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Abstract— Frames and oversampled filter banks have been
extensively studied over the past few years due to their increased
design freedom and improved error resilience. In frame expan-
sions, the least square signal reconstruction operator is called
the dual frame, which can be obtained by choosing the synthesis
filter bank as the para-pseudo inverse of the analysis bank. In this
paper, we study the computation of the dual frame by exploiting
the Greville formula, which was originally derived in 1960 to
compute the pseudo inverse of a matrix when a new row is
appended. Here, we first develop the backward Greville formula
to handle the case of row deletion. Based on the forward Greville
formula, we then study the computation of para-pseudo inverse
for extended filter banks and Laplacian pyramids. Through the
backward Greville formula, we investigate the frame-based error
resilient transmission over erasure channels. The necessary and
sufficient condition for an oversampled filter bank to be robust
to one erasure channel is derived. A post-filtering structure is
also presented to implement the para-pseudo inverse when the
transform coefficients in one subband are completely lost.

Index Terms— Frame expansions, para-pseudo inverse, dual
frame, oversampled filter banks, Laplacian pyramid, Greville
formulas.

I. INTRODUCTION

In many engineering applications, it is well known that
redundancy can offer improved resilience and stability. The
concept of redundant signal representations through frame
expansions was first introduced by Duffin and Schaeffer in
[1]. The wavelet frames have been popularized since 1980s
due to the work by Daubechies, Grossman and Meyer [2].
Later in [3] and [4], it was shown that frames in l2(Z) can
be implemented via perfect reconstruction (PR) oversampled
(O) filter banks (FBs). The discovery of such connections
triggered an extensive study of various OFBs, such as the
DFT-based systems [5], [6], cosine-modulated systems [7],
[8] and linear-phase systems [9]–[11]. In the mean time,
the structural redundancy in frame expansions has also been
exploited for various applications such as quantization, error-
resilient multimedia coding [12]–[14], segmentation, pattern
recognition, wireless communications, and sensor networks.
For a more complete overview of frame theory and OFBs, see
the introductory paper [15], [16] and the references therein.
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Unlike conventional non-redundant bases, there are many
operators that can reconstruct a signal from its frame coef-
ficients. Among them, the most significant one is the dual
frame1, which offers the optimal solution in the least square
sense. The dual frame of a finite-dimensional frame in CM cor-
responds to its pseudo inverse. In l2(Z), the dual frame can be
implemented via the para-pseudo inverse of the analysis bank.
While the dual frame of a tight frame is just itself, for a general
frame in l2(Z), the explicit computation of the dual frame is
a challenging task as it requires the inversion of a polynomial
matrix. If the frame has a shift-invariant structure [4], we can
approximate the dual frame using truncated Neumann series
expansion [2], [4]. However, such an approximation could be
computationally inefficient and numerically unstable. In [17],
Li et al. proposed a state-space approach to calculate the dual
frame. Although this method is numerically stable, it does not
offer a fast implementation structure or closed-form solution.

Recall that a frame can be constructed either by adding
additional rows to a basis [18], or by deleting some columns of
a basis in a larger space [15], [16]. Thus, it is natural to ponder
whether the dual frame can be calculated from the dual basis.
Bearing this in mind, we aim to exploit the Greville formula,
which was originally proposed in [19] to obtain the pseudo
inverse of a matrix when it is augmented by a row (or column)
vector. Due to its efficiency, the Greville formula has been used
as a benchmark for the calculation of pseudo inverse. It has
also found wide applications in database and neural network
computation [20]. In this paper, the backward Greville formula
is further developed to compute the pseudo inverse when a row
(or column) of a matrix is deleted. This is also motivated by the
application of frames in error-resilient transmission [12], [21],
where efficient updating of the dual frame is needed when
some communication channels are completely down. Then,
based on the forward and backward Greville formulas, we
study the following frames and OFBs:

• Extended filter banks: This subclass of OFBs are obtained
by adding one or more filters to an existing PR FB
[18]. They are quite useful in unequal error protection
and joint source-channel coding [18]. By exploiting the
forward Greville formula, we propose a recursive method
to calculate their dual frame. We also derive a necessary
and sufficient condition to generate doubly finite impulse
response (DFIR) systems [18], where all the analysis and

1Throughout this paper, the term dual frame is referred to as the recon-
struction operator with minimum l2 norm.
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dual synthesis filters are FIR. Not only does this condition
offer efficient design of DFIR extended FBs, it also leads
to hardware friendly implementation structures.

• Laplacian pyramids (LPs): The LP was first proposed in
[22] as a signal processing tool for multi-resolution rep-
resentation of images. Recently, Do et al. [23] conducted
a frame-theoretical analysis of such systems. Here, we
derive the closed-form solution of the LP’s dual frame
based on the forward Greville formula. The necessary
and sufficient condition to generate a DFIR LP frame is
also given.

• OFBs for erasure channels: We show that the backward
Greville formula facilitates the analysis of erasure re-
silience of OFBs. In particular, we establish the necessary
and sufficient condition for an OFB robust to one erasure
channel. We also propose a post-filtering structure to im-
plement the para-pseudo inverse of the remaining analysis
bank when the transform coefficients in one subband are
completely lost.

The rest of this paper is organized as follows. In Section II,
we introduce the notations and review the basics of frame
theory and OFBs. In Section III, we present the forward Gre-
ville formula and derive the new backward Greville formula.
Applications of the forward Greville formula are then demon-
strated in Section IV and Section V, where we investigate
the extended FBs and LP frames, respectively. Section VI
is dedicated to the analysis of OFBs for erasure channels,
followed by conclusions in Section VII.

