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Abstract— This article introduces the concept ofsensing dic- write ®; for the d x K matrix of all the atoms in the

tionaries It presents an alteration of greedy algorithms like support. The complement of the support will be denoted by
thresholding or (Orthogonal) Matching Pursuit which impro ves T — {1...NY/I.

their performance in finding sparse signal representationsin . o . .
redunzant dictionaries whileg mgintaining the sgme compleity. Now, haVIr_lg 6_‘" _defInItIOI’lS |r! place, the.flrst_ problem,
These algorithms can be split into a sensing and a reconstrtion ~ concerned with finding sparse signal approximations, can be
step, and the former will fail to identify correct atoms if the more accurately stated as:

cumulative coherence of the dictionary is too high. We thus rod- ] ) o

ify the sensing step by introducing a special sensing dictimry. Problem 1. Given a signaly, find its bestK -sparse approx-
The correct selection of components is then determined by ¢h imation in the dictionary®, i.e.

cross cumulative coherenaehich can be considerably lower than

the cumulative coherence. We characterise the optimal seimg min |ly — @)z s.t. [I| = K.

matrix and develop a constructive method to approximate it. Iz

Flna”y we compare the performance of thresh0|dlng and OMP Or the dual problem g|veD find the Sparseﬁ_appr()x'manon’
using the original and modified algorithms. ie ’

min |I| s.t. min ||y — @zl <e.
I. INTRODUCTION 1 z
In the last years, constructing sparse signal approximatio Of course for any signal and dictionary there always exist
by means of redundant dictionaries has received a lot gflutions to the above problems. However, in order to jystif
attention, see [10], [2], [4], [3] and the references therfer the use of the term sparse, we obviously need to have a
a thorough introduction. In short the reason for this ingeredictionary in which the signal has a representation whetk bo
is that a sparse signal representation effectively redtives ¢ andK are small, i.e/l’ < d. This leads to the next question:

dimensionality of the signal and thus makes it easier toestqbroplem 2. Given a class of signald’, find a dictionary

or manipulate. The use of redundant dictionaries is thepl§im g gsych that all signalsy € Y will have a good sparse
a consequence of the fact that the existence of a sp roximation in®. '

signal representation becomes more likely as the number o

building blocks or atoms in the dictionary increases. Befor Without any further assumption on the signal or the dictio-
we can illustrate the topic further by stating two of th&ary, finding the solution to the first problem is combinadbri
typically investigated problems, we will need to introducdhus one would have to try the orthogonal projection of the
some vocabulary. We will be working with signajss R?. A signal on all possible<-sparse supports. To circumvent this
dictionary® is assumed to be represented by :a N matrix, Problem people started imposing restrictions on the dietip

with d < N, whose columns are the atomps, ||; |2 = 1: and/or the coefficients. By now there exists detailed theory
describing under which assumptions suboptimal algorithms
® = [p1...0N] like thresholding, (Orthogonal) Matching Pursuit (OMPY, o

The ratioR = N/d is called redundancy. A signal is said toBaS|s Pursuit (BP), can be proven to recover the true support

have aK-sparse representation in the dictionabyif there see tfc;rr] mstancef [10], [Sd]’ [1|]' T.?ﬁ prc_>per|ty at thetr? asfethof
exists a sefl with |I| = K such that we can write most theorems Tor greedy algortinms 1S Slow growm o the

cumulative coherence also called Babel functigiiK, @) of
y = ingoi = P the dictionary, which is defined as:
iel
With a slight abuse_of _Ianguag_e we will call both the set w1 (K, ®) = max max Z|<%7%>|,
I and the atoms with indices id the support ofy and EI=KiET S



