Given a 4Gp-STBC forM Tx antennas with

code lengthT andK sets of dispersion matrices(Ak, Bk; 1 ≤
k ≤ K), a 4Gp-STBC with code length2T for 2M Tx
antennas, which consists of2K sets of dispersion matrices
denoted as(Āi, B̄i), 1 ≤ i ≤ 2K, can be constructed using
the following mapping rules:

Ā2k−1 =

[
Ak 0

0 Ak

]

, Ā2k =

[
Bk 0

0 Bk

]

,

B̄2k−1 =

[
0 Ak

Ak 0

]

, B̄2k =

[
0 Bk

Bk 0

]

. (6)

Proof: Theorem 2 can be proved by showing that
if the dispersion matrices(Aq , Bq) (1 ≤ q ≤ K) satisfy
Lemma 1 with (Ap, Bp) (1 ≤ p ≤ K) where q /∈ Θp,
then the dispersion matrices(Ā2q−1, B̄2q−1, Ā2q, B̄2q) con-
structed from(Aq, Bq) using (6) will satisfy Theorem 2 with
(Ā2p−1, B̄2p−1, Ā2p, B̄2p) constructed from(Ap, Bp) using
(6). The detailed proof is omitted here, as the steps are routine.

The recursive construction of 4Gp-STBC specified in The-
orem 2 suggests that we can start with the MDC-QSTBC for
4 Tx antennas proposed in [12] to construct 4Gp-STBC for
8, 16 Tx antennas and so on, because MDC-QSTBC is one
of the STBC satisfying Lemma 1; the resulting STBC is thus
called 4Gp-QSTBC. For practical interest, we will illustrate
the encoding process of 4Gp-QSTBC for 8 Tx antennas from
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the MDC-QSTBC for 4 Tx antennas [12]. The code matrix of
MDC-QSTBC for 4 Tx antennas is

F4 =







a1 + j a3 a2 + j a4 b1 + j b3 b2 + j b4
−a2 + j a4 a1 − j a3 −b2 + j b4 b1 − j b3
b1 + j b3 b2 + j b4 a1 + j a3 a2 + j a4

−b2 + j b4 b1 − j b3 −a2 + j a4 a1 − j a3







(7)

wherej2 = −1.
The code matrix of 4Gp-QSTBC for 8 Tx antennas from

F4 using mapping rules in (6) is given below:

F8 =















a1 + j a5 a3 + j a7 a2 + j a6 a4 + j a8
−a3 + j a7 a1 − j a5 −a4 + j a8 a2 − j a6
a2 + j a6 a4 + j a8 a1 + j a5 a3 + j a7

−a4 + j a8 a2 − j a6 −a3 + j a7 a1 − j a5
b1 + j b5 b3 + j b7 b2 + j b6 b4 + j b8

−b3 + j b7 b1 − j b5 −b4 + j b8 b2 − j b6
b2 + j b6 b4 + j b8 b1 + j b5 b3 + j b7

−b4 + j b8 b2 − j b6 −b3 + j b7 b1 − j b5

b1 + j b5 b3 + j b7 b2 + j b6 b4 + j b8
−b3 + j b7 b1 − j b5 −b4 + j b8 b2 − j b6
b2 + j b6 b4 + j b8 b1 + j b5 b3 + j b7

−b4 + j b8 b2 − j b6 −b3 + j b7 b1 − j b5
a1 + j a5 a3 + j a7 a2 + j a6 a4 + j a8

−a3 + j a7 a1 − j a5 −a4 + j a8 a2 − j a6
a2 + j a6 a4 + j a8 a1 + j a5 a3 + j a7

−a4 + j a8 a2 − j a6 −a3 + j a7 a1 − j a5















.

