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Bayesian Filtering With Random
Finite Set Observations

Ba-Tuong Vo, Ba-Ngu Vo, and Antonio Cantoni, Fellow, IEEE

Abstract—This paper presents a novel and mathematically
rigorous Bayes’ recursion for tracking a target that generates
multiple measurements with state dependent sensor field of
view and clutter. Our Bayesian formulation is mathematically
well-founded due to our use of a consistent likelihood function
derived from random finite set theory. It is established that under
certain assumptions, the proposed Bayes’ recursion reduces to
the cardinalized probability hypothesis density (CPHD) recursion
for a single target. A particle implementation of the proposed
recursion is given. Under linear Gaussian and constant sensor field
of view assumptions, an exact closed-form solution to the proposed
recursion is derived, and efficient implementations are given.
Extensions of the closed-form recursion to accommodate mild
nonlinearities are also given using linearization and unscented
transforms.

Index Terms—Bayesian filtering, CPHD filter, Gaussian sum
filter, Kalman filter, particle filter, PHD filter, point processes,
random finite sets, target tracking.

I. INTRODUCTION

THE objective of target tracking is to estimate the state of
the target from measurement sets collected by a sensor at

each time step. This is a challenging problem since the target can
generate multiple measurements which are not always detected
by the sensor, and the sensor receives a set of spurious measure-
ments (clutter) not generated by the target. Many existing tech-
niques for handling this problem rest on the simplifying assump-
tions that the target generates at most one measurement and that
the sensor field of view is constant. Such assumptions are not
realistic, for example, in extended object tracking or tracking in
the presence of electronic counter measures, which are increas-
ingly becoming important due to high-resolution capabilities of
modern sensors. Nonetheless, these assumptions have formed
the basis of a plethora of works e.g., the multiple hypothesis
tracker (MHT) [1], [2], the probabilistic data association (PDA)
filter [3], the Gaussian mixture filter [4], the integrated PDA
(IPDA) filter [5], and their variants. However, such techniques
are not easily adapted to accommodate multiple measurements
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generated by the target and state dependent field of view. More-
over, it is not clear how such techniques are mathematically con-
sistent with the Bayesian paradigm.

Tracking in the presence of detection uncertainty, data as-
sociation uncertainty and clutter can be elegantly cast in the
Bayesian filtering paradigm using random finite set (RFS)
modeling. While this idea has been advocated by various re-
searchers [6]–[8], Mahler’s random finite set approach (coined
as finite set statistics or FISST) is the first systematic Bayesian
framework for the study of multisensor multitarget tracking
[9]–[11]. Exciting advances and developments in the random
finite set approach have attracted substantial interest in re-
cent years, especially moment approximations for multitarget
tracking [10]–[15]. In the single-target realm, however, the RFS
approach has not been utilized to further advance single-target
tracking techniques, though connections with existing tech-
niques such as PDA and IPDA have been addressed [16].

To the best of the authors’ knowledge, this paper is the first
to use the RFS formalism to solve the problem of tracking a
target that can generate multiple measurements, in the presence
of detection uncertainty and clutter. In our Bayesian filtering
formulation, the collection of observations at any time is treated
as a set-valued observation which encapsulates the underlying
models of multiple target-generated measurements, state depen-
dent sensor field of view, and clutter. Central to the Bayes’ re-
cursion is the concept of a probability density. Since the obser-
vation space is now the space of finite sets, the usual Euclidean
notion of a density is not suitable. An elegant and rigorous no-
tion of a probability density needed for the Bayes’ recursion is
provided by RFS or point process theory [9], [10], [12], [13].

The contributions of this paper are as follows.
• A novel and mathematically rigorous Bayes’ recursion to-

gether with a particle implementation that accommodates
multiple measurements generated by the target, state de-
pendent field of view and clutter using RFS theory,

• A closed-form solution to the proposed recursion for linear
Gaussian single-target models with constant sensor field of
view, and extensions to accommodate mild nonlinearities
using linearization and unscented transforms.

• Under certain assumptions the proposed Bayes’ recursion
is shown to reduce to Mahler’s cardinalized probability
hypothesis density (CPHD) recursion [14] restricted to a
single target.

• Our approach is compared with conventional techniques
and is shown to be significantly better in terms of track loss
and localization performance.

In contrast to the traditional approaches [1]–[5], our proposed
recursion formally accommodates multiple measurements gen-
erated by the target, detection uncertainty and clutter, thereby
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providing a formal mechanism for handling effects such as
electronic counter measures and multipath reflections. Indeed,
assuming no clutter and that the target generates exactly one
measurement, the proposed recursion reduces to the usual
Bayes’ recursion and the particle filter implementation reduces
to the standard particle filter. Under additional linear Gaussian
assumptions, our closed-form recursion reduces to the cele-
brated Kalman filter (hence our extensions via linearization and
unscented transforms reduce to the extended and unscented
Kalman filters, respectively). In the case of a linear Gaussian
model with at most one target-generated measurement, constant
field of view, and uniform clutter, the proposed closed-form
recursion reduces to the Gaussian mixture filter given in [4].
Moreover, if at each time step, gating is performed and the
Gaussian mixture posterior density is collapsed to a single
Gaussian component, then the proposed recursion reduces to
the PDA filter [3].

