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Abstract—In this paper, we first propose a novel common
subexpression elimination (CSE) algorithm for matrix-vector mul-
tiplications over characteristic-2 fields. As opposed to previously
proposed CSE algorithms, which usually focus on complexity
savings due to recurrences of subexpressions, our CSE algorithm
achieves two types of complexity reductions, differentialsavings
and recurrence savings, by taking advantage of the cancelation
property of characteristic-2 fields. Using our CSE algorithm,
we reduce the additive complexities of cyclotomic fast Fourier
transforms (CFFTs). Using a weighted sum of the numbers of
multiplications and additions as a metric, our CFFTs achieve
smaller total complexities than previously proposed CFFTsand
other FFTs, requiring both fewer multiplications and fewer ad-
ditions in many cases.

Index Terms—Common subexpression elimination (CSE), Com-
plexity theory, Convolution, Discrete Fourier transforms (DFTs),
Galois fields, Multiple constant multiplication (MCM), Reed–
Solomon codes.

I. I NTRODUCTION

Discrete Fourier transforms (DFTs) over finite fields have
widespread applications in error correction coding [1]. For
Reed–Solomon codes, all syndrome-based bounded distance
decoding methods involve DFTs over finite fields [1]: syn-
drome computation and the Chien search are both evaluations
of polynomials and hence can be viewed as DFTs; inverse
DFTs are used to recover transmitted codewords in transform-
domain decoders. Thus efficient DFT algorithms can be used
to reduce the complexity of Reed–Solomon decoders. For ex-
ample, using the prime-factor fast Fourier transform (FFT)
in [2], Truong et al. proposed [3] an inverse-free transform-
domain Reed–Solomon decoder with substantially lower com-
plexity than time-domain decoders; FFT techniques are used
to compute syndromes for time-domain decoders in [4].

Using an approach similar to those in previous works (see,
for example, [5]), cyclotomic FFT (CFFT) was recently pro-
posed [6] and two variants were subsequently considered [7],
[8]. To avoid confusion, we refer to the CFFT proposed in [6]
as direct CFFT (DCFFT) and those in [7] and [8] as inverse
CFFT (ICFFT) and symmetric CFFT (SCFFT) respectively
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henceforth in this paper. DCFFT has been shown to be efficient
for full DFTs of lengths up to 511 [6], and ICFFT and SCFFT
are particularly suitable forpartial DFTs, which compute only
part of the spectral components and are important for such op-
erations as syndrome computation of Reed–Solomon decoders
[7], [8].

Although CFFTs in [6]–[8] achieve low multiplicative com-
plexities, their additive complexities (numbers of additions
required) are very high if implemented directly. The meth-
ods used in [6]–[8] somewhat alleviate the problem, but the
additive complexities of CFFTs in [6]–[8] remain quite high.
In this paper, we first propose a novel common subexpression
elimination (CSE) algorithm, and then use it to reduce the
additive complexities of various CFFTs. The contributionsof
this paper are:

• To minimize the additive complexities of CFFTs is a spe-
cial case of the well-known collection-of-sums problem,
which is NP-complete [9], [10]. Aiming to reduce ad-
ditive complexities, previously proposed CSE algorithms
focus primarily on identifying recurring subsets of sum-
mands (we refer to this as subexpressions or patterns).
In contrast, our CSE algorithm, which has only poly-
nomial complexity, also takes advantage of two other
types of complexity reductions enabled by the underlying
characteristic-2 fields: in addition to explicit recurring
subexpressions mentioned above, our CSE algorithm also
considers implicit subexpressions for additional savings;
since the difference between two sums may require fewer
additions than one of the two sums, our CSE algorithm
also captures savings of this type.

• We investigate the properties of the three types of CFFTs
mentioned above and establish the relations among them.
We first show that the three types of CFFTs have the
same multiplicative complexities assuming the same bi-
linear forms. Furthermore, we establish that,under direct
implementation, all three types of CFFTs have the same
additive complexities. Finally, we show that there is a
mapping between SCFFTs and ICFFTs that preserves
the additive complexitiesregardless of implementation.
Thus, from the perspective of both multiplicative and ad-
ditive complexities, SCFFTs and ICFFTs are equivalent.
Our results simplify the analysis of their multiplicative
and additive complexities as well as performance com-
parison.

• Using our CSE algorithm, we reduce the additive com-

http://arxiv.org/abs/0710.1879v4


2

plexities of full CFFTs greatly. In comparison to the full
CFFTs in [6]–[8], the best results to our knowledge, our
CFFTs have 4%–15% smaller additive complexities while
maintaining the same multiplicative complexities. Com-
pared to some previously proposed FFTs techniques, our
CFFTs require fewer multiplicationsand fewer additions.
In comparison to some other FFTs techniques, our CFFTs
require fewer multiplications but more additions; in such
cases, the total complexities, obtained by assuming that
a multiplication overGF(2m) is as complex as2m− 1
additions, of our CFFTs are smaller.

The rest of the paper is organized as follows. In Section II,
we briefly review various CFFTs and CSE algorithms to make
this paper self-contained. Section III presents our CSE algo-
rithm. We investigate the properties of and relations among
the three types of CFFTs in Section IV. CFFTs with reduced
additive complexities are obtained by using our CSE algorithm
and presented in Section V.

II. BACKGROUND

A. Cyclotomic FFTs

Given a primitive elementα ∈ GF(2m), the DFT of a vector
f = (f0, f1, . . . , fn−1)

T is defined asF ,
(

f(α0), f(α1), . . . ,

f(αn−1)
)T

, where f(x) ,
∑n−1

i=0 fix
i ∈ GF(2m)[x]1. A

new cyclotomic FFTs algorithm was proposed in [6], and
for short lengths (up to 511 [6]) it is computationally effi-
cient. Representingf(x) as a sum of linearized polynomials
by cyclotomic decomposition [6], [8], cyclotomic FFTF =
ALf ′ = ALΠf , whereA is ann × n binary matrix,L =
diag(L0,L1, . . . ,Ll−1) is a block diagonal matrix with square
matricesLi’s on the diagonal,l is the number of cyclotomic
cosets,f ′ = (f ′T

0 ,f ′T
1 , . . . ,f ′T

l−1)
T is a permutation of the

input vectorf , andΠ is a permutation matrix. SupposeLi

corresponds to a coset of sizemi, using a normal basis of
GF(2mi) generated byγi, thenLi becomes a circulant matrix
[11]:

Li =













γ20

i γ21

i . . . γ2mi−1

i

γ21

i γ22

i . . . γ20

i
...

...
. . .

