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Abstract

Multimode precoding, where the number of independent datams is adapted optimally, can be
used to maximize the achievable throughput in multi-anrdeoommunication systems. Motivated by
standardization efforts embraced by the industry, theSafuthis work is on systematic precoder design
with realistic assumptions on the spatial correlationnecieh state information (CSl) at the transmitter and
the receiver, and implementation complexity. For spatiatelation of the channel matrix, we assume a
general channel model, based on physical principles, #ablken verified by many recent measurement
campaigns. We also assume a coherent receiver and knowdédge spatial statistics at the transmitter
along with the presence of an ideal, low-rate feedback lmoknf the receiver to the transmitter. The
reverse link is used for codebook-index feedback and the giothis work is to construct precoder
codebooks, adaptable in response to the statistical irftiom such that the achievable throughput
is significantly enhanced over that of a fixed, non-adapiive,. codebook design. We illustrate how
a codebook of semiunitary precoder matrices localized ratosome fixed center on the Grassmann
manifold can be skewed in response to the spatial corralat@ low-complexity maps that can rotate
and scale submanifolds on the Grassmann manifold. The skeadebook in combination with a low-
complexity statistical power allocation scheme is thermghto bridge the gap in performance between

a perfect CSI benchmark and an i.i.d. codebook design.
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. INTRODUCTION

Research over the last decade has firmly established tlitg ofiimultiple antennas at the transmitter
and the receiver in providing a mechanism to increase thiabitiy of signal reception [1], or the rate
of information transfer [2], or a combination of the two. Tfeezus of this work is on maximizing the
achievable rate under certain communication models tleatativated by wireless systems in practice. In
particular, we assumelamited (or quantized) feedbackodel [3] with perfect channel state information
(CSI) at the receiver, perfect statistical knowledge of dmannel at the transmitter, and a low-rate
feedback link from the receiver to the transmitter. In théttiag, the fundamental problem is to determine
the optimal signalingfeedback scheme that maximizes the average mutual infanmgitven a statistical
description of the channel, signal-to-noise ra8®R), the number of antennas, and the quality of limited
feedback.

A low-complexity approach to solving this problem is to fidgttermine the rank of the optimal precoder
as a function of the statistic§NR, and the quality of feedback. The design of the optimal sehém
then, in principle, essentially the same as that of a fixedt temited feedback precoder whose rank is
adapted optimally. Motivated by this line of reasoning, thain theme of this work is the construction
of a systematic, yet low-complexity, limited feedback meing scheme (of a fixed rank) that results in
significantly improved performance over an open-H)epheme. Towards this goal, we consider a simple
block fading/narrowband setup where spatial correlation is modeled bgta@matically tractable channel
decomposition [4]-[6], and includes as special cases thiesiuglied i.i.d. model [2], theseparable
correlation model[7], and thevirtual representation framewor8], [9]. Furthermore, we also assume
that the power-constrained input signals come from someretis constellation set whereas the decoder
is assumed to have a simple, linear architecture like thenmaim mean-squared errok(MSE) receiver.

While precoding has been studied extensively under ttik iodel [10]-[18], considerable theoretical
gaps exist in the limited feedback setting. The extreme casenited feedback beamforming has been
studied in the i.i.d. setting where the isotropiEikyf the dominant right singular vector of the channel
can be leveraged to uniformly quantize the space of unitedr beamforming vectors, a problem

well-studied in mathematics literature as the Grassmantiree packing (GLP) problem [19], [20].

There is no correlation information at the transmitter inaen-loop scheme. That is, the channel is assumed to be i.i.d
and an i.i.d. codebook design is used.

2Isotropic means that the dominant right singular vectomjsatly likely to point along any direction in the ambientrisanit
space. This ambient space of all possible right singulatovés) is referred to as the Grassmann manifold. Precisaitiefis

are provided later in the paper.



Alternate constructions based on Vector Quantization (\R@nhdom Vector Quantization (RVQ) are
also possible [21], [22]. Spatial correlation, howevegwg the isotropicity of the right singular vector,
and hence poses a fundamentally more challenging problehileWQ codebooks can be constructed
for the correlated channel case, the construction suffemrm fhigh computational complexity and the
codebook has to be reconstructed from scratch every timst#tistics change, thus rendering VQ-type
solutions impractical. Recently, beamforming codeboble tan be easily adapted to statistical variation
(with low-complexity transformations) have been propo@3}-[25]. The other extreme, limited feedback
spatial multiplexing, has also been studied [26], [27].

In the intermediate settngJf rank-A precoding, under the i.i.d. assumption, the isotropicityperty
of the dominant right singular vector of the channel extaiodfie subspace spanned by thiledominant
right singular vectors thereby allowing a Grassmanniarsgabe packing solution [28]. In the correlated
case, the fundamental challenge on how to non-uniformiyntipathe space af/-dominant right singular
vectors remains the same as in the beamforming case. Howalike the beamforming case, it is not
even clear how a codebook designed for i.i.d. channels caskb&ed in response to the correlation.
In fact, using an i.i.d. codebook design in a correlated nkhcan lead to a dramatic degradation in
performance (see Figsl 3 apd 4).

Our main goal here is to construct a systematic semiuHiqawgcoder codebook that is tailored to the
spatial correlation, and is easily adaptable in respongediange in statistics. The heuristic behind our
construction comes from our previous study of the asymppmiformance of the statistical precoder [29].
We showed in [29] that the performance of the statisticatpder is closest to the optimal precoder
when the number of dominant transmit eigenvalues is equeiddaank of the precoder, these dominant
eigenvalues are well-conditioned, and the receive cowegianatrix is also well-conditioned. A channel
satisfying the above conditioning properties is said tontschedto the communication scheme. Thus,
while limited (or even perfect) feedback can only lead to giveal performance improvement matched
channelsin the case ofmismatched channelghere the relative gap in performance between the statistic
and the optimal precoders is usually large, the potentiaéfis of limited feedback are more significant.

This study [29] suggests that spatial correlation oriemésdirectivity of the)/-dominant right singular
vectors of the channel towards the statistically dominabspaces and hence, a non-uniform quantization

of the local neighborhood around the statistically domirgubspaces is necessary. The realizability of

%Here,1 < M < min(N, N,.) with N; and N, denoting the transmit and the receive antenna dimensions.

4An N; x M matrix X with M < N; is said to be semiunitary if it satisfié&§”X = I,,.



such a non-uniform quantization with low-complexity, aslivaes its adaptability, are eased by mathe-
matical maps that can rotate a root codeset (or a submaniefdered at some arbitrary location on the
Grassmann manifold (N, M) towards an arbitrary center and scale it arbitrarily.

Our design includes a statistical component of dominafitlimensional subspaces of the transmit
covariance matrix, a component corresponding to local tgetion around the statistical component,
and an RVQ component which can be constructed with low-ceriigl In this context, our construction
mirrors and generalizes our recent work in the beamformiaged25]. By combining a semiunitary
codebook (of a small enough cardinality) with a low-comfiepower allocation scheme that is related
to statistical waterfilling, we show via numerical studieattsignificant performance gains can be achieved
and the gap to the perfect CSI scheme can be bridged corisiglera
Organization: The system setup is introduced in Sectidn Il. In Secfionvi, introduce the notion of
mismatched channels where limited feedback precodindtseisusignificant performance improvement.
In Section[1V, limited feedback codebooks that enhanceoperdince are proposed and in Secfidn V,
mathematical maps are constructed to realize these desitgnsow-complexity. Numerical studies are
provided in Section VI with a discussion of our results anddatosions in Sectioh VII.