We have announced some of the results of the current work
in the conference paper [17].

The paper is structured as follows. Section II presents back-
ground information on Bayesian filtering and random finite
sets. Section III then formulates the single-target tracking
problem in the Bayes framework that accommodates multiple
measurements generated by the target, state dependent sensor
field of view, and clutter; this section also establishes the con-
nection between the proposed recursion and Mahler’s CPHD
recursion restricted to a single target. A particle implementa-
tion of the proposed recursion is presented in Section IV along
with a nonlinear demonstration and numerical studies. An
exact closed-form solution to the proposed recursion is derived
for linear Gaussian single-target models in Section V along
with demonstrations and numerical studies. Extensions of the
closed-form recursion to accommodate nonlinear Gaussian
models are described in Section VI. Concluding remarks are
given in Section VII.

II. BACKGROUND

A. The Bayes’ Recursion

In the classical Bayes’ filter [18], [19] the hidden state
is assumed to follow a first-order Markov process on

the state space according to a transition density
, which is the probability density that the

target with state at time moves to state at time
. The observation is assumed conditionally

independent given the states and is characterized by a like-
lihood , which is the probability density that, at time

, the target with state produces a measurement . Under
these assumptions, the classical Bayes’ recursion propagates
the posterior density in time according to

(1)

(2)

where . All inference on the target state at
time is derived from the posterior density . Common esti-
mators for the target state are the expected a posteriori (EAP)
and maximum a posteriori (MAP) estimators.

The Bayes’ recursion (1), (2) is formulated for single-target
single-measurement systems. In practice due to multipath
reflections, electronic counter measures, etc., the target may
generate multiple measurements, in addition to spurious mea-
surements not generated by the target. Note that at any given
time step, the order of appearance of measurements received
by sensor has no physical significance. Hence, at time the
sensor effectively receives an unordered set of measurements
denoted by , and the observation space is now the space
of finite subsets of , denoted by . Consequently, the
Bayes’ update (2) is not directly applicable.

To accommodate set-valued measurements, we require a
mathematically consistent generalization of the likelihood

to the set-valued case. In other words, we need a
mathematically rigorous notion of the probability density of the
set given . However, the notion of such densities is not
straightforward because the space does not inherit the
usual Euclidean notions of volume and integration on . We
review in the next subsection how RFS theory or point process
theory provides rigorous notions of volume and integration on

needed to define a mathematically consistent likelihood.

B. Random Finite Sets

We describe in this subsection the bare minimum background
on RFS theory needed to develop the results in this paper. For
a classical treatment of the mathematical theory of RFSs (or
point processes), the reader is referred to [20] and [21], while
a comprehensive treatment of multitarget tracking using RFSs
can be found in [9]–[11].

Let be a probability space, where is the
sample space, is a -algebra on , and is a probability
measure on . A random finite set on a complete sepa-
rable metric space (e.g., ) is defined as a measurable
mapping

(3)

with respect to the Borel sets of [20]–[22].1 The proba-
bility distribution of the RFS is given in terms of the proba-
bility measure by

(4)

where is any Borel subset of . The probability distribu-
tion of the RFS can be equivalently characterized by a discrete
probability distribution and a family of joint probability distri-
butions. The discrete distribution characterizes the cardinality
(the number of elements) of the RFS, whilst for a given cardi-
nality, an appropriate distribution characterizes the joint distri-
bution of the elements of the RFS [20]–[22].

The probability density of is given by the
Radon–Nikodým derivative of its probability distribution
with respect to an appropriate dominating measure . i.e.,

1Technically,F(Z) is embedded in the (complete separable metric) space of
counting measures on Z , and inherits the Borel sets of this space.
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. The conventional choice of
dominating measure is [23]

(5)

where is the th product (unitless) Lebesque measure, is a
mapping of vectors to sets defined by

, and is the th Cartesian product of with the
convention . The integral of a measurable function

with respect to is defined as follows:

(6)

The first-order moment of a random finite set on , also
called the intensity function, is a non-negative function on
with the property that for any closed subset

where denotes the cardinality of . In other words, for a
given point , the intensity is the density of expected
number of targets per unit volume at .

An important class of RFSs are the Poisson RFSs (or Poisson
point processes) [20], which are completely characterized by
their intensity functions. The cardinality of a Poisson RFS
is Poisson distributed with mean , and for a
given cardinality the elements of are each independent and
identically distributed (i.i.d.) with probability density .
More generally, an RFS whose elements are i.i.d. according to

, but has arbitrary cardinality distribution is called an
i.i.d. cluster process [20].

For simplicity in notation, we shall use the same symbol for
an RFS and its realizations hereon.

III. RFS SINGLE-TARGET BAYES’ RECURSION

The classical Bayes’ filter was formulated for the case where
the target generates exactly one measurement and there is no
clutter. Hence, in the classical Bayes’ filter, the measurement
is vector-valued and modeled as a random variable given by a
likelihood function defined on . As previously argued, in the
presence of multiple measurements generated by the target, de-
tection uncertainty and clutter, the measurement is set-valued.
In this section, we describe a RFS measurement model and de-
rive the corresponding likelihood function on .