...
γ2mi−1

i γ20

i . . . γ22mi−2

i













. (1)

Henceforth in this paper we assumeLi’s in L are always
constructed by normal bases and we sayLi in (1) is a circulant
matrix generated byγi. Thus the product ofLi and f ′

i can
be computed as a cyclic convolution, for which fast bilinear
form algorithms are available [12]–[15]. These fast algorithms
can be written in matrix form asLif

′

i = Qi(Ribi ·P if
′

i) =

Qi(ci ·P if
′

i), wherebi = (γi, γ
2
i , . . . , γ

2mi−1

i )T , Qi, Ri, and
P i are binary matrices,ci = Ribi is a precomputed constant
vector, and· stands for pointwise multiplications. Combining
all the terms, a DCFFT is given byF = AQ(c ·Pf ′), where
Q andP are both block matrices, for which the blocks off
the diagonal are the zero matrices and the diagonal blocks are
Qi’s andP i’s respectively, andc = (cT0 , c

T
1 , . . . , c

T
l−1)

T . We

1In this paper, vectors and matrices are represented by boldface letters, and
scalars by normal letters.

remark that bothQ andP are binary and usually sparse. For
details of CFFTs, please refer to [6].

Two variants of CFFTs were proposed in [7], [8]. First,
by using the same permutation for bothF and f , SCFFTs
proposed in [8] satisfyF ′ = LTA′Tf

′, whereF ′ = ΠF

and f ′ = Πf . SCFFTs are so named because they have
symmetric transform matrices, that is,LTA′T = A′L. It is
easy to deduce thatA′ = ΠA. ICFFTs, proposed in [7], are
based on inverse DFTs and satisfyF ′′ = L−1A−1f , where
F ′′ is also a permutation ofF . Both SCFFTs and ICFFTs
require fewer multiplications than DCFFTs for partial DFTs,
where only a subset of components inF are needed.

The multiplicative complexity of each CFFT, i.e., the num-
ber of multiplications required, is the total number of non-
trivial scalar multiplications in all cyclic convolutions. That
is, the multiplicative complexity ofci · P if

′

i is the number
of non-one elements inci (no element is zero inci), which
is determined by the cyclic convolution algorithms. To find
the optimum cyclic convolution algorithms with the minimum
multiplicative complexities in CFFTs is still an open problem.
In this paper, we use the cyclic convolution algorithms in [16].

The additive complexity of each CFFT is determined by the
two matrix-vector multiplications in which both matrices are
binary. For example, in DCFFTs, the matrices areAQ and
P . Due to the large size ofAQ, direct computation of the
matrix-vector product will result in high additive complexity.
A heuristic algorithm based on erasure decoding [17] was used
in [6] to reduce the additive complexity. Similar optimization
was also used in [7]. Another fast matrix-vector multiplication
algorithm is the Four Russians’ algorithm [18], but it is based
on preprocessing and fails to efficiently exploit the matrix
structure. CSE is another commonly used technique for fast
matrix-vector multiplication.

B. Common Subexpression Elimination

Consider a linear transformY = MX , whereY andX

are n- and n′-dimensional column vectors, respectively, and
M is ann× n′ matrix containing only 1, -1, and 0. Clearly,
such a transform requires only additions and subtractions.It
was shown that it is an NP-complete problem [9, Ensemble
Computation], [10, Collection of Sums] to minimize the num-
ber of additions and subtractions.

A special type of the collection-of-sums problem is the
MCM problem [19], where the relative position of a bit pattern
within the matrix is of no importance [20]. This is a valid
assumption in the case of theX = (c0x0, c

1x0, . . . , c
n−1x0)

T

with c = 2 or c = 2−1, which is common in filters. Thus,
patterns that differ in relative positions only can be obtained
from one of them by shift operations. This class of problems
have wide applications in finite impulse response (FIR) fil-
ters [19]–[25]. Graph-based algorithms [24], [25] synthesize
directed acyclic graphs, in which partial sums define nodes and
shifts are annotated on edges. In [24], optimal solutions can
be obtained by exhaustive search of all topologies with high
computational complexity. Entropy and conditional entropy
are used in [25] for vertex decomposition. Pattern-based algo-
rithms [19]–[23], [26], [27] reduce the MCM complexity by
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first identifying recurring patterns, which are combinations of
non-zero positions, and then calculating them only once. They
usually use canonical signed digit (CSD) representation to
identify potentially sharable subexpressions. The algorithms in
[19], [21]–[23], [26], [27] use weight-2 subexpressions asthe
primitive elements. In contrast, [20] searches for the highest-
weight common subexpressions.

To minimize the number of additions in the matrix-vector
multiplications in CFFTs over characteristic-2 fields consti-
tutes a different type of the collection-of-sums problem, where
X is over characteristic-2 fields. This implies two properties:
(1) the summands are independent, and (2) the1’s in M are
equivalent to−1 and additions are equivalent to subtractions.
The second property is noted but not utilized in [19]. Due to
the two properties, CSE techniques for the MCM problem are
not suitable for the problem considered in this paper. Heuristic
CSE techniques proposed in the context of MCM problem
result in modest complexity reductions since they do not take
advantage of the second property (see, for example, [19]).
For the first property, sophisticated CSE techniques, especially
those relying on CSD representation, that are tailored for FIR
filters (see, for example, [20]–[25])cannot be directly ap-
plied to our problem; to adapt these algorithms to our problem
is not straightforward and requires nontrivial research efforts.
Hence, we do not consider CSE techniques for the MCM
problem in this paper.

Two CSE algorithms that account for the cancelation prop-
erty were proposed in [6], [28], and we will compare our CSE
algorithms against these.

III. A N OVEL CSE ALGORITHM OVER

CHARACTERISTIC-2 FIELDS

We propose a novel CSE algorithm with polynomial com-
plexity that significantly reduces the additive complexities of
CFFTs. Although our CSE algorithm does not guarantee to
minimize the additive complexities, it may do so in some
cases, especially when the size of the problem is small.

Let us establish the terminology to describe our CSE algo-
rithms. For a matrix-vector multiplicationY = MX , where
Y = (Y0, Y1, . . . , Yn−1)

T and X = (X0, X1, . . . , Xn′−1)
T

aren- andn′-dimensional column vectors andM is ann×n′

matrix, we refer to the components inY as sums and the
components inX as summands. Note that the sums inY have
one-to-one correspondence with the rows inM , and in direct
computation the number of additions required to compute a
sum is the number of ones in its corresponding row minus
one. Hence, with a slight abuse of terminology, we sometimes
use rows and sums in an exchangeable manner. Similarly, there
is a one-to-one correspondence between the summands and the
columns inM , and we sometimes use columns and summands
in an exchangeable fashion below.