(8)

The code rate of 4Gp-QSTBC for 8 Tx antennas is one
symbol pcu. In general, by construction, the rate of 4Gp-
QSTBC for2M Tx antennas is the same as the rate of MDC-
QSTBC for M Tx antennas. The maximal rate of MDC-
QSTBC is one symbol pcu [12], the maximal achievable rate
of 4Gp-QSTBC is also one symbol pcu for2m Tx antennas. If
the number of Tx antennas isM < 2m (m = 2, 3, . . .), then
(2m − M) columns of the code matrix for2m Tx antennas
can be deleted to obtain the code forM antennas. Thus,the
maximum rate of 4Gp-QSTBC is one symbol pcu and it is
achievable for any number of Tx antennas. Additionally, the
4× 4 code matrixF4 is square. By recursive construction (6),
the code matrices of 4Gp-QSTBC are also square for2m Tx
antennas; and therefore, 4Gp-QSTBC are delay optimal if the
number of Tx antennas is2m [17].

B. Decoding

We know that the symbolss1, s2, s3, s4 of F4 can be
separately detected [12]. Therefore, from Theorem 2, the 4
groups of 8 symbols ofF8 can be detected independently.
These 4 groups are(s1, s2), (s3, s4), (s5, s6), and(s7, s8). The
ML metric given in (4) can be derived to detect the 4 groups
of symbols ofF8. However, to provide more insights into
the decoding of 4Gp-QSTBC, we will derive an equivalent
code and the equivalent channel ofF8. Furthermore, using
the equivalent channel ofF8, we can use a sphere decoder
[11] to reduce the complexity of the ML search.

The equivalent code ofF8 is obtained by column per-
mutations for the code matrix ofF8 in (8): the order of

columns is changed to (1, 3, 5, 7, 2, 4, 6, 8). This order
of permutations is also applied for the rows ofF8. Let x1 =
a1 + j a5, x2 = a2 + ja6, x3 = b1 + j b5, x4 = b2 + j b6, x5 =
a3 + j a7, x6 = a4 + j a8, x7 = b3 + j b7, x8 = b4 + j b8 be
the intermediate variables, we obtain a permutation-equivalent
code ofF8 below

D =

[

D1 D2

−D∗
2 D∗

1

]

(9)

where

D1 =







x1 x2 x3 x4

x2 x1 x4 x3

x3 x4 x1 x2

x4 x3 x2 x1






, D2 =







x5 x6 x7 x8

x6 x5 x8 x7

x7 x8 x5 x6

x8 x7 x6 x5






.

(10)

The sub-matricesD1 andD2 have a special form calledblock-
circulant matrix with circulant blocks[13].

We next show how to decode the codeD. For simplicity,
a single Rx antenna is considered. The generalization for
multiple Rx antennas is straightforward. Assume that the Tx
symbols are drawn from a constellation with unit average
power, the Tx-Rx signal model in (3) for the case of STBC
D follows

y =
√

ρ/8Dh+ z. (11)

Let x =
[
x1 x2 . . . x8

]T
, ŷ =

[
y1 . . . y4 y∗5 . . . y∗8

]T
, ẑ =

[
z1 . . . z4 z∗5 . . . z∗8

]T
, and

H1 =







h1 h2 h3 h4

h2 h1 h4 h3

h3 h4 h1 h2

h4 h3 h2 h1






, H2 =







h5 h6 h7 h8

h6 h5 h8 h7

h7 h8 h5 h6

h8 h7 h6 h5






.

(12)

We have an equivalent expression of (11) as

ŷ =

√
ρ

8

[

H1 H2

H∗
2 −H∗

1

]

︸ ︷︷ ︸

H̄

x+ ẑ. (13)

Note that H1 and H2 are block-circulant matrices with
circulant-blocks [13]. Thus, they are commutative and so do
H∗

1 andH∗
2. We can multiply both sides of (13) with̄H† to

get

H̄†
ŷ

︸︷︷︸
ȳ

=

√
ρ

8

[

H∗
1 H1 +H∗

2 H2 0

0 H∗
1 H1 +H∗

2 H2

]

x+ H̄†
ẑ

︸︷︷︸
z̄

.