It gives an indication of how close/far the dictionary isftom we have a dictionary that represents a signal class wellsbut i
an orthonormal basis. For compactness reasons we will omitfortunately so coherent that already(2) + p1(1) > 1,
the reference to dictionary, i.e. write, (K), whenever it is meaning that we cannot guarantee for OMP to find even
clear which dictionary is meant and writefor the coherence, a superposition of only two atoms. Thus in order to find
i.e. p = p1(1). Using this definition a typical result for good approximations we would have to use a more complex
thresholding, cp. [6], and OMP, cp. [10], reads as: algorithm. Alternatively we could circumvent the problem
by trying to find a new dictionary that still represents the
class well but retains small minimal cumulative coherence,
an interesting research direction in itself.
However in this paper we will introduce the concept of segisin
dictionaries and present a small alteration of the subatah
gorithms such that they can perform well for dictionarieghwi
high cumulative coherence. In Section I, we will first expla
how to separate the thresholding algorithm into a sensig an
a reconstruction part. We will then show that sensing with a
12270 < 1, different dictionary can lower the cumulative cross-ceimee
; ) and yield better recovery results. Motivated by structprab-
where ®; denotes the Moore-Penrose pseudo-inverse. Thfijes of optimal Grassmannian frames we propose an iterati
above condition is always satisfied if algorithm to construct a sensing dictionary/matrix giviogyer
w (K) 4+ p (K —1) < 1. cross-c.oherence. After analysing its convergence primsert
theoretically we use it to calculate sensing matrices foiovs
One deduction from the theorem is that it is desirable dictionaries and compare the performance of thresholditly w
have a dictionary where the cumulative coherence is growiagd without sensing dictionaries in practice. In Sectidrwi
slowly. Dictionaries having minimal coherengeare called will introduce sensing dictionaries as well for (O)MP andrfr
Grassmannian frameand are quite well studied, see [9] andh worst case performance analysis derive a characterisatio
references therein, but the next step of trying to minimise tof the ideal sensing dictionary. We will then again do some
cumulative coherence seems novel. However we can given@merical simulations of how OMP performs with or without
lower bound on the cumulative coherence based on resudénsing matrices using the sensing dictionaries obtairntd w
about Grassmannian frames. The following theorem is @me algorithm developed in Section Il. In Section IV we
extension of Theorem 2.3 in [9]. will discuss the theoretical and numerical limitations bét
schemes so far, as well as possible extensions.

Theorem 1. If we have a signal exactl)K-sparse in®, i.e.
y = > er®iwi and |I| = K, then thresholding is able to
recover a componenp; of the true support if
Ti
ﬁ > () + g (K — 1), (1)
OMP is able to recover all components of the true supgort
if the exact recovery coefficient is smaller than 1, i.e.

Theorem 2. Let ® be a dictionary ofN atoms in dimension

d. If K2 < N —1 then
Il. SENSING DICTIONARIES FORTHRESHOLDING

L_d, 2 As mentioned above thresholding can be formally
d(N —1) decomposed into sensing steps, where we try to identify

Equality holds if and only if the dictionary is an equiangulacorrect atoms of the support, and reconstruction steps.

unit norm tight frame. Sensing: findl s.t.Vie I, Vk ¢ I,
Since the proof of the theorem is quite technical and not i u)| = {er, y)

necessary for further developments it is relegated to the ap Reconstruction: a = ‘I>1<I>}y

pendix, awaiting inspection by the genuinely interestezteh 4 again denotes the Moore-Penrose pseudo inverse.

What should be noted though is thaptimal Grassmannian | z

] the dictionary is too coherent the sensing part will fail t
framesthat meet the lower bound for the coherence, i.e. identify correct atoms. Our idea is to change the sensing par

N —d and instead of sensing with the dictionary, use a different
—— sensing matrix ¥ that allows to identify more correct
d(N —-1) . : o

components. This sensing matrix will have as columns the
simultaneously meet the lower bound for the cumulatig@me number of sensing atoms as the original dictionary had
coherenceu; (K) for all K with K2 < N — 1. atoms, so that we have a one to one correspondence between

On the other hand while a dictionary minimising the cuthe sensing and the original atoms. If we denote the sensing
mulative coherence might be interesting for communicati@om in ¥ that corresponds to the atoy in the original
applications, it will not be ideal for approximation of a sjfic dictionary with; schematically the new algorithm looks like:
class of signals, like for instance EEGs or music. For these . ] ) )
purposes learned dictionaries are by definition more suited Sensing new: find s.t.vi €I, vk ¢ 1,
to the task, see [7]. However these learned dictionariek wil . |<¢i’Ty>| = [, y)]
not show the desired incoherence properties, that enable usRéconstruction: a = ®;®;y
to find the approximation with suboptimal algorithms in the This approach can be easily motivated on the following
same degree as optimal Grassmannian frames. Assume éxatmple. Assume for instance that the dictionabyis a