Our CSE algorithm achieves two kinds of savings: differ-
ential savings and recurrence savings, as defined in Sections
III-A and III-B, respectively.

A. Differential Savings

Let Y = MX represent a matrix-vector multiplication, in
which X is over characteristic-2 fields andM is a binary

matrix. For the column positions whereMrp andM rc , rows
rp and rc (rp 6= rc) of M respectively, both have ones, the
difference (or sum)Mrc −Mrp of the two rows has zeros. If
Mrc −Mrp contains fewer entries than one of the two rows,
say M rc , we can reduce the total number of additions by
first computingYrp and then computingYrc = Yrp +(Mrc −
Mrp)X. Let us denote the numbers of non-zero entries in
Mrp , Mrc , andMrc −Mrp aswp, wc, andwd, respectively,
the differential saving (the number of additions saved) is given
by wc − wd − 1. Since we are only concerned about positive
savings, we use(wc − wd − 1)+ , max{0, wc − wd − 1} in
our algorithms.

The price for the differential saving is that nowYrp must
be computed beforeYrc , putting a dependency between the
two sums. We use an ordered pair(rp, rc) to represent this
dependency; we callYrp , the sum computed first, the par-
ent, and refer toYrc as the child. Since each ordered pair
introduces a dependency, to keep track of all dependency, we
use a digraph to keep track of all ordered pairs, where the
vertices are the row numbers in the ordered pairs and the
edges are from the parent to the child in each pair. We call
this graphdependency graphhenceforth in this paper. There
is no conflicting dependency as long as the dependency graph
is acyclic. Thus, before any ordered pair can be added to
the dependency graph, it is necessary to check whether the
addition of the new ordered pair will introduce cycles in the
dependency graph; if yes, this ordered pair is called cycle-
inducing and hence not permissible. Cycle detection can be
done recursively.

When an ordered pair(rp, rc) is added to the dependency
graph, bothM andX need to be transformed. We first append
Yrp to X as a new summand. We also replaceM rc with the
differenceM rc −Mrp ; then due to the new summandYrp , a
new column with a single one at thercth position and zeros
at other positions is appended toM . We call these operations
a differential transformation.

Our differential transformations bear some similarities to
the erasure correction approach used in [17]. As pointed out
in [17], Y = MX is equivalent to[M | I](XT ,Y T )T = 0,
which defines a codeC with all codewords(XT ,Y T )T ; to
computeY = MX is equivalent to erasure correction withY
erased based onC. After a series of differential transformations
as described above, the matrix-vector multiplication becomes
Y = M ′X ′, where X ′ = (XT ,Y ′T )T , Y ′ consists of
the summands corresponding to all the parents in the ordered
pairs, andM ′ has the same number of rows asM . By adding
all-zero columns toM ′, we can find a matrixM ′′ such that
Y = M ′′(XT ,Y T )T . Hence(M ′′ − [0 | I])(XT ,Y T )T =
0. Thus our differential transformations lead to a different
parity check matrix for the same codeC. Furthermore, the
acyclic property for the dependency graph ensures thatY can
be recovered by using the parity check matrixM ′′ − [0 | I].
From this perspective our differential transformation is similar
to that of the message passing part of [17]: both find an
alternative parity check matrix with smaller Hamming weights
for the codeC, which can be used to computeY . However,
different search methods are used to obtain alternative parity
check matrices in our work and in [17].
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B. Recurrence Savings

We refer to the number of occurrences of a subexpres-
sion (or pattern in the rows ofM ) aspattern frequency, and
define therecurrence savingof each pattern as its pattern
frequency minus1. After a subexpression is identified, we
append the subexpression toX as a new summand, andM
is updated accordingly. These operations are referred to as
a recurrence transformation. A sequence of recurrence trans-
formations can be described in a matrix decomposition form:
M = MR

∏K−1
i=0 T i, whereT i = [I | GT

i ]
T , the row vector

Gi corresponds to a subexpression,MR has no pattern recur-
rence, andK is the number of identified subexpressions. Thus
Y is computed in a sequential fashion: first assignX(0) = X,
then computeX(i+1) = T iX

(i) for i = 0, 1, . . . ,K − 1, and
finally computeY = MRX

(K). For0 ≤ i ≤ K−1, letM (i)

denoteMR

∏K−1
l=i T l, andY = M (i)X(i).

Compared with the matrix splitting method [20], recurrence
transformations keep track of the identified subexpressions as
new summands, instead of simply removing them. To reduce
the computational complexity of pattern search, our CSE algo-
rithm looks for only two-summand subexpressions. However,
since each two-summand subexpression is in turn appended
as a summand and multi-summand subexpressions can be ex-
pressed recursively as two-summand subexpressions, our CSE
algorithm efficiently exploits the recurrence savings of both
two-summand patterns and multi-summand patterns.

One limitation of the recurrence transformations above is
that it considers only explicit subexpressions, missing implicit
subexpressions that are hidden by cancelation. We will now
identify implicit subexpressions throughforced patterns. To
this end, after a two-summand patternX0 +X1 is identified
and introduced as a new summandXn, we try to impose the
pattern on the rows containingonly X0 or X1 by replacing
X0 with X1+Xn or X1 with X0+Xn. After forcing patterns
X1+Xn orX0+Xn on rowri, if previously identified patterns
emerge due to cancelation and therefore lead to complexity
savings, we transformM ri to reflect the forced pattern. If the
forced pattern does not lead to any saving, we do not transform
Mri . Since a forced pattern leads to complexity savingonly
when they match previously identified patterns, we search the
rows only for previously identified patterns. Since we keep
track of all two-summand patterns, we first search the rows
for previously identified patterns that includeX0 or X1, which
is inserted due to the forced pattern. If we find a previously
identified pattern, sayXj = Xi +X0, in row ri, we replace
Xi + X0 by Xj and continue to search for all previously
identified patterns that includeXj, and so on.

Now we illustrate the advantage of the forced pattern method
by a simple example. Say we have established three patterns
asX4 = X1+X2, X5 = X3+X4, andX6 = X0+X1. Now
let us consider the sumY0 = X0 +X2 +X3, which does not
contain the identified patternsX4, X5, or X6 explicitly. But if
we forceX6 onY0, we haveY0 = X1+X2+X3+X6, which
becomesY0 = X5 +X6 after replacing previously identified
patternsX1+X2 with X4 andX3+X4 with X5 as described
above. In this simple example, by forcing the pattern we reduce
the number of additions by one. In a nutshell, it is a greedy

strategy in which, based on existing subexpressions, we tryto
find an alternative expression that requires fewer additions for
a sum.