(14)

It can be shown that the noise elements of vectorz̄ are
correlated with covariance matrix̄H†H̄. Thus this noise vector
can be whitened by multiplying both side of (14) with the
matrix (H̄†H̄)−1/2. Let Ĥ = H∗

1 H1 +H∗
2 H2. After the noise

whitening step, (14) is equivalent to the following equations

Ĥ−1/2
ȳi =

√
ρ

8
Ĥ1/2

xi + z̄i, (i = 1, 2), (15)
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where ȳi =
[
ȳ4i−3 ȳ4i−2 ȳ4i−1 ȳ4i

]T
, xi =

[
x4i−3 x4i−2 x4i−1 x4i

]T
, the noise vectors

z̄i = Ĥ−1/2 [
z̄4i−3 z̄4i−2 z̄4i−1 z̄4i

]T
are uncorrelated

and have elements∼ CN (0, 1).
At this point, the decoding of the 8 transmitted symbols of

the codeD can be readily decoupled into 2 groups. However,
since the code is a 4Gp-STBC, we can further decompose
them into 4 groups in the following.

Denote the2 × 2 (real) discrete Fourier transform (DFT)

matrix by F2 =

[
1 1
1 −1

]

. The block-circulant matricesH1

andH2 can be diagonalized by a (real) unitary matrixΘ =
1

2 F2 ⊗F2 [13, Theorem 5.8.2, p. 185]. Note thatΘ† = Θ,
therefore,H1 = ΘΛ1Θ andH2 = ΘΛ2Θ, whereΛ1 andΛ2

are diagonal matrices, with eigenvalues ofH1 andH2 in the
main diagonal, respectively. Thus,̂H = Θ(Λ†

1Λ1 + Λ†
2Λ2)Θ,

and alsoĤ1/2
= Θ(Λ†

1Λ1 +Λ†
2Λ2)

1/2Θ. SinceĤ1/2
is a real

matrix, (15) becomes

Ĥ−1/2ℜ(ȳi) =
√

ρ/8Ĥ1/2ℜ(xi) + ℜ(z̄i), i = 1, 2,(16a)

Ĥ−1/2ℑ(ȳi) =
√

ρ/8Ĥ1/2ℑ(xi) + ℑ(z̄i), i = 1, 2.(16b)

Note thatℜ(x1) =
[
a1 a2 b1 b2

]T
:= d1, i.e. ℜ(x1) is

only dependent on the complex symbolss1 ands2. Similarly,
ℜ(x2),ℑ(x1), and ℑ(x2) depend on(s3, s4), (s5, s6), and
(s7, s8), respectively.

Eq. (16) shows that the decoding of 8 transmitted symbols
of STBC D is separated into the decoding of 4 groups, each
with two symbols (thus the search space size has been reduced
from Q8 to 4Q2 whereQ is the transmit constellation size). A
sphere decoder [11] can also be used to reduce the complexity
of the ML search for each group. The matrix̂H1/2

can be
considered as theequivalent channelof the 4Gp-QSTBCD.

C. Performance Analysis

In (16), the PEP of the four transmit symbol vectors are
the same. We thus need to consider the PEP of one of the
vectorsd1 = ℜ(x1) =

[
a1 a2 b1 b2

]T
. For notational

simplicity, the subindex1 of d1 is dropped. Additionally, we
can introduce redundancy on the signal space by using a4×4

real unitary rotationR to the data vector
[
a1 a2 b1 b2

]T
.

Thus the data vectord = R
[
a1 a2 b1 b2

]T
.

From (16a), the PEP of the paird and d̄ can be expressed
by the Gaussian tail function as [19]

P (d → d̄|Ĥ) = Q





√

ρ

8

‖Ĥ1/2
Rδ‖2F

4N0





= Q







√
√
√
√ρ

[

δTRTΘT(Λ†
1Λ1 + Λ†

2Λ2)ΘRδ
]

16







.

(17)

whereδ = d − d̄, N0 = 1/2 is the variance of the elements
of the white noise vectorℜ(z1) in (16a).