A. RFS Measurement Model

The collection of measurements obtained at time is
represented as a finite subset of the original observa-
tion space . More concisely, if observations

are received at time , then

(7)

Suppose at time that the target is in state . The measure-
ment process is given by the RFS measurement equation

(8)

where is the RFS of the primary target-generated mea-
surement, is the RFS of extraneous target-generated
measurements, and is the RFS of clutter. For example,

may represent a single direct path measurement,
may represent measurements generated by multipath

effects or counter measures, and may represent state inde-
pendent spurious measurements. It is assumed that conditional
on , , and are independent RFSs.

We model as a binary RFS

with probability
with probability density

where is the probability of detection for the primary
measurement, and is the likelihood for the primary mea-
surement. Hence, the probability of not obtaining the primary
measurement from a state is , and conversely,
given that there is a primary measurement the probability den-
sity of obtaining the primary measurement from a state is

.
We model and in (8) as Poisson RFSs with in-

tensities and , respectively. For convenience
we group these RFSs together as

(9)

Since is a union of statistically independent Poisson
RFSs, it is also a Poisson RFS with intensity

(10)

The cardinality distribution of is Poisson
with mean . Hence, if the target is in state
at time , the probability of having exactly mea-
surements is , whilst each measurement is inde-
pendent and identically distributed according to the probability
density

(11)

The following proposition establishes the likelihood cor-
responding to the above RFS measurement model. See
Appendix A for the proof.

Proposition 1: If the measurements follow the RFS model
in (8), then the probability density that the state at time
produces the measurement set is given by

(12)
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where denotes the unit of volume on , in the sense that
is the Radon–Nikodým derivative of the probability

distribution of given with respect to the dominating mea-
sure (6), i.e.,

(13)

Remark: The expression in Proposition 1 is a probability den-
sity, and is derived from first principles using only measure the-
oretic probability concepts. A similar expression has been inde-
pendently derived by Mahler using finite set statistics (FISST)
in [11].2 However, Mahler stresses that the FISST derivative is
not a Radon–Nikodým derivative [11, p. 716] and hence is not a
probability density. We refer the reader to [10] for more details
on the relationship between the FISST set derivative and prob-
ability density of RFS.

The likelihood (12) has terms each of which ad-
mits an intuitive interpretation. The first term relates to a missed
primary measurement detection, whilst each of the remaining

terms relates to a primary measurement detection. To ex-
plain the first term, notice that when there is a missed primary
measurement detection, . Hence, the likelihood
of comprises the following: , the probability
of a missed primary measurement detection; ,
the probability that has exactly measurements;

, the joint density of the measurements; and
a factorial term to account for all possible permutations of .
To explain each of the remaining terms, notice that when
there is a primary measurement detection, and

. Hence, the likelihood of comprises the
following: , the probability of a primary measurement
detection; , the probability that has
exactly measurements; ,
the joint density of the measurements and a factorial term to ac-
count for all possible permutations of .

As a check for consistency, if there is always a primary target-
generated measurement, no extraneous target-generated mea-
surements and no clutter, i.e., and

( if and zero otherwise), it can be seen
that and . In other words,
the measurement set is always a singleton containing the pri-
mary measurement, and the likelihood (12) reduces to the usual
single measurement likelihood.

Remark: If (hence and
), and is an i.i.d. cluster process in (8),

(9), then the likelihood (12) still holds. However, if
and in (8), (9) are both i.i.d cluster processes, the RFS

is, in general, no longer an i.i.d.
cluster process. Nonetheless if can be approximated by
an i.i.d. cluster process with matching intensity and cardinality
distribution

(14)

(15)

2The book [11] appeared around the same time that we submitted our prelim-
inary result [17]

where denotes convolution, and are the
cardinality distributions of and , then the likelihood
(12) is still valid.

B. RFS Single-Target Bayes’ Recursion

The Bayes’ recursion (1), (2) can be generalized to accom-
modate multiple measurements generated by the target, detec-
tion uncertainty, and clutter, by replacing the standard likelihood

with the RFS measurement likelihood in
(12). Hence, the posterior density can be propagated
as follows:

(16)

(17)

where .
In general, this recursion does not admit an analytic solution.

However, the problem can be solved using sequential Monte
Carlo techniques as shown in Section IV. Furthermore, a
closed-form solution to this recursion can be derived under
linear Gaussian assumptions as shown in Section V.

Remark: If there is always a primary target-generated mea-
surement, no extraneous target-generated measurements and no
clutter, then and the recursion (16),
(17) reduces to the classical Bayes’ recursion (1), (2).