When introducing forced patterns for a sum, new summands
for the sum are introduced. If any new summand is a sum, this
introduces dependency between the two sums, and possibly
cycles in the dependency graph. We replaceX1 with Y1 in
the simple example above to illustrate such a case. If we force
the patternX6 = X0 + Y1 pattern onY0, we haveY0 =
Y1+X2+X3+X6 = X5+X6. Although it reduces the number
of additions by one, it requires thatY1 should be computed
beforeY0. Since forced patterns introduce new dependency,
we will keep track of this using the dependency graph and
cycle detection is necessary in recurrence transformations if
we consider forced patterns.

C. Approximate Dynamic Programming

We have discussed two kinds of transformations that result
in differential savings and recurrence savings. A remaining
question is: how should we coordinate the transformations
associated with differential savings and recurrence savings?
That is, which kind of saving is more preferable? A seem-
ingly straightforward answer would be to use a simple greedy
strategy: choose one transformation with the greatest saving.
Instead of this simple greedy strategy, we adopt a different
strategy. We justify our choice by approximate dynamic pro-
gramming [29] below.

Note that both differential and recurrence transformations
can be expressed in a matrix decomposition form. Thus the
collection-of-sums problem can be viewed as a dynamic pro-
gramming problem [29], where the cost to be minimized is
the number of additions and each differential or recurrence
transformation corresponds to one stage. The total cost is de-
noted byA =

∑K−1
i=0 g(i) + JR where g(i) ∈ {0, 1} is the

cost of Stagei and JR is the cost of implementingMR.
Let us denoteM and X after the ith stage as theM (i)

and X(i), and they are the state variables. The idea of ap-
proximate dynamic programming is to approximate and op-
timize the cost-to-goJ [29]. Suppose after the transforma-
tions in Stagei, the matrix-vector multiplication is given by
Y = M (i)X(i). Since under direct computation, it needs
W (M (i)) − n additions, whereW (M (i)) is the number of
1’s in M (i), we useJ (i) = a(i)

(

W (M (i)) − n
)

as a lin-
ear approximation of the cost-to-go, wherea(i) approximates
(

A −
∑i−1

j=0 g
(j)

) / (

W (M (i)) − n
)

. When a(i) =
(

A −
∑i−1

j=0 g
(j)

) / (

W (M (i)) − n
)

, J (i) = A −
∑i−1

j=0 g
(j) is

indeed the cost-to-go. Suppose for Stagei, the largest differ-
ential and recurrence savings ares(i)d and s

(i)
r , respectively.

Based on the above approximation, we can find a transforma-
tion that minimizes the cost-to-go. If a differential transfor-
mation is chosen, the matrix weight after the transformation
is given byW (M (i+1)) = W (M (i)) − s

(i)
d ; otherwise, it is

W (M (i+1)) = W (M (i)) − s
(i)
r − 1. Then the approximate

optimal cost-to-go is the smaller betweena(i) ·
(

W (M (i))−

s
(i)
d − n

)

and 1 + a(i) ·
(

W (M (i)) − s
(i)
r − 1 − n

)

. Thus

a differential transformation is preferred whens(i)d > s
(i)
r +

1 − 1/a(i), and a recurrence transformation is preferred if
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s
(i)
d ≤ s

(i)
r +1−1/a(i). Although it is difficult to computea(i)

sinceA is actually unknown, fortunately the choice between
differential saving and recurrence saving does not requirethe
precise value ofA. It is obvious that0 < a(i) < 1 for any
i, and hence differential transformations are usually preferred
over recurrence transformations even whens

(i)
d = s

(i)
r . This is

particularly the case whena(i) is small. For example, the ratio
of the required number of additions after applying our CSE
algorithm, andW (M (0))−n is between 0.16 and 0.26. Thus,
a(0) is clearly a small fraction. Asi increases,a(i) increases
while s

(i)
d and s

(i)
r decrease. Our CSE algorithm treats the

differential transformations with preference in all cases.
We comment that the simple greedy strategy which selects

the greater one betweens(i)d and s
(i)
r mentioned above cor-

responds to always settinga(i) = 1 in approximate dynamic
programming, which does not provide a good approximation.
Our simulation results confirm this observation, as the differ-
ential saving first strategy usually leads to better resultsthan
the simple greedy strategy.

Since we are using approximate dynamic programming in
every stage, choosing a differential saving does not take into
account all recurrence savings in future stages. Thus for some
stages it may be an unwise choice. We propose a method to
identify such differential savings and reverse them. SayY0 =
X0+X1+X2+X3 andY1 = X0+X4+X5+Y0 as a result
of the differential saving from an ordered pair(0, 1). Since
Y0 +X0 = X1 +X2 +X3, we can replaceX0 + Y0 in Y1 by
X1 +X2 +X3 and it is clear thatY0 andY1 have a common
subexpressionX1 +X2 +X3. Using the subexpressionX1 +
X2 + X3 effectively reverses the differential transformation
represented by(0, 1). To identify a reversal of this kind, we
search forreversal patterns; a reversal patternYi+Xj consists
of a sumYi and one of its summandsXj. In contrast to other
patterns, this pattern may have a recurrence saving of zero,
that is, it appears only once. It can be shown that such a
reversal saves only one addition, regardless of the frequency
of the reversal pattern; thus, such a reversal is meaningful
only when there are no other subexpressions involvingYi. For
instance, in the above example, if there are more than two
recurrences ofY0 + X4, the subexpressionY0 + X4 results
in a greater saving thanY0 +X0. Thus it will be efficient to
search for reversal patterns only after all recurrence savings
are accounted for.

Our CSE algorithm, shown below in Algorithm 1, has two
major steps, Steps 1.1 and 1.3, and they are referred to as the
differential and recurrence steps respectively.

Algorithm 1. Common Subexpression Elimination

1.1 Identify the non-cycle-inducing pairs of rows with theld
greatest differential savings, select one pair out of them
randomly, and transform bothM andX as described
above.

1.2 Repeat Step 1.1 until there is no differential saving.
1.3 Identify the two-summand patterns with thelr greatest

recurrence savings, select one out of them randomly.
Replace all occurrences of the selected pattern with a
new entry. On those rows with only one entry of the
pattern, force the pattern if it leads to less 1’s in the

row.
1.4 Go to Step 1.1 until there is no recurrence saving.
1.5 If there is a reversal pattern, reverse the differentialsav-

ing and go to Step 1.3.