Remember thatΛ1 is a diagonal matrix with eigenvalues of
H1 on the main diagonal. Letλi,j (i = 1, 2; j = 1, 2, 3, 4) be

the eigenvalues ofHi. ThenΛi = diag (λi,1, λi,2, λi,3, λi,4).
Let β = ΘRδ, we have

P (d → d̄|Ĥ) = Q





√

ρ(
∑2

i=1

∑4

j=1
β2
j |λi,j |2)

16



 . (18)

To derive a closed form of (18), we need to evaluate
the distribution of λi,j . The eigenvectors ofH1 is the
columns of the matrixΘ = 1

2F2 ⊗ F2. Thus, the eigen-

values of H1 are:
[
λ1,1 λ1,2 λ1,3 λ1,4

]T
= (F2 ⊗

F2)
[
h1 h2 h3 h4

]T
. Since hj ∼ CN (0, 1) for (j =

1, . . . , 4), thusλ1,j ∼ CN (0, 4) and so doλ2,j .
We now use the Craig’s formula [20] to derive the condi-

tional PEP in (18).

P (d → d̄|Ĥ) = Q





√

ρ(
∑2

i=1

∑4

j=1
β2
j |λi,j |2)

16





=
1

π

∫ π/2

0

exp

(

−ρ(
∑2

i=1

∑4

j=1
β2
j |λi,j |2)

32 sin2 α

)

dα. (19)

Applying a method based on the moment generating func-
tion [19], we obtain the unconditional PEP as:

P (d → d̄) =
1

π

∫ π/2

0

[
4∏

i=1

(

1 +
ρβ2

i

8 sin2 α

)]−2

dα. (20)

If βi 6= 0∀i = 1, . . . , 4, then1 + ρβ2

i

8 sin2 α
≈ ρβ2

i

8 sin2 α
at high

SNR, the approximation of the exact PEP in (20) is

P (d → d̄) ≈
(

224ρ−8

π

∫ π/2

0

(sinα)16dα

)
4∏

i=1

|βi|−4

=
2716!ρ−8

8!8!

4∏

i=1

|βi|−4. (21)

The exponent of SNR in (21) is -8. This indicates that
the maximum diversity order of 4Gp-QSTBC is 8 and it
is achievable if the product distance

∏4

i=1
βi (see [21] and

references therein) is nonzero for all possible data vectors.
Furthermore, at high SNR, the asymptotic PEP becomes very
tight to the exact PEP. Recall thatβ = ΘR(d − d̄); thus,
the product matrixΘR is the combined rotation matrix for
data vectord. SinceΘ is a constant matrix, we can optimize
the matrixR so that the minimum product distancedp,min =
min∀di,dj

∏4

k=1
|βk|, whereβ =

[
ΘR(di − dj)

]
is nonzero

and maximized.
If the complex signals are drawn from QAM, the (real)

elements ofd are in the set{±1,±3,±5, . . .}. The best known
rotations for QAM in terms of maximizing the minimum
product distance are provided in [21], [22]. Denoting the
rotation matrix in [21], [22] byRBOV , the signal rotation
for our 4Gp-QSTBC is given by

R = ΘRBOV . (22)

Simulations show that the above vector signal rotation perform
better than the symbol-wise rotation proposed in [18] (details
omitted for brevity). We have presented important properties
of 4Gp-QSTBC. In the next section, we will investigate 4Gp-
SAST codes.
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IV. FOUR-GROUP DECODABLE STBC DERIVED FROM

SAST CODES

A. Encoding

The SAST code matrix is constructed forM = 2M̄ Tx an-
tennas using circulant blocks. Two length-M̄ data vectorss1 =
[
s1 s2 . . . sM̄

]T
ands2 =

[
sM̄+1 sM̄+2 . . . s2M̄

]T

are used to generate twōM -by-M̄ circulant matrices [13].
Note that the first row of circulant matrixC(x) copies the
row vectorx; the ith row is obtained by circular shift (i− 1)
times to the right the vectorx. The SAST code matrix is
constructed as

S =

[

C(sT
1) C(sT

2)
−C†(sT

2) C†(sT
1)

]

. (23)

By construction, 4Gp-SAST codes have rate of one symbol
pcu; the code matrices for an even number of Tx antennas
are square; thus 4Gp-SAST codes are delay-optimal for even
number of Tx antennas.