II. PRELIMINARIES

A. Notations

Bold-faced letters indicate vectors and matrices. The symbol
IM denotes an M×M identity matrix. The size of a matrix is
omitted when it is clear from the context. The superscript H
represents the Hermitian transpose. For a rational polynomial
e(z), ẽ(z) denotes the function which conjugates the coeffi-
cients, and then replaces z with z−1. Similarly, for a rational
polynomial matrix E(z), Ẽ(z) represents the matrix obtained
from E(z) by transposing it, conjugating all coefficients of the
rational functions in E(z), and replacing z by z−1. We say that
an 1×M row vector e(z) is paraunitary (PU) if e(z)ẽ(z) = A
for a positive constant A. Likewise, an N × M (N ≥ M )
matrix E(z) is said to be PU if it satisfies Ẽ(z)E(z) = AIM .
The para-pseudo inverse of E(z) is denoted by E†(z). Just
as the conventional pseudo inverse, the para-pseudo inverse is
the unique solution of the following Moore-Penrose equations
[24]:

E(z)E†(z)E(z) = E(z); (1)

E†(z)E(z)E†(z) = E†(z); (2)

Ẽ†(z)Ẽ(z) = E(z)E†(z); (3)

Ẽ(z)Ẽ†(z) = E†(z)E(z). (4)

In (3) and (4), Ẽ†(z) is defined as Ẽ†(z) =
[
Ẽ(z)

]†
. It

is worth mentioning that the operations of “†” and “∼” are
permutable. Also, note that when E(z) is a constant zero-order

matrix or when z = ejω , E†(z) reduces to the conventional
pseudo inverse.

B. Frame Theory and OFBs

Consider a set of vectors Φ = {ϕi}i∈Z in a Hilbert space
H. Φ is called a frame if for any signal x, there exist two
positive constants 0 < A ≤ B < ∞ so that

A ‖ x ‖2≤
∑

i∈Z
|yi|2 ≤ B ‖ x ‖2, (5)

where the i-th frame coefficient yi = 〈x, ϕi〉 is the inner
product of x and ϕi. In (5), the constants A and B are called
frame bounds. When A = B, we say that Φ generates a tight
frame and it is Parseval-tight if A = B = 1. Moreover, Φ is a
uniform tight frame (UTF) if ‖ ϕi ‖2= 1 for i ∈ Z [15], [16].

Given a frame Φ, there exists a reconstruction frame Ψ =
{ψi}N

i=1 that can recover the signal x from its frame coeffi-
cients:

x =
∑

i∈Z
yiψi. (6)

Note that for a given frame Φ, there are many solutions of Ψ.
A particular one is the dual frame, which corresponds to the
least square solution. If Φ is a tight frame, it can be shown
that Ψ = 1

AΦ [15], [16].
From a signal-processing point of view, a frame in l2(Z)

corresponds to an N -channel PR OFB with sampling factor
M (N ≥ M ), as shown in Fig. 1(a). Here, Hi(z) =∑∞

n=−∞ hi[n]z−n and Fi(z) =
∑∞

n=−∞ fi[n]z−n (for i =
1, · · · , N ) represent the i-th analysis and synthesis filters,
respectively. Define hi,j [k] = hi[jM − k]. The signal decom-
position in an OFB can be described as

yi[j] =
∞∑

k=−∞
x[k]hi[jM − k] = 〈x, hi,j〉. (7)

Accordingly, the reconstruction formula takes the form of

x̂[n] =
N∑

i=1

∞∑

k=−∞
yi[k]fi[n−Mk]. (8)

The polyphase representation of an OFB is shown in Fig. 1(b),
where the N ×M polynomial matrix E(z) and the M × N
polynomial matrix R(z) denote the analysis and synthesis
polyphase matrices, respectively. The system is called “over-
sampled” as the number of channels N is greater than the
sampling factor M . Hence, E(z) is a tall matrix, while R(z)
is a fat one. The OFB implements a frame expansion in l2(Z)
if it has the PR property [25]

R(z)E(z) = IM . (9)

Besides, E(z) corresponds to a tight frame with frame bound
A if and only if it is a PU matrix satisfying Ẽ(z)E(z) = AIM .
Note that (9) implies that R(z) should be a left inverse of
E(z). Among all left inverses, the one that corresponds to the
dual frame is the para-pseudo inverse [4]

E†(z) =
(
Ẽ(z)E(z)

)−1

Ẽ(z). (10)
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Fig. 1. An N -channel oversampled filter bank with sampling factor of M . (a) Direct-form implementation; (b) Polyphase representation.

Obviously, for a PU OFB satisfying Ẽ(z)E(z) = AIM ,
E†(z) = 1

A Ẽ(z). However, for a general PR system, direct
computation of E†(z) involves the costly inversion of the
rational polynomial matrix Ẽ(z)E(z). In what follows, we
aim to address the computation of E†(z) using the forward
and backward Greville formulas presented in the next section.

III. FORWARD AND BACKWARD GREVILLE FORMULAS

A. Forward Greville Formula

The original Greville formula in [19] was developed for
zero-order matrices. Here, it is adapted to accommodate ra-
tional polynomial matrices. Suppose that Ei(z) is an i ×
M analysis polyphase matrix consisting of i analysis filters
H1(z),H2(z), · · · ,Hi(z). Partition it into

Ei(z) =
[
Ei−1(z)
ei(z)

]
, (11)

where Ei−1(z) is the (i− 1)×M submatrix and ei(z) is its
last row. Assume further that we know E†i−1(z). The Greville
formula [19] computes E†i (z) from E†i−1(z) and ei(z) as
follows:

Set
di(z) = ei(z)E†i−1(z) (12)

and
ci(z) = ei(z)− di(z)Ei−1(z); (13)

If ci(z) = 0 for all z (Case 1), set

ri(z) =
di(z)

1 + di(z)d̃i(z)
Ẽ†i−1(z); (14)

otherwise (Case 2), set

ri(z) =
ci(z)

ci(z)c̃i(z)
, (15)

then

E†i (z) =
[
E†i−1(z) 0

]
+ r̃i(z)

[−di(z) 1
]
. (16)

Remarks:
1) While we only present here the formula for row addition,

column addition can be easily handled. Details can be
found in [19] and [26].