m(K) > K-

w(®) =



deformed version of a dictionarfy with low coherence, like  Writing out the inner product we can estimate:
an optimal Grassmannian frame or even more simple an
orthogonal basis, meaningy = AT’ where A is an invertible ¢ € I (Wi, )| = |zil[{vi, 0i)] — Z EARCIRN

matrix with inverse A=! = B. For any K-sparse signal JELj#i
y = ®x by applying the matrixB we can construct a new > |zl | (i, 0i)| = Nzl D (i 05)]
signal 2 = By = B®x = I'z. To find the sparse suppoft JEIji

we could equivalently use the original signal and dictigrar LT < _ _
solve this new problem. But since for a Grassmannian frame g1 Wyl < Z l511(e 5)]

I" the cumulative coherence grows more slowly - in the case set
of T' being an orthogonal basis it is even zero - the second < ||$Hooz (ke 05)]-
problem is obviously better conditioned: 7€l
The right most terms in the above equations show a strong
y=®r < z=Tz similarity to the cumulative coherence. By analogy we define

the cumulative cross-coherence or cross Babel functiowof t

> o : S
nic(®) = pe(T) dictionariesji, (K, ®, ¥) as well as their minimal coherence

B(®,P) as:
However, if we write down explicitly the sensing efwith T'
('* denotes the transpose Bj, )
(K, 8, 0) = miaXIJlr:n%WjeZJ i i)l (3)
I'"z = (B®)*By = (*B*B)y, .
(B2) By = (#"B"E)y B(®,®) = min (s, i)l )

we see that we can actually interpret it as sensing the aligin As before we will leave out the reference to the dictionaries
signal with a sensing matrix of the ford = B*B®. In the whenever it is clear which ones are meant. Using these
special case where we chooBesuch thatB*B = (#®*)~! definitions we can further simplify the above estimates to ge
we get as sensing matrix the canonical dual frame (pseudo-

inverse): ¥ = (®®*)~'®, which in the even more special ) _

case where the dictionary is a basis is just the biorthogonal i€l [(Yiy)] = |2ilB — |2l cofin (K — 1)
basis(®1)*. k&gl (Y, y)] < [|flofa (K).

Now in order to generalise the above idea we can investigate o )

what happens if we do not insist on deriving the sensing Flnglly the combination of these two estimates leads to the
matrix from a linear transformation of the problem. Insteafp!loWing theorem.

of restricting ourselves to using sensing matrices of thenfo Theorem 3. Let y be a signal exactlyK-sparse in®, i.e.

¥ = B*B®, we will allow any matrix of the same size as; — e Tipi- Thresholding with the sensing matrik is

the Original diCtionary. To see eXleCltIy what propertiﬁle able to recover a component; of the true support if

want to infer for the sensing/measuring matdx we do the

analogue of the analysis leading to (1). ||x”i| > %(ﬂl(K) + (K — 1)) == v(K,®, ). (5)
Z||oo

This is a relaxation over the traditional recovery conditil)

if
A. Worst Case Analysis of Thresholding with a Sensing Dic-

tionary S () + (K = 1) < () g (K = D).

The obvious questions now are: Given a dictiondrydo
there exist complementary sensing dictionaries that give a
relaxed recovery condition and if yes how do we find them
Y= Z ;. or rather how do we find the best. Since we want to have the

iel new recovery condition as relaxed as possible we need to find
the dictionary for which the recovery coefficientx, ®, ¥)

For thresholding to recover a component in the support, iS minimal, i.e.
we need the inner product of signal with the corresponding
sensing atomp; to be larger than the inner product with any
atom in the sensing matrix whose corresponding partnertis no
part of the support:

Let y be ad-dimensional signal that has/d-sparse repre-
sentation in the overcomplete dictiona®y |®| = N, i.e.

Uy =argminv(K, ®, ). (6)
v

Consequently, unless the minimum in the above equation
is attained by the dictionary itself, there will always exis
better sensing dictionaries. The next subsection is dedica

iel: [(Yu,y| > ¥y, VYi¢l. to developing an algorithm for finding one of them.



