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A Novel Subspace Approach for Cooperative
Localization in Wireless Sensor Networks

Using Range Measurements
Frankie K. W. Chan, H. C. So, Senior Member, IEEE, and W.-K. Ma, Member, IEEE

Abstract—Estimating the positions of sensor nodes is a fun-
damental and crucial problem in wireless sensor networks. In
this paper, three novel subspace methods for node localization
in a fully connected network are devised with the use of range
measurements. Biases and mean square errors of the sensor node
position estimates are also derived. Computer simulations are
included to contrast the performance of the proposed algorithms
with the conventional subspace positioning method, namely,
classical multidimensional scaling, as well as Cramér-Rao lower
bound.

Index Terms—Position estimation, range-based measurements,
subspace method, wireless sensor networks.

I. INTRODUCTION

R ECENT technological advances in wireless communi-
cations and microsystem integration have enabled the

development of small, inexpensive, low-power sensor nodes
which are able to collect surrounding data, perform small-scale
computations and communicate among their neighbors. These
wirelessly connected nodes, when working in a collaborative
manner, have great potential in numerous remote monitoring
and control applications [1]–[3] such as asset management,
habitat monitoring, health caring, building automation, bat-
tlefield surveillance as well as environment observation and
forecasting. Since sensor nodes are often arbitrarily placed
with their positions being unknown, sensor positioning is a
fundamental and crucial issue for the wireless sensor network
(WSN) operation and management.

Node localization methods can be generally classified as the
deterministic [4]–[17] and probabilistic approaches [18], [19].
The simplest deterministic technique is to exploit the connec-
tivity information—who is within the communication range of
whom—to derive the node positions with the use of the anchor
nodes subject to the proximity constraints imposed by the
known connections, but it only provides coarse-grain location

Manuscript received December 17, 2007; revised August 07, 2008. Current
version published January 06, 2009. The associate editor coordinating the re-
view of this manuscript and approving it for publication was Dr. Zhengyuan
(Daniel) Xu. This work was supported by the Research Grants Council of the
Hong Kong Special Administrative Region, China (Project No. CityU 119606).

F. K. W. Chan and H. C. So are with the Department of Electronic Engi-
neering, City University of Hong Kong, Kowloon, Hong Kong.

W.-K. Ma is with the Department of Electronic Engineering, The Chinese
University of Hong Kong, Shatin, N.T., Hong Kong.

Digital Object Identifier 10.1109/TSP.2008.2005870

estimates. Mathematically, this can be formulated as a linear
programming or semi-definite programming problem [4]. Apart
from connectivity, range-based schemes utilize node-to-node
or hop distances and/or angles, which are obtained from the
pair-wise time-of-arrival (TOA), time-difference-of-arrival,
received signal strength (RSS) and/or angle-of-arrival measure-
ments, for sensor positioning with higher location accuracy,
although it is possible to use the average hop length and hop
counts between indirectly connected nodes to deduce distance
information [5] as well. Assuming that the range measurements
errors are Gaussian distributed, the maximum likelihood (ML)
methods for node localization correspond to the nonlinear least
squares problem [6]–[9]. In spite of attaining optimum estima-
tion performance, the ML approach requires centralized data
processing and there is no guarantee of global convergence. In
order to ensure a global solution, semi-definite programming
(SDP) relaxation to the ML formulation has been proposed
[10]–[12]. Alternatively, the range-based measurements can
also be converted into linear equations where the node posi-
tions are easily solved even in a distributed manner but at the
expense of error accumulation [13], [14]. Another range-based
positioning technique which ensures global convergence is to
employ classical multidimensional scaling (MDS) [15]–[17]
which transforms the pair-wise distance information into the
relative coordinates of nodes. On the other hand, particle fil-
tering [18], [19] is a representative example of the probabilistic
approach, where each sensor stores a conditional density on its
own coordinates based on its measurements and the conditional
density of its neighbors for node localization, has a high poten-
tial of tracking purposes at the cost of significant computational
requirements. Nevertheless, relatively less research has been
performed in deriving the theoretical performance of the node
localization methods, although location performance limits are
developed in [20] and [21].

In this paper, a novel subspace approach for WSN posi-
tioning, which belongs to the deterministic category with the
use of the node-to-node distance estimates deduced from the
RSS or TOA measurements, is developed. We assume a fully
connected WSN, which is a frequently used assumption, say
in the classical multidimensional scaling (MDS) [15]–[17] for
localization where distance measurements between all pairs of
sensors are required. For a partially connected WSN, there
exist techniques for estimating the missing distance infor-
mation such as shortest-path distance computation [15] and
reconstruction based on singular value decomposition [16].