Remark: The recursion (16), (17) can be easily extended to
accommodate multiple sensors. Suppose that there are mu-
tually independent sensors, i.e., the product of the individual
likelihoods for each sensor is the joint likelihood for all sen-
sors. More concisely, if each sensor is modeled by a likelihood

and receives a measurement set at time where
, then the combined likelihood accounting for all

sensors is

(18)

C. Connection With Mahler’s CPHD Filter

In this section, we show how the proposed RFS single-target
Bayes’ recursion is related to Mahler’s CPHD recursion [14],
which is a moment approximation of Mahler’s multitarget
Bayes’ recursion.

The following is a brief review of the relevant results con-
cerning the CPHD recursion. Denote by the permutation
coefficient , the inner product defined between
two real valued functions and by
(or when and are real sequences), and
the elementary symmetric function of order defined for a finite
set of real numbers by with

by convention.
It was established in [15] (Section V-A) that the CPHD recur-

sion for tracking an unknown and time-varying number of tar-
gets can be simplified when the number of targets is constant.
Let and be the predicted and posterior intensities re-
spectively at time . If there are no target births nor deaths and

is the fixed and known number of targets, then the CPHD
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cardinality recursion reduces to
, and the CPHD intensity recursion reduces to

(19)

(20)

where

(21)

(22)

(23)

Assuming no extraneous target-generated measurements, the
proposed RFS single-target Bayes’ recursion reduces to the
above mentioned CPHD recursion restricted to a single target.
Note that for the purposes of comparison, these particular con-
ditions ensure that both recursions assume the same underlying
dynamic and measurement model for the target. The restriction
in the CPHD recursion for no target births nor deaths and ex-
actly one target present ensures consistency with the dynamic
model in the RFS single-target Bayes’ recursion. Indeed, the
CPHD recursion for a single target coincides with the multiple
hypothesis tracker (MHT) for a single target (see [24]). The
restriction in the RFS single-target Bayes’ recursion for no
extraneous target-generated measurements ensures consistency
with the measurement model in the CPHD recursion which
accommodates at most one target-generated measurement.

The agreement between these two recursions can be expected
for the following reason. Consider the above CPHD recursion
and recall its assumption that the target state RFS at any time
is an i.i.d. cluster process [14], [15] (see Section II-B for the
meaning of an i.i.d. cluster process). Observe that if the cardi-
nality distribution of an i.i.d. cluster process is (i.e., the
value of the process is always a singleton set), then the inten-
sity is the same as the normalized intensity, and hence the in-
tensity is actually the probability density (i.e., the intensity of
the RFS is the probability density of the single constituent point
of the RFS). If in the above CPHD recursion, (i.e., ex-
actly one target is present at all times), then the CPHD cardi-
nality recursion states that (i.e., the target state
RFS is always a singleton), and hence the CPHD intensity recur-
sion for actually propagates the probability density (i.e.,
the propagated intensity is actually the probability density of
the single-target state). Thus, since both the RFS single-target
Bayes’ recursion and the above CPHD recursion assume the
same underlying model, and both recursions propagate the pos-
terior density of the target state, it would be expected that their

recursions are consistent. This is indeed true and is stated in the
following proposition (See Appendix B for the proof).

Proposition 2: The special case of the proposed RFS single-
target Bayes’ recursion (16), (17) with no extraneous target-gen-
erated measurements (i.e., (16), (17) with hence

and
) is identical to the special case of the CPHD

recursion (19), (20) with no target births nor deaths and exactly
one target present (i.e., (19), (20) with ).

This result establishes that under the common dynamic and
measurement model stated above, the proposed derivation of
the RFS single-target Bayes’ recursion from first principles
using point process theory agrees with Mahler’s derivation
of the CPHD recursion using FISST. This agreement further
consolidates the utility and power of FISST.

IV. SEQUENTIAL MONTE CARLO IMPLEMENTATION

In this section, we describe a generic sequential Monte Carlo
(SMC) (see also [19], [25]) implementation of the RFS single-
target Bayes’ recursion (16), (17) and demonstrate the proposed
filter on a nonlinear tracking example. Note that the proposed
SMC implementation inherits the usual convergence properties
[26], [27] since the recursion (16), (17) propagates the true pos-
terior density of the target state.

A. Recursion

Suppose at time that the posterior density is

represented by set of weighted particles , i.e.,

(24)

Then, for a given proposal density satisfying
support support , the particle filter approximates
the posterior density by a new set of weighted particles

, i.e.

(25)

where

(26)

(27)

(28)

It can be seen that the proposed algorithm has the same
computational complexity as the standard single-target particle
filter.

The recursion is initialized by generating a set of weighted

particles representing . Equations (26)–(28)
then provide a recursion for computing the set of weighted par-
ticles representing from those representing when a new
measurement arrives.
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Resampling is usually performed after each update to min-
imize particle degeneracy, and after resampling, an optional
Markov chain Monte Carlo (MCMC) step can be used to
increase particle diversity (see [19] and [28] for further details).