B. An Algorithm for Calculating Sensing Dictionaries the problem

If we wanted to find the optimal sensing dictionary we min |A — G||p = min|[A - ¥*®||
) : : Geg 57
would have to find the solution to Problem (6). This a ~ minllA* — 3@
daunting task as is more clearly demonstrated by looking at =gt 147 - Il
i i I i - . 1
the_e_x_panélon of the objective function after back-insgrthe _ mm(z lla; — ®*;||2)%.
definitions: L

) 1 From the last expression it is clear that we should choose
m&“m(mg@ﬁgk,z|<¢’iv%‘>|+ ¥i = (®%)'a;, leading to®* = A®' and H = A®'®.
e Before testing the algorithm numerically note that in case t
max Z |<zpi,<pj>|). dictionary was a basis we hav€ = d resulting iny = 0.
T, The setH consequently only contains the identity matrix and

o _ so in one iteration the algorithm will find the best sensing
Another complication arises from the fact that we may nefictionary - the biorthogonal basis.

know the exact sparsity of our signals as this can vary but

only its order of magnitude. C. Simulations

Our appro_ach_ to solving t_he problem is inspired by t_he alter- girst we calculated sensing dictionaries for three dictites
native projection method in [11] for constructing equialgu ¢ yitterent types to compare the cumulative coherences and
tight frames. The problem of trying to find a sensing ma#ix .,,s5_coherences. To simplify the comparison we will *hide
for the dictionary® that gives low cumulative coherence car;n9 within the correlations and choose the normalisation of
be reformulated as looking for the gram type matiix= ¥*® o 210 ms in® such that| (s, 0i)| = B = 1. The first
closest to the ideal gram matrix, which by Theorem 2 has o ctionary was a random dictionary, of redundangy— 2
ones on the diagonal and all off diagonal entries of absoIqHa dimensiond — 128. So in every atom the entries were

valuep =/ 7{x=%;- So if we define drawn independently from a normalised standard Gaussian

distribution and then the atom was rescaled to have unit norm

G:={G=9"®, ¥aN xd matrix} The second dictionary was a Gabor dictionary made up of the
H:={H, a N x N matrix with time-frequency shifts of one atom, i.e. ® = (Yn.m)n.m

where p,, (k) = €2 o (k — na). In our case this atom
was a normalised standard Gaussian in dimengdica 120

and the time and frequency shift parameters were chosen as
a =8, b = 10, leading to a redundanci = 1.5. The third
dictionary was the union of two orthonormal bases, the Haar-
min||G — H||p st G e G, HeH, (7) Wwavelet basis and the Discrete Cosine Transform (DCT) basis
in dimensiond = 128.

which can be solved via projection onto convex sets (POCS)Looking at Figure 1 we see that for the random dictionary,
since both set§ and H are convex, see [11] for details. In(8), the cross coherence is significantly lower than the
our case POCS will do the following. We fix a number ofoherence. We already hawe(K) > 1 for K > 3 meaning
iterations, initialiseG = ®*® and then in each iterative stepthat we can only guarantee to recover super positions of up to
do: two atoms with equal absolute coefficients. On the other hand
, N f11(4) + 11(3) < 1 meaning we can recover super-positions
;; ;:Eggg;{taﬁtnﬁ::ﬁ'miﬁﬁ:éﬂf of up to 4 atoms. Also for the Gabor dictionary, (b), there
is a slight improvement so whilg(3) > 1 we still have
After the last iteration we can extract our sensing dictignaj;(3) < 1. For the Haar-DCT dictionary, (c), we still observe
from the matrixH, which by definition is of the formP*®. the slower growth of the cross-coherence but in this case

Let us now find explicit expressions for the projection of ge difference is not large enough to change the worst case
matrix A onto H andG. By writing out the Frobenius norm pehaviour, i.el < f(2) < p(2).

explicitely

H;=1 and|Hij| <pu for ¢ 75]}

and equip the space of al x N matrices with the Frobenius
norm we can write the problem as

. As second part of the simulations we tested how the sensing

1111161% |A—H|r= Elel% (Z |Ay; — Hij[?)? (8) dictionaries performed in average for thresholding. Farev
ij support size varying between 1 and 30 we constructed 500
signals by choosing the atoms in the support uniformly at

we see that the minimum is attained for the mattbwith 5 4om and coefficients of absolute value one with random

H; =1 signs in the case of the real dictionaries, i.e. the randodh an
H:{ Hj=A; if (A <p . the Haar-DCT dictionary, and uniformly random angl® in
Hilj - Sgh(Aij)/L if |Ailj| > case of the complex Gabor dictionary. We ran thresholding

using both the original and the sensing dictionary counting
The solution to the second minimisation problem is not mudiow often the full support could be recovered. The resuks ar
harder to find. If we writeA* = (a;...ay) We can rewrite displayed in Figure 2.