2) For any row vector e(z), its para-pseudo inverse e†(z)
can be expressed as

e†(z) =
ẽ(z)

e(z)ẽ(z)
. (17)

Thus, to compute E†i (z), one can first calculate the
para-pseudo inverse of its first row vector e1(z) and
then iteratively apply the forward Greville formula for
i − 1 times. In each iteration, both di(z) and ci(z) are
rational polynomial row vectors. Hence, it avoids the
costly polynomial matrix inversion required in (10).

3) In Case 1, ci(z) is a constant zero vector, which implies
that there exists a rational polynomial row vector di(z)
so that

ei(z) = di(z)Ei−1(z). (18)

While in case 2, such a rational polynomial row vector
does not exist. In the special case when Ei(z) is a zero-
order matrix, i.e., when Ei(z) = Ei, (18) reduces to
ei = diEi−1, which indicates that ei lies in the row
space of Ei−1 for Case 1, and not for Case 2 [26].

Example 1 (Forward Greville Formula): This example
demonstrates the computation of the para-pseudo inverse
through the forward Greville formula. Consider a 3 × 2
polynomial matrix as follows

E3(z) =




1 0
1 z − a
0 1


 ,

where a is a real number.
We first calculate the para-pseudo inverse of

E2(z) =
[
e1(z)
e2(z)

]
=

[
1 0
1 z − a

]
.

By (17), we know that e†1(z) =
[
1 0

]T
. Hence, from (12) and

(13), we get d2(z) = e2(z)e†1(z) = 1 and c2(z) = e2(z) −
d2(z)E2(z) =

[
0 z − a

]
. As c2(z) is not a constant zero

vector (Case 2), we apply (15) to get

r2(z) =
1

(z − a)(z−1 − a)
[
0 z − a

]
.

Substituting e†1(z), r2(z) and d2(z) into (16) leads to

E†2(z) =
[

1 0
− 1

z−a
1

z−a

]
. (19)

We then move on to calculate E†3(z). Again, by definition
of (12), d3(z) = e3(z)E†2(z) = 1

z−a

[−1 1
]
. Note that as

E†2(z)E2(z) = I, we have c3(z) =
[
0 0

]
(Case 1). Sub-

stituting d3(z) into (14) produces r3(z) = 1
γ(z)

[
a− z 2

]
,
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where γ(z) = 2 + (z − a)(z−1 − a) = 3 − az−1 − az + a2.
Finally, by (16), we arrive at the following expression

E†3(z) =
1

γ(z)

[
γ(z)− 1 1 a− z
a− z−1 z−1 − a 2

]
.

One can check that E†3(z) given above satisfies the Moore-
Penrose equations (1)-(4). ¥

B. Backward Greville Formula

Now, let us consider the reverse problem. Suppose we know
Ei(z) and E†i (z), how to calculate E†i−1(z)? As can be seen
from the forward Greville formula, we first need to distinguish
between two cases. To do this, we see from (16) that r̃i(z) is
the last column of E†i (z), and so we can similarly partition
E†i (z) in the form

E†i (z) =
[
Ri−1(z) r̃i(z)

]
, (20)

where Ri−1(z) is the M × (i− 1) submatrix and r̃i(z) is the
M × 1 column vector. According to [19] and [26],

ei(z)r̃i(z) =





di(z)d̃i(z)
1 + di(z)d̃i(z)

, Case 1; (21)

1, Case 2. (22)

Thus, it is clear that the two cases can easily be distinguished
by checking whether ei(z)r̃i(z) is a constant unit. The back-
ward Greville algorithm is presented in Theorem 1 below.

Theorem 1 (Backward Greville Formula): Let Ei(z) and
E†i (z) be partitioned as in (11) and (20), respectively. If
ei(z)r̃i(z) is not a constant 1 (Case 1), set

di(z) =
ei(z)Ri−1(z)
1− ei(z)r̃i(z)

; (23)

otherwise, if ei(z)r̃i(z) = 1 for all z (Case 2), set

di(z) = −ri(z)Ri−1(z)
ri(z)r̃i(z)

. (24)

The dual frame of Ei−1(z) is given by

E†i−1(z) = Ri−1(z) + r̃i(z)di(z). (25)
Detailed derivations of this theorem can be found in the

Appendix. Just as the forward Greville algorithm, the above
results can be easily modified to deal with column deletion.

Remark: The backward Greville formula was also investi-
gated in [27]. But the derivations there were limited to zero-
order matrices whose row vectors are independent (a special
case of Case 2). On the other hand, Theorem 1 can be applied
to any rational polynomial matrices. Hence, our derivations
are more general.

Example 2 (Backward Greville Formula): Let the notations
be as in Example 1. To have a quick check of the backward
Greville algorithm, we shall calculate E†2(z) from E3(z) and
E†3(z). By definition, we know that

e3(z) =
[
0 1

]
, r̃3(z) =

1
γ(z)

[
a− z

2

]

and
R2(z) =

1
γ(z)

[
γ(z)− 1 1
a− z−1 z−1 − a

]
.

As e3(z)r̃3(z) = 2
γ(z) 6= 1, we need to apply (23). It is easy

to check that

e3(z)R2(z) =
1

γ(z)
[
a− z−1 z−1 − a

]
,

which leads to

d3(z) =
1

γ(z)− 2
[
a− z−1 z−1 − a

]
=

1
z − a

[−1 1
]
,

where we have used the equality γ(z)−2 = (z−a)(z−1−a).
Substituting d3(z) into (25) produces E†2(z) as in (19).

