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Abstract

A discrete complexified quaternion Fourier transform is introduced. This is a generalization of the
discrete quaternion Fourier transform to the case where either or both of the signal/image and the
transform kernel are complex quaternion-valued. It is shown how to compute the transform using four
standard complex Fourier transforms and the properties of the transform are briefly discussed.

1 Introduction

Discrete quaternion Fourier transforms have been described by several authors [2,5,10,12,14]. The pioneering
work of Ell [3] predated all of these papers and was the inspiration for [12,14]. Quaternion, or at least vector-
valued, signals arise in color image processing and in processing of signals captured by vector sensors, for
example, vector geophones [9]. The main motivation for using quaternion algebra to handle such signals
is the correspondence between vector samples and the vector parts of quaternions, which permits holistic
processing of the vector samples and signals, making use of information about the direction and magnitude
of the samples in sample space.

Since the introduction of the quaternion Fourier transform there has been a concern that perhaps a
quaternion-valued signal or image requires a transform based on a ‘higher’ algebra, just as the Fourier
transformation of real-valued signals or images requires a complex transform. Indeed Bülow and Sommer [2]
have shown the advantages of using a quaternion transform even for real (grey-level) images, in order to
analyse symmetries in the image. Unlike Bülow and Sommer, we are interested in signals and images with
vector samples (that is, three components at least, perhaps even three complex components).

However, until now there have been no reported definitions of Fourier transforms for quaternion-valued
signals or images based on an algebra of higher dimension than the real quaternions∗.

At various times the octonions have been suggested as the basis for a higher transform, but their algebra
is non-associative and therefore presents formidable problems compared to the quaternion algebra which
is of course non-commutative, but otherwise relatively straightforward to work with. Therefore we have
considered the case of a transform based on complexified quaternions, that is quaternions with four complex
components. These can be considered equivalently as complex numbers with quaternion real and imaginary
parts. The properties of this and other quaternion algebras have been extensively studied in the abstract
algebra community, but much less knowledge is available at the practical algebraic level needed for engineering
use. The complexified quaternions were studied by Hamilton himself [8] and [7, Lecture VII, § 669 (p.664)],
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but he called them biquaternions. We prefer to avoid this term as it was also used by Clifford with a different
meaning.

In this paper we introduce the bare basics of complex quaternions necessary to the paper and we define
a complex quaternion Fourier transform analogous to the quaternion Fourier transforms discussed in [14]†.
We then show how the transform may be computed. In common with real quaternion Fourier transforms,
a direct (DFT or FFT) implementation is possible using a complex quaternion arithmetic package but it is
also possible to factorize the transform into four complex transforms, and thus compute it using standard
complex FFT code, thus exploiting the significant effort expended on performance enhancement of FFT code
by other authors.

The details of quaternions and of Fourier transforms in general are outside the scope of this paper.
Ward’s book [15] provides a good introduction to quaternions, and there are many texts in the area of
signal processing that discuss discrete and fast Fourier transforms. Generalizing the quaternions to complex
quaternions is straightforward – the four components of the quaternion take complex values rather than
real values, but there are some important ramifications. Firstly, although the quaternions are a division
algebra, the complex quaternions are not. Any real quaternion (other than zero) has a multiplicative inverse
and a non-zero norm or modulus. In contrast, a complex quaternion (other than zero) may have a zero
norm or modulus and therefore no multiplicative inverse. Obviously this means that care is needed when
computing with complex quaternions, and if we are to define and compute Fourier transforms with them,
we must establish whether vanishing norms will cause problems. A second issue is that a quaternion Fourier
transform necessarily contains as its kernel a quaternion exponential function, and if we are to generalize
this to complex quaternions, we need a complex quaternion exponential function. As has been shown in [14],
quaternion exponentials can be defined using an arbitrary unit pure quaternion since these are roots of −1.
(It is fundamental to Fourier transforms that a root of −1 is needed, since the transform analyses a signal
into sinusoidal components, and the famous formula of de Moivre: eiθ = cos θ + i sin θ generalizes to any
algebra in which a root of −1 can be defined. This follows from the series expansions of the exponential,
cosine and sine functions.) If we are to define a complex quaternion Fourier transform, we require a complex

