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Abstract

Multimode precoding, where the number of independent data-streams is adapted optimally, can be

used to maximize the achievable throughput in multi-antenna communication systems. Motivated by

standardization efforts embraced by the industry, the focus of this work is on systematic precoder design

with realistic assumptions on the spatial correlation, channel state information (CSI) at the transmitter and

the receiver, and implementation complexity. For spatial correlation of the channel matrix, we assume a

general channel model, based on physical principles, that has been verified by many recent measurement

campaigns. We also assume a coherent receiver and knowledgeof the spatial statistics at the transmitter

along with the presence of an ideal, low-rate feedback link from the receiver to the transmitter. The

reverse link is used for codebook-index feedback and the goal of this work is to construct precoder

codebooks, adaptable in response to the statistical information, such that the achievable throughput

is significantly enhanced over that of a fixed, non-adaptive,i.i.d. codebook design. We illustrate how

a codebook of semiunitary precoder matrices localized around some fixed center on the Grassmann

manifold can be skewed in response to the spatial correlation via low-complexity maps that can rotate

and scale submanifolds on the Grassmann manifold. The skewed codebook in combination with a low-

complexity statistical power allocation scheme is then shown to bridge the gap in performance between

a perfect CSI benchmark and an i.i.d. codebook design.
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I. INTRODUCTION

Research over the last decade has firmly established the utility of multiple antennas at the transmitter

and the receiver in providing a mechanism to increase the reliability of signal reception [1], or the rate

of information transfer [2], or a combination of the two. Thefocus of this work is on maximizing the

achievable rate under certain communication models that are motivated by wireless systems in practice. In

particular, we assume alimited (or quantized) feedbackmodel [3] with perfect channel state information

(CSI) at the receiver, perfect statistical knowledge of thechannel at the transmitter, and a low-rate

feedback link from the receiver to the transmitter. In this setting, the fundamental problem is to determine

the optimal signaling/feedback scheme that maximizes the average mutual information given a statistical

description of the channel, signal-to-noise ratio (SNR), the number of antennas, and the quality of limited

feedback.

A low-complexity approach to solving this problem is to firstdetermine the rank of the optimal precoder

as a function of the statistics,SNR, and the quality of feedback. The design of the optimal scheme is

then, in principle, essentially the same as that of a fixed rank limited feedback precoder whose rank is

adapted optimally. Motivated by this line of reasoning, themain theme of this work is the construction

of a systematic, yet low-complexity, limited feedback precoding scheme (of a fixed rank) that results in

significantly improved performance over an open-loop1 scheme. Towards this goal, we consider a simple

block fading/narrowband setup where spatial correlation is modeled by a mathematically tractable channel

decomposition [4]–[6], and includes as special cases the well-studied i.i.d. model [2], theseparable

correlation model[7], and thevirtual representation framework[8], [9]. Furthermore, we also assume

that the power-constrained input signals come from some discrete constellation set whereas the decoder

is assumed to have a simple, linear architecture like the minimum mean-squared error (MMSE) receiver.

While precoding has been studied extensively under the i.i.d. model [10]–[18], considerable theoretical

gaps exist in the limited feedback setting. The extreme caseof limited feedback beamforming has been

studied in the i.i.d. setting where the isotropicity2 of the dominant right singular vector of the channel

can be leveraged to uniformly quantize the space of unit-normed beamforming vectors, a problem

well-studied in mathematics literature as the Grassmannian line packing (GLP) problem [19], [20].

1There is no correlation information at the transmitter in anopen-loop scheme. That is, the channel is assumed to be i.i.d.

and an i.i.d. codebook design is used.

2Isotropic means that the dominant right singular vector is equally likely to point along any direction in the ambient transmit

space. This ambient space of all possible right singular vector(s) is referred to as the Grassmann manifold. Precise definitions

are provided later in the paper.
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Alternate constructions based on Vector Quantization (VQ)/Random Vector Quantization (RVQ) are

also possible [21], [22]. Spatial correlation, however, skews the isotropicity of the right singular vector,

and hence poses a fundamentally more challenging problem. While VQ codebooks can be constructed

for the correlated channel case, the construction suffers from high computational complexity and the

codebook has to be reconstructed from scratch every time thestatistics change, thus rendering VQ-type

solutions impractical. Recently, beamforming codebooks that can be easily adapted to statistical variation

(with low-complexity transformations) have been proposed[23]–[25]. The other extreme, limited feedback

spatial multiplexing, has also been studied [26], [27].

In the intermediate setting3 of rank-M precoding, under the i.i.d. assumption, the isotropicity property

of the dominant right singular vector of the channel extendsto the subspace spanned by theM -dominant

right singular vectors thereby allowing a Grassmannian subspace packing solution [28]. In the correlated

case, the fundamental challenge on how to non-uniformly quantize the space ofM -dominant right singular

vectors remains the same as in the beamforming case. However, unlike the beamforming case, it is not

even clear how a codebook designed for i.i.d. channels can beskewed in response to the correlation.

In fact, using an i.i.d. codebook design in a correlated channel can lead to a dramatic degradation in

performance (see Figs. 3 and 4).

Our main goal here is to construct a systematic semiunitary4 precoder codebook that is tailored to the

spatial correlation, and is easily adaptable in response toa change in statistics. The heuristic behind our

construction comes from our previous study of the asymptotic performance of the statistical precoder [29].

We showed in [29] that the performance of the statistical precoder is closest to the optimal precoder

when the number of dominant transmit eigenvalues is equal tothe rank of the precoder, these dominant

eigenvalues are well-conditioned, and the receive covariance matrix is also well-conditioned. A channel

satisfying the above conditioning properties is said to bematchedto the communication scheme. Thus,

while limited (or even perfect) feedback can only lead to marginal performance improvement inmatched

channels, in the case ofmismatched channelswhere the relative gap in performance between the statistical

and the optimal precoders is usually large, the potential benefits of limited feedback are more significant.

This study [29] suggests that spatial correlation orients the directivity of theM -dominant right singular

vectors of the channel towards the statistically dominant subspaces and hence, a non-uniform quantization

of the local neighborhood around the statistically dominant subspaces is necessary. The realizability of

3Here,1 < M < min(Nt, Nr) with Nt andNr denoting the transmit and the receive antenna dimensions.

4An Nt ×M matrix X with M ≤ Nt is said to be semiunitary if it satisfiesXH
X = IM .
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such a non-uniform quantization with low-complexity, as well as its adaptability, are eased by mathe-

matical maps that can rotate a root codeset (or a submanifold) centered at some arbitrary location on the

Grassmann manifoldG(Nt, M) towards an arbitrary center and scale it arbitrarily.

Our design includes a statistical component of dominantM -dimensional subspaces of the transmit

covariance matrix, a component corresponding to local quantization around the statistical component,

and an RVQ component which can be constructed with low-complexity. In this context, our construction

mirrors and generalizes our recent work in the beamforming case [25]. By combining a semiunitary

codebook (of a small enough cardinality) with a low-complexity power allocation scheme that is related

to statistical waterfilling, we show via numerical studies that significant performance gains can be achieved

and the gap to the perfect CSI scheme can be bridged considerably.

Organization: The system setup is introduced in Section II. In Section III,we introduce the notion of

mismatched channels where limited feedback precoding results in significant performance improvement.

In Section IV, limited feedback codebooks that enhance performance are proposed and in Section V,

mathematical maps are constructed to realize these designswith low-complexity. Numerical studies are

provided in Section VI with a discussion of our results and conclusions in Section VII.

Notation: The M -dimensional identity matrix is denoted byIM . We useX(i, j) and X(i) to denote

the i, j-th andi-th diagonal entries of a matrixX. In more complicated settings (e.g.,when the matrix

X is represented as a product or sum of many matrices), we useXi,j to denote thei, j-th entry. The

complex conjugate, conjugate transpose, regular transpose and inverse operations are denoted by(·)⋆,
(·)H , (·)T and(·)−1 while E [·], Tr(·) anddet(·) stand for the expectation, the trace and the determinant

operators, respectively. Thet-dimensional complex vector space is denoted byC
t. We use the ordering

λ1(X) ≥ · · · ≥ λn(X) for the eigenvalues of ann× n-dimensional Hermitian matrixX. The notations

λmax(X) andλmin(X) also stand forλ1(X) andλn(X), respectively.