In nearly the same manner, by applying Case 2 of the
backward Greville formula, one can get e†1(z) from E2(z)
and E†2(z). We leave it as an exercise for readers themselves.
¥

IV. DUAL FRAME OF EXTENDED FILTER BANKS

A. Computation Formula

In this Section, we apply the forward Greville formula to
study the extended FB, which is constructed by adding one or
more filters to an existing PR FB. In other words, the N ×M
(N > M ) polyphase matrix EN (z) takes the form of

EN (z) =




EN0(z)
eN0+1(z)

...
eN (z)


 , (26)

where the N0 ×M (N0 ≥ M ) polyphase matrix EN0(z) has
the PR property, and each row vector ei(z) (N0 + 1 ≤ i ≤
N ) is used to strengthen EN0(z). Such systems can be used
in applications such as unequal error protection and multiple
description coding [18]. Recall that extended FBs were first
studied in [18]. However, the discussions there were limited
to the scenario where EN0(z) is a critically sampled system
(i.e., N0 = M ). Here, we allow N0 ≥ M and hence, EN0(z)
can be either critically sampled or oversampled.

Let us first consider how to calculate E†N (z) from E†N0
(z).

Denote Ei(z) (N0 + 1 ≤ i ≤ N ) as the submatrix containing
the first i rows of EN (z) and we partition it as in (11). Since
EN0(z) corresponds to a PR FB, so does Ei−1(z) (N0 + 1 ≤
i ≤ N ), which implies that E†i−1(z)Ei−1(z) = IM . By (12)
and (13), ci(z) = 0. Therefore, we need to apply Case 1 of the
forward Greville formula iteratively for N −M times. From
(14) and (16), one can easily arrive at the following recursive
formula

E†i (z) = E†i−1(z)Pi(z), for i = N0 + 1 to N (27)

in which the (i − 1) × i polynomial matrix Pi(z) can be
expressed as

Pi(z) =
[
Ii−1 0

]
+

d̃i(z)
1 + di(z)d̃i(z)

[−di(z) 1
]
, (28)

with
di(z) = ei(z)E†i−1(z). (29)

Eqs. (27)-(29) imply that EN (z) can be obtained from E†N0
(z)

by post-multiplying it with several matrices Pi(z). Note these
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formulas hold for all FBs, either FIR or IIR, as long as EN0(z)
has the PR property.

Example 3 (Extended oversampled FB): To demonstrate
the application of Eq. (27), let us consider a 3 × 2 analysis
polyphase matrix E3(z) as follows

E3(z) =




a0(z) a1(z)
a0(z) −a1(z)
b(z) 0


 , (30)

where a0(z), a1(z) and b(z) are rational polynomials in z.
The corresponding analysis filters H1(z), H2(z) and H3(z)
are low-pass, high-pass and band-pass, respectively. In what
follows, we aim to derive the closed-form solution of E†3(z)
using (27). Note that for the first two rows in E3(z), one can
easily calculate its inverse

E−1
2 (z) =

1
2

[
1

a0(z)
1

a0(z)
1

a1(z) − 1
a1(z)

]
.

As e3(z) =
[
b(z) 0

]
, we have d3(z) = e3(z)E−1

2 (z) =
b(z)

2a0(z)

[
1 1

]
and d3(z)d̃3(z) = b(z)b̃0(z)

2a0(z)ã0(z) . Substituting
them into (27) yields

E†3(z) =
1
2

[
1

a0(z)
1

a0(z) 0
1

a1(z) − 1
a1(z) 0

]
+

b̃(z)
2a0(z)ã0(z) + b(z)b̃(z)

[
− b(z)

2a0(z) − b(z)
2a0(z) 1

0 0 0

]
.

(31)
It is worthy noting that using the state-space approach,

Example 1 of [17] calculated the numerical solution of (30) for
a given set of IIR Butterworth filters Hi(z) (1 ≤ i ≤ 3), while
the forward Greville formula leads to a closed-form solution.

B. Doubly FIR systems

One can also see from (28) that E†i (z) is in general IIR.
However, in many applications, the DFIR property is highly
desirable where both Ei(z) and E†i (z) are FIR matrices [18].
Bearing this in mind, we investigate the following problem:
Suppose that EN0(z) in (26) is DFIR, how to design ei(z)
(N0 + 1 ≤ i ≤ N ) so that each Ei(z) is also DFIR?
It can be readily seen from (27)-(29) that Ei(z) is DFIR
if di(z)d̃i(z) = d2

i for some real constant di. But is this
condition also necessary? The answer is yes, as presented in
the following theorem:

Theorem 2: Define Ei(z) as in (11) and suppose that
Ei−1(z) is a DFIR PR FB. Then, Ei(z) is DFIR if and only
if di(z) = ei(z)E†i−1(z) is a PU row vector satisfying

di(z)d̃i(z) = d2
i (32)

for some real constant di. Accordingly, E†i (z) is given by

E†i (z) = E†i−1(z)
[
IM − d̃i(z)di(z)

1+d2
i

d̃i(z)
1+d2

i

]
. (33)

Proof: Note that (33) can be easily obtained from (27)-
(29). Hence, we just need to to prove the “if and only if”
statement. According to [18], the necessary and sufficient
condition for Ei(z) to be a DFIR is det

(
Ẽi(z)Ei(z)

)
= α

for some non-zero real number α. By the matrix determinant
lemma, we have

det
(
Ẽi(z)Ei(z)

)
= det

(
Ẽi−1(z)Ei−1(z) + ẽi(z)ei(z)

)

=
(
1 + ei(z)S−1

i−1(z)ẽi(z)
) · det (Si−1(z)) ,

(34)

where Si−1(z) = Ẽi−1(z)Ei−1(z). Again, since Ei−1(z) is
DFIR, det (Si−1(z)) is a constant, which implies that Ei(z)
is DFIR if and only if ei(z)S−1

i−1(z)ẽi(z) is a constant. When
Ei−1(z) has the PR property, it can be verified that

S−1
i−1(z) = E†i−1(z)Ẽ†i−1(z).

Hence, by definition of di(z), we know that
ei(z)S−1

i−1(z)ẽi(z) = di(z)d̃i(z), which implies that
Ei(z) is a DFIR if and only if (32) holds.