quaternion root of −1. We cannot use a real quaternion root of −1, or the transform will simply be a
quaternion Fourier transform even if it operates on a complex quaternion signal (the transform would be
equivalent to two quaternion transforms applied separately to the real and imaginary quaternion parts of the
signal). The solutions of the equation q2 = −1 [13] are therefore crucial to defining the transforms presented
in this paper.

2 Definitions

Before defining the transform we must define some complexified quaternion concepts. We have not given
proofs of these: most can be found in [15] although with different notation. A complex quaternion has four
complex components, for example: q = w +xi + yj + zk, where w, x, y, z are complex and i, j and k are the
three quaternion operators. We denote the complex square root of −1 by a capital I to distinguish it from the
quaternion i with which it must not be confused (this is a fundamental aspect of complexified quaternions).
Note that, although the multiplication of (complex) quaternions is not commutative, I, and therefore all
complex numbers (complex scalars), commute with i, j and k, and therefore with all quaternions. In what
follows, ℜ(q) denotes the real part of q, that is: ℜ(q) = ℜ(w) + ℜ(x)i + ℜ(y)j + ℜ(z)k, and similarly ℑ(q)
denotes the imaginary part of q.

2.1 Inner product, norm and modulus

The inner product of two complex quaternions q = wq + xqi + yqj + zqk and p = wp + xpi + ypj + zpk is
〈q, p〉 = wqwp +xqxp +yqyp +zqzp. The semi-norm‡ of a quaternion ||q|| = 〈q, q〉 = w2 +x2 +y2 +z2, and the

†A more recent and more detailed paper by Ell and Sangwine is under review.
‡A semi-norm is a generalization of the concept of a norm, with no requirement that the norm be zero only at the origin [1].

Here, it is possible for ||q|| = 0, even though q 6= 0 as discussed in subsection 2.3.
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modulus is the square root of the norm. All of these results are complex, in general. In the special case where
ℑ(q) = 0 the semi-norm reduces to the usual quaternion norm. If the quaternion has zero real part (ℜ(q) = 0),
the semi-norm reduces to a real, but negative, norm (because I

2 = −1). The inner product provides us with
the concept of orthogonality, which is essential to the construction of a (complex) orthonormal basis. Two
complex quaternions are orthogonal if their inner product is zero, that is q ⊥ p ⇐⇒ 〈q, p〉 = 〈p, q〉 = 0.

2.2 Complex quaternion roots of −1

Let µ be a complexified quaternion root of −1. It was shown in [13] that µ must be a pure complex
quaternion satisfying the following conditions:

ℜ(µ) ⊥ ℑ(µ), ||ℜ(µ)|| − ||ℑ(µ)|| = 1

For example, µ = i + j + k + (j − k)I is a root of −1 and has a unit (real) norm, as can easily be verified.

2.3 Complex quaternions with null modulus

It is possible for a non-zero complex quaternion to have zero semi-norm. The conditions for the norm to
vanish were discovered by Hamilton [7, Lecture VII, § 672 (p.669)]. Informally, the result can be shown as
follows. Starting with the semi-norm of the quaternion in the form ||q|| = w2 + x2 + y2 + z2, expand one of
the components in terms of its real and imaginary parts, for example w:

w2 = (ℜ(w) + ℑ(w)I)2

= ℜ(w)2 −ℑ(w)2 + 2ℜ(w)ℑ(w)I

We see that the real part of the semi-norm consists of the difference between the norms of the real and
imaginary parts of q, and the imaginary part of the semi-norm is twice the inner product of the real and
imaginary parts of q. For the semi-norm to vanish, its real and imaginary parts must separately be zero.
This requires the real and imaginary parts of q to be orthogonal real quaternions of equal norm, that is:
〈ℜ(q),ℑ(q)〉 = 0 and ||ℜ(q)|| = ||ℑ(q)||.