II. SYSTEM SETUP

We consider a communication model withNt transmit andNr receive antennas whereM (1 ≤ M ≤
min(Nt, Nr)) independent data-streams are used in signaling. That is, theM -dimensional input vectors

is precoded into anNt-dimensional vector via theNt ×M precoding matrixF and transmitted over the

channel. The discrete-time baseband signal model used is

y = HFs+ n (1)

wherey is the Nr-dimensional received vector,H is the Nr × Nt channel matrix, andn is the Nr-

dimensional zero mean, unit variance additive white Gaussian noise.
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A. Channel Model

We assume a block fading, narrowband model for the correlation of the channel in time and frequency.

The main emphasis in this work is on channel correlation in the spatial (antennas) domain. The spatial

statistics ofH depend on the operating frequency, physical propagation environment which controls the

angular spreading function and the path distribution, antenna geometry (arrangement and spacing)etc. It

is well-known that Rayleigh fading (zero mean complex Gaussian) is an accurate model forH in a non

line-of-sight setting, and hence the complete spatial statistics are described by the second-order moments.

The most general, mathematically tractable spatial correlation model is acanonical decomposition5

of the channel along the transmit and the receive covariancebases [4]–[6]. In the canonical model, we

assume that the auto- and the cross-correlation matrices onboth the transmitter and the receiver sides

have the same eigen-bases, and therefore we can decomposeH as

H = UrHindU
H
t (2)

whereHind has independent, but not necessarily identically distributed entries, andUt andUr are unitary

matrices. The transmit and the receive covariance matricesare given by

Σt = E
[
HHH

]
= UtE

[
HH

indHind

]
UH

t = UtΛtU
H
t

Σr = E
[
HHH

]
= UrE

[
HindH

H
ind

]
UH

r = UrΛrU
H
r (3)

whereΛt = E
[
HH

indHind

]
andΛr = E

[
HindH

H
ind

]
are diagonal. Under certain special cases, the model

in (2) reduces to some well-known spatial correlation models [4]:

• The case ofideal channel modelingassumes that the entries ofHind are i.i.d. standard complex

Gaussian random variables [2]. The i.i.d. model corresponds to an extreme where the channel is

characterized by a single independent parameter, the common variance.

• When Hind is assumed to have the form1√
ρc

· Λ1/2
r HiidΛ

1/2
t with Hiid an i.i.d. channel matrix

and the channel powerρc = Tr(Λt) = Tr(Λr), the canonical model reduces to the often-studied

normalizedseparable correlation frameworkwhere the correlation of channel entries is in the form

of a Kronecker product of the transmit and the receive covariance matrices [7]. The separable model

is described by no more thanNt + Nr independent parameters corresponding to the eigenvalues

{Λt(i)} and{Λr(i)}.

5This model is referred to as the “eigenbeam/beamspace model” in [5] and is used in capacity analysis in [6].



6

• When uniform linear arrays (ULAs) of antennas are used at thetransmitter and the receiver,Ut and

Ur are well-approximated by discrete Fourier transform (DFT)matrices and the canonical model

reduces to the virtual representation framework [8], [9], [30]. In contrast to the general model in (2),

the virtual representation offers many attractive properties: a) The matricesUt andUr arefixedand

independent of the underlying scattering environment and the spatial eigenfunctions are beams in

the virtual directions. Thus, the virtual representation is physically more intuitive than the general

model in (2), b) It is only necessary that the entries ofHind be independent, but not necessarily

Gaussian, a criterion important as antenna dimensions increase, and c) The case of specular (or

line-of-sight) scattering can be easily incorporated withthe virtual representation framework [30].

In contrast to the separable model, the virtual representation can support up toNtNr independent

parameters corresponding to the variances of{Hind(i, j)}.

While performance analysis is tractable in the i.i.d. case,it is unrealistic for applications where large

antenna spacings or a rich scattering environment are not possible. Even though the separable model

may be an accurate fit under certain channel conditions [31],deficiencies acquired by the separability

property result in misleading estimates of system performance [4], [32], [33]. The readers are referred

to [5], [32], [34] for more details on how the canonical/virtual models fit measured data better.

B. Channel State Information

If the fading is sufficiently slow, perfect CSI at the receiver is a reasonable assumption for practical

communication architectures that use a “training followedby signaling” model. Even in scenarios where

this may not be true (e.g.,a highly mobile setting), the performance with imperfect CSI at the receiver can

be approximated reasonably accurately by the perfect CSI case along with anSNR-offset corresponding

to channel estimation. Thus in this work, we will assume a perfect CSI (coherent) receiver architecture.

However, obtaining perfect CSI at the transmitter is usually difficult due to the high cost associated with

channel feedback/reverse-link training6.

On the other hand, the statistics of the fading process change over much longer time-scales and can be

learned reliably at both the ends. In addition, recent technological advances have enabled the possibility

of a few bits of quantized channel information to be fed back from the receiver to the transmitter at

6In case of Time-Division Duplexed (TDD) systems, the reciprocity of the forward and the reverse links can be exploited to

train the channel on the reverse link. In case of Frequency-Division Duplexed (FDD) systems, the channel information acquired

at the receiver has to be fed back.
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regular intervals. The most common form of quantized channel information is via a limited feedback

codebookC of 2B codewords known at both the ends. In this setup, the receiverestimates the channel at

the start of a coherence block and computes the index of the optimal codeword from the codebookC for

that realization of the channel according to some optimality criterion. It then feeds back the index of the

optimal codeword withB bits over the limited feedback link which is assumed to have negligible delay

and essentially no errors (sinceB is usually small). The transmitter exploits this information to convey

useful data over the remaining symbols in the coherence block.

C. Transceiver Architecture

The transmitted vectorFs (see (1)) has a power constraintρ. Assuming that the input symbolss(k)

have equal energyρM , the precoder matrix satisfiesTr(FHF) ≤ M . Non-linear maximum likelihood (ML)

decoding of the transmitted data symbols using knowledge ofH at the receiver is optimal. However, ML

decoding suffers from exponential complexity, in both antenna dimensions and coherence length. Thus

in practice, a simple linear receiver architecture like theMMSE receiver is preferred. With this receiver,

the symbol corresponding to thek-th data-stream is recovered by projecting the received signal y on to

theNr × 1 vector

gk =

√
ρ

M

( ρ

M
HFFHHH + INr

)−1
Hfk (4)

where fk is the k-th column ofF. That is, the recovered symbol iŝs(k) =
√

ρ
M gH

k y. The signal-to-

interference-noise ratio (SINR) at the output of the linear filtergk is

SINRk =
ρ
M |gH

k Hfk|2

gH
k

(
ρ
M

∑
i 6=k Hfif

H
i HH + INr

)
gk

=
1

(
IM + ρ

MFHHHHF
)−1

k,k

− 1 (5)

where the second equality follows from the Matrix InversionLemma.

The outputŝs(k) are passed to the decoder and we assume separate encoders/decoders for each data-

stream, as well as independent interleavers and de-interleavers, which reduces the correlation among the

interference terms at the outputs of the receiver filters. The performance measure is the mutual information

betweens andŝ. Assuming that the interference plus noise at the output of the linear filter has a Gaussian

distribution, which is true with Gaussian inputs and is a good approximation in the non-Gaussian setting

when{M,Nt, Nr} are large, the mutual information is given by

I(s; ŝ) =

M∑

k=1

log2 (1 + SINRk) = −
M∑

k=1

log2

((
IM +

ρ

M
FHHHHF

)−1

k,k

)
. (6)
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When perfect CSI is available at the transmitter and no constraints are imposed on the structure of the

precoder, the optimal precoderFperf is channel diagonalizing and is of the formFperf = ṼHΛ
1/2
wf where

VHΛHVH
H

is an eigen-decomposition ofHHH with the eigenvalues arranged in non-increasing order,

ṼH is theNt ×M principal submatrix ofVH, andΛwf is anM ×M matrix with non-negative entries

only along the leading diagonal and these entries are obtained by waterfilling. In this setting, the mutual

information is given by

Iperf(s; ŝ) =

M∑

k=1

log2

(
1 +

ρ

M
ΛH(k)Λwf(k)

)
. (7)

The optimality ofFperf with other choices of objective functions is also known; see[10]–[18].