Since differential savings are due to the overlapping ones
in two rows, there is no positive differential saving if there is
no recurrence saving. This is the reason for the termination
condition in Step 1.4. In Steps 1.1 and 1.3, we randomly
select one transformation among those with theld greatest
differential savings and thelr greatest recurrence savings re-
spectively. There is a tradeoff between search space (and hence
performance) and search complexity: greaterld andlr enlarge
the search space that may lead to greater savings at the expense
of higher complexity. In our work,ld = lr = 2 appears enough
for most cases. For matrices with small sizes, the additional
complexity caused by expanding the searching space is usually
affordable. For large matrices, we useld = lr = 1. Since
Algorithm 1 is a randomized algorithm, the result of each run
may vary. However, simulation results show that the variance
between different runs is relatively small in comparison tothe
number of required additions.

Our sequential transformation ofM in Section II-B is simi-
lar to the CSE algorithm in [26], but the algorithm in [26] does
not take advantage of the cancelation property of characteristic-
2 fields as Algorithm 1. With forced patterns, Algorithm 1
takes advantage of the cancelation property not only by dif-
ferential savings but also by recurrence savings. AlthoughAl-
gorithm 1 and those in [17], [28] all take advantage of the
cancelation property of characteristic-2 fields, they use quite
different strategies. Algorithm 1 uses a top-down approach
to build the addition sequence by reducing the binary matrix,
while a bottom-up approach starting from summands was used
in [28]. The CSE algorithm in [17] first rebuilds the binary ma-
trix from low-weight linear combinations of rows, then reduces
the matrix top-down using recurrence savings. Also, although
the method in [17] takes advantage of the cancelation property
by erasure decoding in the message passing part, it fails to do
so in its CSE part. As we will show in Section V, Algorithm 1
leads to significantly better results than the method in [17].

D. Fast CSE

When the size ofM is large, the time complexity of Algo-
rithm 1 may be prohibitive. We propose several improvements
to reduce the time complexity of Algorithm 1.

In Algorithm 1, we restart the differential step after each
recurrence step. But the possibility that new differentialsav-
ings emerge after we identify a pattern for recurrence saving
is quite small. In order to reduce the complexity, we do not
revisit the differential step after the recurrence step hasended,
essentially decoupling the two steps. This not only reducesthe
time complexity by reducing the number of times Step 1.1 is
repeated, but also enables us to further accelerate both steps
by space-time tradeoff, which will be discussed below. Note
that our simulation results show that the decoupling of the two
steps results in only negligible performance loss.

Now that the differential step is standalone, it is necessary
to avoid repeated exhaustive searches. There are onlyn rows
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in M , so all possible differential saving can be put in ann×n
arrayD, whereDij stands for the differential saving of the
ordered pair of rows(ri, rj). An exhaustive search is needed
to initialize D. Afterwards, at most2(n− 1) entries (namely,
the non-diagonal entries in rowri and columnrj) of the array
need to be updated after each ordered pair(ri, rj) is added to
the dependency graph. Whenever one pair of rows is detected
to be cycle-inducing, its differential saving will be set to-1 and
hence it is excluded from future consideration for differential
transformations. As the number of possible pairs decreases
continuously, the search will be increasingly simpler.

A similar idea can be used to reduce the time complexity of
the recurrence step. Since elimination of one pattern will only
change a small portion of the pattern frequencies, to expedite
searches, we store the recurrence savings and update them
after each recurrence transformation.

Because not all patterns exist and the number of possible
patterns will decrease continuously, it will require less storage
space if we keep track of only the patterns with positive recur-
rence savings. However, this will involve an exhaustive search
to update the pattern frequencies each time after a pattern is
identified, which may results in high time complexity when
the size ofM is large. Instead, we keep track of all pattern
frequencies, including those with no recurrence savings, in a
two-dimensional arrayR. Suppose after the differential steps
are over, andM ′ hasn̄ columns. Initially,R is an upper trian-
gle array withn̄− 1 rows, whereRij is the recurrence saving
of the two-summand patternXi +Xi+j+1 for 0 ≤ i ≤ n̄− 2
and 0 ≤ j ≤ n̄ − i − 2. The recurrence saving arrayR is
arranged in this fashion so that frequency updates can be done
by direct addressing without search and it is not necessary to
remove frequencies. When a new pattern is identified, the two-
summand pattern becomes the(n̄+ 1)th summand. Thus, the
frequency of theith and the(n̄+1)th summands is appended
to theith row. Furthermore, a new row with only one element,
the frequency of thēnth and(n̄+1)th summands, will be the
last row ofR. After Xi+Xj is identified as a subexpression,
all frequencies related toXi orXj need to be updated. That is,
Ri′,i−i′−1 for all i′ < i, Rj′,j−j′−1 for all j′ < j, Ri,i′′−i−1

for all i′′ > i, and Rj,j′′−j−1 for all j′′ > j are updated
accordingly. Furthermore,Ri,j−i−1 is set to zero.

During Step 1.1, our CSE algorithm keeps only one copy of
each row. Actually one row can have different decompositions,
based on differential savings with different rows. To exploit
the best differential saving for each row, a modified differential
saving update scheme is developed.

Let us assume that the ordered pair(rp, rc) is selected for
differential transformation, which replacesMrc with M ′

rc .
For row ri (ri 6= rp), there are two possible differential sav-
ings: one betweenMrc andMri and the other betweenM ′

rc
andM ′

ri . If the latter is greater, we simply updateDci. If the
former is greater, the differential savingDci is not changed
andMrc is saved so that it can be used whenDci is selected.
If two savings are equal, it is randomly chosen which copy to
use. Since we may need different copies ofMrc for eachri,
a three-dimension arrayK whose entryKij keeps a copy of
Mrj corresponding toDij if Mrj provides a greater differ-
ential saving thanM ′

rj with regard toMri . Since this can

occur recursively, for each row at mostn − 1 different rows
may be stored inK.

Our CSE algorithm incorporating the above improvements
is shown in Algorithm 2.

Algorithm 2. Fast CSE
2.1 Initialize the differential saving arrayD andK.
2.2 Find the non-cycle-inducing pairs of rows with theld

greatest differential savings inD, randomly choose one,
eliminate it, and updateD andK accordingly.

2.3 Repeat Step 2.2 until there is no positive entry inD.
2.4 Initialize the recurrence saving arrayR.
2.5 Find the patterns with thelr greatest recurrence savings

in R, randomly choose one, replace all occurrences of it.
On those rows with only one entry of the pattern, force
the pattern if it leads to less 1’s in the row. UpdateR.

2.6 Repeat Step 2.5 until all entries inR are zero.
2.7 If there is a reversal pattern, reverse the differentialsav-

ing, updateR, and go to Step 2.5.