Notation: The M-dimensional identity matrix is denoted Hy,. We useX(i,j) and X(i) to denote
the ¢, j-th andi-th diagonal entries of a matriX. In more complicated settinge.g.,when the matrix

X is represented as a product or sum of many matrices), weXugeto denote the, j-th entry. The
complex conjugate, conjugate transpose, regular traesand inverse operations are denoted(hy,

(), ()T and(-)~! while E[], Tr(-) anddet(-) stand for the expectation, the trace and the determinant
operators, respectively. Thedimensional complex vector space is denotedtbyWe use the ordering

A1 (X) > -+ > N\, (X) for the eigenvalues of an x n-dimensional Hermitian matri¥X. The notations

Amax (X) and Apin (X) also stand fork; (X) and A, (X), respectively.

Il. SYSTEM SETUP

We consider a communication model wil¥} transmit andN, receive antennas wherd (1 < M <
min(N, N,)) independent data-streams are used in signaling. Thdtds\/tdimensional input vectos
is precoded into amV;-dimensional vector via théV; x M precoding matrixF and transmitted over the

channel. The discrete-time baseband signal model used is
y=HFs+n Q)

wherey is the N,.-dimensional received vectoH is the N, x N; channel matrix, anch is the N,-

dimensional zero mean, unit variance additive white Gamssbise.



A. Channel Model

We assume a block fading, narrowband model for the corosiaif the channel in time and frequency.
The main emphasis in this work is on channel correlation @ gpatial (antennas) domain. The spatial
statistics ofH depend on the operating frequency, physical propagatiginaerment which controls the
angular spreading function and the path distribution, mmiegeometry (arrangement and spacieig) It
is well-known that Rayleigh fading (zero mean complex Gaugss an accurate model f@ in a non
line-of-sight setting, and hence the complete spatiaissizg are described by the second-order moments.

The most general, mathematically tractable spatial caticel model is acanonical decompositign
of the channel along the transmit and the receive covaribases [4]-[6]. In the canonical model, we
assume that the auto- and the cross-correlation matricdstnthe transmitter and the receiver sides

have the same eigen-bases, and therefore we can decoipase
H = U, Hi,g U’ 2

whereH;,q has independent, but not necessarily identically disteitbentries, an@J; andU,. are unitary

matrices. The transmit and the receive covariance matdoegiven by

> = E[H"H] = U,E[HH U =UAU/
3, = E[HHY] = U, E[HH] U =U,A, U (3)

whereA; = E [H H;,q] andA, = E [H;,gH{1,] are diagonal. Under certain special cases, the model
in @) reduces to some well-known spatial correlation medé]:

o The case ofdeal channel modelin@gssumes that the entries Bf,,q are i.i.d. standard complex
Gaussian random variables [2]. The i.i.d. model correspdndan extreme where the channel is
characterized by a single independent parameter, the camar@ance.

« WhenH,,4 is assumed to have the for@\% . A,1/2 H;q4 Ai/z with H;;y an i.i.d. channel matrix
and the channel power, = Tr(A;) = Tr(A,), the canonical model reduces to the often-studied
normalizedseparable correlation framewonkhere the correlation of channel entries is in the form
of a Kronecker product of the transmit and the receive canag matrices [7]. The separable model
is described by no more thaN; + N, independent parameters corresponding to the eigenvalues
{A(i)} and {A, (i)}

This model is referred to as the “eigenbedmeamspace model” in [5] and is used in capacity analysis]in [6



« When uniform linear arrays (ULAS) of antennas are used atrtresmitter and the receivedi]; and
U, are well-approximated by discrete Fourier transform (DRWtrices and the canonical model
reduces to the virtual representation framework [8], [3D][ In contrast to the general model [id (2),
the virtual representation offers many attractive prapsrta) The matrice¥J; andU,. arefixedand
independent of the underlying scattering environment dwedspatial eigenfunctions are beams in
the virtual directions. Thus, the virtual representatisrphysically more intuitive than the general
model in [2), b) It is only necessary that the entriesHfy be independent, but not necessarily
Gaussian, a criterion important as antenna dimensiongaser, and ¢) The case of specular (or
line-of-sight) scattering can be easily incorporated wiith virtual representation framework [30].
In contrast to the separable model, the virtual representatan support up tav; NV, independent

parameters corresponding to the variance$Hf,4(i,7)}.

While performance analysis is tractable in the i.i.d. cétsis, unrealistic for applications where large
antenna spacings or a rich scattering environment are ragtilie. Even though the separable model
may be an accurate fit under certain channel conditions [Hfjciencies acquired by the separability
property result in misleading estimates of system perfogead4], [32], [33]. The readers are referred

to [5], [32], [34] for more details on how the canonigairtual models fit measured data better.

B. Channel State Information

If the fading is sufficiently slow, perfect CSI at the receiig a reasonable assumption for practical
communication architectures that use a “training follovigdsignaling” model. Even in scenarios where
this may not be truee(g.,a highly mobile setting), the performance with imperfect @&he receiver can
be approximated reasonably accurately by the perfect alng with arbNR-offset corresponding
to channel estimation. Thus in this work, we will assume dgo¢rCSI (coherent) receiver architecture.
However, obtaining perfect CSI at the transmitter is usuditficult due to the high cost associated with
channel feedbacgkeverse-link traini

On the other hand, the statistics of the fading process &awgr much longer time-scales and can be
learned reliably at both the ends. In addition, recent teldgical advances have enabled the possibility

of a few bits of quantized channel information to be fed bawaf the receiver to the transmitter at

®In case of Time-Division Duplexed (TDD) systems, the reoiity of the forward and the reverse links can be exploited to
train the channel on the reverse link. In case of Frequeneisibn Duplexed (FDD) systems, the channel informatiogquaed

at the receiver has to be fed back.



regular intervals. The most common form of quantized chimiermation is via a limited feedback
codebookC of 28 codewords known at both the ends. In this setup, the recesténates the channel at
the start of a coherence block and computes the index of thmalpcodeword from the codeboakfor
that realization of the channel according to some optimaliterion. It then feeds back the index of the
optimal codeword withB bits over the limited feedback link which is assumed to haegligible delay
and essentially no errors (sindg is usually small). The transmitter exploits this inforneatito convey

useful data over the remaining symbols in the coherencekbloc

C. Transceiver Architecture

The transmitted vectaF's (see [(1)) has a power constrajmt Assuming that the input symbosgk)
have equal energy;, the precoder matrix satisfi@s(F/F) < M. Non-linear maximum likelihood (ML)
decoding of the transmitted data symbols using knowleddd at the receiver is optimal. However, ML
decoding suffers from exponential complexity, in both ant dimensions and coherence length. Thus
in practice, a simple linear receiver architecture like BBISE receiver is preferred. With this receiver,
the symbol corresponding to thieth data-stream is recovered by projecting the receivediasig on to

the NV, x 1 vector

1
- ﬁ(ﬁHFFHHH—i—INT) Hf, (4)

M \M

wheref), is the k-th column of F. That is, the recovered symbol k) = ,/ﬁgfy. The signal-to-
interference-noise raticls(NR) at the output of the linear filtegy, is
£ e Hiy|? 1
SINRy, = A el = — -1 (5)
gt/ (ﬁ >ipn HEETHT + INT) g (Iu+ HFIH HF)kk

where the second equality follows from the Matrix Inverslaamma.