1053-587X/$25.00 © 2008 IEEE

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on January 7, 2009 at 00:52 from IEEE Xplore.  Restrictions apply.



CHAN et al.: COOPERATIVE LOCALIZATION IN WIRELESS SENSOR NETWORKS 261

TABLE I
LIST OF SYMBOLS

Alternatively, local maps can first be built from the fully con-
nected subsets in the WSN and then patched together to form
the global map [17]. This paper focuses on the algorithm
development, as well as its performance analysis, and we are
targeting applications where a network can be divided into
clusters of fully connected subnetworks and each cluster is
then handled by the proposed approach. Our major contribu-
tions are (i) A new cooperative localization [21] approach for
WSNs is devised and its relationship with the classical MDS
method is given. Note that cooperative localization is not a well
solved problem because the distance measurements between
any pairs of sensors, including those of the unknown-location
sensors, are utilized to aid in the location estimation. This
is much more challenging than the traditional multilateration
where only distance measurements between an unknown-loca-
tion sensor and anchors are employed for localization. From
the simulation results, it is observed that the proposed ap-
proach can outperform the classical MDS algorithm; and (ii)
The performance measures of the proposed methods, namely,
biases and mean square errors of the proposed algorithms, are
produced. To the best of our knowledge, performance analysis
of the classical MDS technique for node localization is not yet
available.

The rest of the paper is organized as follows. The develop-
ment of three versions of our WSN node positioning approach,
namely, full-set subspace algorithm, minimum-set subspace al-
gorithm and distributed subspace algorithm, are presented in
Section II. The computational complexity of the three subspace
algorithms is investigated in Section III. In Section IV, the the-
oretical performance of the proposed methods is studied. Nu-
merical examples are presented in Section V to corroborate the
analytical development and to evaluate the performance of the
proposed approach by comparing the classical MDS method,
as well as Cramér-Rao lower bound (CRLB) [21]. Finally, con-
cluding remarks are given in Section VI. A list of symbols that
are used in the paper is given in Table I.

II. SUBSPACE POSITIONING APPROACH

Consider a fully connected network of sensors in a
two-dimensional space (extension to three-dimensional space
is straightforward). Let where denotes trans-
pose, , be the position of the th sensor. Without
loss of generality, we assume that the positions of the first
of them, , where , are known. The task is
to find , . In the following, three
variants of the proposed subspace approach, namely, the full-set
subspace algorithm, minimum-set subspace algorithm as well
as distributed subspace algorithm are derived.

A. Full-Set Subspace Algorithm

Let where ,
contains all the differences of and , , with
at least one of the and being unknown. The matrix has
the form:

...
...

(1)

where

and denotes the vector with all elements 1. The matrix
can be expressed as an affine combination of matrices with

coefficients and , :

(2)
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where is the th element of the vector which is defined as

Here, and
. As an illustration, consider the case when

there are 5 nodes where 2 of their positions, namely,
and , are unknown. From (1), is of the form shown
in (3) at the bottom of the page. Based on (2) and (3), the cor-
responding basis matrices , , are easily con-
structed as follows:

(4)

(5)

(6)

(7)

and

(8)

That is, removing all , , and in yields . While
, , and contain the signs of , , and in
, respectively, where the sign value is set to zero when the

corresponding element is absent.
The multidimensional similarity matrix [22]

(9)

We assume that is of full column rank as there are only
two columns. In practice this assumption is usually true since
we only need any two rows of to be linearly independent.
Then, we have .

The matrix is constructed from where denotes
the distance between the th sensor and th sensor. The noise-
free node-to-node distance is

(10)
With the use of scalar dot product and cosine rule, we have

(11)

where is the angle between the vectors and
. Extending (11) yields

(12)

where and stands for the th column of the
identity matrix, denoted by . Employing (12),

can be expressed as:

(13)

where

and represents the zero matrix. It is noteworthy to
point out that in the classical MDS method [15]–[17], double
centering is applied to the matrix of squared distances, namely,

, and the resultant matrix of , where
, is utilized for positioning. As a result, substituting

, the formulation of (13) will correspond to the MDS ap-
proach. An advantage of the proposed approach over the MDS
scheme is that the step of aligning the relative locations to phys-
ical locations is not required, which will be shown shortly. Fur-
thermore, we will see that different forms of are allowed for
node localization in the development of the minimum-set and
distributed subspace algorithms.

