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Abstract— This article introduces the concept ofsensing dic-
tionaries. It presents an alteration of greedy algorithms like
thresholding or (Orthogonal) Matching Pursuit which impro ves
their performance in finding sparse signal representationsin
redundant dictionaries while maintaining the same complexity.
These algorithms can be split into a sensing and a reconstruction
step, and the former will fail to identify correct atoms if th e
cumulative coherence of the dictionary is too high. We thus mod-
ify the sensing step by introducing a special sensing dictionary.
The correct selection of components is then determined by the
cross cumulative coherencewhich can be considerably lower than
the cumulative coherence. We characterise the optimal sensing
matrix and develop a constructive method to approximate it.
Finally we compare the performance of thresholding and OMP
using the original and modified algorithms.

I. I NTRODUCTION

In the last years, constructing sparse signal approximations
by means of redundant dictionaries has received a lot of
attention, see [10], [2], [4], [3] and the references therein for
a thorough introduction. In short the reason for this interest
is that a sparse signal representation effectively reducesthe
dimensionality of the signal and thus makes it easier to store
or manipulate. The use of redundant dictionaries is then simply
a consequence of the fact that the existence of a sparse
signal representation becomes more likely as the number of
building blocks or atoms in the dictionary increases. Before
we can illustrate the topic further by stating two of the
typically investigated problems, we will need to introduce
some vocabulary. We will be working with signalsy ∈ R

d. A
dictionaryΦ is assumed to be represented by ad×N matrix,
with d≪ N , whose columns are the atomsϕi, ‖ϕi‖2 = 1:

Φ = [ϕ1 . . . ϕN ].

The ratioR = N/d is called redundancy. A signal is said to
have aK-sparse representation in the dictionaryΦ if there
exists a setI with |I| = K such that we can write

y =
∑

i∈I

xiϕi = ΦIx.

With a slight abuse of language we will call both the set
I and the atoms with indices inI the support ofy and

write ΦI for the d × K matrix of all the atoms in the
support. The complement of the support will be denoted by
I = {1 . . .N}/I.

Now, having all definitions in place, the first problem,
concerned with finding sparse signal approximations, can be
more accurately stated as:

Problem 1. Given a signaly, find its bestK-sparse approx-
imation in the dictionaryΦ, i.e.

min
I,x

‖y − ΦIx‖2 s.t. |I| = K.

Or the dual problem giveny find the sparsestε-approximation,
i.e.

min
I

|I| s.t. min
x

‖y − ΦIx‖2 ≤ ε.

Of course for any signal and dictionary there always exist
solutions to the above problems. However, in order to justify
the use of the term sparse, we obviously need to have a
dictionary in which the signal has a representation where both
ε andK are small, i.e.K ≪ d. This leads to the next question:

Problem 2. Given a class of signalsY , find a dictionary
Φ such that all signalsy ∈ Y will have a good sparse
approximation inΦ.

Without any further assumption on the signal or the dictio-
nary, finding the solution to the first problem is combinatorial.
Thus one would have to try the orthogonal projection of the
signal on all possibleK-sparse supports. To circumvent this
problem people started imposing restrictions on the dictionary
and/or the coefficientsx. By now there exists detailed theory
describing under which assumptions suboptimal algorithms
like thresholding, (Orthogonal) Matching Pursuit (OMP), or
Basis Pursuit (BP), can be proven to recover the true support,
see for instance [10], [5], [1]. The property at the base of
most theorems for greedy algorithms is slow growth of the
cumulative coherence also called Babel functionµ1(K,Φ) of
the dictionary, which is defined as:

µ1(K,Φ) = max
i

max
|J|=K,i/∈J

∑

j∈J

|〈ϕi, ϕj〉|.
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It gives an indication of how close/far the dictionary is to/from
an orthonormal basis. For compactness reasons we will omit
the reference to dictionary, i.e. writeµ1(K), whenever it is
clear which dictionary is meant and writeµ for the coherence,
i.e. µ := µ1(1). Using this definition a typical result for
thresholding, cp. [6], and OMP, cp. [10], reads as:

Theorem 1. If we have a signal exactlyK-sparse inΦ, i.e.
y =

∑

i∈I xiϕi and |I| = K, then thresholding is able to
recover a componentϕi of the true support if

|xi|
‖x‖∞

> µ1(K) + µ1(K − 1). (1)

OMP is able to recover all components of the true supportI
if the exact recovery coefficient is smaller than 1, i.e.