The outputss(k) are passed to the decoder and we assume separate eyfiddededers for each data-
stream, as well as independent interleavers and de-iaters, which reduces the correlation among the
interference terms at the outputs of the receiver filterg gérformance measure is the mutual information
betweers ands. Assuming that the interference plus noise at the outputefibear filter has a Gaussian
distribution, which is true with Gaussian inputs and is adyapproximation in the non-Gaussian setting

when{M, N;, N,.} are large, the mutual information is given by

M

M -1
I(s:8) = 3 log, (14 SINRy,) = — 3 log, <(IM +CFHHF ) ) . (6)
k=1 k=1 ’



When perfect CSl is available at the transmitter and no caimés are imposed on the structure of the
precoder, the optimal precodBy.s is channel diagonalizing and is of the foles = \N/’HAiv/fQ where
VuAuVE is an eigen-decomposition &7 H with the eigenvalues arranged in non-increasing order,
\NfH is the N; x M principal submatrix ofVyg, andA,s is an M x M matrix with non-negative entries
only along the leading diagonal and these entries are autdiy waterfilling. In this setting, the mutual
information is given by

M
Toeri(s:8) = Y logy (1+ L= An(k)Aue(k)) (7)
k=1

The optimality of F,s with other choices of objective functions is also known; EE&-[18].

D. Limited Feedback Framework

The focus of this work is on understanding the implicatiofgpartial CSI at the transmitter on the
performance of the precoding scheme. In particular, theigtsea codebook of the forr@ = {F;,i =
1,---,2B} whereF; is an N; x M precoder matrix withIr(FZF;) < M. The most general structure
for F; is F; = VZ-AZV2 whereV; is an N; x M semiunitary matrix and\; is an M x M non-negative
definite, diagonal power allocation matrix. While the sture of the optimal limited feedback codebook
of B bits could involve allocating some fraction &fto the power allocation component Bf, numerical
studies indicate that the degradation in performance isnmailhwhenA; is chosen to be fixed (safstat
with Tr(Asat) < M), but designed appropriately, as a functionSR if necessary, so that it can be
easily adapted to statistical variations without recoues®onte Carlo metho

Motivated by this heuristic, in this work, all thB bits in limited feedback are allocated to quantize
the eigenspace of the channel. That is, the codebogk=is{V; : V{{V,- = I/} and the index of the

codeword that is fed back is

j* = argmax {— gjl log, ((IM + ALV VHAHVﬁViAi{i);D } . (8)
Although computingj* is straightforward, the design of an optimal codebook to im&e I(s;s) seems
difficult. Here, we adopt a suboptimal strategy where thd gt maximize the average projection of
the best codeword frorf onto V. Towards the precise mathematical formulation of this [l we

need a metric to define distance between two semiunitaryicgeatr

"The design ofA.: will be dealt with in Sec[TV.



E. Distance Metrics and Spherical Caps on the Grassmann fdiani

We now recall some well-known facts about the Grassmann foldniThe unit sphere inCM,
also known as the uni—dimensioléatomplex Stiefel manifoldSt(NVy, 1), is defined asSt(N¢, 1) =
{x € CM :||x| = 1}. The invariance of any vectot to transformations of the fornx — ¢/?x in
the above definition is incorporated by considering vectooglulo the above map. The partitioning of
St(NV¢, 1) by this equivalence map results in the uni-dimensional Srasin manifold7 (N, 1). In short,
the Grassmann manifold corresponds to a linear subspaae Huelidean space. Similarly, the class of
Ny x M semiunitary matrices forms th& -dimensional complex Stiefel manifolst(V;, M) and points
on the M -dimensional complex Grassmann manifgldV,, /1) are identified modulo thé/-dimensional
unitary space.

A literature survey of packings o&(V¢, 1) [35]-[37] shows that many distance metrics are equivalent
to the dot product metric which is the most natural metriaxfran engineering perspective. The dot
product metric is defined ag(x;,x2) = /1 — [x{Tx,[2. Using this distance metric, for any < 1,
we can define @pherical capwith centero and radiusy (as asubmanifoldon G(V;, 1)) as the open
setO(o,y) = {x € G(IVy,1) : d(x,0) < ~v}. A spherical cap org(N,1) induces a spherical cap on
St(INg, 1) via the equivalence partitioning generated by the map e/?x.

In the more generaM > 1 case, there is no unique distance metric extension. Whileus well-
defined distance metrics can be pursued, we will focus orptbgction 2-norm distance metri¢36].

Here, the distance between twg x M semiunitary matricey/; andV is defined as
dproj,Z(Vl, V2) = >\max (VIV{{ - VQV?) . (9)

A particular choice of the distance metric is not extremeljical in precoder optimization since code-
books designed with different choices of distance metéssilt in near-identical performance [28], [29].
In addition to this fact, the following lemma shows that th®jpction 2-norm metric is attractive by
being a natural generalization of the dot product metric.
Lemma 1:In the M = 1 case, the projectio-norm metric reduces to the standard dot product metric.
Proof: Let v; andv, be two unit-normedV; x 1 vectors. Then, the projectiozrnorm distance
betweenv, andv is defined agl,.o5,2(v1, v2) = Amax (V1vy — vovi’). We can write the matrix within

the A,ax(-) operation agvy va][vi — vQ]H. Since the non-trivial eigenvalues of a matrix prodadB

8Uni-dimensional because its definition is based on the ndramaV; x 1 vector.
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are the same as those BfA, we need the largest eigenvalue of

vi 1 vilv,
X = Vv | = . (10)
—vi —vilvy  —1

Expanding the characteristic equationXf det(X — AIy) = 0, we have)? = 1 — |viv,|2. Using the

positive root forA,.x, the lemma follows immediately. [ |
Proposition 1: We now state some properties of the projectdsnorm metric:

1) 0 < dproj,2(V1, Vo) <1,

2) More preciselyd,oj 2(Vi, Vo) = \/1 — Amin(V{V2VEV)), and

3) Equality in the lower bound of 1) occurs if and onlyWf; = Vy on G(V;, M) while equality is
possible in the upper bound if and onlyf,i, (VF Vo VEV,) = 0.

Proof: The proof is provided in three parts.
1) Using the fact tha’VlV{H —ngf is Hermitian and its trace equals zero, we see m&(Vlv{{ —

Vo VI < 0 is impossible. For the upper bound, note that
Amax(ViVE = VoV < Xpac(ViVID) = M (VEV)) = 1. (11)

2) We the need the following result [38] that helps in compgitihe determinant of partitioned matrices.

Lemma 2:If X,Y,Z andW aren x n matrices andw is invertible, we have

det L det(X — YW™1Z) - det(W). (12)
Z W
[
Using the above fact and the trick (in Lemfda 1) of rewriting #igenvalues aA B in terms of eigenvalues
of BA, 2) follows trivially.
3) If dproj,2(V1,V2) = 0, then it is easy to see thaf; VI = VoV from which we note that
Vi = V,VEV,. Observe thaV Vv, is M x M and unitary, and hencd/; = V5 on G(N;, M). The
other direction of the statement follows trivially. Bothetidirections of the upper bound follow from the
expression in 2). [ |
The trick in proving Lemma]l and statement 2) in Pridp. 1 is wisehd will be used again in the
construction of the scaling map (see Apperidix B). Once acehof distance metric has been settled, the
definition of a spherical cap with centér and radiusy (as a submanifold og(V;, M)) follows naturally

as the open se®(0,v) = {X € G(Ny, M) : dproj, 2 (X,0) < v} . The codebook design problem can
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now be simply stated as:

Construct C ={V;,i=1,--- ,23} sit. B | min23 dpr0j72(vi,\~7H) is minimized.