Our simulation results show that after a single run, the
difference between the total additive complexities obtained by
Algorithms 1 and 2 is negligible. However, the time complex-
ity of Algorithm 2 is much smaller than that of Algorithm 1.
For example, whenM is a255× 255 matrix, for a single run
Algorithm 1 needs about ten hours while Algorithm 2 finishes
in approximately five minutes. The difference in run time is
greater for matrices with larger sizes. Since Algorithms 1 and
2 are both probabilistic, the speed advantage of Algorithm 2
over Algorithm 1 enables us to run Algorithm 2 many more
times, enhancing the possibility of obtaining a better result
than using Algorithm 1 within the same amount of time.

E. Example

Now we provide an example of Algorithm 2. At the begin-
ning,K is empty and

M =









1 0 1 1 1
1 1 1 1 1
1 1 0 1 1
0 1 1 1 0









D =









−1 3 1 0
2 −1 2 0
1 3 −1 0
0 2 0 −1









.

Choosing(0, 1) and adding a column corresponding the new
summandY0, we have

M (1) =









1 0 1 1 1 0
0 1 0 0 0 1
1 1 0 1 1 0
0 1 1 1 0 0









D =









−1 −1 1 0
−1 −1 2 0
1 0 −1 0
0 0 0 −1









.

Since (1, 0) is cycle-inducing, its saving is simply set to -1.
We also setK12 to (1, 1, 1, 1, 1) to keep track ofM1.

Choosing(1, 2), the matrices are updated as

M (2) =









1 0 1 1 1 0 0
0 1 0 0 0 1 0
0 0 1 0 0 0 1
0 1 1 1 0 0 0









D =









−1 −1 0 0
−1 −1 −1 0
−1 0 −1 0
0 0 0 −1









.



7

Note that (2, 0) is cycle-inducing so there is no positive
differential saving left.

Now we enter the recurrence transformations. The recur-
rence saving arrayR for M (2) is initialized to all zeros except
that R2,0 = 1, which corresponds to the patternX2 + X3.
HenceG0 is (0, 0, 1, 1, 0, 0, 0) and the algorithm stops at

MR =









1 0 0 0 1 0 0 1
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 1 0 0 0 0 0 1









and the recurrence saving array becomes all zeros. The remain-
ing matrix MR needs five additions. The identified pattern
X2 + X3 also needs one addition. SoY = MX can be
calculated by six additions, whereas a straightforward imple-
mentation ofY = MX requires 12 additions. Note that
techniques such as forced patterns or reversal patterns arenot
applicable in this simple example. Nevertheless, since it can be
easily verified thatY = MX cannot be done in five additions,
our CSE algorithm minimizes the number of additions in this
case. Note that if we only use recurrence savings, the result
will be seven additions.

F. Time and Storage Complexities

Since the reduction of additive complexities depends on
M only, the output of Algorithm 2 for a given CFFT can
be used for any input vector. Hence Algorithm 2 is simply
precomputation and its complexity should not be consideredas
part of the complexities of CFFTs. To show that Algorithm 2 is
computationally tractable, we provide an order-of-magnitude
analysis for the time and area complexity of Algorithm 2
below.

Algorithm 2 requires only four types of operations: adding
two rows, inserting or removing entries from a row, searching
for a two-summand pattern in a row, and comparison to find
the greatest saving. During the optimization, while the num-
ber of columns in the matrixM (i) increases continuously,
the number of 1’s in each row decreases. To facilitate row
additions, for each row we only store the positions of 1’s as a
sorted list. Since the originalM hasn′ columns, adding two
rows is equivalent to merging two sorted lists of size at most
n′, which requires at most2n′ comparisons. For simplicity, we
assume inserting or removing entries in a row has the same
complexity as adding two rows. Searching for a two-summand
pattern in a row needs at mostn′ comparisons. We assume the
complexity of either appending an entry to a row or updating
a matrix entry is negligible.

Now since differential transformations described in Steps2.1,
2.2, and 2.3 and recurrence transformations in Steps 2.4, 2.5,
and 2.6 are independent, we can analyze them separately. In
Step 2.1, the initialization of the differential saving array D

needs to add rows forn(n − 1)/2 times, so it takes at most
n(n− 1)n′ comparisons. The result of Step 2.2 is an acyclic
digraph with at mostn nodes, so at mostn(n− 1)/2 pairs of
rows are identified. To identify one pair of rows, we need at
most g − 1 comparisons, whereg is the number of remain-
ing pairs of rows. After one differential saving is identified,

the child row needs to be updated, which requires at most
2n′ comparisons. Correspondingly, computing the differential
savings relative to the new child row needs up to2n′(n− 2)
comparisons since the parent row is ineligible. So it will take
at most

∑1
g=n(n−1)/2

(

2n′(n−2)+2n′+g−1
)

≈ O(n4+n2n′)
comparisons. UpdatingK does not requires extra computa-
tion. Therefore the number of total comparisons for differential
transformations isO(n4 + n2n′).

To initialize R, we scan the matrix row by row to find the
recurrences of each two-summand pattern. For any row, we
increaseRij by one if the two-summand patternXi+Xi+j−1

is present. Since there are at mostn′ 1’s in a row, it has at
mostn′(n′ − 1)/2 two-summand patterns and hence requires
at mostn′(n′ − 1)/2 additions. Thus Step 2.4 needs at most
nn′(n′ − 1)/2 additions. For the first recurrence transforma-
tion, it will need at most(n+n′)(n+n′−1)nn′/2 comparisons
to find the greatest inR, because there are(n + n′)(n +
n′ − 1)/2 possible two-summand patterns when alln sums in
Y have become summands after differential transformations.
After that, to identify each two-summand pattern, it needs
(s+ n+ n′)(s + n+ n′ − 1)/2− 1 comparisons, wheres is
the number of identified patterns. After a pattern is identified,
all rows with the pattern need to be updated. For each pattern,
it needs to go through at mostn rows. Hence it requires at
most 2nn′ comparisons. If the pattern is forced, it needs to
go through all identified patterns, which requires at mostn′s
comparisons for one row andnn′s comparison forn rows. It
requires at mostnn′(n′ − 1)/2 additions to updateR. Under
direct computation,M requires at mostnn′ additions. By
identifying one pattern, the number of additions increasesby
one while saving at least one addition than direct computation.
Based on this observation, we deduce that there are at most
nn′/2 identified patterns. Thus the number of comparisons re-
quired in Step 2.5 is at most

∑nn′/2−1
s=0

(

(s+n+n′)(s+n+n′−
1)/2−1+2nn′+nn′s

)

≈ O(n3n′3). The number of required

additions is at most
∑nn′/2−1

s=0

(

nn′(n′ − 1)/2
)

≈ O(n2n′3).
Assuming additions have the same complexity as compar-
isons, it is negligible. To identify one reversal pattern needs
nn′(n′ − 1), and its complexity is also negligible compared
to those of other parts. Hence the complexity of our CSE
algorithm isO(n3n′3 + n4), or O(n6) assumingn = n′.