B. Decoder of 4Gp-SAST codes

Similar to 4Gp-QSTBC, the decoding of 4Gp-SAST codes
requires two steps. First, the two data vectorss1 ands2 are
decoupled [10]; then, the real and imaginary parts of vectorss1
ands2 are separated. We provide the detail decoder with only
one Rx antenna as generalization for multiple Rx antennas can
be easily done.

We introduce another type of circulant matrix called left
ciculant, denoted byCL(x), where theith row is obtained by
circular shifts (i− 1) times to the left for the row vectorx.

Let us define a permutationΠ on an arbitraryM×M matrix
X such that, the(M − i+ 2)th row is permuted with theith
row for i = 2, 3, ...,

⌈
M
2

⌉
, where⌈(·)⌉ is the ceiling function.

One can verify that

Π(CL(x)) = C(x) . (24)

Let y =
[
yT
1 yT

2

]T
, y1 =

[
y1 y2 . . . yM̄

]T
,

y2 =
[
yM̄+1 yM̄+2 . . . yM

]T
, h =

[

hT
1 hT

2

]T
, h1 =

[
h1 h2 . . . hM̄

]T
, h2 =

[
hM̄+1 hM̄+2 . . . h2M̄

]T
,

z =
[
zT
1 zT

2

]T
, z1 =

[
z1 z2 . . . zM̄

]T
, z2 =

[
zM̄+1 zM̄+2 . . . z2M̄

]T
. We can write the Tx-Rx signal

relation as
[
y1

y2

]

=

√
ρ

M

[

C(s1) C(s2)
−C†(s2) C†(s1)

] [
h1

h2

]

+

[
z1

z2

]

. (25)

An equivalent form of (25) is

[
y1

y∗
2

]

=

√
ρ

M

[
X1 X2

X3 X4

] [
s1
s2

]

+

[
z1

z∗
2

]

(26)

whereX1 = CL(hT
1), X2 = CL(hT

2), X3 = C†(hT
2), X4 =

−C†(hT
1).

Applying permutationΠ in (24) for the column matrixy1,
we obtain

[
ȳ1

ȳ2

]

,

[
Π(y1)
y∗
2

]

=

√
ρ

M

[
Π(X1) Π(X2)
X3 X4

] [
s1
s2

]

+

[
Π(z1)
z∗
2

]

=

√
ρ

M

[
H1 H2

H†
2 −H†

1

]

︸ ︷︷ ︸

H

[
s1
s2

]

+

[
z̄1

z̄2

]

(27)

whereH1 = C(hT
1), H2 = C(hT

2), z̄1 = Π(z1), z̄2 = z∗
2.

The elements of̄z1 and z̄2 are∼ CN (0, 1), as elements of
z1 andz2. We now multiplyH† with both sides of (27). Let
Ĥ = H†

1H1 +H†
2H2, we get

[
ŷ1

ŷ2

]

= H†

[
ȳ1

ȳ2

]

=

√
ρ

M

[

Ĥ 0M̄

0M̄ Ĥ

] [
s1
s2

]

+H†

[
z̄1

z̄2

]

=

√
ρ

M

[

Ĥ 0M̄

0M̄ Ĥ

] [
s1
s2

]

+

[
ẑ1

ẑ2

]

︸ ︷︷ ︸

ẑ

. (28)

The covariance matrix of the additive noise vectorẑ is

E[ẑẑ†] =

[

Ĥ 0M̄

0M̄ Ĥ

]

. Therefore, the noise vectorsẑ1 andẑs

are uncorrelated and have the same covariance matrixĤ. Thus
s1 and s2 can be decoded separately usingŷi = Ĥsi + ẑi,
i = 1, 2. The noise vectorŝz1 andẑs can be whitened by the
same whitening matrix̂H−1/2

. The equivalent equations for
Tx-Rx signals are

Ĥ−1/2
ŷi =

√

ρ/MĤ1/2
si + Ĥ−1/2

ẑi, i = 1, 2. (29)

At this point, the decoding of SAST codes becomes the
detection of 2 group of complex symbolssi (i = 1, 2); this
is similar to the detection of 4Gp-QSTBC in (15). Our next
step is to separate the real and imaginary parts of vectorssi
to obtain 4 groups of symbols for data detection.