B. Nonlinear Example

In this section, a nonlinear scenario is used to demonstrate
the performance of the particle implementation of the RFS
single-target Bayes’ recursion. In particular, a nearly constant
turn model with varying turn rate [29] together with bearing
and range measurements is considered. The observation re-
gion is the half disc of radius 2000 m. The state variable

comprises the planar position and velocity
as well as the turn rate . The

state transition model is

where

, and with 1 s,
5 m/s , and 180 rad/s. The observation region is

the half disc rad m. The primary target-
generated measurement is a noisy bearing and range vector

where , with ,
rad, and 10 m. The sensor field of view is mod-

eled by

where and denotes an identity matrix.
Extraneous measurements are modeled as a Poisson RFS with
intensity

where , and m. Clutter is modeled
as a Poisson RFS with intensity

where is the uniform probability density over the obser-
vation region, is the expected number of clutter
returns with radm the “volume” of the observa-
tion region and radm (giving an average
of clutter returns per scan).

Fig. 1. Estimates from the particle RFS single-target Bayes’ filter and tradi-
tional approach in x and y coordinates versus time.

At each time step, 1000 particles are used, the transition
is used as the proposal, and resampling is performed. The filter
is initialized with the following initial prior:

Fig. 1 show the tracks, measurements and EAP filter estimates
for and coordinates versus time on a typical sample run.
Note that extraneous target-generated measurements are color
coded in red for visual reference. This figure suggests that the
proposed filter satisfactorily tracks the target in the presence of
multiple measurements generated by the target, clutter and state
dependent field of view.

To evaluate the performance of the proposed filter, we
compare it with the nonlinear analogue of the Gaussian mix-
ture filter in [4]. Our reason for choosing this filter is that it
subsumes many popular traditional techniques for tracking
in clutter including the PDA. A typical sample run of this
filter on the same set of data is also superimposed on Fig. 1,
which suggests that the traditional approach tends to follow the
pattern of extraneous target-generated measurements and hence
is prone to track loss. This is further reinforced in Fig. 2, which
shows the root mean square error (RMSE) and circular position
error probability (CPEP) (for a 20 m error radius) versus clutter
rate, for both the proposed filter and the traditional filter. The
RMSE and CPEP for each clutter rate is obtained from 1000
Monte Carlo (MC) runs on the same target trajectory but with
independently generated measurements for each trial. Fig. 2
suggests that across a wide range of clutter conditions, the
proposed RFS single-target Bayes’ filter performs better than
traditional methods. The former correctly identifies the track,
whereas the latter consistently loses track. Moreover, these
performance results are consistent with the fact that the non-
linear analogue of the filter in [4] can essentially be considered
a special case of the proposed SMC RFS single-target Bayes’
recursion in which the observation model assumes
(hence and ).
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Fig. 2. RMSE and CPEP (20 m error radius) from 1000 MC runs for varying
� .

V. ANALYTIC SOLUTION FOR LINEAR GAUSSIAN MODELS

In this section, we derive a closed-form solution to the RFS
single-target Bayes’ recursion (16), (17) for the special class
of linear Gaussian single-target models. In addition to linear
Gaussian transition and likelihood

(29)

(30)

the linear Gaussian single-target model assumes a constant
sensor field of view, i.e., and linear Gaussian
intensity of extraneous target-generated measurements, i.e.,

(31)

(32)

where is the expected number of extraneous target-gener-
ated observations and is the likelihood of individual ex-
traneous observations at time , is the extraneous observa-
tion matrix, is a constant vector, and is the extraneous
observation covariance at time .

Observe that if clutter has intensity

(33)

where is the mean clutter rate and is the density of
clutter at time , then, in (9) is a Poisson RFS with
intensity . Hence, the cardi-
nality distribution of is Poisson with rate
and individual elements of are i.i.d. according to the
probability density

(34)

where for , 1. Note that results
of this section can be easily extended to the case where is
a Gaussian mixture as outlined in Section V-C.

A. Closed-Form Recursion

The following propositions establish an exact closed-form so-
lution to the recursion (16), (17) for the linear Gaussian single-
target model.

Proposition 3: If at time the posterior density
is a Gaussian mixture of the form

(35)

then the predicted density is also a Gaussian mixture
and is given by

(36)

where

(37)

(38)

For the closed-form update equation, it is convenient to define
two intermediate operators and on the state space
by

(39)

(40)

where . Note that if

(41)

(42)

then is a Gaussian mixture and is given by

(43)
where

(44)

(45)

(46)

(47)

(48)
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Proposition 4: If at time the predicted density is
a Gaussian mixture of the form

(49)

then, is also a Gaussian mixture and is given
by

(50)

where

(51)

(52)

and by convention, a product of operators denotes a composi-
tion, i.e., .

Remark: The mixture (50) can also be written as

(53)

Consequently, the posterior density is given by

(54)

where and is the normal-
izing constant in the RFS single-target Bayes’ recursion.

Remark: Proposition 4 can be interpreted as follows: given
that the predicted density is a Gaussian mixture, then
the posterior density is also a Gaussian mixture comprised
of the mixtures and for each . The mix-
ture is obtained by recursively applying starting with

for each . The mixture is obtained by
applying once to and then recursively applying

for each .
Remark: The above closed-form solution can be extended

to accommodate a state dependent sensor field of view. For an
exponential mixture form of , a closed-form update can
easily be obtained following the approach in [13], though this
extension will not be shown here due to space constraints.