D. Limited Feedback Framework

The focus of this work is on understanding the implications of partial CSI at the transmitter on the

performance of the precoding scheme. In particular, there exists a codebook of the formC = {Fi, i =

1, · · · , 2B} whereFi is anNt ×M precoder matrix withTr(FH
i Fi) ≤ M . The most general structure

for Fi is Fi = ViΛ
1/2
i whereVi is anNt ×M semiunitary matrix andΛi is anM ×M non-negative

definite, diagonal power allocation matrix. While the structure of the optimal limited feedback codebook

of B bits could involve allocating some fraction ofB to the power allocation component ofFi, numerical

studies indicate that the degradation in performance is minimal whenΛi is chosen to be fixed (say,Λstat

with Tr(Λstat) ≤ M ), but designed appropriately, as a function ofSNR if necessary, so that it can be

easily adapted to statistical variations without recourseto Monte Carlo methods7.

Motivated by this heuristic, in this work, all theB bits in limited feedback are allocated to quantize

the eigenspace of the channel. That is, the codebook isC = {Vi : V
H
i Vi = IM} and the index of the

codeword that is fed back is

j⋆ = argmax
j

{
−

M∑

k=1

log2

((
IM +

ρ

M
Λ

1/2
statV

H
i VHΛHVH

HViΛ
1/2
stat

)−1

k,k

)}
. (8)

Although computingj⋆ is straightforward, the design of an optimal codebook to maximize I(s; ŝ) seems

difficult. Here, we adopt a suboptimal strategy where the goal is to maximize the average projection of

the best codeword fromC onto ṼH. Towards the precise mathematical formulation of this problem, we

need a metric to define distance between two semiunitary matrices.

7The design ofΛstat will be dealt with in Sec. IV.
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E. Distance Metrics and Spherical Caps on the Grassmann Manifold

We now recall some well-known facts about the Grassmann manifold. The unit sphere inCNt ,

also known as the uni-dimensional8 complex Stiefel manifoldSt(Nt, 1), is defined asSt(Nt, 1) =
{
x ∈ CNt : ‖x‖ = 1

}
. The invariance of any vectorx to transformations of the formx 7→ ejφx in

the above definition is incorporated by considering vectorsmodulo the above map. The partitioning of

St(Nt, 1) by this equivalence map results in the uni-dimensional Grassmann manifoldG(Nt, 1). In short,

the Grassmann manifold corresponds to a linear subspace in an Euclidean space. Similarly, the class of

Nt×M semiunitary matrices forms theM -dimensional complex Stiefel manifoldSt(Nt,M) and points

on theM -dimensional complex Grassmann manifoldG(Nt,M) are identified modulo theM -dimensional

unitary space.

A literature survey of packings onG(Nt, 1) [35]–[37] shows that many distance metrics are equivalent

to the dot product metric which is the most natural metric from an engineering perspective. The dot

product metric is defined asd (x1,x2) =
√
1− |xH

1 x2|2. Using this distance metric, for anyγ < 1,

we can define aspherical capwith centero and radiusγ (as asubmanifoldon G(Nt, 1)) as the open

setO(o, γ) = {x ∈ G(Nt, 1) : d (x,o) < γ} . A spherical cap onG(Nt, 1) induces a spherical cap on

St(Nt, 1) via the equivalence partitioning generated by the mapx 7→ ejφx.

In the more generalM > 1 case, there is no unique distance metric extension. While various well-

defined distance metrics can be pursued, we will focus on theprojection 2-norm distance metric[36].

Here, the distance between twoNt ×M semiunitary matricesV1 andV2 is defined as

dproj, 2(V1,V2) = λmax

(
V1V

H
1 −V2V

H
2

)
. (9)

A particular choice of the distance metric is not extremely critical in precoder optimization since code-

books designed with different choices of distance metrics result in near-identical performance [28], [29].

In addition to this fact, the following lemma shows that the projection 2-norm metric is attractive by

being a natural generalization of the dot product metric.

Lemma 1: In theM = 1 case, the projection2-norm metric reduces to the standard dot product metric.

Proof: Let v1 andv2 be two unit-normedNt × 1 vectors. Then, the projection2-norm distance

betweenv1 andv2 is defined asdproj, 2(v1,v2) = λmax

(
v1v

H
1 − v2v

H
2

)
. We can write the matrix within

the λmax(·) operation as[v1 v2] [v1 − v2]
H . Since the non-trivial eigenvalues of a matrix productAB

8Uni-dimensional because its definition is based on the norm of an Nt × 1 vector.
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are the same as those ofBA, we need the largest eigenvalue of

X =


 vH

1

−vH
2



[
v1 v2

]
=


 1 vH

1 v2

−vH
2 v1 −1


 . (10)

Expanding the characteristic equation ofX, det(X − λI2) = 0, we haveλ2 = 1 − |vH
1 v2|2. Using the

positive root forλmax, the lemma follows immediately.

Proposition 1: We now state some properties of the projection2-norm metric:

1) 0 ≤ dproj, 2(V1,V2) ≤ 1,

2) More precisely,dproj, 2(V1,V2) =
√

1− λmin(VH
1 V2V

H
2 V1), and

3) Equality in the lower bound of 1) occurs if and only ifV1 = V2 on G(Nt,M) while equality is

possible in the upper bound if and only ifλmin(V
H
1 V2V

H
2 V1) = 0.

Proof: The proof is provided in three parts.

1) Using the fact thatV1V
H
1 −V2V

H
2 is Hermitian and its trace equals zero, we see thatλmax(V1V

H
1 −

V2V
H
2 ) < 0 is impossible. For the upper bound, note that

λmax(V1V
H
1 −V2V

H
2 ) ≤ λmax(V1V

H
1 ) = λmax(V

H
1 V1) = 1. (11)

2) We the need the following result [38] that helps in computing the determinant of partitioned matrices.

Lemma 2: If X,Y,Z andW aren× n matrices andW is invertible, we have

det


 X Y

Z W


 = det(X−YW−1Z) · det(W). (12)

Using the above fact and the trick (in Lemma 1) of rewriting the eigenvalues ofAB in terms of eigenvalues

of BA, 2) follows trivially.

3) If dproj, 2(V1,V2) = 0, then it is easy to see thatV1V
H
1 = V2V

H
2 from which we note that

V1 = V2V
H
2 V1. Observe thatVH

2 V1 is M ×M and unitary, and hence,V1 = V2 on G(Nt,M). The

other direction of the statement follows trivially. Both the directions of the upper bound follow from the

expression in 2).

The trick in proving Lemma 1 and statement 2) in Prop. 1 is useful and will be used again in the

construction of the scaling map (see Appendix B). Once a choice of distance metric has been settled, the

definition of a spherical cap with centerO and radiusγ (as a submanifold onG(Nt,M)) follows naturally

as the open setO(O, γ) = {X ∈ G(Nt,M) : dproj, 2 (X,O) < γ} . The codebook design problem can
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now be simply stated as:

Construct C = {Vi, i = 1, · · · , 2B} s.t. EH

[
min

i=1, ··· , 2B

dproj, 2(Vi, ṼH)

]
is minimized.

We now work towards a systematic codebook construction for this problem.

III. M ATCHED VERSUSM ISMATCHED CHANNELS

The case of unstructured precoding with genie-aided perfect CSI was summarized in Sec. II-C which

resulted inFperf = ṼHΛ
1/2
wf . The construction of̃VH, as well asΛwf , necessitates the tracking of the

channel evolution which is difficult. To avoid this problem and to reduce the complexity of precoding,

the following structured precoding was introduced in [29].