The above theorem is a generalized version of Theorem 4
in [18] where Ei−1(z) is restricted to be a critically sampled
PU FB only, while in Theorem 2, Ei−1(z) can be any
DFIR PR FB (including oversampled systems). Moreover,
from the design perspective, Theorem 2 offers an efficient
way to iterative construction of a DFIR system from (32),
as demonstrated in the following example.

Example 4 (DFIR System): Consider a 2-channel critically-
sampled PR FB

E2(z) =
[
e1(z)
e2(z)

]
,

where e1(z) and e2(z) correspond to a low-pass and a high-
pass filter, respectively. Let us first add a new analysis filter
H3(z) which is exactly the same as the lowpass one, i.e.,

E3(z) =
[
E2(z)
e1(z)

]
. By doing so, the resulting OFB can

be viewed as an unequal error protection code since the
output of the low-pass filter is sent twice. Now, from the
Greville formula, d3(z) = e1(z)E2(z) =

[
1 0

]
. Hence,

d3(z)d̃3(z) = 1 and by (27), we have

E†3(z) = E−1
2 (z)

[
1
2 0 1

2
0 1 0

]
. (35)

Next, we try to add another filter e4(z) so that the 4 × 2

polyphase matrix E4(z) =
[
E3(z)
e4(z)

]
is also DFIR. From

Theorem 2, E4(z) can be DFIR if d4(z) is a PU row vector.
At the first glance, it seems that e4(z) could be directly
obtained from (18) by choosing d4(z) as a PU row vector.
However, it should be emphasized that as E3(z) is a tall
matrix, E3(z)E†3(z) 6= I3. Hence, d4(z)E3(z)E†3(z) may not
be a PU row vector even if d4(z) is.

To solve this problem, let us consider the expression of
d4(z). By (12) and (35), we have

d4(z) = e4(z)E†3(z) = e4(z)E−1
2 (z)

[
1
2 0 1

2
0 1 0

]
.

Then, define a 1× 2 row vector f(z) as

f(z) = e4(z)E−1
2 (z)

[√
2

2 0
0 1

]
, (36)
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Fig. 2. Implementation diagram of E†N (z) for a DFIR system.

and it can be verified that d4(z)d̃4(z) = f(z)f̃(z), which
indicates that f(z) is also a PU row vector. Taking the inverse
transform of (36), we find

e4(z) = f(z)
[√

2 0
0 1

]
E2(z). (37)

Recall that for a PU row vector f(z) with degree of K, it can
be completely characterized as [25]

f(z) = v0V1(z)V2(z) · · ·VK(z) (38)

where v0 is an arbitrary non-zero row vector and each Vk(z)
(1 ≤ k ≤ K) can be expressed as Vk(z) = I − vH

k vk +
z−1vH

k vk, in which vk is a row vector with unit norm, i.e.,
vkvH

k = 1. Based on the above result, we know that e4(z)
can be designed by optimizing vk for k = 1, · · · ,K. ¥

Not only does the Greville formula offer an effective way
to design the DFIR system, it is also advantageous in terms
of hardware implementation. E†N (z) can be realized through
a cascading structure as shown in Fig. 2, where the building
blocks Pi(z) act as pre-filters of the input signal before it
is passed to E†N0

(z). Moreover, for a PU row vector di(z)
satisfying (32), the VLSI-friendly implementation has been
well established [25].

V. DUAL FRAME OF LAPLACIAN PYRAMIDS

The derivation of the previous section is based on Case 1 of
the forward Greville formula. In this section, Case 2 is applied
to derive the dual frame of the Laplacian pyramid (LP) [22],
which has been proved to be a useful tool for image processing
and computer vision. Fig. 3 shows its implementation diagram,
where H(z) and G(z) represent, respectively, the decimation
and interpolation low-pass filters. The output signal is made
up of two components: the coarse signal xc[n] represents the
low-frequency components of the original input, while the
details (with band-pass and high-pass frequency components)
are contained in xd[n].

As x[n] can be always reconstructed from xc[n] and xd[n],
the LP realizes a frame expansion [23]. From the FB point of
view, the LP can be implemented through an (M +1)-channel
PR OFB with the sampling factor of M , whose polyphase
matrix is given by [23]

Elp(z) =
[
I− g̃(z)h(z)

h(z)

]
, (39)

H(z) G(z)M M +
x[n]

x
d
[n]

xc[n]

Fig. 3. Implementation diagram of Laplacian pyramid. Here, H(z)
and G(z) represent the decimation and interpolation filters, respec-
tively.

where the 1 ×M vectors h(z) and g(z) represent the Type-
I polyphase matrices [25] of the low-pass filters H(z) and
G(z), respectively. Although PR can be achieved for any pair
of H(z) and G(z), a typical choice is to set H(z) and G(z)
as biorthogonal pairs, in which h(z) and g(z) satisfy [23]

h(z)g̃(z) = 1. (40)

Examples of biorthogonal filters include the 5/3 and 9/7 filters
used in the JPEG 2000 standard and the original LP filters
proposed in [22].

Our main purpose here is to derive a closed-form solution
for E†lp(z) under the biorthogonal condition (40). Denote
Dlp(z) as the M ×M submatrix of Elp(z), i.e.,

Dlp(z) = I− g̃(z)h(z).

When h(z) and g̃(z) satisfy (40), Dlp(z) is a rank-deficient
matrix as one of its eigen-value is zero. Through some matrix
manipulations, we can show

D†
lp(z) = IM − g̃(z)g(z)

g(z)g̃(z)
− h̃(z)h(z)

h(z)h̃(z)
+

g̃(z)h(z)
h(z)h̃(z)g(z)g̃(z)

.