=1, )

We now work towards a systematic codebook constructionHiar groblem.

1. M ATCHED VERSUSMISMATCHED CHANNELS

The case of unstructured precoding with genie-aided pe@&t was summarized in Sdc. 1I-C which

1/2
wf

resulted iNFpes = \M/’HA . The construction oﬂfH, as well asA s, necessitates the tracking of the
channel evolution which is difficult. To avoid this problemdato reduce the complexity of precoding,
the following structured precoding was introduced in [29].

« When the precoder is assumed to be structure® as VAit/ft with V an V; x M semiunitary
matrix, andAg..: an M x M fixed, rank-M power allocation matrix, the optimal choice ®f under
perfect CSI isV. This optimality is assured for many different classes géotive functions apart
from the case of maximizing mutual information. When onlgtistical information is available at
the transmitter, the optimal choice ¥ is V4.t Where Vg, is a set ofM dominant eigenvectors
of 3, the transmit covariance matrix. We call these two scheopéisnal and statistical structured
precoding schemesespectively.

« We study the performance loss between these two schemesuasteoh of the channel statistics.
When one antenna dimension grows to infinity at a rate faktar the othg, which we refer to as
the relative antenna asymptoticase, channel hardening leads to convergence of the rigiplar
values of the channel to the eigenvaluegifand hence, ensures that the statistical scheme performs
near-optimally. This conclusion generalizes prior resirt the beamforming case where statistical
beamforming is shown to be near-optimal in the relative mmgeasymptotics setting [25].

« Further, for any reasonably large (but fixed) value of andedimensions, the relative performance
loss between the two schemes is minimized by the followirgiaehof statistics: 1) The set of transmit
eigenvalueg A, (i)} can be partitioned into two components: a well-conditiosechponent of)/
dominant eigenvalues, and the remainisig— M transmit eigenvalues are ill-conditioned away from
the dominant set, and 2) The set of receive eigenvajes:)} are well-conditioned. In particular,
if Tr(X;) = Tr(X,) = N:N,, the structure ofA; and A, that minimizes performance loss is

Ay(1) = = A(M) = B Ay(M+1) =+ = Ay(N;) = 0, and A, (1) = - - = A (N,) = N,.

*That is, when{t — 0 or co as{N;, N} — oo.
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Such a channel is said to beatchedto the precoding scheme. On the other extreme, statistical
structured precoding in an i.i.d. channel leads to very hughformance loss when compared with
the optimal scheme. Thus, an i.i.d. channahismatchedo the precoding scheme. More important
to note is that any feedback (limited or otherwise) is hdlpfoly in mismatched channels and only
when the transmit and the receive dimensions are propatgoiThis conclusion is a generalization

of our earlier beamforming result [25].

The readers are referred to [29] for details. Henceforth, fitcus will be on mismatched channels
primarily because the potential to bridge the performanap between the statistical and perfect CSI
schemes is maximum. Our goal is to construct a systematitistits-dependent codebook (of a fixed

size 2P) that ensures this bridging.

IV. QUANTIZED FEEDBACK DESIGNS TOBRIDGE THE PERFORMANCE GAP

In contrast to the i.i.d. case where the isotropicity of tight singular subspace of the channel leads to
a design [28] based on Grassmannian subspace packingsfifigl correlation skews this isotropicity
and poses fundamental challenges. The study of statigiremloding motivates the following heuristic
in the correlated case. While the asymptotic channel hamdefand the consequent near-optimality of
statistical precoding) does not carry over whgnand NNV, are small or when they are proportionate, it is
expected that the distance betwéég,. and\NfH is small on average. Thus, when we have the freedom
to pick more than one codeword (> 0), the codewords should correspond to a “local quantizatdn
Vat- The notion of local quantization will be made precise dgort

We now describe the codebook design for limited feedbackqatieg. Our design is a multi-mode
generalization of the beamforming codebook proposed if, [B2]. The differences between the two
schemes lie in packing subspaces, rather than lines, artkichoice of an appropriate distance met-
ric. For this, we introduce the notion ajeneralized eigenvaluesf subspaces ob;. Consider the
family of subspaces spanned by distinct eigenvectors of;. Note that there are(]A\g) members
in this family. For each such subspace, we associagergeralized eigenvaludefined as the\/-fold
product of the corresponding transmit eigenvalues. Fomgka, if Ny = 4 and M = 2 with the
columns of U; denoted byu;,i = 1,---,4, the six subspaces correspond to thex 2 matrices:
[u; ual, [ug us), [us uyl, [ug usl, [ug uy] andfusuy). The generalized eigenvalue correspondin@utous,]
is A¢(1)A+(2) etc Note that among all thé/-dimensional subspaces &f;, the subspace spanned by

Vstat results in the largest generalized eigenvalue.
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The proposed codebook design has three components: 1)sticahtomponent, 2) local perturbation
components, and 3) an RVQ component. The cardinalitiesesfetlitomponents are denotedMy.:, Nioc
and N,q with the feedback rate defined by = logy(Nstat + Nioc + Nrvg)-
Statistical Component: While the distance betweé¥g;.. and\N/‘H, an instantaneous realization of thé-
dominant right singular vectors of the channel is expeabeloet small on average, the precise probability
distribution of this distance is determined by the sepamatgap) between the generalized eigenvalues of
3. For example, if the first two dominant generalized eigamealare close to each other, there is a non-
negligible probability for the event that the best quantizeghe subspace whose generalized eigenvalue is
the smaller of the two and hence, the distance betWwégn and the optimal precoder could be arbitrarily
clos@ to 1. On the other hand, if the largest generalized eigenvaldg,aé much larger than the other
generalized eigenvalues, the probability distributionttdé distance is concentrated around zero. Thus
the gap between the largest generalized eigenvalue andttlee generalized eigenvalues heuristically
determines the cardinality of the statistical componé¥it.:. In our design, a threshol@ is chosen
a priori for the generalized eigenvalues and the statistical coenooonsists of alli/-dimensional
subspaces such that their generalized eigenvalue exdez=tsréshold. That is, th&tatistical component
is the setS = {z : % > ﬁ} wherey; are the)M -fold generalized eigenvalues Bf; andy; is the largest

generalized eigenvalue. The cardinality ®fis Ngia:.

Fig. 1. Proposed Codebook Design i8¢ = 3, M = 2, and B = 3 with only the statistical and local components.

Local Components: For thei-th member of the statistical component, we constiVigt codewords so

"Note from Prop.[JL that the distance between the first two damtineigen-spaces o, is 1. This is because
AI,,in(V{{VQVfVl) = 0 whereV; andV; denote the first two dominant eigen-spaces.
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that they are localized and well-packed around the corredipg statistical codeword. While these local
codewords can theoretically be designed via VQ, we provadedomplexity alternatives in Secl V where
we also elaborate on the notions lotalized and well-packedrhe choice ofN/._ is in proportion to
the generalized eigenvalue of the subspace. The heurgthind this choice is as follows: The larger the
separation of the generalized eigenvalue(corresponding tdV:,:) from the next largest generalized
eigenvalue or the more match&g is, the lesser the relevance of the less-dominant subspa¢esns
of precoding and hence, the smaller the value§®f,_},i > 1 need to be. Thesdi,c = > s N _
codewords form théocal componenbdf our codebook design.