• When the precoder is assumed to be structured asF = VΛ
1/2
stat with V an Nt × M semiunitary

matrix, andΛstat anM ×M fixed, rank-M power allocation matrix, the optimal choice ofV under

perfect CSI isṼH. This optimality is assured for many different classes of objective functions apart

from the case of maximizing mutual information. When only statistical information is available at

the transmitter, the optimal choice ofV is Vstat whereVstat is a set ofM dominant eigenvectors

of Σt, the transmit covariance matrix. We call these two schemesoptimal and statistical structured

precoding schemes, respectively.

• We study the performance loss between these two schemes as a function of the channel statistics.

When one antenna dimension grows to infinity at a rate faster than the other9, which we refer to as

the relative antenna asymptoticscase, channel hardening leads to convergence of the right singular

values of the channel to the eigenvalues ofΣt and hence, ensures that the statistical scheme performs

near-optimally. This conclusion generalizes prior results in the beamforming case where statistical

beamforming is shown to be near-optimal in the relative antenna asymptotics setting [25].

• Further, for any reasonably large (but fixed) value of antenna dimensions, the relative performance

loss between the two schemes is minimized by the following choice of statistics: 1) The set of transmit

eigenvalues{Λt(i)} can be partitioned into two components: a well-conditionedcomponent ofM

dominant eigenvalues, and the remainingNt−M transmit eigenvalues are ill-conditioned away from

the dominant set, and 2) The set of receive eigenvalues{Λr(i)} are well-conditioned. In particular,

if Tr(Σt) = Tr(Σr) = NtNr, the structure ofΛt and Λr that minimizes performance loss is

Λt(1) = · · · = Λt(M) = NtNr

M ,Λt(M+1) = · · · = Λt(Nt) = 0, andΛr(1) = · · · = Λr(Nr) = Nt.

9That is, whenNt

Nr
→ 0 or ∞ as{Nt, Nr} → ∞.
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Such a channel is said to bematchedto the precoding scheme. On the other extreme, statistical

structured precoding in an i.i.d. channel leads to very highperformance loss when compared with

the optimal scheme. Thus, an i.i.d. channel ismismatchedto the precoding scheme. More important

to note is that any feedback (limited or otherwise) is helpful only in mismatched channels and only

when the transmit and the receive dimensions are proportionate. This conclusion is a generalization

of our earlier beamforming result [25].

The readers are referred to [29] for details. Henceforth, the focus will be on mismatched channels

primarily because the potential to bridge the performance gap between the statistical and perfect CSI

schemes is maximum. Our goal is to construct a systematic, statistics-dependent codebook (of a fixed

size2B) that ensures this bridging.

IV. QUANTIZED FEEDBACK DESIGNS TOBRIDGE THE PERFORMANCEGAP

In contrast to the i.i.d. case where the isotropicity of the right singular subspace of the channel leads to

a design [28] based on Grassmannian subspace packings [37],spatial correlation skews this isotropicity

and poses fundamental challenges. The study of statisticalprecoding motivates the following heuristic

in the correlated case. While the asymptotic channel hardening (and the consequent near-optimality of

statistical precoding) does not carry over whenNt andNr are small or when they are proportionate, it is

expected that the distance betweenVstat andṼH is small on average. Thus, when we have the freedom

to pick more than one codeword (B > 0), the codewords should correspond to a “local quantization” of

Vstat. The notion of local quantization will be made precise shortly.

We now describe the codebook design for limited feedback precoding. Our design is a multi-mode

generalization of the beamforming codebook proposed in [25], [39]. The differences between the two

schemes lie in packing subspaces, rather than lines, and in the choice of an appropriate distance met-

ric. For this, we introduce the notion ofgeneralized eigenvaluesof subspaces ofΣt. Consider the

family of subspaces spanned byM distinct eigenvectors ofΣt. Note that there are
(
Nt

M

)
members

in this family. For each such subspace, we associate ageneralized eigenvaluedefined as theM -fold

product of the corresponding transmit eigenvalues. For example, if Nt = 4 and M = 2 with the

columns ofUt denoted byui, i = 1, · · · , 4, the six subspaces correspond to the4 × 2 matrices:

[u1u2], [u1 u3], [u1 u4], [u2 u3], [u2 u4] and [u3u4]. The generalized eigenvalue corresponding to[u1u2]

is Λt(1)Λt(2) etc. Note that among all theM -dimensional subspaces ofΣt, the subspace spanned by

Vstat results in the largest generalized eigenvalue.
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The proposed codebook design has three components: 1) a statistical component, 2) local perturbation

components, and 3) an RVQ component. The cardinalities of these components are denoted byNstat, Nloc

andNrvq with the feedback rate defined byB = log2(Nstat +Nloc +Nrvq).

Statistical Component: While the distance betweenVstat andṼH, an instantaneous realization of theM -

dominant right singular vectors of the channel is expected to be small on average, the precise probability

distribution of this distance is determined by the separation (gap) between the generalized eigenvalues of

Σt. For example, if the first two dominant generalized eigenvalues are close to each other, there is a non-

negligible probability for the event that the best quantizer is the subspace whose generalized eigenvalue is

the smaller of the two and hence, the distance betweenVstat and the optimal precoder could be arbitrarily

close10 to 1. On the other hand, if the largest generalized eigenvalue ofΣt is much larger than the other

generalized eigenvalues, the probability distribution ofthis distance is concentrated around zero. Thus

the gap between the largest generalized eigenvalue and the other generalized eigenvalues heuristically

determines the cardinality of the statistical component,Nstat. In our design, a thresholdβ is chosen

a priori for the generalized eigenvalues and the statistical component consists of allM -dimensional

subspaces such that their generalized eigenvalue exceeds the threshold. That is, thestatistical component

is the setS =
{
i : µi

µ1

> β
}

whereµi are theM -fold generalized eigenvalues ofΣt andµ1 is the largest

generalized eigenvalue. The cardinality ofS is Nstat.

[u1 u2]

[u1 u3]

[u2 u3]

Fig. 1. Proposed Codebook Design forNt = 3,M = 2, andB = 3 with only the statistical and local components.

Local Components: For thei-th member of the statistical component, we constructN i
loc codewords so

10Note from Prop. 1 that the distance between the first two dominant eigen-spaces ofΣt is 1. This is because

λmin(V
H
1 V2V

H
2 V1) = 0 whereV1 andV2 denote the first two dominant eigen-spaces.
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that they are localized and well-packed around the corresponding statistical codeword. While these local

codewords can theoretically be designed via VQ, we provide low-complexity alternatives in Sec. V where

we also elaborate on the notions oflocalized and well-packed. The choice ofN i
loc is in proportion to

the generalized eigenvalue of the subspace. The heuristic behind this choice is as follows: The larger the

separation of the generalized eigenvalueµ1 (corresponding toVstat) from the next largest generalized

eigenvalue or the more matchedΣt is, the lesser the relevance of the less-dominant subspacesin terms

of precoding and hence, the smaller the values of{N i
loc}, i > 1 need to be. TheseNloc =

∑Nstat

i=1 N i
loc

codewords form thelocal componentof our codebook design.

In Fig. 1, we illustrate the design of a codebook with statistical and local components whereNt =

3,M = 2, Nstat = 3, N1
loc = N2

loc = 2 and N3
loc = 1. If Ut = [u1u2u3], then the three statistical

transmit eigenspaces withM = 2 are those spanned by[u1u2], [u1u3] and [u2u3]. The “directions”

corresponding to these subspaces are symbolically represented in the figure with dashed lines. The first

local component consists of two codewords around[u1u2] and so on. Since there are eight codewords

in our design, this codebook can be parameterized withB = 3 bits.

RVQ Component: If B is sufficiently large, there is a need to refine the quantization of ṼH. In this

setting,Nrvq , 2B −Nstat −Nloc random channel matrices are generated according to the relationship

in (2) and theirM -dominant right singular vectors are used as the semiunitary precoder codewords in the

RVQ component. Note that the RVQ component can be generated with low-complexity once the statistics

are known perfectly.