It follows by induction from Propositions 3 and 4 that if the
initial density is a Gaussian mixture, then all subsequent pre-
dicted and posterior densities are also Gaussian mix-
tures. Proposition 3 provides closed-form expressions for com-
puting the weights, means and covariances of , whilst
Proposition 4 provides closed-form expressions for computing
the weights, means and covariances of when a new set of
measurements arrives. Note that Proposition 3 is the prediction
step of the Gaussian sum filter [30], whilst the proof for Propo-
sition 4 is nontrivial; see Appendix C for further details.

B. Implementation Issues

In the proposed closed-form recursion, if the posterior at time
has mixture components, then the posterior at time

has

mixture components. Our closed-form solution has the same
complexity as the traditional Gaussian mixture approach in
[4]. Note that the exponential growth of mixture components
with the number of received measurements results in an ex-
ponential growth of mixture components with time. It can
be seen that the number of mixture components required to
represent the posterior exactly increases without bound. Thus,
the closed-form solution does not necessarily guarantee com-
putational tractability, and additional approximations to reduce
the number of Gaussian components are needed. A Rao–Black-
wellized particle filter [31] (that exploits the closed-form
solution) can be employed as a random strategy for reducing
the number of Gaussian components. In this paper, we consider
simpler strategies for mitigating this problem.

1) Gating: To reduce the number of measurements that the
filter has to process, a standard measurement validation tech-
nique [3] can be used before performing the update at each time
step. The idea is to only retain measurements that are ‘close’ to
the predicted measurement. Gating, however, also reduces the
ability of the filter to detect targets.

Along the lines of [3], if at time the predicted density
is given and is of the form (49), define the validation region (or
prediction gate) of the th predicted mixture component for a
threshold value by

where and are
the predicted measurement and innovation covariance for the th
component respectively, and is chosen a threshold pa-
rameter (note is interpreted as the number of sigmas or stan-
dard deviations of the gate). Then, the measurement set given to
the filter is comprised of those measurements falling within
the combined validation region, i.e.,

2) Managing Mixture Components: First, to limit the
growth of the number of mixture components with the number
of received measurements, the following approach can be
used. Since this growth is caused by recursive application
of the operators and/or (in the calculation of the
mixtures and ), a simple way to limit this growth is
to truncate each intermediate result during the update at each
time . In other words, having applied or to the
mixture , the resultant mixture
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or is approximated by a truncated
version, i.e., each resultant mixture (58) is approximated by

where is the set of indexes of com-
ponents that are retained in the approximation (e.g.,
contains the indexes of the components or of the
top 10% of components with the highest weights), and

ensures that
the sum of the weights before and after truncation are the same.

Second, to limit the growth of the number of components
with time, a standard pruning and merging procedure given in
[13] can be used, which is summarized as follows. If at time
the posterior density is given and is of the form (54), it is
approximated by a pruned and merged version

in which components with weights below a threshold are
discarded, components with peaks within a distance of each
other are merged, and only the components with the
highest weights are retained. See [13] for the exact meaning of
these parameters and full details on implementation.

C. Extension to Gaussian Mixture Form

The closed-form solution given by Propositions 3 and 4 can
be easily extended to accommodate the case where is
a Gaussian mixture of the form

(55)

as follows. First, note that
and hence

(56)
where for . Observe
then that the result of Proposition 4 can be extended by pro-
viding a closed-form expression for
where as follows. Note that if

(57)

and is of the form (42), then the expression for
is still a Gaussian mixture and becomes

(58)

where

(59)

(60)

(61)

(62)

(63)

D. Linear Gaussian Example

In this section, a linear Gaussian scenario is used to demon-
strate the performance of the closed-form implementation of
the RFS single-target Bayes’ recursion. The following linear
Gaussian single-target model is used. The target state is a vector
of position and velocity that fol-
lows the linear Gaussian transition model (29) with

where and denote the identity and zero matrices re-
spectively, s is the sampling period, and 5 m/s is
the standard deviation of the process noise. The primary target-
generated measurement likelihood is linear Gaussian (30) with

where 10 m is the standard deviation of the mea-
surement noise. The observation region is the square

(units are in meters). The
corresponding probability of detection is fixed at .
Extraneous target-generated measurements are modeled as a
Poisson RFS with linear Gaussian intensity (31)

where , , and m.
Clutter is modeled as a Poisson RFS with intensity

where is the uniform probability density over ,
, m is the average clutter intensity

and m is the “volume” of (giving an average
of 50 clutter returns per scan).

The gating and pruning/merging procedures described in
Section V-B are used. Gating is performed at each time step
using a 99% validation gate.3 Pruning and merging is performed
at each time step using a weight threshold of , a
merging threshold of 4 m, a maximum of 100

3The region centered on the predicted measurement with a 0.99 probability
of containing a primary target generated measurement.
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Fig. 3. Estimates from the linear Gaussian RFS single-target Bayes’ filter and
traditional approach in x and y coordinates versus time.

intermediate components and a maximum of 100
overall components.