@) (@)

(b) (b)
(©) (©)
Fig. 1. Cumulative coherence (or dico) and cross-coherésmes dico) for Fig. 2. Recovery rates for thresholding using the originefiahary (or dico)
various dictionaries. and the sensing dictionary (sens dico).
As we can see while for both the random and the GaboBensing: _ i = argmax; |[(p;,7)|
dictionary the recovery rates are higher when using theisgns Reconstruction: a = a + (s, )i, 7 =y — a (MP)
dictionary there is no improvement for the Haar-DCT dictio- I=1Ui,a= <I>1<I>}y, r=y—a (OMP)

nary. One of the reasons might be that on average thresoldity pefore we can change the sensing step of the algorithm
for the Haar-DCT dictionary is already performing well. S%nd, instead of trying to identify components of the true

comparing the original recovery rates of the random and tBg,h0rt with the dictionary itself, use a sensing dictionary
Haar-DCT dictionary, which have about the same redundangy,

we observe a performance gap in favour of the Haar-DCT

dictionary. However, the gap closes when using the sensin§ensing new: i = argmax; |(¢;,7)]

dictionary for the random matrix. Also note that in the Reconstruction: a = a + (v;,r)¢;, ¥ =y — a (MP)

above experiment we tested the average performance but used I=1IUia= q>[<1>}y, r=y—a (OMP)

the sensing dictionaries that were designed to give a goodlo determine which conditions we should impose on the
worst case performance. Before discussing these issues nmemnsing matrix for (O)MP we again do a worst case analysis.
thoroughly in Section IV let us investigate the use of sapsin

dictionaries for (O)MP. A. Worst Case Analysis of (O)MP with a Sensing Dictionary
Theorem 4. Lety be a signal exactly<-sparse in®, i.e.y =

> icr Tiwi. (Orthogonal) Matching Pursuit using the sensing

Even more clearly than thresholding (O)MP can b agix w will always select components of the true support
decomposed into sensing and reconstruction steps. We

initialise a = 0, r = y, I = () and then in each step do:

[1l. SENSING DICTIONARIES FOR(O)MP

[(®7®;) " @711 <1 9)




which is always satisfied if The theorem above is applicable to both MP and OMP
_ _ as we only used that in each step the residual is a linear
fin(K) + fn (K —1) < 3. (10) combinatio):w of the atoms in the sugport. Note, however, that
Proof: Basically we just need to rewrite Tropp’s proof forpicking a correct atom does not mean picking a new correct
Exact Recovery for OMRn [10]. As long as we have only atom. Indeed since the sensing atoms corresponding talglrea
selected correct atoms we know that the residuda still a found atoms are not orthogonal to the residual not even OMP
linear combination of the atoms in the true support, i.e.  can be guaranteed to find the full supportAnsteps.
As a consequence to Theorem 4 we get a characterisation of
"= Z cipi = ®pc. the optimal sensing dictionary for (O)MP. Given a dictionar
el & and a sparsity levek’, the best sensing dictionaig, is
(O)MP will again select a correct atom at the next step ife solution to:
the maximal correlation of the residual with an atom in the

supportmax;e; | (15, 7)| is larger than the maximal correlation Yo = arg nin max (@7%r) ' @771 (13)
with an atom outside the suppoiitix, 7 [(¢x,7)|. SO we have ) _ ) _
to make sure that the quotient satisfies Unfort_ur_1ately solving th|_s p_roblem is even hqrder _thf_;m ingv
the original problem of finding the best sensing dictionamy f
max;c7 | (Y, )| _ ”‘I’?’HOO 1 (12) thresholding in (6), as in addition to the maximum over all
maxies [(Vi, 7)) [ ®r]lee subsets of sizek we also have to consider the inverse of
For further simplification we need to make use jfg- @ Pséudo Gram matrix. However we still have the sufficient
matrix norms forl < p,q < oo, defined as||A|,, = condition (10) for recovery success in terms of the cross