‖Φ†
IΦI‖1,1 < 1,

where Φ
†
I denotes the Moore-Penrose pseudo-inverse. The

above condition is always satisfied if

µ1(K) + µ1(K − 1) < 1.

One deduction from the theorem is that it is desirable to
have a dictionary where the cumulative coherence is growing
slowly. Dictionaries having minimal coherenceµ are called
Grassmannian framesand are quite well studied, see [9] and
references therein, but the next step of trying to minimise the
cumulative coherence seems novel. However we can give a
lower bound on the cumulative coherence based on results
about Grassmannian frames. The following theorem is an
extension of Theorem 2.3 in [9].

Theorem 2. Let Φ be a dictionary ofN atoms in dimension
d. If K2 < N − 1 then

µ1(K) ≥ K ·
√

N − d

d(N − 1)
. (2)

Equality holds if and only if the dictionary is an equiangular
unit norm tight frame.

Since the proof of the theorem is quite technical and not
necessary for further developments it is relegated to the ap-
pendix, awaiting inspection by the genuinely interested there.
What should be noted though is thatoptimal Grassmannian
framesthat meet the lower bound for the coherence, i.e.

µ(Φ) =

√

N − d

d(N − 1)

simultaneously meet the lower bound for the cumulative
coherenceµ1(K) for all K with K2 < N − 1.

On the other hand while a dictionary minimising the cu-
mulative coherence might be interesting for communication
applications, it will not be ideal for approximation of a specific
class of signals, like for instance EEGs or music. For these
purposes learned dictionaries are by definition more suited
to the task, see [7]. However these learned dictionaries will
not show the desired incoherence properties, that enable us
to find the approximation with suboptimal algorithms in the
same degree as optimal Grassmannian frames. Assume that

we have a dictionary that represents a signal class well but is
unfortunately so coherent that alreadyµ1(2) + µ1(1) > 1,
meaning that we cannot guarantee for OMP to find even
a superposition of only two atoms. Thus in order to find
good approximations we would have to use a more complex
algorithm. Alternatively we could circumvent the problem
by trying to find a new dictionary that still represents the
class well but retains small minimal cumulative coherence,
an interesting research direction in itself.
However in this paper we will introduce the concept of sensing
dictionaries and present a small alteration of the suboptimal al-
gorithms such that they can perform well for dictionaries with
high cumulative coherence. In Section II, we will first explain
how to separate the thresholding algorithm into a sensing and
a reconstruction part. We will then show that sensing with a
different dictionary can lower the cumulative cross-coherence
and yield better recovery results. Motivated by structuralprop-
erties of optimal Grassmannian frames we propose an iterative
algorithm to construct a sensing dictionary/matrix givinglower
cross-coherence. After analysing its convergence properties
theoretically we use it to calculate sensing matrices for various
dictionaries and compare the performance of thresholding with
and without sensing dictionaries in practice. In Section III we
will introduce sensing dictionaries as well for (O)MP and from
a worst case performance analysis derive a characterisation
of the ideal sensing dictionary. We will then again do some
numerical simulations of how OMP performs with or without
sensing matrices using the sensing dictionaries obtained with
the algorithm developed in Section II. In Section IV we
will discuss the theoretical and numerical limitations of the
schemes so far, as well as possible extensions.

II. SENSING DICTIONARIES FORTHRESHOLDING

As mentioned above thresholding can be formally
decomposed into sensing steps, where we try to identify
correct atoms of the support, and reconstruction steps.

Sensing: findI s.t. ∀i ∈ I, ∀k /∈ I,
|〈ϕi, y〉| ≥ |〈ϕk, y〉|

Reconstruction: a = ΦIΦ
†
Iy

Φ
†
I again denotes the Moore-Penrose pseudo inverse.