(41)
It is not difficult to verify that D†

lp(z) satisfies the Moore-
Penrose equations. By exploiting the forward Greville formula,
the LP’s dual frame can be obtained as follows. Firstly, we
have

dlp(z) = h(z)D†
lp(z) = − g(z)

g(z)g̃(z)
+

h(z)
h(z)h̃(z)g(z)g̃(z)

and
clp(z) = h(z)− dlp(z)Dlp(z) =

g(z)
g(z)g̃(z)

.

As clp(z) is not a constant zero vector (Case 2), we have

rlp(z) =
clp(z)

clp(z)c̃lp(z)
= g(z).
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Then, E†lp(z) can be computed from (16) as

E†lp(z) =
[
IM − h̃(z)h(z)

h(z)h̃(z)
g̃(z)

]
. (42)

Up to now, we arrive at the following theorem:
Theorem 3: For Elp(z) given in (39) with h(z)g̃(z) = 1,

its dual frame E†lp(z) is given by (42).
Remark: When H(z) is an orthonormal filter and G(z) =

H(z), i.e., when h(z)h̃(z) = 1 and h(z) = g(z), Elp(z) is a
PU matrix satisfying Ẽlp(z)Elp(z) = IM . Under these restric-
tions, (42) boils down to E†lp(z) =

[
IM − h̃(z)h(z) h̃(z)

]
,

which is exactly Ẽlp(z) itself as expected.
Example 5 (Dual Frame of LP): To have another quick

check of (42), consider an LP frame with M = 2, where the
decimation and the interpolation filters are scaled Haar filters
with H(z) = 1

2

(
1 + z−1

)
and G(z) = 1 + z−1, respectively.

Here, we consider the scaled ones as they can be implemented
using only shifts and adders without any multipliers. It is clear
that h(z) = 1

2

[
1 1

]
and g̃(z) =

[
1 1

]T
. Hence, by (39)

and (42), Elp(z) and E†lp(z) are zero-order matrices, and are
respectively given by

Elp(z) =
1
2

[
1 −1 1
−1 1 1

]T

and
E†lp(z) =

[
1
2 − 1

2 1
− 1

2
1
2 1

]
.

One can easily verify that E†lp(z) is indeed the pseudo inverse
of Elp(z). ¥

H(z) M +
xd[n]

M

G(z)M +

x[n]

( )

( ) ( )

H z

z zh h%

xc[n]

Fig. 4. Direct-form implementation diagram of the dual frame for the
Laplacian pyramid.

The direct-form implementation of (42) is shown in Fig. 4.
Note that in general, E†lp(z) corresponds to an IIR filter bank.
The necessary and sufficient condition for Elp(z) to be DFIR
is presented below:

Corollary 1: For an FIR Elp(z) defined in (39) with
h(z)g(z) = 1, it is DFIR if and only if h(z) is a PU row
vector satisfying h(z)h̃(z) = α for some positive constant α.

Proof: The if part is obvious, to prove the “only if” part,
let Slp(z) = E†lp(z)Ẽ†lp(z). According to [18], Elp(z) is FIR
if and only if det(Slp(z)) = α for some constant α. It can be
easily calculated that Slp(z) = IM − h̃(z)h(z)

h(z)h̃(z)
+ g̃(z)g(z).

Then, by matrix determinant lemma [26], det (Slp(z)) =
1

h(z)h̃(z)
, which completes the proof.

The above corollary implies that to get an FIR E†lp(z), the
decimation filter H(z) should be an orthogonal one, while
there is no restriction on the interpolation filter G(z) except
for the biorthogonal condition in (40).

In case when E†lp(z) is IIR and we want to have an FIR
approximation, we can replace the IIR filter H(z)

h(z)h̃(z)
in Fig. 4

with an FIR K(z) satisfying

K(ejω) ≈
H(ejω)

h(ejω)h̃(ejω)
.

In terms of polyphase representation, it implies that E†lp(z) is
approximated by

R(z) =
[
IM − k̃(z)h(z) g̃(z)

]
, (43)

where k(z) is the 1×M polyphase vector of K(z). With such
an approximation, one can easily check that R(z)Elp(z) =
IM , which indicates that the PR property is retained.

Example 6: Consider the 9/7 wavelet filter used in the
JPEG 2000 standard. Since it is nearly orthogonal, we have
h(ejω)h̃(ejω) ≈ 1, which implies that we can set K(z) =
H(z) with good approximation. ¥

Remark: Curious readers may wonder how to calculate
E†lp(z) when h(z)g̃(z) 6= 1. In this scenario, Dlp(z) corre-
sponds to a critically sampled PR FB, whose inverse is given
by

D−1
lp (z) = I +

1
1− h(z)g̃(z)

g̃(z)h(z).

Then, Elp(z) becomes an extended FB and accordingly,
E†lp(z) can be obtained from Case 1 of the forward Greville
formula using (27).

VI. OFBS FOR ERASURE CHANNELS

Due to the redundancy associated with frame expansions,
OFBs can be used as joint source-channel codes to provide
robustness to erasures [12]–[14]. In this section, we examine
the resilience of OFBs in the presence of one erasure channel.
The development is based on the backward Greville formula.
To this end, we first introduce the following property [12]:

Let EN (z) denote the N ×M analysis polyphase matrix of
a PR OFB. Denote by E{i}(z) the polyphase matrix obtained
by deleting the i-th row of EN (z). EN (z) is robust to one
erasure if E{i}(ejω) (for all i = 1, · · · , N ) is of full rank on
the unit circle.

A. One Erasure

This subsection studies the necessary and sufficient condi-
tion for OFBs to be robust to one erasure channel. Theorem 4
discusses the general PR OFBs, and Corollary 2 presents the
special case of PU OFBs, or tight frames.