A. Power Allocation

It is preferred that the power allocation matrixΛstat be only dependent on the channel statistics

and be easily adaptable to statistical variations. The optimal choice ofΛstat needs to be constructed

via a Monte Carlo algorithm which is difficult to implement aswell as adapt to statistical variations

with low-complexity. As an alternative, we consider three low-complexity power allocations: 1) uniform

power allocation across the excited modes, 2) waterfilling based onΛt(i), i = 1, · · · , M , and 3) power

allocation proportional to the transmit eigenvalues. The last two schemes have near-identical performances

and are near-optimal in the low-SNR regime while uniform power allocation is more useful in the high-

SNR regime.
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B. Codeword Selection

The receiver acquires the channel information at the start of a coherence block and it computes the

index of the optimal codeword from the codebook that maximizes the instantaneous mutual information.

The receiver then communicates to the transmitter the indexof the optimal codeword withB bits. The

transmitter uses the optimal codeword along with an appropriate power allocation to communicate over

the remaining period in the coherence block.

θ

V2

V3

V4

V5

dproj,2(V3,V4) ≥ γ

Vtarget

dproj,2(V3,V4) remains same

V1

V1

(a)

θ

V2

V3

V4

V5

dproj,2(V3,V4) ≥ γ dproj,2(V1,Vi) scaled by α

θα

V1 V1

(b)

Fig. 2. (a) Rotation of a root codeset of semiunitary precoders {Vi, i = 1, · · · , 5} with Nt = 3 andM = 2. The root codeset

satisfies the localization and well-packing properties described in Sec. V. The distance between any two precoders remains

unchanged after rotation. (b) Scaling of the root codeset byα. The position ofV1 remains unchanged after scaling.

V. ROTATING AND SCALING SPHERICAL CAPS ONG(Nt,M)

We now propose mathematical maps to ensure that the codebookdesign proposed above can be realized

with low-complexity. For this, we need the notion of aroot codeset.Let R = {Vi, i = 1, · · · , N} be a
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root codeset11 of N semiunitary matrices satisfying the following propertieswhich are characteristic of

a ‘good’ local quantization:

1) Localization: The root codeset is localized (centered) aroundV1. That is, there exists aθ ∈ (0, 1)

such thatdproj, 2(V1,Vi) ≤ θ for all i 6= 1. The smaller the value ofθ, the more localized a

packing. We often labelV1 as thecenter of the root codeset. This is illustrated in Fig. 2 where a

set ofN = 5 precoders form the localized root codeset in theNt = 3,M = 2 setting.

2) Well-Packing: The codewords inR are well-packed (well-separated). That is, given someγ ∈
(0, γmax(Nt,M,N, θ)), the minimum distance of the packingdmin(R) defined asdmin(R) ,

mini 6=j dproj, 2(Vi,Vj) is larger thanγ. The larger the value ofγ, the well-packedR is. Henceγ

can also be viewed as a measure of the packing density. Here,γmax(Nt,M,N, θ) is the maximum

possible packing density12 achievable in the Grassmann manifoldG(Nt,M) with N codewords

localized in a cap of radiusθ.

Note that for any fixed choice ofNt,M andN , it is intuitive to expect thatγmax(Nt,M,N, θ) decreases

asθ decreases. In other words, the above two properties are in some sense conflicting with a root codeset

that is more localized necessarily forced to have a small packing density andvice versa.

Despite this apparent difficulty, it is important to note that a packing with the above properties can

always be constructed, either via algebraic methods or via a vectorquantization [21], [22] approach

(that is, a brute force search via Monte Carlo-type algorithms). Furthermore,R needs to be constructed

(offline) just once, and once this has been done,C can be designed for any statistics starting fromR. For

this, we now show how mathematical operations can be constructed to perform the following two tasks:

1) Given a root codesetR of N codewords with a packing densityγ and a target centerVtarget, how

can we centerR aroundVtarget without having to resort to a VQ-type codebook constructionagain?

That is, we seek a map to rotate the center ofR to Vtarget without changing the packing density, and

2) Given a root codesetR centered aroundV1 with a packing density ofγ and some fixedα ∈ (0, 1),

how can we scaleR so that the packing density of the resultant codeset isαγ? That is, we seek a map

to reduce the minimum distance ofR without changing its center.

While we develop such maps for spherical caps/submanifolds, we will state the results as applicable

to finite element subsets ofG(Nt,M). But prior to that, we recall results from a recent work [40] where

11We use the term root codeset to indicate that the construction of C is rooted in the design of a ‘good’R.

12While the exact characterization ofγmax(Nt,M,N, θ) remains an open problem for general values ofNt,M , N and θ,

some bounds have been established; see [19], [24], [36], [37] and references therein.
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rotation and scaling maps to solve 1) and 2) (as above) have been proposed in the beamforming case

(M = 1). The rotation map is straightforward and is effected by an appropriately chosen unitary matrix.

In contrast to the rotation operation, the scaling map requires some care due to the constraints of the

space. For example, an operation of the formx 7→ αx whereα ∈ R yields a vector that is not unit-norm.

It is to be noted that both rotation and scaling maps are non-unique. We summarize the map of [40] in

the following lemma13 for M = 1.

Lemma 3 (See [40]):Let R = {vi, i = 1, · · · , N} be a root codeset inG(Nt, 1) with a packing

densityγ and centerv1. The map that effects the rotation ofv1 to vtarget is given byr(vi) = Utargetvi

with Utarget satisfying14 vtarget = Utargetv1. For scaling byα, we first define a rotation maprvertex

generated by a unitary matrixUvertex that effects the rotation of the centerv1 to vvertex = [1, 0, · · · , 0]T ,

a vertex of the unit cube. Then, define a vertex scaling mapsvertex : O(vvertex, γ) 7→ O(vvertex, αγ) by

svertex

(
[r1e

jθ1 , r2e
jθ2 , · · · , rNt

ejθNt ]T
)
=

[√
1− α2(1− r21)e

jθ1 , αr2e
jθ2 , · · · , αrNt

ejθNt

]T
(13)

where we have denoted the vector in the argument on the left side of the above equation in its polar

form. The mapsbf(·) defined as a compositionsbf = r−1
vertex ◦ svertex ◦ rvertex results in

sbf(vi) = v1

√
1− α2(1− |vH

1 vi|2)ej∠v
H

1
vi + αv⊥

1 v
⊥, H
1 vi. (14)

It can be checked thatsbf(v1) = v1 on G(Nt, 1). Furthermore, the inner product of the second term with

v1 is zero. Hence,d (sbf(vi), sbf(v1)) = d (sbf(vi),v1) = αd(vi,v1) for all i.

The rotation and scaling maps to be proposed now generalize the result of [40] to the precoding

scenario,M > 1.

Theorem 1:Let R = {Vi, i = 1, · · · , N} be a root codeset centered aroundV1 with a packing density

γ. Let theNt×M semiunitary matrixVtarget be the desired center of the rotated codeset. Then, the rotated

codesetG is given byG = {Gi, i = 1, · · · , N} whereGi = UVtarget
UH

V1

Vi with unitary matricesUV1

andUVtarget
defined asUV1

=
[
V1 Vnull

1

]
andUVtarget

=
[
Vtarget Vnull

target

]
. Here,Vnull

1 andVnull
target are

Nt × (Nt −M)-dimensional representatives of the null-spaces ofV1 andVtarget, respectively.

Proof: See Appendix A.

13The readers are referred to [25] for details of the proof.

14One possible choice ofUtarget is Utarget =
ˆ

vtarget v
⊥
target

˜

h

v1 v
⊥
1

iH

where v
⊥
target and v

⊥
1 refer to matrix

representatives from theNt × (Nt − 1) dimensional null-space ofvtarget and v1, respectively. That is,v⊥, H

1
v
⊥
1 = INt−1

andv⊥, H
1

v1 = 0Nt−1×1.
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Note that there exists more than one basis for the null-spaceand therefore the usage of the term

“representative” in the statement of the theorem. The lack of a unique representative for the null-space

is responsible for the non-uniqueness of the rotation map that can effect a desired rotation.