If the dictionary is too coherent the sensing part will fail to
identify correct atoms. Our idea is to change the sensing part
and instead of sensing with the dictionary, use a different
sensing matrix Ψ that allows to identify more correct
components. This sensing matrix will have as columns the
same number of sensing atoms as the original dictionary had
atoms, so that we have a one to one correspondence between
the sensing and the original atoms. If we denote the sensing
atom in Ψ that corresponds to the atomϕi in the original
dictionary withψi schematically the new algorithm looks like:

Sensing new: findI s.t. ∀i ∈ I, ∀k /∈ I,
|〈ψi, y〉| ≥ |〈ψk, y〉|

Reconstruction: a = ΦIΦ
†
Iy

This approach can be easily motivated on the following
example. Assume for instance that the dictionaryΦ is a
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deformed version of a dictionaryΓ with low coherence, like
an optimal Grassmannian frame or even more simple an
orthogonal basis, meaningΦ = AΓ whereA is an invertible
matrix with inverseA−1 = B. For any K-sparse signal
y = Φx by applying the matrixB we can construct a new
signal z = By = BΦx = Γx. To find the sparse supportI
we could equivalently use the original signal and dictionary or
solve this new problem. But since for a Grassmannian frame
Γ the cumulative coherence grows more slowly - in the case
of Γ being an orthogonal basis it is even zero - the second
problem is obviously better conditioned:

y = Φx ⇔ z = Γx

µK(Φ) ≥ µK(Γ)

However, if we write down explicitly the sensing ofz with Γ

(Γ⋆ denotes the transpose ofΓ),

Γ
⋆z = (BΦ)⋆By = (Φ⋆B⋆B)y,

we see that we can actually interpret it as sensing the original
signal with a sensing matrix of the formΨ = B⋆BΦ. In the
special case where we chooseB such thatB⋆B = (ΦΦ

⋆)−1

we get as sensing matrix the canonical dual frame (pseudo-
inverse):Ψ = (ΦΦ

⋆)−1
Φ, which in the even more special

case where the dictionary is a basis is just the biorthogonal
basis(Φ−1)⋆.
Now in order to generalise the above idea we can investigate
what happens if we do not insist on deriving the sensing
matrix from a linear transformation of the problem. Instead
of restricting ourselves to using sensing matrices of the form
Ψ = B⋆BΦ, we will allow any matrix of the same size as
the original dictionary. To see explicitly what propertieswe
want to infer for the sensing/measuring matrixΨ we do the
analogue of the analysis leading to (1).

A. Worst Case Analysis of Thresholding with a Sensing Dic-
tionary

Let y be ad-dimensional signal that has aK-sparse repre-
sentation in the overcomplete dictionaryΦ, |Φ| = N , i.e.

y =
∑

i∈I

xiϕi.

For thresholding to recover a componentϕi in the support,
we need the inner product of signal with the corresponding
sensing atomψi to be larger than the inner product with any
atom in the sensing matrix whose corresponding partner is not
part of the support:

i ∈ I : |〈ψi, y〉| ≥ |〈ψj , y〉|, ∀j /∈ I.

Writing out the inner product we can estimate:

i ∈ I : |〈ψi, y〉| ≥ |xi||〈ψi, ϕi〉| −
∑

j∈I,j 6=i

|xj ||〈ψi, ϕj〉|

≥ |xi||〈ψi, ϕi〉| − ‖x‖∞
∑

j∈I,j 6=i

|〈ψi, ϕj〉|

k /∈ I : |〈ψk, y〉| ≤
∑

j∈I

|xj ||〈ψk, ϕj〉|

≤ ‖x‖∞
∑

j∈I

|〈ψk, ϕj〉|.

The right most terms in the above equations show a strong
similarity to the cumulative coherence. By analogy we define
the cumulative cross-coherence or cross Babel function of two
dictionariesµ̃1(K,Φ,Ψ) as well as their minimal coherence
β(Φ,Ψ) as:

µ̃1(K,Φ,Ψ) := max
i

max
|J|=K,i/∈J

∑

j∈J

|〈ψi, ϕj〉|, (3)

β(Φ,Ψ) := min
i

|〈ψi, ϕi〉|. (4)

As before we will leave out the reference to the dictionaries
whenever it is clear which ones are meant. Using these
definitions we can further simplify the above estimates to get:

i ∈ I : |〈ψi, y〉| ≥ |xi|β − ‖x‖∞µ̃1(K − 1)

k /∈ I : |〈ψk, y〉| ≤ ‖x‖∞µ̃1(K).