Recall thatĤ = H†
1H1 + H†

2H2, and bothH1 and H2

are circulant. Hence,̂H is also circulant [13]. LetΛi =
[
λi,1 λi,2 . . . λi,m

]
be them eigenvalues ofHi (i =

1, 2). We can diagonalizeHi by DFT matrix asHi = F† ΛiF .
ThusĤ = F†(Λ†

1Λ1+Λ†
2Λ2)F . Let Λ†

1Λ1+Λ†
2Λ2 = Λ, then

Λ has real and non-negative entries in the main diagonal and

Ĥ1/2
= F†Λ1/2 F andĤ−1/2

= F†Λ−1/2 F .
We assume thatsi is pre-multiplied (or rotated) by an

IDFT matrix F† of proper size. Substitutingsi by F† si and
multiplying both sides of (29) with the DFT matrixF , we
obtain

Λ−1/2 F ŷi =
√

ρ/M F Ĥ1/2F†si + Λ−1/2 F ẑi

=
√

ρ/MΛ1/2si + Λ−1/2F ẑi
︸ ︷︷ ︸

ži

. (30)

SinceΛ1/2 is a real matrix, the real and imaginary parts ofsi
(i = 1, 2) can now be separated for detection.

Λ−1/2ℜ(F ŷi) =
√

ρ/MΛ1/2ℜ(si) + ℜ(ži), (31a)

Λ−1/2ℑ(F ŷi) =
√

ρ/MΛ1/2ℑ(si) + ℑ(ži). (31b)
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We finish deriving the general decoder for 4Gp-SAST
codes. Using (31), one can use a sphere decoder to detect the
transmitted symbols. Theequivalent channelof 4Gp-SAST
codes isΛ1/2.

C. Performance Analysis

Note that the eigenvalues ofm × m matricesH1 andH2

can be found easily using unnormalized DFT of the channel
vectorsh1 andh2 [13]. Therefore, the eigenvalues ofH1 and
H2 have distribution∼ CN (0,m).

Similar to the case of 4Gp-QSTBC, we can introduce a real
orthogonal transformationR to the data vectorsℜ(si) and
ℑ(si) (i = 1, 2) to improve the performance of 4Gp-SAST
codes. Thus the actual signal rotation of 4Gp-SAST codes is
F†R.

Since the PEP of vectorsℜ(si) andℑ(si) (i = 1, 2) are
the same, we only calculate the PEP of the vectorℜ(s1).
Let d = ℜ(s1). The PEP of distinct vectorsd and d̄ can
be calculated in a similar manner to that of 4Gp-QSTBC in
Section III-C. details are omitted for brevity. The PEP of 4Gp-
SAST codes is given below.

P (d → d̄) =
1

π

∫ π/2

0

[
m∏

i=1

(

1 +
ρβ2

i

8 sin2 α

)]−2

dα (32)

where
[
β1 β2 . . . βm

]T
= R(d − d̄). One can find the

asymptotic PEP of 4Gp-SAST codes at high SNR in a similar
fashion to the case of 4Gp-QSTBC in (21) as follows.

P (d → d̄) ≈
(

26mρ−2m

π

∫ π/2

0

(sinα)16dα

)
m∏

i=1

β−4

i

=
26mρ−2m

217
16!

8!8!

m∏

i=1

β−4

i . (33)

Thus, if the product distance
∏m

i=1
βi is nonzero, 4Gp-

SAST codes will achieve full-diversity. Similar to 4Gp-
QSTBC, with QAM, the signal rotationsRBOV in [21], [22]
can be used to minimize the worst-case PEP.

Remark: It is interesting to recognize that, the optimal rota-
tion matrices of 4Gp-QSTBC (R = ΘRBOV ) and 4Gp-SAST
codes (R = F RBOV ) have a similar formula. The precoding
matricesΘ andF are added to diagonalize the channels of the
two codes. Thus each real symbol is equivalently transmitted
in a separate channel, but full diversity is not achievable.The
real rotation matrixRBOV is applied to the data vectors so
that the real symbols are spread over all the channels, and thus
full diversity is achievable.