In Fig. [, we illustrate the design of a codebook with stai@dtand local components wherg, =
3,M =2, Nyt = 3, NL. = N2_. =2 andN3_ = 1. If U; = [u;upug), then the three statistical
transmit eigenspaces with/ = 2 are those spanned Hw; us], [u; us] and [us us]. The “directions”
corresponding to these subspaces are symbolically regessen the figure with dashed lines. The first
local component consists of two codewords arolugus] and so on. Since there are eight codewords
in our design, this codebook can be parameterized Witk 3 bits.

RVQ Component: If B is sufficiently large, there is a need to refine the quantratf Vu. In this
setting, Nyq £ 28 _ Nyat — Nioe random channel matrices are generated according to thionslaip
in (2) and theirM -dominant right singular vectors are used as the semiynit@coder codewords in the
RVQ component. Note that the RVQ component can be generatedow-complexity once the statistics

are known perfectly.

A. Power Allocation

It is preferred that the power allocation matrix;;,; be only dependent on the channel statistics
and be easily adaptable to statistical variations. Thenwdtichoice of Ag,x needs to be constructed
via a Monte Carlo algorithm which is difficult to implement all as adapt to statistical variations
with low-complexity. As an alternative, we consider threaricomplexity power allocations: 1) uniform
power allocation across the excited modes, 2) waterfilliagelodl onA,(i), i =1, --- , M, and 3) power
allocation proportional to the transmit eigenvalues. Tdst two schemes have near-identical performances
and are near-optimal in the lo8NR regime while uniform power allocation is more useful in thgh

SNR regime.
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B. Codeword Selection

The receiver acquires the channel information at the sfast coherence block and it computes the
index of the optimal codeword from the codebook that maxémithe instantaneous mutual information.
The receiver then communicates to the transmitter the imddéke optimal codeword wittB bits. The
transmitter uses the optimal codeword along with an appatgpower allocation to communicate over

the remaining period in the coherence block.

doroj2(V3, Vi) > dproj2(V1, V) scaled by o

(b)

Fig. 2. (a) Rotation of a root codeset of semiunitary precod®,, i = 1,--- ,5} with N; = 3 and M = 2. The root codeset
satisfies the localization and well-packing propertiescdbed in Sec[V. The distance between any two precodersimema

unchanged after rotation. (b) Scaling of the root codesetbyhe position ofV; remains unchanged after scaling.

V. ROTATING AND SCALING SPHERICAL CAPS ONG(N;, M)

We now propose mathematical maps to ensure that the codelesajn proposed above can be realized

with low-complexity. For this, we need the notion of@ot codesetLet R = {V;,i=1,--- ,N} be a
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root codes@ of N semiunitary matrices satisfying the following propertielsich are characteristic of

a ‘good’ local quantization:

1) Localization: The root codeset is localized (centered) arodhd That is, there exists & < (0, 1)
such thatdp,j 2(V1,V;) < 0 for all i # 1. The smaller the value of, the more localized a
packing. We often labeV; as thecenter of the root codesethis is illustrated in Figll2 where a
set of N = 5 precoders form the localized root codeset in ffjfe= 3, M = 2 setting.

2) Well-Packing: The codewords iR are well-packed (well-separated). That is, given some
(0, Ymax (N, M, N, 6)), the minimum distance of the packing,i,(R) defined asdyi,(R) =
min;; dproj, 2(Vi, V) is larger thary. The larger the value of, the well-packedr is. Hencey
can also be viewed as a measure of the packing density. Here(Vy, M, N, 0) is the maximum
possible packing dens@/ achievable in the Grassmann manifddN;, M) with N codewords

localized in a cap of radiué.

Note that for any fixed choice a¥;, M and N, it is intuitive to expect thaty,.x (N, M, N, 0) decreases
asf decreases. In other words, the above two properties ararie sense conflicting with a root codeset
that is more localized necessarily forced to have a smakipgadensity andvice versa

Despite this apparent difficulty, it is important to note ttlaapacking with the above properties can
always be constructed, either via algebraic methods or via a vegtiantization [21], [22] approach
(that is, a brute force search via Monte Carlo-type algorgh FurthermoreR needs to be constructed
(offline) just once, and once this has been da@hean be designed for any statistics starting frRmFor
this, we now show how mathematical operations can be canettuo perform the following two tasks:
1) Given a root codeseR of N codewords with a packing densityand a target centeV,ge:, how
can we centefR around Vi, Without having to resort to a VQ-type codebook constructgain?
That is, we seek a map to rotate the centeRofo Vi,zt Without changing the packing density, and
2) Given a root codesé® centered aroun®&; with a packing density ofy and some fixedv € (0, 1),
how can we scal® so that the packing density of the resultant codeseti® That is, we seek a map
to reduce the minimum distance & without changing its center.

While we develop such maps for spherical capdmanifolds, we will state the results as applicable

to finite element subsets of Ny, M). But prior to that, we recall results from a recent work [40jexe

we use the term root codeset to indicate that the construdti@ is rooted in the design of a ‘goodR.

2While the exact characterization §f.ax(N:, M, N,6) remains an open problem for general valueshaf M, N and 6,

some bounds have been established; see [19], [24], [36],a3d references therein.
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rotation and scaling maps to solve 1) and 2) (as above) hase pmposed in the beamforming case
(M = 1). The rotation map is straightforward and is effected by pprapriately chosen unitary matrix.
In contrast to the rotation operation, the scaling map megusome care due to the constraints of the
space. For example, an operation of the form> ax wherea € R yields a vector that is not unit-norm.

It is to be noted that both rotation and scaling maps are mogue. We summarize the map of [40] in
the following Iemm for M = 1.

Lemma 3 (See [40])Let R = {v;,i = 1,--- ,N} be a root codeset ig(N;, 1) with a packing
densityy and centew;. The map that effects the rotation of t0 Viarget is given byr(v;) = Utarget Vi
With Utarget satisfyin@ Vtarget = Utarget V1. FOr scaling bya, we first define a rotation map,ertex
generated by a unitary matrid,., that effects the rotation of the center to vyerex = [1, 0,---,0]7,

a vertex of the unit cube. Then, define a vertex scaling mapx : O(Vyertex, 7) = O(Vyertex, y) by
T

Svertex ([Tlﬁjel, 7026]'927 - 77°Nt€j9Nt]T) — |:4 /1 — a2(1 _ T%)ﬁjel, 047“26j62, - 70[TNt€j6Nt (13)

where we have denoted the vector in the argument on the kit &fi the above equation in its polar

vertex © Svertex © T'vertex results in

form. The mapsys(-) defined as a compositios,s = r

spf(vi) = vi \/1 —a?(1 - |v{{vi|2)ejéva7‘ + ozvalL’HVZ-. (14)

It can be checked that(vy) = vi on G(N, 1). Furthermore, the inner product of the second term with
vy IS zero. Henced (spf(vy), spf(vi)) = d (spe(vi), v1) = ad(v;, vy) for all 4. [ |
The rotation and scaling maps to be proposed now generdlzedsult of [40] to the precoding
scenario,M > 1.
Theorem 1:LetR = {V,,i =1,--- , N} be a root codeset centered arowvidwith a packing density
7. Letthe N; x M semiunitary matrixV g be the desired center of the rotated codeset. Then, thedotat
codesey is given byG = {G;,i =1,--- ,N} whereG; = Uy,__, U51 V; with unitary matriceUv;,
and Uy, defined asUy, = [Vi V"] andUv,,,, = [Viarget Vimge:)- Here, VU and VLl are

N; x (Ny — M)-dimensional representatives of the null-space¥ ofand Vi, ¢, respectively.

Proof: See Appendix’A. [

3The readers are referred to [25] for details of the proof.