Finally the combination of these two estimates leads to the
following theorem.

Theorem 3. Let y be a signal exactlyK-sparse inΦ, i.e.
y =

∑

i∈I xiϕi. Thresholding with the sensing matrixΨ is
able to recover a componentϕi of the true support if

|xi|
‖x‖∞

>
1

β
(µ̃1(K) + µ̃1(K − 1)) := ν(K,Φ,Ψ). (5)

This is a relaxation over the traditional recovery condition (1)
if

1

β
(µ̃1(K) + µ̃1(K − 1)) < µ1(K) + µ1(K − 1).

The obvious questions now are: Given a dictionaryΦ, do
there exist complementary sensing dictionaries that give a
relaxed recovery condition and if yes how do we find them
or rather how do we find the best. Since we want to have the
new recovery condition as relaxed as possible we need to find
the dictionary for which the recovery coefficientν(K,Φ,Ψ)
is minimal, i.e.

Ψ0 = arg min
Ψ

ν(K,Φ,Ψ). (6)

Consequently, unless the minimum in the above equation
is attained by the dictionary itself, there will always exist
better sensing dictionaries. The next subsection is dedicated
to developing an algorithm for finding one of them.
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B. An Algorithm for Calculating Sensing Dictionaries

If we wanted to find the optimal sensing dictionary we
would have to find the solution to Problem (6). This a
daunting task as is more clearly demonstrated by looking at
the expansion of the objective function after back-inserting the
definitions:

min
Ψ

1

mini |〈ψi, ϕi〉|
(

max
|J|=K,i/∈J

∑

j∈J

|〈ψi, ϕj〉|+

max
|J|=K−1,i/∈J

∑

j∈J

|〈ψi, ϕj〉|
)

.

Another complication arises from the fact that we may not
know the exact sparsity of our signals as this can vary but
only its order of magnitude.
Our approach to solving the problem is inspired by the alter-
native projection method in [11] for constructing equiangular
tight frames. The problem of trying to find a sensing matrixΨ

for the dictionaryΦ that gives low cumulative coherence can
be reformulated as looking for the gram type matrixG = Ψ

⋆
Φ

closest to the ideal gram matrix, which by Theorem 2 has only
ones on the diagonal and all off diagonal entries of absolute
valueµ =

√

N−d
d(N−1) . So if we define

G := {G = Ψ
⋆
Φ, Ψ a N × d matrix}

H := {H, a N ×N matrix with

Hii = 1 and |Hij | ≤ µ for i 6= j}

and equip the space of allN ×N matrices with the Frobenius
norm we can write the problem as

min ‖G−H‖F s.t G ∈ G, H ∈ H, (7)

which can be solved via projection onto convex sets (POCS)
since both setsG andH are convex, see [11] for details. In
our case POCS will do the following. We fix a number of
iterations, initialiseG = Φ

⋆
Φ and then in each iterative step

do:

1) findH ∈ H that minimises‖G−H‖F

2) findG ∈ G that minimises‖H −G‖F

After the last iteration we can extract our sensing dictionary
from the matrixH , which by definition is of the formΨ⋆

Φ.
Let us now find explicit expressions for the projection of a
matrix A onto H andG. By writing out the Frobenius norm
explicitely

min
H∈H

‖A−H‖F = min
H∈H

(

∑

ij

|Aij −Hij |2
)

1

2 (8)

we see that the minimum is attained for the matrixH with

H :







Hii = 1
Hij = Aij if |Aij | ≤ µ
Hij = sgn(Aij)µ if |Aij | > µ

.

The solution to the second minimisation problem is not much
harder to find. If we writeA⋆ = (a1 . . . aN ) we can rewrite

the problem

min
G∈G

‖A−G‖F = min
Ψ

‖A− Ψ
⋆
Φ‖F

= min
Ψ

‖A⋆ − Φ
⋆
Ψ‖F

= min
Ψ

(
∑

i

‖ai − Φ
⋆ψi‖2

2)
1

2 .