The time complexity above is for one run of Algorithm 2.
Since Algorithm 2 is probabilistic, it is necessary to run it
multiple times to obtain good results. However, a very large
number of runs is not necessary even for large problems,
since the variance between different runs is relatively small
in comparison with the total number of required additions.

The storage complexity of Algorithm 2 includes five parts:
M , D, R, K, and the list of identified two-summand patterns.
For M , it is at mostnn′. ForD, it is n2 and can be reduced
to n(n−1) sinceDii is not necessary. Since there are at most
nn′/2 identified patterns, the storage ofR is at most(nn′/2+
n + n′)(nn′/2 + n + n′ − 1)/2 and it takes at mostnn′ to
keep the list of identified patterns. The three-dimensionalarray
K requires at mostn times ofM . Hence the total storage
complexity is at mostO(n2n′2), or O(n4) assumingn = n′.

Note that the upper boundnn′/2 of the number of identified
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patterns for ann×n′ matrix is usually not tight. For example,
for a 1023× 1023 matrix, only less than 30,000 patterns are
identified in our simulation.

IV. RELATIONS AMONG VARIOUS CFFTS

Our CSE algorithm can be used to reduce the additive com-
plexities of various CFFTs. In this section, we will investigate
their properties and establish the relations among them. This
study also simplifies the analysis of their multiplicative and
additive complexities as well as performance comparison in
Section V.

Let us first study the properties of a block diagonal matrix
L = diag(L0,L1, . . . ,Ll−1), whereLi’s are all circulant
matrices. Clearly,Li’s are all symmetric and henceL is also
symmetric. We formally present a result mentioned in [7] and
[30, pp. 273], which can be proved easily by inspection.

Lemma 1. GivenL = diag(L0,L1, . . . ,Ll−1) that is a block
diagonal matrix whereLi’s are all circulant, its inverseL−1 =
diag(L−1

0 ,L−1
1 , . . . ,L−1

l−1) is also a block diagonal matrix
whereL−1

i ’s are all circulant. Furthermore, supposeLi is
generated byγi and bi = (γi, γ

2
i , . . . , γ

2mi−1

i ) is a normal
basis, thenL−1

i is a circulant matrix generated byβi, where
(βi, β

2
i , . . . , β

2mi−1

i ) is the dual basis ofbi.

Thus, for DCFFTs and SCFFTsLif i is a cyclic convolution
and can be calculated by the bilinear formQi(Ribi ·P if i) =
Qi(ci ·P if i) [12]–[15], wherebi = (γi, γ

2
i , . . . , γ

2mi−1

i ). For
ICFFTs, by Lemma 1L−1

i f i is also a cyclic convolution given
by the bilinear formQi

(

Ri(βi, β
2
i , . . . , β

2mi−1

i ) · P if i

)

=
Qi(c

∗

i · P if i). There are different bilinear forms of cyclic
convolution and all of them can be used in CFFTs. Henceforth,
we assume that thesamebilinear forms (P i’s andQi’s) are
used in all CFFTs. In this paper, we focus on the CFFTs with
the following forms:

DCFFT F = ALf ′

= AQ(c ·Pf ′) (2)

SCFFT F ′ = LTA′Tf ′

= P T
(

c · (A′Q)Tf ′
)

(3)

ICFFT F ′′ = L−1A−1f

= P T (c∗ ·QTA−1f ) (4)

whereQ andP are binary matrices and usually sparse, and
A is a dense binary square matrix. Note that the equality (3)
is due toL = QCP where C = diag(c0, c1, . . . , cn−1);
the equality (4) follows (3) and is a direct application of
Lemma 1. Due to the symmetric properties ofL and L−1,
the above CFFTs have alternative forms: DCFFTs are also
given byF = AP T (c · QT f

′

); SCFFTs are also given by
F ′ = Q

(

c · (A′QT )Tf ′
)

; ICFFTs are also given byF ′′ =
Q(c∗ · PA−1f ). However, these alternative forms can be
considered as the forms in (2), (3), and (4) with differentP

andQ matrices. Since we assume all the bilinear forms are
the same, we will not consider the alternative forms further.

We observe that all CFFTs in (2), (3), and (4) are deter-
mined by two factors. First, they all depend on the order
of cyclotomic cosets, i.e., the coset leaderski’s, which in

turn determine the coset sizemi’s. As in [6], we assume the
same normal basis is used for all cyclotomic cosets of the
same size. Hence, all CFFTs also depend on the normal basis
selected for each subfieldGF(2mi). For simplicity, we denote
the collections of DCFFTs, SCFFTs, and ICFFTs for different
ki’s, mi’s and the normal bases asD, S, andI, respectively.
Next, we investigate the impact on computational complexities
of CFFTs by the two factors above. We will consider first
multiplicative complexities and then additive complexities.

Lemma 2. Assuming that the same bilinear forms are used,
DCFFTs, SCFFTs, and ICFFTs as defined in(2), (3), and (4)
have the same multiplicative complexities.

Proof: The multiplicative complexity is determined by
the number of non-one entries inc in DCFFTs and SCFFTs
or c∗ in ICFFTs (all elements inc or c∗ are non-zero). Since
using normal bases, the number of 1’s inc and c∗ are both
the number of all-one rows in allRi’s. Thus the multiplicative
complexity is independent of the choices of normal bases and
independent of the constant vectorsc or c∗.

The additive complexities of all CFFTs are due to the matrix-
vector multiplications needed in CFFTs. Clearly, the number
of additions required to compute any matrix-vector multipli-
cation Y = MX varies with the implementation. In the
following, we will consider additive complexities under direct
computation. As pointed out in Section III-C, to computeY =
MX by direct computation, it needsW (M ) − n additions.
In some cases the additive complexities of two matrix-vector
multiplications can be related regardless of implementation.
We say two matrix-vector multiplications areadditively equiv-
alent if one matrix-vector multiplication can achieve any ad-
ditive complexity the other can, and vice versa. An important
case of additive equivalence is given in the following lemma
without proof.

Lemma 3. If two binary matricesM andM ′ satisfyM ′ =
ΠMΠ

′, whereΠ andΠ′ are two permutation matrices, then
the matrix-vector multiplications defined byM and M ′ are
additively equivalent.

With a slight abuse of terminology, we say two CFFTs are
additively equivalentwhen their corresponding matrices are
additively equivalent. By a straightforward proof, we havethe
following property:

Lemma 4. For any two CFFTs inD that differonly in ki’s and
mi’s, theirA’s andL’s are additively equivalent, respectively.
Thus, the two CFFTs inD are additively equivalent. The same
property holds forS and I.