Since is symmetric positive semidefinite and of rank 2, it
can be decomposed using eigenvalue factorization as

(14)

where ,
with

and the columns of
and are called the signal
and noise eigenvectors, respectively. As lies in the signal
subspace spanned by , we have

(15)

(3)
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or

(16)

When disturbance is present, noise-free distances are
available only for . In our study, we generalize
all the available distance information, denoted by , as

where is the zero-mean noise with variance
if , and otherwise, with

if . This means that for practical purposes,
will be substituted for in (11) and (12) when the

latter is unavailable in forming . As a result, the equal signs in
(15) and (16) should be replaced by the approximate equal signs
and . Taking vectorization on
both sides of (16) yields

(17)

where

(18)
and

(19)

with being the vectorization operator. A simple and
straightforward estimate of , denoted by , is obtained by
the least squares (LS):

(20)

where is the pseudo-inverse of . Note
that is assumed to be of full column rank in (20). We refer
this subspace based estimate to as the full-set solution because
all admissible pairs in have been employed.

It is worth mentioning that the subspace principle used in the
above development is in essence the same as that in multiple
signal classification (MUSIC) algorithm for direction-of-arrival
(DOA) estimation [23]. Thus, the full-set subspace algorithm
may loosely be seen as “a MUSIC method for a different signal
processing problem”. We however need to point out a notable
difference. In the conventional MUSIC approach, the DOAs are
estimated from the noise subspace through a line search or non-
linear optimization. On the other hand, in the full-set subspace
algorithm, a closed-form expression of (20) is available for es-
timation of the node positions as they are linear in (15) or (16).

For the special case where there is only one sensor being un-
known, that is, , and the matrices

, and are, respectively,

and

The LS solution, , is then calculated as

(21)

In particular, when , is a vector and (21) can be
further simplified as

which is exactly the solution suggested in [22]. Hence our pro-
posed positioning method is a generalization of [22] in the sense
that various numbers of sensors with known and unknown po-
sitions are allowed.

B. Minimum-Set Subspace Algorithm

Instead of utilizing all admissible pairs in , it is possible
to use a reduced set of the pairs via considering the rank de-
ficiency of . In doing so, the computational complexity of
the full-set subspace algorithm can be significantly reduced. We
refer the resultant method to as minimum-set subspace algo-
rithm and its derivation is given as follows. From (13), it can
be shown that

which further implies

where is the space spanned by the columns of and
that

Therefore, dimension reduction can be achieved by replacing
by of

the form:

(22)
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TABLE II
COMPUTATIONAL COMPLEXITY OF THE THREE SUBSPACE AND MDS ALGORITHMS

where

In general, we can extract any rows of in (13) to con-
struct such that it is of full rank in the presence of noise. As
a result, the choice of is not unique because different rows
of can be selected as long as the rank requirement is satis-
fied. Moreover, different choices will generally give different
estimation accuracy. The position estimate development of this
simpler scheme follows the same procedure as that in (14)–(20):

(23)

where , and
have definitions corresponding to , and ,

respectively, and is the LS estimate of . We refer this
method to as the minimum-set solution.

C. Distributed Subspace Algorithm

The full-set and minimum-set subspace algorithms need cen-
tralized processing and are not suitable for certain WSN applica-
tions where distributed computing is required. In the following,
we modify the subspace approach so that sensors can
share the computations simultaneously. Note that our proposed
distributed algorithm utilizes all available distance information
simultaneously to produce the solution with no iteration. This is
different from the distributed algorithm in [17] which assumes a
partially connected network where localized mapping and align-
ment are performed from sensor nodes along a route from the
starting anchor to an ending anchor in an iterative manner.

Construct as:

(24)

where

and

Since in the absence of noise, can be
decomposed by singular value decomposition (SVD) as

(25)

where and .
Here, the columns of , ,

and contain the
singular vectors of . Similar to the previous development
and will be substituted for when the latter is
unavailable, we then have:

(26)

Taking vectorization on both sides of (26) with the use of (24)
yields

(27)

where

and

The LS estimate of , denoted by , is given by

(28)

and we refer this approach to as the distributed subspace
method.