V. SIMULATION RESULTS

Simulation results are presented in Fig. 1 to compare the
performances of 4Gp-QSTBC and 4Gp-SAST codes with OS-
TBC, MDC-QSTBC [12], QSTBC [6], and SAST codes [10]
for 6 Tx and 1 Rx antennas. To produce the desired bit rates,
two 8QAM constellations are used. The first constellation
is rectangular, denoted by 8QAM-R, and has signal points
{±1± j,±3± j}. The other constellation, denoted by 8QAM-
S, has the best minimum Euclidean distance; its geometrical
shape is depicted in [6, Fig. 2(c)].
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MDC−QSTBC, 16QAM, 3 bits pcu
QSTBC, 16QAM, 3 bits pcu
4Gp−SAST, 8QAM−R, 3 bits pcu
SAST, 8QAM−R, 3 bits pcu
4Gp−QSTBC, 8QAM−R, 3 bits pcu
4Gp−QSTBC, 8QAM−S, 3 bits pcu
OSTBC, 8QAM−R, 2 bits pcu
OSTBC, 8QAM−S, 2 bits pcu
4Gp−QSTBC, 4QAM, 2 bits pcu
4Gp−SAST, 4QAM, 2 bits pcu
SAST, 4QAM, 2 bits pcu

Fig. 1. Performances of 4Gp-QSTBC and 4Gp-SAST codes compared with
OSTBC, MDC-QSTBC, QSTBC and SAST codes, 6 Tx and 1 Rx antennas,
2 and 3 bits pcu.

We compare the performance of our new codes with OSTBC
and SAST codes for a spectral efficiency of 2 bits pcu. To
get this bit rate, 8QAM signals are combined with rate-2/3
OSTBC, while 4QAM is used for the SAST, 4Gp-QSTBC and
4Gp-SAST codes. Two columns (4 and 8) of 4Gp-QSTBC
for 8 Tx antennas is deleted to create the code for 6 Tx
antennas. From Fig. 1, 4Gp-SAST codes gains 0.8 and 1.6
dB over OSTBC with 8QAM-S and 8QAM-R, respectively,
while the decoding complexity slightly increases (see Table I).
The performance improvement of 4Gp-QSTBC is even better,
1 dB compared with OSTBC (using 8QAM-S) and 0.2 dB
compared with 4Gp-SAST codes. Note that for 6 antennas,
the decoding complexity of 4Gp-QSTBC is slightly higher
than that of 4Gp-SAST codes (see Table I).

In Fig. 1, the performance of 4Gp-QSTBC and 4Gp-SAST
codes with 3 bits pcu is also compared with that of the rate-3/4
QSTBC and MDC-QSTBC (using 16QAM). 4Gp-SAST code
yields a 0.3 dB improvement over MDC-QSTBC and performs
the same as QSTBC. Specifically, 4Gp-QSTBC using 8QAM-
S performs much better than the QSTBC; it produces a 1.2
dB gain over QSTBC with the same decoding complexity.

Further simulations for 5 and 8 Tx antennas also confirm
that 4Gp-QSTBC and 4Gp-SAST codes perform better than
OSTBC, MDC-QSTBC, QSTBC, and SAST codes. Due to
the lack of space, we omit the details.

VI. CONCLUSIONS

We have presented two new rate-one STBC with four-
group decoding, called 4Gp-QSTBC and 4Gp-SAST codes.
They offer the lowest decoding complexity compared with the
existing rate-one STBC. Their closed-form PEP are derived,
enabling the optimization of signal rotations. Compared with
other existing low decoding complexity STBC (such as OS-
TBC, MDC-QSTBC, CIOD, and QSTBC), our newly designed
STBC have several additional advantages including higher
code rate, better BER performance, lower encoding/decoding
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delay, and lower peak-to-average power ratio (PAPR) because
zero-amplitude symbols are avoided in the code matrices.
Recent results in [23] present a flexible design of multi-group
STBC. However, the code rate is still limited by 1 symbol pcu.
Thus, the systematic design of high-rate multi-group STBC is
still an open research problem.
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