From the last expression it is clear that we should choose
ψi = (Φ⋆)†ai, leading toΨ

⋆ = AΦ
† and H = AΦ

†
Φ.

Before testing the algorithm numerically note that in case the
dictionary was a basis we haveN = d resulting inµ = 0.
The setH consequently only contains the identity matrix and
so in one iteration the algorithm will find the best sensing
dictionary - the biorthogonal basis.

C. Simulations

First we calculated sensing dictionaries for three dictionaries
of different types to compare the cumulative coherences and
cross-coherences. To simplify the comparison we will ’hide’
β within the correlations and choose the normalisation of
the atoms inΨ such that|〈ψi, ϕi〉| = β = 1. The first
dictionary was a random dictionary, of redundancyR = 2
in dimensiond = 128. So in every atom the entries were
drawn independently from a normalised standard Gaussian
distribution and then the atom was rescaled to have unit norm.
The second dictionary was a Gabor dictionary made up of the
time-frequency shifts of one atomϕ, i.e. Φ = (ϕn,m)n,m

whereϕn,m(k) = e2πimbkϕ(k − na). In our case this atom
was a normalised standard Gaussian in dimensiond = 120
and the time and frequency shift parameters were chosen as
a = 8, b = 10, leading to a redundancyR = 1.5. The third
dictionary was the union of two orthonormal bases, the Haar-
wavelet basis and the Discrete Cosine Transform (DCT) basis
in dimensiond = 128.

Looking at Figure 1 we see that for the random dictionary,
(a), the cross coherence is significantly lower than the
coherence. We already haveµ1(K) > 1 for K > 3 meaning
that we can only guarantee to recover super positions of up to
two atoms with equal absolute coefficients. On the other hand
µ̃1(4) + µ̃1(3) < 1 meaning we can recover super-positions
of up to 4 atoms. Also for the Gabor dictionary, (b), there
is a slight improvement so whileµ(3) > 1 we still have
µ̃(3) < 1. For the Haar-DCT dictionary, (c), we still observe
the slower growth of the cross-coherence but in this case
the difference is not large enough to change the worst case
behaviour, i.e.1 < µ̃(2) < µ(2).

As second part of the simulations we tested how the sensing
dictionaries performed in average for thresholding. For every
support size varying between 1 and 30 we constructed 500
signals by choosing the atoms in the support uniformly at
random and coefficients of absolute value one with random
signs in the case of the real dictionaries, i.e. the random and
the Haar-DCT dictionary, and uniformly random angleeiθ in
case of the complex Gabor dictionary. We ran thresholding
using both the original and the sensing dictionary counting
how often the full support could be recovered. The results are
displayed in Figure 2.
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(a)

(b)

(c)

Fig. 1. Cumulative coherence (or dico) and cross-coherence(sens dico) for
various dictionaries.

As we can see while for both the random and the Gabor
dictionary the recovery rates are higher when using the sensing
dictionary there is no improvement for the Haar-DCT dictio-
nary. One of the reasons might be that on average thresholding
for the Haar-DCT dictionary is already performing well. So
comparing the original recovery rates of the random and the
Haar-DCT dictionary, which have about the same redundancy,
we observe a performance gap in favour of the Haar-DCT
dictionary. However, the gap closes when using the sensing
dictionary for the random matrix. Also note that in the
above experiment we tested the average performance but used
the sensing dictionaries that were designed to give a good
worst case performance. Before discussing these issues more
thoroughly in Section IV let us investigate the use of sensing
dictionaries for (O)MP.

III. SENSING DICTIONARIES FOR(O)MP

Even more clearly than thresholding (O)MP can be
decomposed into sensing and reconstruction steps. We
initialise a = 0, r = y, I = ∅ and then in each step do:

(a)

(b)

(c)

Fig. 2. Recovery rates for thresholding using the original dictionary (or dico)
and the sensing dictionary (sens dico).

Sensing: i = arg maxj |〈ϕj , r〉|
Reconstruction: a = a+ 〈ϕi, r〉ϕi, r = y − a (MP)

I = I ∪ i, a = ΦIΦ
†
Iy, r = y − a (OMP)

As before we can change the sensing step of the algorithm
and, instead of trying to identify components of the true
support with the dictionaryΦ itself, use a sensing dictionary
Ψ.