III. COMPUTATIONAL COMPLEXITY OF SUBSPACE ALGORITHMS

In this Section, the computational requirement of our pro-
posed positioning methods, namely, the full-set, minimum-set
as well as distributed subspace algorithms will be examined.
The following analysis is based on the SVD and LS operations
on which most of the computations spend. First, we will investi-
gate the computational complexity of the SVD in the proposed
subspace algorithms. As performing SVD of re-
quires floating point operations (FLOPS) [24], the
numbers of FLOPS involved in the SVD of , and
are straightforwardly determined and the results are shown in
the first column of Table II. Next, we consider the computa-
tional complexity of solving a set of linear equations
where , and by QR factorization
[24] though other methods can be used. The whole LS process
requires FLOPS for the QR factorization of ,
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FLOPS for vector construction of as well as
FLOPS for the backward substitution of .

Now we modify the proposed algorithms to enhance com-
putational efficiency. In the following, a fast algorithm for the
full-set subspace algorithm is developed and it can be easily
extended to the minimum-set and distributed algorithms. Ex-
pressing as

(29)

where

and

...
...

Based on (15) and (29), we get

(30)

where is the LS estimate of . Since
, ,

and
, the computational complexity of

calculating and , is, respectively,
and

, which indicates the superiority of using (30). The
numbers of FLOPS required to compute the LS solutions of the
three subspace algorithms are shown in the second column of
Table II. As a comparison, the computational complexity of the
MDS method [17] is also included.

Combining the results in Table II, we see that the compu-
tational requirements of the minimum-set subspace and MDS
methods are comparable, which are of order or . The
full-set version is the most computationally demanding as it in-
volves roughly operations. While the distributed variant
will be the simplest one when . It is worthy to note that
[10] the typical number of operations for the SDP algorithm is

which is identical to those of the MDS as well as pro-
posed minimum-set and distributed methods. Nevertheless, it is

believed that the actual computation time of the former is larger
than those of the latter according to the simulation comparison
between the SDP and MDS approaches in [12].

IV. STATISTICAL ANALYSIS

In this Section, the biases and mean square errors of the sensor
position estimates of the proposed approach are derived. Al-
though we focus on analyzing the full-set subspace algorithm,
the produced results are applicable to the minimum-set and dis-
tributed subspace algorithms. Let ,

and where , and
are, respectively, the noise-free matrix that contains the co-ordi-
nate differences, noise-free multidimensional similarity matrix
and vectors that span the noise-free noise subspace while ,

and are the corresponding residual components due
to errors in range measurements. Similarly, we express ,
and as

and

where , and are the noise-free matrices while ,
and are the corresponding noise components. By applying
the first-order approximation of [25]

(31)

the perturbations and from (18) and (19) are, re-
spectively

(32)

and

(33)

To determine , we premultiply on both sides of (20)
to obtain

(34)

By analyzing the perturbations of (34) and neglecting the
second-order terms, we get

(35)
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and

(36)

Substituting (35) and (36) into (34) yields

(37)

where denotes Kronecker matrix product. We see that only
is the random variable in (37) and taking the expected

value of yields

(38)

where denotes the expectation operator. The element of
can be expressed as

(39)

Taking the expected value of (39), we have

(40)

As a result, the biases of the position estimates are computed
from (38) and (40), and we roughly see that they decrease with
the noise powers of the distance measurements. On the other
hand, the correlation matrix of is evaluated using (37) as
shown in the Appendix

(41)

where

...
...

. . .
...

and

:
: otherwise

From the diagonal elements of , we have the mean
square errors of the position estimates.

V. NUMERICAL EXAMPLES

Computer simulation has been conducted to evaluate the
performance of the proposed range-based WSN positioning ap-
proach. We compare the mean square position errors (MSPEs)
of the subspace algorithms to the classical MDS method
[15]–[17], as well as CRLB for cooperative localization [21].
Note that for a fully connected network, the MDS scheme
performs eigenvalue decomposition on (13) with and
we employ the alignment procedure in [17] to obtain the final
position estimates. The additive noises are zero-mean
white Gaussian processes and they are scaled to obtain dif-
ferent signal-to-noise ratio (SNR) conditions. The SNR of all
range measurements is set to be identical and it is defined as

. A WSN of 14 fully connected sensors is con-
sidered with 10 of them are being unknown. The 14 sensors are
located in a 100 m 200 m area with corners (0,0)m, (100,0)m,
(100,200)m, and (0,200)m. Though different realizations of

are possible for the minimum-set subspace algorithm,
the one in (22) is adopted in the following for simplicity. All
simulation results are averages of 1000 independent runs.