max|,,—1 || Az|,. Insertingr = ®;c into expression (11) coherence. Thus if we take a sensing dictionary calculated
and asguming that the matrilx®; is invertible so that we with the algorithm developed in Section II-B that has cross-

can writez = *®,c, we can bound it as coherence smaller than the coherence we can at least gemrant
recovery for signals with higher sparsity. Finally what aéns
||‘I’§<I’ICH°° _ |“I’§q’1(‘1’§‘1’1)712||w to be done is to check wether these sensing dictionaries also
[Tr @)oo 12 o improve the average case performance of OMP.
< (1 @72 (T P1) " oo o0
Finally we note that W@ (¥F®)) oo = B. Simulations for OMP
|(®5¥;)~1®3%+|1,1 which by condition (9) is smaller than For our simulations we used the same three dictionaries
one as required. and sensing dictionaries as for tresholding and the same set

For the second part of the proof we just have to show thap. So for every support size varying between 10 and 40 we

condition (10) implies condition (9). First we can estimate constructed 500 signals in the same way as for thresholding.

N _ N _ Then we ran OMP using both the original and the sensing
[(@7%) ' @7® 11 < [[(27%r) 1,1/ 7P|

L1 dictionary counting how often the full support could be
The second term in the above can easily be bounded with figgovered. The results are displayed in Figure 3.
cross-coherence, Surprisingly even though the sensing matrices are derived
. _ from optimising only a sufficient worst case condition we
127 ¥l = Iggz (s i) < fin (). can observe the same trends as for thresholding. So for both

el the random and the Gabor dictionary the recovery rates are
To bound the first term we use the fact that whendvilf; 1 < higher when using the sensing dictionary but there is no

1 we have||I+ A1 < (1—]|All1,1)"!. SetA = ®5%; —1I, improvement for the Haar-DCT dictionary. Comparing the

then original recovery rates of the random and the Haar-DCT
- s s dictionary we observe the same performance gap in favour
1Al = e (I, 01) =11 + Z (05 00)]) of the Haar-DCT dictionary as for thresholding. Again the
- i gap closes when using the sensing dictionary for the random
<1- 6 + ,ul(K - 1)a matrix.
(12)
and consequently IV. DiscussioN CONCLUSIONS& FUTURE WORK
)L <(1—-(1— i (K — 1)L In this paper we introduced the concept of sensing dictio-
(@7 < (~ b+ Ml(_l ) naries to improve the performance of thresholding and OMP,
<(B-m(K=1)"". while maintaining the same computational complexity. We
If we now combine these two estimates with condition (1@§nalysed the worst case behaviour of both algorithms when
we get the desired bound using a sensing dictionary and from the results derived-char
(K acterisations of the optimal sensing dictionaries for woase
||(‘I>§‘I’1)_1 QW11 < L < 1. performance. We developed an approximative algorithm tb fin
O —m(K—=1) good sensing dictionaries and showed that it works in precti

0 i.e. we get a sensing dictionary with lower cumulative cross



Gabor Dictionary

(@)

Haar-DCT Dictionary
(b) Fig. 4. Gram and Pseudo Gram Matrices.

signals and consequently develop constructive algoritfons
calculating the sensing dictionaries. Similarly we want to
characterise good sensing matrices for recovery in theepoes
of noise and for OMP as an approximation algorithm.
As a parallel direction we would like to improve the algonith
for calculating the worst case sensing dictionaries. Fav imo
order to find a sensing matrix that is close to optimal we
use the Frobenius norm as distance measure. This has the
(c) advantage of resulting in simple formulas for the altermate
Fig. 3. Recovery Rates for OMP using the original dictionéoy dico) and Jec“‘?”,s- However th_ere IS no guarantee that, the bes,t gprlsm
the sensing dictionary (sens dico). matrix is the one having a pseudo Gram matrix that minimises
the Euclidean distance to the ideal Gram matrix. A promising
idea in that direction is to use a different distance mealkee

coherence than coherence, even though this differencetis {t¢ 1-norm of the Gram matrices when considered as vectors.
always sufficiently large to guarantee a higher recoverg. rafl NiS would mean that instead of the least square problemyin (7
We did some numerical simulations to test the average perf$f€ Would have to solve an iteration of weighted least square
mance of both algorithms and found out that in some cag¥oPlem with adaptive weights. _ ,

the sensing dictionaries for good worst case performarsze af nally it would be interesting to investigate whether the
improve the average performance. There is a simple heurigPncept of dictionary preconditioning can be extended wia
argument why the recovery rates increased for the random &pfSuit, which is the other main approach for finding sparse
the Gabor dictionary but not for the Haar-DCT dictionary. S8/9nal representations.