Sensing new: i = arg maxj |〈ψj , r〉|
Reconstruction: a = a+ 〈ϕi, r〉ϕi, r = y − a (MP)

I = I ∪ i, a = ΦIΦ
†
Iy, r = y − a (OMP)

To determine which conditions we should impose on the
sensing matrix for (O)MP we again do a worst case analysis.

A. Worst Case Analysis of (O)MP with a Sensing Dictionary

Theorem 4. Let y be a signal exactlyK-sparse inΦ, i.e.y =
∑

i∈I xiϕi. (Orthogonal) Matching Pursuit using the sensing
matrix Ψ will always select components of the true supportI
if

‖(Φ⋆
IΨI)

−1
Φ

⋆
IΨI‖1,1 < 1 (9)
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which is always satisfied if

µ̃1(K) + µ̃1(K − 1) < β. (10)

Proof: Basically we just need to rewrite Tropp’s proof for
Exact Recovery for OMPin [10]. As long as we have only
selected correct atoms we know that the residualr is still a
linear combination of the atoms in the true support, i.e.

r =
∑

i∈I

ciϕi = ΦIc.

(O)MP will again select a correct atom at the next step if
the maximal correlation of the residual with an atom in the
supportmaxi∈I |〈ψi, r〉| is larger than the maximal correlation
with an atom outside the supportmaxk∈I |〈ψk, r〉|. So we have
to make sure that the quotient satisfies

maxk∈I |〈ψk, r〉|
maxi∈I |〈ψi, r〉|

=
‖Ψ⋆

I
r‖∞

‖Ψ⋆
Ir‖∞

< 1. (11)

For further simplification we need to make use ofp, q-
matrix norms for 1 ≤ p, q ≤ ∞, defined as‖A‖p,q =
max‖x‖p=1 ‖Ax‖q. Inserting r = ΦIc into expression (11)
and assuming that the matrixΨ⋆

IΦI is invertible so that we
can writez = Ψ

⋆
IΦIc, we can bound it as

‖Ψ⋆
I
ΦIc‖∞

‖Ψ⋆
IΦIc‖∞

=
‖Ψ⋆

I
ΦI(Ψ

⋆
IΦI)

−1z‖∞
‖z‖∞

≤ ‖Ψ⋆
I
ΦI(Ψ

⋆
IΦI)

−1‖∞,∞.

Finally we note that ‖Ψ⋆
I
ΦI(Ψ

⋆
IΦI)

−1‖∞,∞ =

‖(Φ⋆
IΨI)

−1
Φ

⋆
IΨI‖1,1 which by condition (9) is smaller than

one as required.
For the second part of the proof we just have to show that
condition (10) implies condition (9). First we can estimate

‖(Φ⋆
IΨI)

−1
Φ

⋆
IΨI‖1,1 ≤ ‖(Φ⋆

IΨI)
−1‖1,1‖Φ⋆

IΨI‖1,1.

The second term in the above can easily be bounded with the
cross-coherence,

‖Φ⋆
IΨI‖1,1 = max

k∈I

∑

i∈I

|〈ψk, ϕi〉| ≤ µ̃1(K).

To bound the first term we use the fact that whenever‖A‖1,1 <
1 we have‖I+A‖1,1 < (1−‖A‖1,1)

−1. SetA = Φ
⋆
IΨI − I,

then

‖A‖1,1 = max
i∈I

(

|〈ψi, ϕi〉 − 1| +
∑

j 6=i

|〈ψj , ϕi〉|
)

≤ 1 − β + µ̃1(K − 1),

(12)

and consequently

‖(Φ⋆
IΨI)

−1‖1,1 ≤ (1 − (1 − β + µ̃1(K − 1))−1

≤ (β − µ̃1(K − 1))−1.

If we now combine these two estimates with condition (10)
we get the desired bound

‖(Φ⋆
IΨI)

−1
Φ

⋆
IΨI‖1,1 ≤ µ̃1(K)

β − µ̃1(K − 1)
< 1.