In the first scenario, the 10 unknown-position sensors have
fixed locations while the anchor sensors are placed at (0,0)m,
(100,0)m, (100,100)m, and (0, 100)m and the WSN geometry
is shown in Fig. 1. The average of the MSPEs for the 10 un-
known-position sensors is plotted in Fig. 2 to show the overall
performance. It can be observed that the three proposed schemes
have smaller MSPEs than those of the MDS method with the
full-set subspace algorithm performs the best, though it is infe-
rior to the CRLB by about 8 , in the whole SNR range.
Furthermore, the measured MSPEs of the subspace methods
agree very well with the theoretical calculation based on (41).
In this test, the numbers of FLOPS required in the full-set, min-
imum-set, distributed subspace (per sensor) and MDS methods
are 2635570, 15346, 37778, and 15440, respectively. It is seen
that the minimum-set subspace algorithm is the most computa-
tionally efficient but gives the worst accuracy among the three
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Fig. 1. Positions of the sensors in the first test.

Fig. 2. Mean square position error versus SNR with fixed-position sensors for
the first anchor geometry.

proposed schemes and has comparable complexity with that of
the MDS method.

In the second scenario, the positions of the four anchor sen-
sors remain unchanged but those of the 10 unknown-position
sensors are located randomly according to the uniform distribu-
tion within the 20000 area in each independent run, and the
results are shown in Fig. 3. For each set of WSN geometry, the
performance bound is computed and we use the average as the
CRLB. Comparing with the first test, both the three proposed
and MDS methods have larger MSPEs but the former is still su-
perior to the latter by around 1 to 3.5 for all SNRs. We
observe that the full-set and distributed algorithms have com-
parable estimation performance and are superior to the min-
imum-set scheme. In summary, the results indicate that the sub-
space methods outperform the MDS solution for various sensor
geometries in an average sense.

The above tests for fixed-position and random-position nodes
have been repeated using another anchor geometry where the
anchors are placed on the perimeter of the network, that is, they
are located at (0,0)m, (100,0)m, (0,200)m, and (100,200)m, and
their MSPEs are plotted in Figs. 4 and 5, respectively. It is seen

Fig. 3. Mean square position error versus SNR with random-position sensors
for the first anchor geometry.

Fig. 4. Mean square position error versus SNR with fixed-position sensors for
the second anchor geometry.

Fig. 5. Mean square position error versus SNR with random-position sensors
for the second anchor geometry.

that the findings are similar to those of Figs. 2 and 3 except that
the performance of the minimum-set solution is slightly inferior
to that of the MDS method.
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VI. CONCLUSION

Three novel subspace based approaches have been devised for
node localization in fully connected WSNs using distance mea-
surements. Alternative realizations with smaller computational
complexity are also proposed. In addition, theoretical perfor-
mance measures, namely, biases and mean square errors of the
sensor position estimates, are derived and verified by computer
simulations. It is shown that the proposed positioning methods
are generally superior to the classical multidimensional scaling
scheme.

Apart from distance measurements, it is expected [15] that the
proposed approaches will work with connectivity-only informa-
tion because we can employ the shortest path distances between
all pairs of nodes for constructing the distance matrix, although
its theoretical performance seems to be unavailable. Fully con-
nected network assumption is one obvious drawback of the pro-
posed approaches. In case of partially connected isotropic net-
works, it is possible to use the average hop length and hop counts
between indirectly connected nodes [5] or other means [16] to
deduce the remaining requisite distances for the multidimen-
sional similarity matrix construction. Or we can borrow the idea
of [17] by building local maps from the fully connected sub-
sets in the WSNs and then patching them together for global
positioning. Nevertheless, further research is required for tack-
ling anisotropic sensor networks [26]. In addition, it is believed
that improvements of the proposed methodology can be made by
finding the best minimum-set solution for a particular network
geometry and devising the optimum weighting matrix [27] for
solving (17) in a weighted least squares sense. Optimal anchor
placement in WSNs is also an interesting research topic and a
good starting point is to analytically study the corresponding
Cramér-Rao lower bound [28], [29].

APPENDIX

The correlation matrix of the position estimate obtained by
the full-set subspace algorithm is now derived as follows.

(A1)

where . Essentially, only
needs to be computed as others

are deterministic. Exploiting the symmetric structure of
yields

where

and

Exploiting
and the property of

, and can be simplified as

(A2)

and

(A3)

where is the sign function. Note that in(A2),
except for the following elements:

Hence,

(A4)
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where

:
: otherwise

is the covariance matrix of . Substi-
tuting (A4) into (A1) yields .

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their careful reading and constructive comments, which im-
proved the clarity of this paper.

REFERENCES
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