Theorem 4: Suppose that EN (z) is the polyphase matrix of
an N -channel PR OFB with its para-pseudo inverse given by
E†N (z). Let ei(z) and r̃i(z) (for i = 1, · · · , N ) denote the i-th
row vector of EN (z) and the i-th column vector of E†N (z),
respectively. Then, EN (z) is robust to one erasure if and only
if

ei(ejω)rH
i (ejω) < 1 (44)

for i = 1, · · · , N and for all ω ∈ [0, 2π).
Proof: Note that when there is only one erasure channel,

through row permutation, we can assume that the erasure
occurs in the N -th channel. Let EN (z) be written as in (11)
with i = N . Without loss of generality, the proof is equivalent
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to showing that EN−1(ejω) in (11) has full rank if and only
if

eN (ejω)rH
N (ejω) < 1. (45)

For other values of i, we can just replace the subscript N with
i.

We start with the “only if” part. When EN−1(ejω) is of
full rank, eN (ejω) lies in the row space of EN−1(ejω), which
corresponds to Case 1 of the Greville formula. Let dN (ejω) =
eN (ejω)E†N−1(e

jω). By (21), we have

eN (ejω)rH
N (ejω) =

dN (ejω)dH
N (ejω)

1 + dN (ejω)dH
N (ejω)

=
‖ dN (ejω) ‖2

1+ ‖ dN (ejω) ‖2 < 1,

which is exactly (45).
To prove the “if” part, notice that eN (ejω) must lie in

the row space of EN−1(ejω) for all ω, because otherwise,
according to the backward Greville formula, there must exist
some ω0 such that eN (ejω0)rH

N (ejω0) = 1. Also, using the PR
property of EN (z), we have

rank(EN−1(ejω)) = rank(EN (ejω)) = M,

which indicates that EN−1(ejω) is of full rank on the unit
circle.
Remark: As pointed out by one of the reviewers, the above
result is consistent with the classical regression analysis.
Note that EN (ejω)E†N (ejω) is a projection matrix on the
column space of EN (ejω), whose i-th diagonal element
ei(ejω)rH

i (ejω) is bounded by 0 ≤ ei(ejω)rH
i (ejω) ≤ 1.

Recall that ei(ejω)rH
i (ejω) measures the importance of a

given data dimension in regression analysis, the so called
“leverage”. Theorem 4 implies that if EN (z) is not robust
to one erasure, then there exists at least one i satisfying
ei(ejω)rH

i (ejω) = 1, indicating that this dimension has too
high a leverage—if it is lost, the sub-band signals cannot be
projected back onto the original subspace through para-pseudo
inverse.

Example 7: Consider the LP frame depicted in Fig. 3 with
biorthogonal filters H(z) and G(z). From (39) and (42), we
can easily verify that

Elp(z)E†lp(z) =

[
IM − h̃(z)h(z)

h(z)h̃(z)
0

0 1

]
.

This indicates that eN (z)r̃N (z) = 1. By Theorem 4, the
LP frame is not robust to one erasure channel when using
biorthogonal filters. ¥

For the special case when EN (z) implements a tight frame
with frame bound A > 0, i.e., when EN (z) is a PU matrix
satisfying ẼN (z)EN (z) = AIM , its dual frame can be simply
written into E†N (z) = 1

A Ẽ(z). A consequence of Theorem 4
is as follows:

Corollary 2: If EN (z) corresponds to a tight frame with
frame bound A, it is robust to one erasure channel if and only
if its i-th row vector ei(z) satisfies

ei(ejω)eH
i (ejω) < A (46)

for all i = 1, · · · , N and for all ω ∈ [0, 2π).
Remarks:

1) Note that [12] also investigated the scenario of one
erasure. But the discussions there were focused on the
uniform tight frame (UTF), a special class of tight frames
with equal norm for each analysis filter. Our derivations
are for general frames implemented via PR and PU OFBs.
It can be shown that when A = N/M , Corollary 2
boils down to Theorem 5 in [12]. Although theoreti-
cally, UTFs provide optimal performance, their design
is rather difficult. On the other hand, several works have
reported simple design methods and fast implementations
for cosine modulated OFBs [7] and linear-phase OFBs
[10], which are attractive in practical applications like
orthogonal frequency-division multiplexing (OFDM) and
image coding. The theory developed here can be used for
those FBs which do not generate UTFs.

2) Upon completion of this journal paper, we became aware
of the parallel work [28] that also proved Corollary 2 (a
special case of Theorem 4) using a different approach.

B. Implementation Structure

In this subsection, we consider the following problem: when
the erasure occurs in one channel, how to efficiently compute
and implement the para-pseudo inverse of the remaining anal-
ysis bank? Note that a naive approach is to directly compute
the para-pseudo inverse, which would cause unnecessarily high
complexity. The use of the backward Greville formula gives a
low-complexity solution.

Again, without loss of generality, let us assume that the
subband coefficients in the N -th channel are completely lost.
From (23)-(25), it is straightforward to see

E†N−1(z) = (IM + Q(z))E†N (z)
[
IN−1

0

]
, (47)

where the M ×M matrix Q(z) takes the form of

Q(z) =





r̃N (z)eN (z)
1− eN (z)r̃N (z)

, Case 1; (48)

− r̃N (z)rN (z)
rN (z)r̃N (z)

, Case 2. (49)

Note that in Case 1, EN−1(z) generates a frame expansion
and thus, E†N−1(z) corresponds to its dual frame. While it
does not in Case 2, E†N−1(z) still nonetheless leads to a
minimum l2 norm reconstruction. It can be readily seen that
the para-pseudo inverse of the remaining FB is in general a
IIR system. The design of oversampled FB yielding stable and
causal para-pseudo inverse for erasure channels remains as an
open question.