Before we get into the most general form of the scaling map, weillustrate a special case of it so as to

provide insights into the construction. As before, letR = {Vi, i = 1, · · · , N} be a root codeset centered

aroundV1 with a packing densityγ. Let V1 = [v1 · · ·vM ] wherevi is anNt × 1 vector and is thei-th

column ofV1. Define the maps(·) by

s(Vi) =
[
v1 v2 · · · vM−1 βvM + δvM+1

]
(15)

whereβ =
√

1− α2
(
1− λmin

(
VH

1 ViV
H
i V1

))
, δ = α

√
1− λmin

(
VH

1 ViV
H
i V1

)
, andvM+1 is or-

thogonal toV1 (that is,vH
M+1V1 = 01×M ). We illustrate three properties satisfied bys(·) which ensures

that it can scale submanifolds. Noting thatvi, i = 1, · · · ,M +1 are orthonormal vectors inCNt and that

β2 + δ2 = 1, it is straightforward to check thats(Vi)
Hs(Vi) = IM . For s(V1), note thatβ = 1 and

δ = 0 which results ins(V1) = V1.

Proposition 2: We also haved(s(V1), s(Vi)) = αd(V1,Vi) for any i 6= 1. Thus,s(·) induces the

scaling ofR by α.

Proof : Note that d(s(V1), s(Vi))
(a)
= d(V1, s(Vi)) = λmax(V1V

H
1 − s(Vi)s(Vi)

H)

(b)
= λmax(vMvH

M − (βvM + δvM+1)(βvM + δvM+1)
H)(16)

where in (a) we have useds(V1) = V1 and (b) follows from (15). Using the trick of Lemma 1, observe

that the square ofλmax in the above equation satisfiesλ2
max = 1 − |vH

M (βvM + δvM+1)|2 = 1 − β2 =

α2(1− λmin(V
H
1 ViV

H
i V1)). The proof is complete by noting the value ofd(V1,Vi) from Prop. 1.

The choice ofvM+1 is not unique and it is not clear whether the map in (15) is unique modulo the

choice ofvM+1. Furthermore, note that when(Nt −M) ≥ M , s(Vi) can be written as

s(Vi) = V1Ai +Vnull
1 Bi (17)

whereAi = diag([1, · · · , 1, β]) andBi has only one non-zero entry which is at the(M,M)-th location

and its value isδ. In Appendix B, we resolve the uniqueness issue and construct the most general form

of s(·). We also show that the most general form ofs(Vi) is of the form in (17) for a suitable choice

of Ai andBi.
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A. Reduction to the Beamforming Construction of Lemma 3

Corollary 1: In the special case ofM = 1, the scaling map proposed in (15) (and extended in

Theorem 2 of Appendix B) is a generalization of the map proposed in Lemma 3 (see (14)).

Proof: For the sake of simplicity, we denote the map constructed in (15) assgen(·). We writesgen(·)
assgen(vi) =

√
λiv1 +

√
1− λiv

null
1 whereλi = 1− α2(1− |vH

1 vi|2) andvnull
1 is anNt × 1 unit norm

vector orthogonal tov1. We now draw a correspondence betweensbf(·) andsgen(·).
In Lemma 3, note thatUvertexU

H
vertex = INt

which implies thatv⊥
1 v

⊥, H
1 = INt−1. Using the fact that

UH
vertexUvertex = INt

, similarly we obtainv⊥, H
1 v⊥

1 = INt
− v1v

H
1 . Using this in (14), we have

sbf(vi) =
√

1− α2(1− |vH
1 vi|2)ej∠v

H

1
viv1 + α(vi − v1(v

H
1 vi)) (18)

=
√

λie
j∠vH

1
viv1 + α(vi − v1(v

H
1 vi)). (19)

It is straightforward but surprising to note thatvi−v1(vH

1
vi)√

1−|vH

i
v1|2

is both unit norm and orthogonal tov1.

Further, note that
√
1− λi = α

√
1− |vH

i v1|2. By setting vi−v1(vH

1
vi)√

1−|vH

i
v1|2

as the representative ofvnull
1 in

the general framework, we see thatsbf(·) can be obtained up to a phase term. And since we operate on

the Grassmann manifold which is impervious to right multiplication by terms of the formejθ, we have

proved the corollary.

B. Low-Complexity Generation of Local Components

We now illustrate how the theory of rotation and scaling mapscan be used to construct precoding

codebooks with low-complexity.

Root Codeset Generation: A root codeset that satisfies the localization and well-packing conditions as

described above is constructed via VQ. The number of codewords in the root codeset is larger than

N1
loc so as to ensure that any local component has a cardinality smaller than that of the root codeset.

Furthermore, since the scaling map can only ensure that the output packing is more localized than the

input packing, we need to pickθ sufficiently large, but smaller than1. The quantityγmax(Nt,M,N, θ)

corresponding to the choices ofNt,M,N andθ is determined via Monte Carlo techniques and someγ

is chosen in the interval(0, γmax(Nt,M,N, θ)).

Local Components: For each member of the statistical component, we rotate the root codeset (via the

rotation map of Theorem 1) to theNt ×M matrix corresponding to the subspace ofΣt in the statistical

component. Then, each rotated codeset is scaled by a shrinking factorαi ,
µi

µ1

. That is, we scale each

rotated codeset in proportion to the generalized eigenvalue of that subspace. From each rotated codeset

of N codewords, we retainN i
loc, i = 1, · · · , Nstat codewords. The heuristic behind the choice ofN i

loc
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has been explained in the previous section. The same heuristic can be used to justify the choice ofαi as

well.

C. Exploiting the General Structure of the Scaling and Rotation Maps

We now delve into why a general form of the maps in Appendix B isuseful. In many practical

systems, it is desired that the precoder codebook has more structure so as to ensure implementation ease.

For example, two commonly desired properties are:

1) Bounded Gain Power Amplifier Architecturewhere we require

max
Vi ∈C

maxmn |Vi(m,n)|
minmn |Vi(m,n)| ≤ η. (20)

The above condition is useful in ensuring that the power amplifiers used in the radio link chain are not

driven to their operational limits. The most general form ofthe rotation and scaling maps allows one to

search for a codebook that satisfies the above property in addition to the localization and well-packing

properties, and

2) Recursive Codebook Structurewhere a codebook ofrank-Nsmall can be generated from a codebook of

rank-Nlarge (with Nlarge > Nsmall) by retaining only a subset ofNsmall columns from every precoder in the

rank-Nlarge codebook. This property is desired so as to minimize the algorithmic complexity of generating

a family of codebooks of different rankson the fly. The low-complexity property of the proposed maps

and theoffline generation of the root codesets of different ranks ensure that this issue is redundant with

our codebook design.

Thus, we strongly generalize the maps of [40] and as a by-product observe that even in theM = 1

case, a rich family of maps can effect the scaling operation other than (14). Additional structure in the

codebook can also be accommodated to ease implementation complexity.

VI. N UMERICAL RESULTS

We now illustrate via numerical studies the performance gains possible with our codebook construction

and the consequent bridging of the gap between statistical and optimal precoding. In the first study, we

consider a4 × 4 channel under the separable model withΛt = diag ([14.98 0.50 0.26 0.26]) and

Λr = diag ([15.5 0.25 0.15 0.10]). This choice ensures that the transmit/receive covariance matrices

are both ill-conditioned and withM = 2, note that the channel isnot matched to the precoder. We first

generate a root codeset ofN = 4 codewords withθ ≈ 0.76 and γ ≈ 0.75 via VQ. Let {ui} be the

column vectors ofUt. The codebook used forB = 1 satisfiesNstat = 1 with the codeword corresponding
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Fig. 3. (a) Average mutual information with Gaussian inputsin a 4× 4 mismatchedchannel following a separable model. Two

data-streams are used in signaling and a limited feedback codebook designed along the principle elucidated in Sec. IV isused.

(b) Error probability performance with the same codebook under QPSK inputs.

to [u1 u2] andNrvq = 1 while with B = 2, the codebook has an additional RVQ codeword and a local

codeword around[u1 u2]. Similarly, withB = 4, Nstat = 3, N1
loc = N2

loc = 3, N3
loc = 2 andNrvq = 5. The

statistical codewords correspond to[u1 ui], i = 2, · · · , 4. Since we are mainly interested in illustrating

the performance gains in the high-SNR regime, uniform power allocation is used forΛstat.