The theorem above is applicable to both MP and OMP
as we only used that in each step the residual is a linear
combination of the atoms in the support. Note, however, that
picking a correct atom does not mean picking a new correct
atom. Indeed since the sensing atoms corresponding to already
found atoms are not orthogonal to the residual not even OMP
can be guaranteed to find the full support inK steps.
As a consequence to Theorem 4 we get a characterisation of
the optimal sensing dictionary for (O)MP. Given a dictionary
Φ and a sparsity levelK, the best sensing dictionaryΨ0 is
the solution to:

Ψ0 = arg min
Ψ

max
|I|=K

‖(Φ⋆
IΨI)

−1
Φ

⋆
IΨI‖1,1. (13)

Unfortunately solving this problem is even harder than solving
the original problem of finding the best sensing dictionary for
thresholding in (6), as in addition to the maximum over all
subsets of sizeK we also have to consider the inverse of
a pseudo Gram matrix. However we still have the sufficient
condition (10) for recovery success in terms of the cross
coherence. Thus if we take a sensing dictionary calculated
with the algorithm developed in Section II-B that has cross-
coherence smaller than the coherence we can at least guarantee
recovery for signals with higher sparsity. Finally what remains
to be done is to check wether these sensing dictionaries also
improve the average case performance of OMP.

B. Simulations for OMP

For our simulations we used the same three dictionaries
and sensing dictionaries as for tresholding and the same set
up. So for every support size varying between 10 and 40 we
constructed 500 signals in the same way as for thresholding.
Then we ran OMP using both the original and the sensing
dictionary counting how often the full support could be
recovered. The results are displayed in Figure 3.

Surprisingly even though the sensing matrices are derived
from optimising only a sufficient worst case condition we
can observe the same trends as for thresholding. So for both
the random and the Gabor dictionary the recovery rates are
higher when using the sensing dictionary but there is no
improvement for the Haar-DCT dictionary. Comparing the
original recovery rates of the random and the Haar-DCT
dictionary we observe the same performance gap in favour
of the Haar-DCT dictionary as for thresholding. Again the
gap closes when using the sensing dictionary for the random
matrix.

IV. D ISCUSSION, CONCLUSIONS& FUTURE WORK

In this paper we introduced the concept of sensing dictio-
naries to improve the performance of thresholding and OMP,
while maintaining the same computational complexity. We
analysed the worst case behaviour of both algorithms when
using a sensing dictionary and from the results derived char-
acterisations of the optimal sensing dictionaries for worst case
performance. We developed an approximative algorithm to find
good sensing dictionaries and showed that it works in practice,
i.e. we get a sensing dictionary with lower cumulative cross
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(a)

(b)

(c)

Fig. 3. Recovery Rates for OMP using the original dictionary(or dico) and
the sensing dictionary (sens dico).

coherence than coherence, even though this difference is not
always sufficiently large to guarantee a higher recovery rate.
We did some numerical simulations to test the average perfor-
mance of both algorithms and found out that in some cases
the sensing dictionaries for good worst case performance also
improve the average performance. There is a simple heuristic
argument why the recovery rates increased for the random and
the Gabor dictionary but not for the Haar-DCT dictionary. So
for the random and the Gabor dictionary lowering the extreme
correlations that are contributing to the cumulative coherence
went together with lowering all the correlations, while for
the Haar-DCT dictionary lowering the extremal correlations
came at the price of increasing some of the a priori small
correlations. Figure 4 showing the Gram matricesΦ

⋆
Φ and

pseudo Gram matricesΨ⋆
Φ nicely illustrates this effect.

For the future there are plenty of interesting directions
to explore. We would like to precisely analyse the average
behaviour of OMP, as has already been done for BP, [12],
and thresholding, [8]. Given a probabilistic model for our
sparse signals, we want to derive design criteria for the sensing
dictionaries to be able to recover a high percentage of these

Gabor Dictionary

Haar-DCT Dictionary

Fig. 4. Gram and Pseudo Gram Matrices.