Fig. 5 shows the corresponding implementation structure.
The process can be described as follows. First, in the frequency
domain, the subband coefficients in the erasure channel (i.e.,
the N -th channel) are set to zeros. Then, the original dual
frame E†N (z) is applied, followed by a time-domain post-filter
IM +Q(z) to yield the reconstructed signal. In essence, Q(z)
is used to compensate for the erasure in the N -th channel. One
can see that the implementation in Fig. 5 has the time-domain
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Fig. 5. Post-filtering implementation structure for E†N−1(z). (a) Case 1; (b) Case 2.

post-processing structure. For Case 1, an alternative way to
implement E†N−1(z) was proposed in [13], where the lost
subband coefficients are first predicted in the frequency domain
before being reconstructed by E†N (z). It can be shown that
these two structures have about the same the implementation
complexity. One attractive property of our proposed structure
is that it can be applied to time-domain over-sampled lapped
transforms (TDOLTs) [29], which admits a similar structure
of pre-/post-filtering outside the DCT and the IDCT. In this
way, existing DCT-based standards (like the JPEG) are kept
intact. One of our on-going works is to integrate (47) with
TDOLTs for joint source-channel coding.

VII. CONCLUSIONS

We have studied the computation of the para-pseudo inverse
via the Greville formulas. The forward Greville formula was
utilized to compute the para-pseudo inverse of a matrix when
an additional row is appended. We then derived the backward
Greville formula to deal with row deletion. The applications of
forward and backward Greville formulas were demonstrated in
frame and OFB theories. In particular, we applied the forward
Greville formula (Case 1) to study an extended FB, where
we presented an iterative way to calculate its dual frame. The
necessary and sufficient condition to generate DFIR systems
from extended FBs was also derived. Besides, the Greville
formula (Case 2) led to a closed-form solution of the dual
frame for Laplacian pyramids. Based on the backward Greville
formula (Case 1), we derived the necessary and sufficient
condition for PR OFBs to be robust to one erasure channel.
We also proposed a post-filtering structure to implement the
dual frame in the presence one erasure channel. The scenario
of more than one erasures will be investigated in the future.

It should also be noted that Case 2 of the backward Greville
formula has been used in V-BLAST detection, where the
channel matrix is of full rank [30]. Finally, it follows from
Naimark’s theorem [15], [16] that the N × M (N > M )
polyphase matrix of a PR OFB can be obtained by deleting
N − M columns of an N × N critically-sampled one. The
same procedure as presented in [30] can easily be applied to
obtain the dual frame of such an OFB.

APPENDIX
PROOF OF BACKWARD GREVILLE FORMULA

Let Ei(z) and E†i (z) be partitioned as in (11) and (20),
respectively. From (16), we can easily get the expression of
E†i−1(z) as in (25), which means E†i−1(z) can be computed if
di(z) can be expressed in terms of E†i (z) and Ei(z), or parts
of them.

In Case 1, we multiply Ri−1(z) with ei(z), yielding

ei(z)Ri−1(z) = ei(z)E†i−1(z)− ei(z)r̃i(z)di(z)
= di(z)− ei(z)r̃i(z)di(z)
= (1− ei(z)r̃i(z))di(z).

Then,

di(z) =
ei(z)Ri−1(z)
1− ei(z)r̃i(z)

which, as expected, is expressed in known Ri−1(z), ei(z),
and r̃i(z).

In Case 2, we multiply Ri−1(z) with ri(z), yielding

ri(z)Ri−1(z) = ri(z)E†i−1(z)− ri(z)r̃i(z)di(z) (50)

Note that as ri(z) = ci(z)
ci(z)c̃i(z) , we have

ri(z)E†i−1(z) =
1

ci(z)c̃i(z)
ci(z)E†i−1(z).

Based on (12), (13) and the Moore-Penrose condition (2), we
can get

ci(z)E†i−1(z) = ei(z)E†i−1(z)− di(z)Ei−1(z)E†i−1(z)

= ei(z)E†i−1(z)− ei(z)E†i−1(z)Ei−1(z)E†i−1(z)
= 0,

(51)

which indicates that ri(z)E†i−1(z) = 0. Substituting it into
(50) yields

ri(z)Ri−1(z) = −ri(z)r̃i(z)di(z)

which produces the desired expression

di(z) = −ri(z)Ri−1(z)
ri(z)r̃i(z)

. (52)
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[3] Z. Cvetković and M. Vetterli, “Oversampled filter banks,” IEEE Trans.
Signal Processing, vol. 46, pp. 1245–1255, May 1998.

[4] H. Bölcskei, F. Hlawatsch, and H. G. Feichtinger, “Frame-theoretic
analysis of oversampled filter banks,” IEEE Trans. Signal Processing,
vol. 46, pp. 3256–3268, Dec. 1998.

[5] K. F. C. Yiu, N. Grbic, S. Nordholm, and K. L. Teo, “Multicriteria design
of oversampled uniform DFT filter banks,” IEEE Signal Processing Lett.,
vol. 11, pp. 541–544, June 2004.

[6] M. F. Mansour, “On the optimization of oversampled DFT filter banks,”
IEEE Signal Processing Lett., vol. 14, pp. 389 – 392, June 2007.

[7] H. Bölcskei and F. Hlawatsch, “Oversampled cosine modulated filter
banks with perfect reconstruction,” IEEE Trans. Circuits Syst. II, vol. 45,
pp. 1057–1071, Aug. 1998.

[8] J. Kliewer and A. Mertins, “Oversampled cosine-modulated filter banks
with arbitrary system delay,” IEEE Trans. Signal Processing, vol. 46,
pp. 941–955, Apr. 1998.

[9] F. Labeau and L. Vandendorpe, “Structures, factorizations, and design
criteria for oversampled paraunitary filterbanks yielding linear-phase
filters,” IEEE Trans. Signal Processing, vol. 48, pp. 3062–3071, Nov.
2000.

[10] L. Gan and K.-K. Ma, “Oversampled linear-phase perfect reconstruction
filterbanks: Theory, lattice structure and parameterization,” IEEE Trans.
Signal Processing, vol. 51, pp. 744–759, Mar. 2003.

[11] T. Tanaka and Y. Yamashita, “The generalized lapped pseudo-
biorthogonal transform: Oversampled linear-phase perfect reconstruction
filter banks with lattice structures,” IEEE Trans. Signal Processing,
vol. 52, pp. 434–446, Feb. 2004.
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