H
“One possible choice OUtarget IS Utarget = [Viarget Vinrget] [ vi Vi } where visg and vi refer to matrix

representatives from th&; x (N; — 1) dimensional null-space of.g: and vi, respectively. That is;/ll’va = In,—1

1,H
andvl TV = ONt71><1-



18

Note that there exists more than one basis for the null-spacetherefore the usage of the term
“representative” in the statement of the theorem. The ldck onique representative for the null-space
is responsible for the non-uniqueness of the rotation mapaan effect a desired rotation.

Before we get into the most general form of the scaling mapillugtrate a special case of it so as to
provide insights into the construction. As before,®et= {V,,i = 1,--- , N} be a root codeset centered
aroundV; with a packing densityy. Let V; = [v; --- vs] wherev; is an NV, x 1 vector and is thé-th

column of V. Define the maps(-) by

s(Vi) = { vi v oo vyo1 Bvy v } (15)

where 8 = /1 — a2 (1 = Awin (VI VVEVL)), 6 = ay/1 = Aia (VIVIVIVY), andvay o s or-
thogonal toV; (that is,v]’@HVl = 01xas)- We illustrate three properties satisfied #y) which ensures
that it can scale submanifolds. Noting thagti = 1,--- , M + 1 are orthonormal vectors i@ and that
B2 + 6% = 1, it is straightforward to check that(V,;)s(V;) = I;. For s(Vy), note that3 = 1 and
d = 0 which results ins(V;) = V.

Proposition 2: We also havei(s(V1),s(V;)) = ad(V1,V;) for anyi # 1. Thus, s(-) induces the
scaling of R by a.

—
S
=

Proof : Note that d(s(V1),s(V;))

d(V1,5(V3) = Anax(V1 VI — 5(V;)s(V)T)

—~
=

= Amax(Varvi — (Bvar + 0vari) (Bvar + 0vari1) ™) (16)

where in (a) we have usedV;) = V; and (b) follows from[(15). Using the trick of Lemna 1, observe

that the square of,.x in the above equation satisfied . = 1 — [viL(Bvy + 0va) > =1 - 8% =

(1 — Amin(VIV,VHEV,)). The proof is complete by noting the value &V, V;) from Prop[1.m
The choice ofv,,y; is not unique and it is not clear whether the maplinl (15) is waiqodulo the

choice ofv,,41. Furthermore, note that wheV; — M) > M, s(V;) can be written as
s(V;) = ViA; + VIU'B; (17)

whereA; = diag([1,---,1,5]) andB; has only one non-zero entry which is at th/, M )-th location
and its value is). In Appendix(B, we resolve the uniqueness issue and corigtraanost general form
of s(-). We also show that the most general forms¢V;) is of the form in [(1¥) for a suitable choice
of A; andB,.
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A. Reduction to the Beamforming Construction of Lerhina 3

Corollary 1: In the special case oM = 1, the scaling map proposed ih {15) (and extended in
Theoren 2 of AppendikB) is a generalization of the map pregas Lemmd B (seé _(14)).
Proof: For the sake of simplicity, we denote the map constructed®) &Ssgen(-). We Write sgen (-)
as sgen (Vi) = VAivi + 1 — NviU! where); = 1 — o?(1 — [viTv;|?) and v is an V; x 1 unit norm
vector orthogonal tor;. We now draw a correspondence betwsgrf-) and sgen(:).
In LemmalB, note thall, e tex UL

vertex

— I, which implies thatviv;" " = I,_;. Using the fact that

UZ . Userex = Iy, similarly we obtainv; v = I, — vyvI’. Using this in [T#%), we have

vertex

spf(vi) = \/1 —a2(1 — [vlv;2)e Vi) + alv; — vi(vivy) (18)
= VAdYTViv 4 alv — vi(viv). (19)
. . .. —vi(viv,) . .
It is straightforward but surprising to note théi\/!cW is both unit norm and orthogonal te;.
— _vHe |2 i Vi—vi(viTvy) i ull
Further, note that/1 — \; = /1 — |vi’v{|2. By setting S as the representative off*" in

the general framework, we see th@g(-) can be obtained up to a phase term. And since we operate on
the Grassmann manifold which is impervious to right muitigiion by terms of the forme’?, we have

proved the corollary. [ |

B. Low-Complexity Generation of Local Components

We now illustrate how the theory of rotation and scaling maps be used to construct precoding
codebooks with low-complexity.
Root Codeset Generation: A root codeset that satisfies the localization and well-pagiconditions as
described above is constructed via VQ. The number of codisvor the root codeset is larger than
N so as to ensure that any local component has a cardinalitjlesrtizan that of the root codeset.
Furthermore, since the scaling map can only ensure thatutmibpacking is more localized than the
input packing, we need to pick sufficiently large, but smaller thah The quantityymax (N, M, N, 0)
corresponding to the choices &f, M, N andé is determined via Monte Carlo techniques and some
is chosen in the intervel0, Ymax (N¢, M, N, 6)).
Local Components. For each member of the statistical component, we rotatedbeaodeset (via the
rotation map of Theorein 1) to th&¥; x M matrix corresponding to the subspace3ifin the statistical
component. Then, each rotated codeset is scaled by a siyifdgtoro; £ % That is, we scale each
rotated codeset in proportion to the generalized eigervafuthat subspace. From each rotated codeset

of N codewords, we retaitV._,i = 1,--- , Ngar codewords. The heuristic behind the choiceNgf.

loc?
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has been explained in the previous section. The same hewdst be used to justify the choice af as

well.

C. Exploiting the General Structure of the Scaling and RotaMaps

We now delve into why a general form of the maps in Apperidix Buseful. In many practical
systems, it is desired that the precoder codebook has nroctse so as to ensure implementation ease.
For example, two commonly desired properties are:

1) Bounded Gain Power Amplifier Architectuvéhere we require

mn Vz )
max Lo [Vi(m, n)| <. (20)

V, €C Minyy,, |Vi(m,n)| —

The above condition is useful in ensuring that the power dierd used in the radio link chain are not
driven to their operational limits. The most general formtlod rotation and scaling maps allows one to
search for a codebook that satisfies the above property iti@udo the localization and well-packing
properties, and
2) Recursive Codebook Structumnere a codebook ahnk-Ngna can be generated from a codebook of
rank-Nyarge (With Niarge > Nemai) by retaining only a subset @Y. columns from every precoder in the
rank-Nj,rge COdebook. This property is desired so as to minimize therdgoic complexity of generating
a family of codebooks of different rankan the fly The low-complexity property of the proposed maps
and theoffline generation of the root codesets of different ranks ensuwaktlhis issue is redundant with
our codebook design.

Thus, we strongly generalize the maps of [40] and as a byyatoobserve that even in the/ = 1
case, a rich family of maps can effect the scaling operatibercthan [(I4). Additional structure in the

codebook can also be accommodated to ease implementatigoieoaty.

VI. NUMERICAL RESULTS

We now illustrate via numerical studies the performancagpbssible with our codebook construction
and the consequent bridging of the gap between statistichloatimal precoding. In the first study, we
consider a4 x 4 channel under the separable model with = diag ([14.98 0.50 0.26 0.26]) and
A, = diag([15.5 0.25 0.15 0.10]). This choice ensures that the transfréteive covariance matrices
are both ill-conditioned and witd/ = 2, note that the channel isot matched to the precoder. We first
generate a root codeset &f = 4 codewords withd ~ 0.76 and~ ~ 0.75 via VQ. Let {u;} be the

column vectors olU;. The codebook used fdB = 1 satisfiesVg,; = 1 with the codeword corresponding
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Fig. 3. (a) Average mutual information with Gaussian ingat& 4 x 4 mismatchedhannel following a separable model. Two
data-streams are used in signaling and a limited feedbad&bomk designed along the principle elucidated in Bek. Ivsid.