In this scenario, the target follows a curved path with varying
velocity. The filter is initialized with

Fig. 3 illustrates a typical sample run showing the tracks, mea-
surements, and coordinates of the maximum a posteriori
(MAP) filter estimates versus time. Note that extraneous target-
generated measurements are color coded in red for visual refer-
ence. Note also that the solid line of the true track is difficult to
see from this figure as the estimates of the proposed approach
are right on top of the true track. This figure suggests that our
proposed filter correctly identifies the track and does not suffer
from any track loss in the presence of multiple measurements
generated by the target and clutter.

Similar to the nonlinear example, for performance compar-
ison purposes, we compare with the Gaussian mixture filter in
[4]. Again, our reason for choosing this filter is that it subsumes
many popular traditional techniques for tracking in clutter in-
cluding the PDA. Fig. 3 has superimposed a typical sample run
for the same data. It can be seen that the traditional approach
tends to lose the track and erroneously follow the pattern of
the extraneous target-generated measurements. This observa-
tion is supported by the results of 1000 MC runs performed
on the same target trajectory but with independently generated
measurements for each trial. In Fig. 4, the MC average RMSE
and CPEP (for 20-m error radius) are shown versus clutter rate
for our proposed filter and for the filter in [4], which suggests
that the proposed RFS single-target Bayes’ filter performs better
than traditional methods. The former correctly identifies the true
tracks, whereas the latter consistently loses the true track. Again,
these performance results are consistent with the fact that the
filter in [4] can essentially be considered a special case of the
proposed closed-form linear Gaussian RFS single-target Bayes’
recursion in which the observation model assumes
(hence and ).

Fig. 4. RMSE and CPEP (20-m error radius) values from 1000 MC runs for
varying � .

VI. EXTENSION TO NONLINEAR GAUSSIAN MODELS

In this section, we outline two extensions of the closed-form
Gaussian mixture implementation of Section V to accom-
modate mild nonlinearities using linearization and unscented
transforms. Here, the form of the dynamical and measurement
models given by the transition density and the
likelihood are relaxed to nonlinear Gaussian models

where and are the nonlinear state and measurement func-
tions respectively, and and are independent zero-mean
Gaussian noise processes with covariance matrices and

respectively. Additionally, the form of the extraneous target
measurements model given by the likelihood of extraneous
target measurements is relaxed to a nonlinear function
in the state and noise variable

where is the nonlinear extraneous target measurement func-
tion and is an independent zero-mean Gaussian noise process
with covariance matrix .

Analogous to the extended Kalman filter (EKF) [32], [33],
the nonlinear prediction and update can be approximated by lin-
earizing , , .

Analogous to the unscented Kalman filter (UKF) [34], a non-
linear approximation to the prediction and update can be ob-
tained using the unscented transform (UT). The strategy here
is to use the UT to propagate the first and second moments of
each mixture component of and through the non-
linear transformations , , .

A. Nonlinear Gaussian Example

In this section, a nonlinear example is used to demonstrate the
performance of the EK and UK approximations to the closed-
form implementation of the RFS single-target Bayes’ recursion.
The same motion and measurement model as in Section IV-B is
used, except that the probability of detection is fixed at
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Fig. 5. Estimates from the EK RFS single-target Bayes’ filter and traditional
approach in x and y coordinates versus time.

Fig. 6. Estimates from the UK RFS single-target Bayes’ filter and traditional
approach in x and y coordinates versus time.

. The gating and pruning/merging procedure of Section V-B
is used with the same parameters as given in the linear Gaussian
demonstrations of Section V-D. The following initial prior is
used

Figs. 5 and 6 illustrate a typical sample run of the EK and UK ap-
proximations, respectively, showing the tracks, measurements,
and filter estimates for and coordinates versus time. Note
that extraneous target-generated measurements are color coded
in red for visual reference. These figures show that the proposed
EK and UK approximations exhibit similar performance, and
are able to satisfactorily accommodate the nonlinear motion and
measurement models. Similar to the linear Gaussian example,
we also compare with the EK and UK versions of the Gaussian
mixture filter in [4]. A typical sample run for these filters is su-
perimposed on Figs. 5 and 6, respectively. Similar to previous

experiments, these results further suggest that our proposed ap-
proach performs better than traditional methods.

VII. CONCLUSION

This paper has presented a novel and mathematically rigorous
Bayes’ recursion that formally accommodates multiple mea-
surements generated by the target, state dependent sensor field
of view, and clutter. It was shown that the special case of the
proposed recursion with no extraneous target-generated mea-
surements is indeed Mahler’s CPHD recursion restricted to the
single-target case. A particle implementation has been given,
and a closed-form solution has been derived for linear Gaussian
models with constant sensor field of view though extensions
to exponential mixture sensor field of view are easily derived.
The closed-formed solution has also been extended to nonlinear
Gaussian models via linearizations and unscented transforma-
tions. The complexity of the particle implementation is the same
as that of the standard particle filter. The closed-form solution
does not necessarily guarantee computational tractability and
additional approximations are needed for implementation, anal-
ogous to the case of the Gaussian sum filter. Simulations have
suggested that the proposed approach outperforms traditional
techniques in terms of track loss and localization error.