Fig. 3(a) shows the average mutual information with a Gaussian input for statistical and limited feedback

precoding. In addition to the mutual information, raw bit error rate (BER) is useful as well. Fig 3(b) shows

the improvement in error probability in the same channel with QPSK inputs. In the error probability case,

the index of the codeword that minimizes the distance to the instantaneous̃VH is fed back. Note that

while the performance gap between the optimal and the statistical schemes is significantly bridged in

the error probability case, further improvement in mutual information is possible. Nevertheless, both the

figures show that substantial gains are possible with a few bits of feedback. For example, withB = 4

bits of feedback, a3 dB gain is possible at a rate of10 bps/Hz while a6 dB gain is possible at a BER

of 10−3. Also, note that an i.i.d. codebook design incurs a dramaticloss in performance in correlated

channels.

In the second study, we consider a4× 4 channel with non-separable correlation following the virtual
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Fig. 4. Average mutual information with Gaussian inputs in a4 × 4 mismatchedchannel with non-separable correlation and

M = 3.

representation framework. The variance matrixσ(i, j) , E
[
|Hind(i, j)|2

]
used in the study is

σ =




1.24 1.42 7.49 0.23

0.41 0.14 0.42 0.03

0.72 1.39 0.07 0.02

0.28 0.13 0.50 1.51



. (21)

Note that the channel has a single dominant transmit (as wellas receive) eigen-mode and is hence

mismatched whenM = 3 data-streams are used in signaling. The parameters of the root codeset are

N = 4, θ ≈ 0.87 andγ ≈ 0.84. As before, let{ui} be the column vectors of the DFT matrixUt. The

codebook forB = 1 has the two statistical codewords[u3 u2 u1] and[u3 u2 u4]. ForB = 2, we use two

additional RVQ codewords and forB = 4, we useNstat = 3, N1
loc = N2

loc = 3, N3
loc = 2 andNrvq = 5.

The third statistical codeword whenB = 4 is [u3 u1 u4]. Fig. 4 illustrates the bridging of the gap in

mutual information between the optimal and the statisticalschemes. It is important to note that both the

channels studied here are so constructed to result in a substantial performance gap between perfect CSI

and statistical signaling. In more realistic channels thatare not so poorly matched, we expect an even

better performance with our scheme. Thus our studies illustrate that substantial gains can be achieved

even with few bits of feedback.
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VII. C ONCLUDING REMARKS

In this work, we have studied linear precoding under a realistic system model. In particular, the focus

is on the impact of spatial correlation when perfect CSI is available at the receiver, statistical information

is available at both the ends, and quantized channel information is fed back from the receiver to the

transmitter. While initial works on precoding assume perfect CSI at both the ends and hence do not

impose any particular structure on the precoder matrices, under the model studied here, we see that

structure can help in minimizing the reverse-link feedbackas well as ease the implementation complexity.

We introduced the notion of matched and mismatched channelsand illustrated that limited feedback

precoding is useful only in the case of mismatched channels.The study of statistical precoding motivates

the proposed limited feedback design where we quantize the space of semiunitary matrices with a non-

uniform bias towards the statistically dominant eigen-modes. The design as well as its adaptability are

rendered practical by the construction of mathematical maps (operations) that can rotate and scale subman-

ifolds on the Grassmann manifold. More importantly, numerical studies show that the proposed designs

yield significant improvement in performance when the channel is mismatched to the communication

scheme.

This work is a first attempt at systematic precoder codebook design in single-user multi-antenna

channels that exploits spatial correlation. Possible extensions are the study of more complex receiver

architectures and performance analysis in the finite antenna, arbitrarySNR setting, along the lines of [29].

More work also needs to be done to understand the impact of spatial correlation on the performance of the

proposed limited feedback scheme which could in turn drive the development of more efficient codebook

constructions. Open issues that need further study includepractical aspects like codebook designs for

wideband channels, codebook designs based on Fourier/Hadamard matrices that are useful in achieving

the bounded gain power amplifier architecture and hence, have found much interest in the standardization

community, incorporating the cost of statistics acquisition in performance analysis [41], and more general

scattering environment-independent channel decompositions [42] that mimic the physical model closely.

The case of multi-user systems with feedback, which has attracted significant recent interest, is another

area for study.

We close the paper by drawing attention to the philosophy that has guided this work. While deducing

the structure of the optimal signaling scheme under generalassumptions on spatial correlation and channel

information seems extremely difficult, an alternative approach that partitions this problem into smaller

sub-problems could be quite fruitful. The general idea of matching the rank of the precoding scheme to the
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number of dominant transmit eigenvalues with the resolution necessary to decide whether an eigenvalue

is “dominant” or not being a function of theSNR reminds one of the classical source-channel matching

paradigm [43]. Initial evidence seen in this paper also suggests that this partitioning provides a natural

framework to understand the performance of limited feedback schemes.

APPENDIX

A. Proof of Theorem 1

The efficacy of the rotation map is established if we can show the following:

1) GH
i Gi = IM for all i,

2) G1 = Vtarget, and

3) dproj, 2(G1,Gi) = dproj, 2(V1,Vi) for all i.

To prove 1), first note thatUV1
and UVtarget

are Nt × Nt unitary matrices. From the semiunitarity

property ofVi, GH
i Gi = IM follows trivially. Using the unitary property ofUV1

and the decomposition

in the statement of the theorem, 2) also follows trivially. For 3), note that

dproj, 2(G1,Gi) = λmax

(
G1G

H
1 −GiG

H
i

)

= λmax

(
UVtarget

UH
V1

(
V1V

H
1 −ViV

H
i

)
UV1

UH
Vtarget

)
= dproj, 2(V1,Vi). (22)

In the above chain of equalities, we have used the fact thatλ(AB) = λ(BA) and the unitary property

of UV1
andUVtarget

. Thus the proof is complete.

B. Generalized Scaling Map

Theorem 2:Let R be a root codeset with packing densityγ and centerV1. Let UA and W be

arbitraryM × M unitary matrices and letUB be an arbitrary(Nt − M) × (Nt − M) unitary matrix.

Givenα ∈ (0, 1) andM ≤ (Nt −M), for anyVi ∈ R, generate anM ×M diagonal, positive-definite

matrix Λi with: Λmin , minj Λi(j) = 1− α2
(
1− λmin(V

H
1 ViV

H
i V1)

)
andΛmax , maxj Λi(j) ≤ 1.

Then, defineAi asAi = UAΛ
1/2
i WH . Define theM ×M principal component of the(Nt −M)×M

diagonal matrixΛB as (IM −Λi)
1/2 andBi asBi = UBΛ

1/2
B

WH .

If M > (Nt−M), for anyVi ∈ R, generate an(Nt−M)× (Nt−M) diagonal, positive-semidefinite

matrixΓi with: Γmax , maxj Γi(j) = α2
(
1− λmin(V

H
1 ViV

H
i V1)

)
andΓmin , minj Γi(j) ≥ 0. Then,

defineBi asUBΛ
1/2
B

WH with the principal(Nt−M)× (Nt−M) component ofΛB beingΓi. Define

Ai asAi = UAΛAWH with the principal(Nt−M)× (Nt−M) component ofΛA beingINt−M −Γi

and the principal southeast component beingI2M−Nt
.
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Then, the scaling maps(·) that leads to a packing density ofγα is given by

s(Vi) = V1Ai +Vnull
1 Bi (23)

whereVnull
1 is a representative of the null-space corresponding toV1.

Proof: Let rU denote the rotation effected by a unitary matrixU. Since the scaling operation has to

keep the center of a root codeset fixed, in the sequel, we use a fixedNt×M matrix as the center instead

of V1 which is dependent on the choice ofR. This is achieved by a composition of three operations:

s(·) = rUV1
⊙ svertex ⊙ rUH

V1

(·). (24)

Here,rUH

V1

(·) rotates the root codeset to the canonical precoder[IM OM×(Nt−M)]
T while svertex(·) scales

(shrinks) the canonical codeset by a factorα andrUV1
rotates it back to the direction corresponding to

V1. From the above definition ofs(·), we have

s(Vi) =
[
V1 Vnull

1

]
svertex




 VH

1 Vi

V
null,H
1 Vi




 =

[
V1 Vnull

1

]

 Ai

Bi


 = V1Ai +Vnull

1 Bi

where we have used a partitioning[AT
i BT

i ]
T for theNt×M matrix svertex




 VH

1 Vi

V
null,H
1 Vi




. In this

partitioning,Ai is M ×M and is of full rank whileBi is an (Nt −M)×M matrix.