for the random and the Gabor dictionary lowering the extreme

correlations that are contributing to the cumulative cehee APPENDIX

went together with lowering all the correlations, while for
the Haar-DCT dictionary lowering the extremal correlason
came at the price of increasing some of the a priori sm&imma.

correlations. Figure 4 showing the Gram matri€@s® and | emma 1. Leta; be a non increasing sequenceropositive

We will do all the hard work for the proof in the following

pseudo Gram matriced* & nicely illustrates this effect.  real numbers withy"" | a2 = c. If K% < n then
For the future there are plenty of interesting directions B
to explore. We would like to precisely analyse the average K c
behaviour of OMP, as has already been done for BP, [12], Z;ai = K\/; (14)

and thresholding, [8]. Given a probabilistic model for our
sparse signals, we want to derive design criteria for theisgn Equality holds if and only if the sequence is constant, i.e.
dictionaries to be able to recover a high percentage of thesg= \/g for all i.



Proof: We have to show that for any non constant sequence the
sum over the firstk' elements is larger thah’\/g. Assume

first that theax > /. Then all the firstk' summands also
have to be since the sequence has to be non increasing and
so their sum is larger thaf(\/% On the other hand if we
assume thatvx = 3,/< fora0 < 8 < 1, then

K

2 _
E o =
i=1

Under these circumstances the best possible choice; far=
1... K, is the solution to the following minimisation problem

K
K
minZai StZa > (1 —52-1—;52)
i=1

ando; > ﬁ,/
exists at least one; such that

Figure 5 sketches the problem in two dimensions. The grey
shaded area shows the region of all possible sequencEse Z {3, ©r)|
level curves of the objective function are the parallel sfates i#k

of the dashed line. Itis easy to see that the minimum is &thinif we now reorder the correlations non increasingly and deno
in one of the corner of the feasible region, i.e. for theith largest correlations with; we can apply Lemma 1 with

n = N — 1 and get that
-=ozK=5\/E
n N-—d
5 K 5 Z|(pl7(pk|_zal
C(l—ﬂ +Eﬁ -

~ o K oo
Z o zc(l=p +E6 )-

i=K+1

Fig. 5. Minimisation problem.

N
— —1.
d

Q2
> K

max
1 |I[|=K

S

Let us check when this minimum is smaller thﬁm\/_

2
o2 o

d(N —1)
iel
as long ask? < N — 1. Backtracing the conditions under
which all the inequalities are actually equalities we sest th

this happens if and only if all the correlations are of consta

-5+ ).

—16\/>+\/_\/1—62+—<K\/7

To see whether the inequality above is valid we have to do
the following manipulations, (1

(2]

&  (K-1)p++vn +5—2 <K

7 , [3]
& n(l- +;)<(K(1—5)+ﬁ)
& n(1-p)-K(1-8)°-2K(1-p)B<0 Y
& n(l1+8) - K2(1—ﬁ)—2Kﬁ<O (5]
& (n—K?)(1+48) +268(K?* - K) <0. 6]

From the last expression we can finally see that the inegualit
is never valid as long a&? < N. Thus the only remaining
A - . : . (7]
choice isax = /4 and then the minimum is clearly attained
only when the sequence is constant. O -
Finally we are able to prove Theorem 2. We know thaﬁg]
the energy of all inner products between two atoms, i.e. the
squared Frobenius norm of the Gram matrix satisfies

N N
SO Hei i)

i=1 j=1

[10]

d’ [11]

where equality holds only ife is a tight frame, see [9] for [12]
a proof. From the inequality above we can deduce that there

absolute value, i.e. on top of being tightis also equiangular.
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