(b) Error probability performance with the same codeboollenrQPSK inputs.

to [u; up] and N, = 1 while with B = 2, the codebook has an additional RVQ codeword and a local
codeword arounfi1; uy]. Similarly, with B = 4, Ngae = 3, Nib. = N2_ =3, N2 = 2andN,q = 5. The
statistical codewords correspond[io, u;], i = 2,--- ,4. Since we are mainly interested in illustrating
the performance gains in the hi@NR regime, uniform power allocation is used fAL;,¢.

Fig.[3(a) shows the average mutual information with a Gansisiput for statistical and limited feedback
precoding. In addition to the mutual information, raw bitcgrrate (BER) is useful as well. Fig 3(b) shows
the improvement in error probability in the same channeh\@PSK inputs. In the error probability case,
the index of the codeword that minimizes the distance to rﬂsmhtaneoung is fed back. Note that
while the performance gap between the optimal and the statischemes is significantly bridged in
the error probability case, further improvement in mutudibimation is possible. Nevertheless, both the
figures show that substantial gains are possible with a fesvddifeedback. For example, witB = 4
bits of feedback, & dB gain is possible at a rate @0 bps/Hz while a6 dB gain is possible at a BER
of 1073. Also, note that an i.i.d. codebook design incurs a dramatis in performance in correlated
channels.

In the second study, we considerda 4 channel with non-separable correlation following theuait
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Fig. 4. Average mutual information with Gaussian inputs it & 4 mismatchecchannel with non-separable correlation and

M = 3.

representation framework. The variance matrix, j) = E [|Hina(i,7)|*] used in the study is

[ 1.24
0.41
0.72

| 0.28

1.42
0.14
1.39
0.13

7.49
0.42
0.07
0.50

0.23
0.03
0.02
1.51

(21)

Note that the channel has a single dominant transmit (as agelteceive) eigen-mode and is hence

mismatched when/ = 3 data-streams are used in signaling. The parameters of ttecoaleset are

N =4, 0~ 0.87 and~ =~ 0.84. As before, let{u;} be the column vectors of the DFT mati¥;. The

codebook forB = 1 has the two statistical codeworfls; us u;| and[us us uy). For B = 2, we use two

additional RVQ codewords and fd8 = 4, we useNg.: = 3, Nb. = N2 = 3, N2. =2 and N,q = 5.

The third statistical codeword wheB = 4 is [us u; uy]. Fig.[4 illustrates the bridging of the gap in

mutual information between the optimal and the statistitddemes. It is important to note that both the

channels studied here are so constructed to result in assuiladtperformance gap between perfect CSI

and statistical signaling. In more realistic channels @&t not so poorly matched, we expect an even

better performance with our scheme. Thus our studies rifltestthat substantial gains can be achieved

even with few bits of feedback.
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VIlI. CONCLUDING REMARKS

In this work, we have studied linear precoding under a rgalsy/stem model. In particular, the focus
is on the impact of spatial correlation when perfect CSI iilable at the receiver, statistical information
is available at both the ends, and quantized channel infismas fed back from the receiver to the
transmitter. While initial works on precoding assume perf€SI at both the ends and hence do not
impose any particular structure on the precoder matricedeiuthe model studied here, we see that
structure can help in minimizing the reverse-link feedbaskvell as ease the implementation complexity.

We introduced the notion of matched and mismatched chammelsllustrated that limited feedback
precoding is useful only in the case of mismatched chanfils.study of statistical precoding motivates
the proposed limited feedback design where we quantizepgheesof semiunitary matrices with a non-
uniform bias towards the statistically dominant eigen-emdlhe design as well as its adaptability are
rendered practical by the construction of mathematicalsif@perations) that can rotate and scale subman-
ifolds on the Grassmann manifold. More importantly, nurcaristudies show that the proposed designs
yield significant improvement in performance when the cledn® mismatched to the communication
scheme.

This work is a first attempt at systematic precoder codebosdigth in single-user multi-antenna
channels that exploits spatial correlation. Possibleresiems are the study of more complex receiver
architectures and performance analysis in the finite aateambitrarySNR setting, along the lines of [29].
More work also needs to be done to understand the impact takparrelation on the performance of the
proposed limited feedback scheme which could in turn diivedevelopment of more efficient codebook
constructions. Open issues that need further study ingtudetical aspects like codebook designs for
wideband channels, codebook designs based on Fodadamard matrices that are useful in achieving
the bounded gain power amplifier architecture and hence ftand much interest in the standardization
community, incorporating the cost of statistics acqusitin performance analysis [41], and more general
scattering environment-independent channel decomposiféd2] that mimic the physical model closely.
The case of multi-user systems with feedback, which haacttd significant recent interest, is another
area for study.

We close the paper by drawing attention to the philosophi/ltha guided this work. While deducing
the structure of the optimal signaling scheme under geassalmptions on spatial correlation and channel
information seems extremely difficult, an alternative agwh that partitions this problem into smaller

sub-problems could be quite fruitful. The general idea ofamiag the rank of the precoding scheme to the
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number of dominant transmit eigenvalues with the resalutiecessary to decide whether an eigenvalue
is “dominant” or not being a function of theNR reminds one of the classical source-channel matching
paradigm [43]. Initial evidence seen in this paper also sstgythat this partitioning provides a natural

framework to understand the performance of limited feeltsmhemes.

APPENDIX

A. Proof of Theorerhl1

The efficacy of the rotation map is established if we can shwvfollowing:

1) GEG; =1, for all 4,

2) Gi = Viarget, and

3) dproj, 2(G1, Gi) = dproj, 2(V1, V) for all 4.

To prove 1), first note thaly, and Uy, are N; x N; unitary matrices. From the semiunitarity
property ofV;, GG, = I, follows trivially. Using the unitary property oy, and the decomposition

in the statement of the theorem, 2) also follows triviallgr B), note that
dpr0j72(G17 Gl) = )\max (G1G{{ — GZG;H)
= )\maX (UVtargetUgl (VIV{—I - VZVZI_I) U‘/1 U‘I_;targec> = dpr0j72(V17 V,l) (22)

In the above chain of equalities, we have used the factXhAfB) = A(BA) and the unitary property

of Uy, andUv,, .. Thus the proof is complete. [ |

B. Generalized Scaling Map

Theorem 2:Let R be a root codeset with packing densifyand centerV;. Let Ux and W be
arbitrary M x M unitary matrices and leUg be an arbitrary(N; — M) x (N; — M) unitary matrix.
Givena € (0,1) and M < (N, — M), for anyV; € R, generate aiM/ x M diagonal, positive-definite
matrix A; With: Apin £ min; A;(j) =1 — 02 (1 = Anin(VEV; VI VL)) and Apax £ max; A,(j) < 1.
Then, defineA; asA; = Ujx Ag/z W1, Define theM x M principal component of théN; — M) x M
diagonal matrixAg as (I, — A;)"/? andB; asB; = Ug Ay W,