2.4 Transform pair

Given the definition of the transform ‘axis’§ as any complexified quaternion root of −1, µ, we can now define
the transform itself, which is almost trivial. In this paper we restrict our account to the one-dimensional
case, but all our definitions and results generalize to the two-dimensional case without difficulty.

F [u] =

N−1
∑

n=0

exp
(

−2πµ
nu

N

)

f [n]

f [n] =
1

N

N−1
∑

u=0

exp
(

2πµ
nu

N

)

F [u]

(1)

where the signal f [n] and its ‘spectrum’ F [u] have N samples. The placement of the minus sign in the
forward transform is, of course, arbitrary. The transform pair defined in equation 1 must, of course, be
evaluated in complex quaternion arithmetic, and the exponential is a complex quaternion exponential. All
the necessary operations, and the transform itself, have been implemented in the Quaternion Toolbox for

Matlab r© library [11]. It is conventional in Matlab r© for the scale factor 1

N
to be applied to the inverse

transform and we have followed this convention in implementing the complex quaternion transforms¶.

§The axis of the transform is a direction in 3-space (in this paper complex 3-space) which defines the orientation of the sine
component of the transform in the space of the vector part of the signal samples.

¶An alternative and widely used convention is to distribute the scale factor between the forward and inverse transforms. If
the two scale factors are to be equal, each must be 1√

N
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An alternative transform is possible, by interchanging the positions of the exponential and the function
f [n]. This transform is closely related to the first and easily implemented, although we omit the details here.

Now we consider whether vanishing norms can occur in the transform. The norm of the exponential
cannot vanish for any n or u because µ has unit modulus, and the cosine and sine parameters are real.
However, the signal f [n] could contain samples with vanishing norms, unless there is some restriction on
the sample values which prevents the conditions for a vanishing norm occurring. For example, if the sample
values are real or imaginary quaternions they cannot have vanishing norms. In the more general case where
the samples have complex quaternion values, the possibility of samples with vanishing norm cannot be
eliminated. Such samples would not contribute to the ‘spectrum’ and therefore could not be reconstructed
by the inverse transform. It is not known whether samples of the spectrum could have vanishing norms
if computed from real (or imaginary) quaternion signals. If this did occur, it would again mean that the
transform would not correctly invert. Clearly this point requires further study.

3 Factorization into four complex transforms

The definition of the transform in (1) leads directly to a discrete Fourier transform implementation, which
is useful as a reference or test implementation, but useless for practical computation except for small values
of N . A fast implementation requires either a custom coding of a classic FFT algorithm in complexified
quaternion arithmetic, or a decomposition into complex Fourier transforms that can be implemented using
existing complex functions or code. It is the latter approach that we describe here and it follows from a
similar approach developed for the real quaternion case in 2000 [4].

The signal function f [n] in (1) may be expressed in terms of an orthonormal basis defined by µ, the
transform axis. Apart from being a complex orthonormal basis, this is exactly as in the real quaternion case.
The complex orthonormal basis is defined by µ and two other unit pure complex quaternions ν and ξ such
that µ ⊥ ν ⊥ ξ and µν = ξ (and µνξ = −1)‖. The basis may also be represented by a 3 × 3 complex

orthogonal (not Hermitian) matrix:




µx µy µz

νx νy νz

ξx ξy ξz





where µ = µxi + µyj + µzk etc. We show here only the decomposition of the forward transform, as the
inverse is similar. We first write f [n] in terms of its four complex components:

f [n] = w[n] + x[n]i + y[n]j + z[n]k

Now applying a change of basis, we express f [n] in terms of the new basis. The change of basis is very simply
implemented by resolving the vector part of each sample of f [n] into the three complex directions defined
by the new basis, using the inner product defined in subsection 2.1. Thus we have:

x′[n] = 〈µ, x[n]i + y[n]j + z[n]k〉

y′[n] = 〈ν, x[n]i + y[n]j + z[n]k〉

z′[n] = 〈ξ, x[n]i + y[n]j + z[n]k〉

In the new basis, we have:

f [n] = w[n] + x′[n]µ + y′[n]ν + z′[n]ξ

= [w[n] + x′[n]µ] + [y′[n] + z′[n]µ] ν

Using this change of basis, we are able to separate the transform into the sum of two transforms:

F [u] =

N−1
∑

n=0

(

e−2πµ
nu

N [w[n] + x′[n]µ]

+ e−2πµ
nu

N [y′[n] + z′[n]µ] ν

)

‖
µ ⊥ ν means 〈µ, ν〉 = 0
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We now separate the terms on the right into real and imaginary parts and group the real components together
and the imaginary components together to make four complex terms.

F [u] =
N−1
∑

n=0













e−2πµ
nu

N [ℜ(w[n]) + ℜ(x′[n])µ]

+ e−2πµ
nu

N [ℑ(w[n]) + ℑ(x′[n])µ]

+ e−2πµ
nu

N [ℜ(y′[n]) + ℜ(z′[n])µ] ν

+ e−2πµ
nu

N [ℑ(y′[n]) + ℑ(z′[n])µ] ν













All four of the transforms within this expression are now isomorphic to a complex Fourier transform. That is,
we may replace µ with I (the complex root of −1, not the quaternion root of −1, i) in order to compute the
transform, and we will obtain the same numeric results. After computing the four complex transforms, all
that remains is to re-assemble the parts of F [u] and invert the change of basis. The latter step is equivalent
to multiplying out the factors of µ and ν appearing above, but it is more easily performed by a change of
basis using the transpose of the original basis matrix used to change from the standard basis to the (µ, ν, ξ)
basis.

Note that the factorization into four complex transforms reduces to a factorization into two complex
transforms in the special cases where the function to be transformed has either zero imaginary part or zero
real part. If, additionally, µ is restricted to be real, the transform reduces to a previously published [4]
quaternion Fourier transform. However, if the function to be transformed is either real or imaginary, the
transform defined in this paper is not equivalent to a real quaternion transform, because the kernel is a
complex quaternion exponential. Finally we note that if the function to be transformed has no vector part
(that is, it is real or complex), and we choose for µ the degenerate value I (the complex root of −1) the
transform reduces to the usual complex Fourier transform.

The factorization described above has been used in the implementation of the transforms described in
this paper in both one and two dimensions as part of the Quaternion Toolbox for Matlab r© library [11, v0.8
onwards]. A direct DFT implementation of equation 1 is provided for verification of the fast transforms. The
complex fast transforms are the usual Matlab r© functions, which are implemented internally by the FFTW
library [6].

4 Discussion

The complex quaternion transform applied to a real quaternion signal exhibits quaternion conjugate sym-
metry in the ‘spectrum’ in the same way as a complex transform applied to a real signal. The shift and
similar properties follow those of the complex transform. It remains to be seen in what ways the complex
quaternion transform may be useful, but one possible area is the development and fast implementation of
linear vector filters based on convolution with complex quaternion coefficients. We leave a more detailed
discussion of these issues for a later paper.

5 Conclusions

This paper has introduced for the first time a complex quaternion Fourier transform which may be used to
compute the transform of a quaternion or complex quaternion signal or image. It may be easily computed
using decomposition into four complex Fourier transforms. It appears that the transform exhibits symmetries
that are absent in quaternion Fourier transforms, just as the complex Fourier transform shows symmetries
for real signals that are not apparent with a real-valued transform such as the Hartley transform or the
DCT.
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