signals and consequently develop constructive algorithmsfor
calculating the sensing dictionaries. Similarly we want to
characterise good sensing matrices for recovery in the presence
of noise and for OMP as an approximation algorithm.
As a parallel direction we would like to improve the algorithm
for calculating the worst case sensing dictionaries. For now in
order to find a sensing matrix that is close to optimal we
use the Frobenius norm as distance measure. This has the
advantage of resulting in simple formulas for the alternatepro-
jections. However there is no guarantee that the best sensing
matrix is the one having a pseudo Gram matrix that minimises
the Euclidean distance to the ideal Gram matrix. A promising
idea in that direction is to use a different distance measurelike
the 1-norm of the Gram matrices when considered as vectors.
This would mean that instead of the least square problem in (7)
we would have to solve an iteration of weighted least square
problem with adaptive weights.
Finally it would be interesting to investigate whether the
concept of dictionary preconditioning can be extended to Basis
Pursuit, which is the other main approach for finding sparse
signal representations.

APPENDIX

We will do all the hard work for the proof in the following
lemma.

Lemma 1. Let αi be a non increasing sequence ofn positive
real numbers with

∑n
i=1 α

2
i = c. If K2 ≤ n then

K
∑

i=1

αi ≥ K

√

c

n
(14)

Equality holds if and only if the sequence is constant, i.e.
αi =

√

c
n for all i.
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Proof: We have to show that for any non constant sequence the
sum over the firstK elements is larger thanK

√

c
n . Assume

first that theαK >
√

c
N . Then all the firstK summands also

have to be since the sequence has to be non increasing and
so their sum is larger thanK

√

c
n . On the other hand if we

assume thatαK = β
√

c
n for a 0 < β < 1, then

K
∑

i=1

α2
i = c−

n
∑

i=K+1

α2
i ≥ c(1 − β2 +

K

n
β2).

Under these circumstances the best possible choice forαi, i =
1 . . .K, is the solution to the following minimisation problem

min

K
∑

i=1

αi s.t
K

∑

i=1

α2
i ≥ c(1 − β2 +

K

n
β2)

andαi ≥ β

√

c

n
.

Figure 5 sketches the problem in two dimensions. The grey
shaded area shows the region of all possible sequencesα. The
level curves of the objective function are the parallel translates
of the dashed line. It is easy to see that the minimum is attained
in one of the corner of the feasible region, i.e. for

α2 = . . . = αK = β

√

c

n

α2
1 = c(1 − β2 +

K

n
β2 − K − 1

n
β2) = c(1 − β2 +

β2

n
).

Let us check when this minimum is smaller thanK
√

c
n , i.e.

(K − 1)β

√

c

n
+
√
c

√

1 − β2 +
β2

n
< K

√

c

n

To see whether the inequality above is valid we have to do
the following manipulations,

⇔ (K − 1)β +
√
n

√

1 − β2 +
β2

n
< K

⇔ n(1 − β2 +
β2

n
) < (K(1 − β) + β)2

⇔ n(1 − β2) −K2(1 − β)2 − 2K(1 − β)β < 0

⇔ n(1 + β) −K2(1 − β) − 2Kβ < 0

⇔ (n−K2)(1 + β) + 2β(K2 −K) < 0.

From the last expression we can finally see that the inequality
is never valid as long asK2 < N . Thus the only remaining
choice isαK =

√

c
N and then the minimum is clearly attained

only when the sequence is constant.

Finally we are able to prove Theorem 2. We know that
the energy of all inner products between two atoms, i.e. the
squared Frobenius norm of the Gram matrix satisfies

N
∑

i=1

N
∑

j=1

|〈ϕi, ϕj〉|2 ≥ N2

d
,

where equality holds only ifΦ is a tight frame, see [9] for
a proof. From the inequality above we can deduce that there

Fig. 5. Minimisation problem.

exists at least oneϕk such that
∑

i6=k

|〈ϕi, ϕk〉|2 ≥ N

d
− 1.

If we now reorder the correlations non increasingly and denote
theith largest correlations withαi we can apply Lemma 1 with
n = N − 1 and get that

max
|I|=K

∑

i∈I

|〈ϕi, ϕk〉| =
K

∑

i=1

αi ≥ K

√

N − d

d(N − 1)

as long asK2 < N − 1. Backtracing the conditions under
which all the inequalities are actually equalities we see that
this happens if and only if all the correlations are of constant
absolute value, i.e. on top of being tightΦ is also equiangular.
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