If M > (N,— M), for anyV; € R, generate aiN; — M) x (N; — M) diagonal, positive-semidefinite
matrix T; with: Typax = max; Ty(5) = o2 (1 — Amin (VY V;VE V1)) andT i, £ min; T;(5) > 0. Then,
defineB,; asUpg A]13/2 W with the principal(N; — M) x (N; — M) component ofAg beingT;. Define
A; asA; = Up Ay WH with the principal(N; — M) x (N; — M) component ofA  beingIy, 5 — T

and the principal southeast component bding v, .
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Then, the scaling magp(-) that leads to a packing density of is given by
s(Vi) =ViA;+ VB, (23)

where VUl is a representative of the null-space correspondiny to
Proof: Letry denote the rotation effected by a unitary mafkix Since the scaling operation has to
keep the center of a root codeset fixed, in the sequel, we uged/¥i x M matrix as the center instead

of V1 which is dependent on the choice Bf This is achieved by a composition of three operations:
S() = T'le ® Svertex @ TU\I}Il () (24)

Here,rU51 (+) rotates the root codeset to the canonical precﬁg{@rOMX(Nt_M)]T while syertex(+) Scales
(shrinks) the canonical codeset by a factoandry,, rotates it back to the direction corresponding to

V1. From the above definition of(-), we have

Vi,

S(Vz) - [ Vl VT”” :| Svertex null.H = |: Vl VTu“ :| ’ - VlAz +Vr1m”Bi
Vl ’ VZ' Bi
L . viv, .
where we have used a partitioning? B7]7 for the N; x M matriX syertex i . In this
Vrlm, V;
partitioning, A; is M x M and is of full rank whileB; is an(N; — M) x M matrix.
Given thatV{V, = I, VIV = O,/ (n,—n) and vyl — 10, the relationship

AﬁAi + BﬁBi = I, ensures that(V;) is semiunitary. We show thak; andB; have to be as in the
statement of the theorem so that the following properties(gfare met:

1) dproj,2(s(V1),s(Vi)) = adproj, 2(V1,V;) for all 4, and

2) s(V1)=Vi.

First, let us consider the distance scaling property. Assgrg) (which we check subsequently) and

following Prop.[1, we need

/\max(C) = /\max (V1V{{ — S(VZ)S(VZ)H) = Oé\/l — /\mm(V{{Vzvszl) (25)

whereC £ vV, VI — VA, APVE _ vl ARV _ v ABIVIYH _ vyl BEVMI i the

expansion forC, we have used the relationship [n]23). We can decomfbss CoC? where
vif
AfVH
T _ ? — nu nu
Cl - BHVnU“,H ) Cy = [ Vl(IM —AZAZH) _Vl “BZ’ V1A, _Vl ”Bi ] (26)
7 1

H~rnull,H
| Bi'V)
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Note that the non-trivial eigenvalues AfB are the same as thoseBAA.. Hence \,.x(C) = )\max(C{Cg).
Using the factsVi'V, = Iy, VIV = Oy v,y and vyl — 1)/, observe that the

4M x 4M matrix CT'C, is given by

Ly — AAY Oy  -A; Oy
e, - ATy - AAl)  On  -AfA Oy | -
Our ~-BFB;, Oy, -BIB;
i Our -B'B, 0y -B!B; |

We will now show that the largest eigenvalue Gf C, can be computed in closed-form. For this,
we need to solve foA by settingdet(CT Cy — AI4y) = 0. Towards this computation, we need to use

Lemmal2 following which, we have

T In — AZAf{ — Aum Onm —A;
det(Cj Co — Alypr)
det(—BIFB; — ALpy) ATy — AAT) Ay AfA; | (28)
Oum ~ABIB,;(BIYB; + \Iyy)™! ALy

With k = det(—BB; — AI)/) det(—AI,/), upon another application of Lemria 2 we have

o, — Iy — A;AH T A,BEB,(BEB, + \I,) !
det(C{Cy — Many) _ ([ Twr ; M i Bi(B; M) (29)

K AT - AAT) Ay + AFABIB;(BYB; + AIy) !

which can be simplified to
det(CTCy — Aupp)
= det(~BB; — Ay) det(—Aps) det(— ALy + AP A;BYB,(BYB; + A1) ™)
x det(—AIpr — AT (=ML + AFABEB(BEB, + \Ly) 1) TAH (1, — A, AH)).
Note thatdet(Cffcg — M) = 0 has4M solutions for\ with the solution from the first two terms

being non-positive. Setting the fourth term to zero, andigishe facts thaflet(I+ CD) = det(I+DC)
andI,, = AZA; + BZB,, we see thah has to satisfy:

— 1= N((=MIpp + AFA Ty — AFA) (T + M — AFA)™H) 7Ty — AHA))=0.  (30)
After some straightforward simplifications, we can checktth is a solution to
NATar — ATA)™ — AFA; Ty + My — AFA)) = 1. (31)

Assume a singular value decomposition #f and B; of the form: A; = UAAX2W£ andB; =
UBA]13/2W§, respectively wher@Ja, W andWpg are M x M unitary matrices, an®@g is an(N; —

M) x (Ny — M) unitary matrix. The full-rankness oA; means that thé/ x M diagonal matrixA o
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is positive definite while thé N, — M) x M matrix Ag has non-negative entries only along the leading
diagonal. SinceA A; + BB, = I, we havely — Ay = WEWg(ALAR)'/?WEHW 4. Comparing
the two sides, we see thi , = Wp (we set both to béV) andI,; — Aa = (A5 AgB)'/2. Note that
since there are no constraints/oslationship betweelJ , and U, the leading diagonal entries &fa
and Ag can be in any order. This is because either unitary matrix mmppropriately adjusted by a
permutation matrix.

Plugging in AZA; = WAA W in (31), a routine computation yields/ solutions to\ of the
form: A2 = 1 — Aa(i). With the same form ofA” A;, by setting the third term to zero, we obtain
anotherM solutions\ = /T — A (i) - <\/1+3AA(i)2—\/1+AA(i)>_ Note tha,[\/1+3AA(z')2—\/1+AA(z') 1
and hence),,.x(C) is obtained by setting = M in the above solution which results K,.x(C) =
\/1 — Amin(AfA). Using this in [25), we get the expression fmﬁlm(AﬁAi). FurthermoreI,; =
AHA; + BEB,; implies that

1 = Anax(AFA; + BIB) > Ao (A7 A) + Anin(BEB)) > D (A7 A, A (BB}, (32)

These are the constraints to be imposedAgn to ensure that the scaling map preserves semiunitarity
and reduces the minimum distance by
If M < (N; — M), without loss in generality assume that the diagonal entoieA, are in non-
increasing order while those ofg may be not. Given a choice ok, the conditionI;; — Ax =
(ALAg)Y/2 can be met by choosing the principal x M component ofAg to be (In; — Aa)"/%. If
M > (Ny — M), assume that the diagonal entries/of are in non-increasing order while those A
may be not. Then, the conditidn, — Aa = (A%AB)l/2 can be met i2M — N; entries of A arel.
The additional constraint on the smallest diagonal enteg @iscussion above) ensures distance scaling.
To close the theorem, it is necessary to verify th@;) = V;. This can be done by checking that
can be computed in closed-form. For this, note that, = 1 and sinceA .« < 1, we haveA; = I;.
From here, it can be checked tHaf = Oy, ) @and from [(28), we thus havgV;) = V; Uy WH,
On the Grassmann manifol@( N, M), multiplication by an)M x M unitary matrix results in the same
“point.” Thus s(V1) = V; and the proof is complete. [ |
Note that the choice of the scaling map is non-unique dueeedom in the choice dUa, Up and
W as well as the eigenvalues af; andT';. The case ofV; = V; is special whereA; turns out to
be I,,. With almost any other choice &;, these matrices are non-identity, in general. Besidesthes

choices, non-uniqueness of the representativ®’ Bf' also leads to non-uniqueness of the map.
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