In light of the proposed Bayesian RFS formulation, all infor-
mation about the target is encapsulated by the posterior density
in a mathematically consistent manner. Hence, it is now possible
to study how clutter and detection uncertainty affect tracking
performance in the context of Shannon information. From an
applications point of view, our formulation is directly applicable
to tracking with multiple sensors. Moreover, the provisions for
nonconstant sensor field of view, multiple measurements gener-
ated by the target, and clutter means that our approach can be
adapted for distributed fusion and tracking in sensor networks.

APPENDIX A

This section derives the likelihood (12) corresponding to the
RFS measurement (8) using standard measure theoretic prob-
ability. The main steps of the derivation are summarized first.
To begin, the probability distribution of conditioned on
is derived from first principles. Then, the probability density of

conditioned on is derived by taking the Radon–Nikodým
derivative of the corresponding probability distribution with re-
spect to an appropriate reference measure. This probability den-
sity is indeed the expression we seek, i.e., the probability density
of given is the likelihood of the measurement set for
a given state .

Recall that for any Borel subset , the probability
distribution of given is

(A1)

Decomposing into where denotes the subset
of with exactly elements, the law of total probability gives

(A2)
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Expressions for are derived as
follows. Notice that the observation set can be written explicitly
as . For each time , define the events

(A3)

Since the events for form a partitioning of
the event , using the law of total probability
can be written as

(A4)

From the definition in (A3), the probabilities can be
evaluated as shown. For , if , then there must
be a missed primary measurement detection and ;
thus is given by the probability of a missed primary
measurement detection, the cardinality distribution of
evaluated at , and a factorial term to account for the pos-
sible permutations of the measurement set, resulting in (A5).
For , if , then there is a primary measure-
ment detection and ; thus is given by
the probability of a primary measurement detection, the cardi-
nality distribution of evaluated at , and a factorial
term to account for the possible permutations of the
measurement set, resulting in (A6). That is

(A5)

(A6)

where is the probability of detection and is the
cardinality distribution of the RFS .

Also, the probability distributions

can be evaluated as shown. Recall by
assumption that the RFS is a binary RFS, the RFS

is a Poisson RFS, and that these RFSs are independent.
Also recall that a measurement from follows the like-
lihood and that measurements from are i.i.d.
according to . For , given that all measurements
are from , is obtained by appropriately
integrating over the density (the product
of the densities of each of the points), resulting in (A7). For

, given that the th measurement is from and in-
dependent of the remaining measurements from ,

is obtained by appropriately integrating over
the density (the product of the

primary target measurement likelihood and the densities of the
remaining points), resulting in (A8). That is

(A7)

(A8)

where is the th product Lebesque measure on and is a
mapping of vectors to sets given by

, where denotes the unit of volume on ,
and is the th Cartesian product of with the convention

.
Hence, noting that , the full

expression for is obtained by substituting (A5), (A6)
and (A7), (A8) into (A4) and using (A2) to give

(A9)

As a check for consistency, it can be easily verified by inspec-
tion that (A9) defines a probability measure on since
it is a countably additive, non-negative function which satisfies

and . Finally, by comparison with
the integral (6), it follows that the Radon–Nikodým derivative
of is .

APPENDIX B

The proof of Proposition 2 is given as follows.
To establish the connection for the prediction, note that since

, we have and are
indeed the previous and predicted densities, and hence (19) for

is exactly the single target prediction (16).
To establish the connection for the update, it is necessary

to simplify (20) for . Before proceeding, note that
, , can be simplified

as given in (B1), (B2), (B3), respectively, noting that by conven-
tion , and , .

(B1)

(B2)

(B3)

Now using (B1), (B2), and (B3) in (20) with , the
special case CPHD update for can be simplified as shown
in (B4)–(B6), shown at the top of the next page. From (B6),
multiplying top and bottom by , it follows that

(B7)

Furthermore, since , we have
and are indeed the predicted and posterior densities,
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(B4)

(B5)

(B6)

hence by (B7) the special case CPHD update (20) for is
exactly the RFS single-target Bayes’ update (17).

APPENDIX C

Propositions 3 and 4 are established using the following stan-
dard results for Gaussian functions; for further details, see, e.g.,
[18] and [35].

Lemma 1: Given of matching dimen-
sions, where and are positive definite,

Lemma 2: Given of matching dimen-
sions, where and are positive definite,

where
, ,

, .
Proposition 3 is the prediction step of the Gaussian sum filter

[30]. For completeness, it is obtained by substituting (29) and
(35) into (16) and replacing integrals of products of Gaussians
as given in Lemma 1. Proposition 4 is established as follows.
The closed-form expression for given in (58) is ob-
tained by multiplying (57) and (42) and replacing products of
Gaussians with single Gaussians as given in Lemma 2. Propo-
sition 4 is then obtained by substituting (49) into the numerator
of (17) and using the operators and to convert prod-
ucts of Gaussian mixtures into a single mixture as appropriate.
The normalizing constant follows straightforwardly from sub-
stituting (53) into (17).
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