Given thatVH
1 V1 = IM , VH

1 Vnull
1 = OM×(Nt−M) and V

null,H
1 Vnull

1 = INt−M , the relationship

AH
i Ai +BH

i Bi = IM ensures thats(Vi) is semiunitary. We show thatAi andBi have to be as in the

statement of the theorem so that the following properties ofs(·) are met:

1) dproj, 2(s(V1), s(Vi)) = αdproj, 2(V1,Vi) for all i, and

2) s(V1) = V1.

First, let us consider the distance scaling property. Assuming 2) (which we check subsequently) and

following Prop. 1, we need

λmax(C) = λmax

(
V1V

H
1 − s(Vi)s(Vi)

H
)
= α

√
1− λmin(VH

1 ViV
H
i V1) (25)

whereC , V1V
H
1 −V1AiA

H
i VH

1 −Vnull
1 BiA

H
i VH

1 −V1AiB
H
i V

null,H
1 −Vnull

1 BiB
H
i V

null,H
1 . In the

expansion forC, we have used the relationship in (23). We can decomposeC asC2C
T
1 where

CT
1 =




VH
1

AH
i VH

1

BH
i V

null,H
1

BH
i V

null,H
1



, C2 =

[
V1(IM −AiA

H
i ) −Vnull

1 Bi −V1Ai −Vnull
1 Bi

]
. (26)
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Note that the non-trivial eigenvalues ofAB are the same as those ofBA. Hence,λmax(C) = λmax(C
T
1 C2).

Using the factsVH
1 V1 = IM , VH

1 Vnull
1 = OM×(Nt−M) andV

null,H
1 Vnull

1 = INt−M , observe that the

4M × 4M matrix CT
1C2 is given by

CT
1C2 =




IM −AiA
H
i OM −Ai OM

AH
i (IM −AiA

H
i ) OM −AH

i Ai OM

OM −BH
i Bi OM −BH

i Bi

OM −BH
i Bi OM −BH

i Bi



. (27)

We will now show that the largest eigenvalue ofCT
1 C2 can be computed in closed-form. For this,

we need to solve forλ by settingdet(CT
1 C2 − λI4M ) = 0. Towards this computation, we need to use

Lemma 2 following which, we have

det(CT
1 C2 − λI4M )

det(−BH
i Bi − λIM)

= det




IM −AiA
H
i − λIM OM −Ai

AH
i (IM −AiA

H
i ) −λIM −AH

i Ai

OM −λBH
i Bi(B

H
i Bi + λIM )−1 −λIM


 . (28)

With κ = det(−BH
i Bi − λIM ) det(−λIM), upon another application of Lemma 2 we have

det(CT
1C2 − λI4M )

κ
= det


 IM −AiA

H
i − λIM AiB

H
i Bi(B

H
i Bi + λIM )−1

AH
i (I−AiA

H
i ) −λIM +AH

i AiB
H
i Bi(B

H
i Bi + λIM )−1


 (29)

which can be simplified to

det(CT
1 C2 − λI4M )

= det(−BH
i Bi − λIM) det(−λIM ) det(−λIM +AH

i AiB
H
i Bi(B

H
i Bi + λIM)−1)

× det(−λIM − λA−H
i (−λIM +AH

i AiB
H
i Bi(B

H
i Bi + λIM )−1)−1AH

i (IM −AiA
H
i )).

Note thatdet(CT
1 C2 − λI4M ) = 0 has4M solutions forλ with the solution from the first two terms

being non-positive. Setting the fourth term to zero, and using the facts thatdet(I+CD) = det(I+DC)

andIM = AH
i Ai +BH

i Bi, we see thatλ has to satisfy:

− 1− λi((−λIM +AH
i Ai(IM −AH

i Ai)(IM + λIM −AH
i Ai)

−1)−1(IM −AH
i Ai)) = 0. (30)

After some straightforward simplifications, we can check that λ is a solution to

λi(λ(IM −AH
i Ai)

−1 −AH
i Ai(IM + λIM −AH

i Ai)
−1) = 1. (31)

Assume a singular value decomposition forAi andBi of the form:Ai = UAΛ
1/2
A

WH
A

andBi =

UBΛ
1/2
B

WH
B

, respectively whereUA,WA andWB areM ×M unitary matrices, andUB is an(Nt−
M) × (Nt −M) unitary matrix. The full-rankness ofAi means that theM ×M diagonal matrixΛA
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is positive definite while the(Nt −M)×M matrix ΛB has non-negative entries only along the leading

diagonal. SinceAH
i Ai+BH

i Bi = IM , we haveIM −ΛA = WH
A
WB(Λ

T
B
ΛB)

1/2WH
B
WA. Comparing

the two sides, we see thatWA = WB (we set both to beW) andIM −ΛA = (ΛT
B
ΛB)

1/2. Note that

since there are no constraints on/relationship betweenUA andUB, the leading diagonal entries ofΛA

andΛB can be in any order. This is because either unitary matrix canbe appropriately adjusted by a

permutation matrix.

Plugging in AH
i Ai = WΛAWH in (31), a routine computation yieldsM solutions toλ of the

form: λ2 = 1 − ΛA(i). With the same form ofAH
i Ai, by setting the third term to zero, we obtain

anotherM solutionsλ =
√
1−ΛA(i) ·

(√
1+3ΛA(i)−

√
1+ΛA(i)

2

)
. Note that

√
1+3ΛA(i)−

√
1+ΛA(i)

2 < 1

and hence,λmax(C) is obtained by settingi = M in the above solution which results inλmax(C) =
√

1− λmin(AHA). Using this in (25), we get the expression forλmin(A
H
i Ai). Furthermore,IM =

AH
i Ai +BH

i Bi implies that

1 = λmax(A
H
i Ai +BH

i Bi) ≥ λmax(A
H
i Ai) + λmin(B

H
i Bi) ≥ {λmax(A

H
i Ai), λmax(B

H
i Bi)}. (32)

These are the constraints to be imposed onΛA to ensure that the scaling map preserves semiunitarity

and reduces the minimum distance byα.

If M ≤ (Nt − M), without loss in generality assume that the diagonal entries of ΛA are in non-

increasing order while those ofΛB may be not. Given a choice ofΛA, the conditionIM − ΛA =

(ΛT
B
ΛB)

1/2 can be met by choosing the principalM ×M component ofΛB to be (IM −ΛA)1/2. If

M > (Nt −M), assume that the diagonal entries ofΛB are in non-increasing order while those ofΛA

may be not. Then, the conditionIM −ΛA = (ΛT
B
ΛB)

1/2 can be met if2M −Nt entries ofΛA are1.

The additional constraint on the smallest diagonal entry (see discussion above) ensures distance scaling.

To close the theorem, it is necessary to verify thats(V1) = V1. This can be done by checking thatΛi

can be computed in closed-form. For this, note thatΛmin = 1 and sinceΛmax ≤ 1, we haveΛi = IM .

From here, it can be checked thatBi = O(Nt−M)×M and from (23), we thus haves(V1) = V1UAWH .

On the Grassmann manifoldG(Nt,M), multiplication by anM ×M unitary matrix results in the same

“point.” Thus s(V1) = V1 and the proof is complete.

Note that the choice of the scaling map is non-unique due to freedom in the choice ofUA, UB and

W as well as the eigenvalues ofΛi andΓi. The case ofVi = V1 is special whereΛi turns out to

be IM . With almost any other choice ofVi, these matrices are non-identity, in general. Besides these

choices, non-uniqueness of the representative ofVnull
1 also leads to non-uniqueness of the map.



28

REFERENCES

[1] V. Tarokh, N. Seshadri, and A. R. Calderbank, “Space-Time Codes for High Data Rate Wireless Communication:

Performance Criterion and Code Construction,”IEEE Trans. Inform. Theory, vol. 44, no. 2, pp. 744–765, Mar. 1998.
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