We now consider additive complexities for all CFFTs when
normal bases vary, too.

Lemma 5. All CFFTs inD have the same additive complexity
under direct computation. So do those inS andI, respectively.

Proof: It suffices to prove the first part, and the arguments
for S andI are similar. First, since different orders of cosets
result in additively equivalent DCFFTs due to Lemma 4, we
assume the same order of cosets and consider only different
normal bases without loss of generality. Realizing that differ-
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ent normal bases would not changeP andQ in (2), we focus
on how different normal bases impactAQ. ExpressingA as
[A0 | A1 | · · · | Al−1] whereAi is a (2m − 1) ×mi binary
matrix, F = ALf ′ = [A0L0 | A1L1 | · · · | Al−1Ll−1]f

′.
For eachAi, the rows are(2m − 1)/(2mi − 1) copies of
the set ofmi-bit row vectors with all combinations except
all zeros. ThusAi’s corresponding to different normal bases
in GF(2mi) are equivalent up to permutation. Recall thatQ

is a block matrices for which the blocks off the diagonal
are zero matrices and the diagonal blocks areQi’s. Thus,
AQ = [A0Q0 | A1Q1 | · · · | Al−1Ql−1]. ThusAQ’s corre-
sponding to different normal bases also have the same additive
complexity under direct computation. Hence all DCFFTs inD
have the same additive complexity under direct computation.

From Lemma 1, we establish a relation betweenI andS.

Lemma 6. Given an ICFFTF ′′ = L−1A−1f , there exists
an SCFFTF ′ = L′A′Tf ′ such thatL′ = L−1 andA′T and
A−1 are equivalent up to permutation, and vice versa.

Proof: It suffices to show the first part, and the argu-
ment for the second part is similar. For a DCFFT given by
F = ALΠf , the transformF ∗ = Π

−1L−1A−1f is an-
other DFT, whereF ∗ = (F0, Fn−1, Fn−2, . . . , F1) = Π

∗F

and Π
∗ is a permutation matrix. Given an ICFFTF ′′ =

L−1A−1f , clearly F ′′ = ΠF ∗ = ΠΠ
∗F . Suppose the in-

dices of the components ofF ′ = ΠF are in the order as
(k0, k02, . . . , k02

m0−1, . . . , kl−12
ml−1−1) mod n, then the in-

dices of the components ofF ′′ = ΠF ∗ are in the order as(n−
k0, n− k02, . . . , n− k02

m0−1, . . . , n− kl−12
ml−1−1) mod n.

Note that both modulo operations above are componentwise.
Sincen−ki2

j ≡ (n−ki)2
j mod n, F ′′ is also ordered in cy-

clotomic cosets. Let us consider an SCFFT with the same order
of cyclotomic cosets:F ′′ = L′′A′′Tf ′′ wheref ′′ = ΠΠ

∗f .
Note that the order of the cyclotomic cosets sizesmi remains
the same inL′′ andL−1. Thus by Lemma 1 there exist normal
bases such thatL′′ = L−1. Choosing such normal bases, we
construct an SCFFTF ′′ = L−1A′′Tf

′′ = L−1A−1f . Thus
L−1(A′′T

ΠΠ
∗ − A−1)f = 0 for arbitraryf and full rank

L−1. HenceA−1 = A′′T
Π

∗
Π.

Note that Lemma 6 holdsregardless of implementation.
Since this mapping exists for any ICFFTs or SCFFTs, Lemma 6
implies that ICFFTs and SCFFTs are additively equivalent.

Finally, we are ready to relate the additive complexities of
all CFFTs under direct computation.

Lemma 7. The DCFFTs, SCFFTs, and ICFFTs in(2), (3),
and (4) all have the same additive complexity under direct
computation.

Proof: Due to Lemma 5, it is sufficient to show that the
additive complexities of two CFFTs of different types are the
same, which holds for an SCFFT and an ICFFT by Lemmas 5
and 6. Now let us show it is the same for a DCFFT and an
SCFFT.

In length-n DCFFTs,A is ann×n matrix,Q is ann×n′

matrix (n′ > n), and P is an n′ × n matrix. Under direct
computation, the number of required additions for a DCFFT
defined in (2) isW (AQ)−n+W (P )−n′. Sincef ′ = Πf ,

we haveF ′ = A′Q(c · Pf ′), whereF ′ = ΠF andA′ =
ΠA. For an SCFFTF ′ = P T (c · (A′Q)Tf ′), the additive
complexity under direct computation isW

(

(A′Q)T
)

− n′ +

W (P T )−n. SinceA′Q = ΠAQ, soA′Q andAQ have the
same number of 1’s. Since matrix transpose does not change
the number of 1’s,W

(

(A′Q)T
)

= W (AQ) andW (P T ) =
W (P ). Hence any DCFFTs in (2) and any SCFFTs in (3) have
the same additive complexity under direct computation. An
alternative direct computation for both DCFFTs and SCFFTs
is to multiplyA andQ separately. It is easy to verify that the
conclusion is the same.

V. CFFTS WITH REDUCED ADDITIVE COMPLEXITIES

Using Algorithm 2, we construct CFFTs with reduced addi-
tive complexities for lengths2m−1 up to 1023, and we present
their complexities in Table I. CFFTs of length beyond 1023 are
not considered because for two reasons: first, lengths beyond
1023 are rarely needed for the primary application considered
in this paper, Reed–Solomon decoders; second, efficient cyclic
convolutions for CFFTs of longer lengths (for example, 11-
point cyclic convolution for length-2047 CFFTs) are not avail-
able in [14]–[16]. For all our CFFTs, the cyclotomic cosets
are ordered by their leaders; for cyclic convolutions of lengths
up to nine, we use the bilinear forms provided in [16], and
we construct a length-10 cyclic convolution based on those of
lengths two and five, by the Agarwal–Cooley algorithm [31];
the primitive polynomials and vector-space representations in
[32, Sec. B.3] are used for all fields; for each field, we choose
the normal basis whose leader is the smallest power of the
primitive element. We observe that the multiplicative com-
plexities are the same for all CFFTs due to Lemma 2. Due
to Lemma 6, SCFFTs and ICFFTs are additively equivalent,
and the additive complexities of both SCFFTs and ICFFTs are
presented together in Table I. We also observe that SCFFTs
and ICFFTs require more additions than DCFFTs, and the
reason for this was given in [8].

TABLE I
COMPLEXITIES OFFULL CYCLOTOMIC FFTS

n Mult.
Additions

DCFFT SCFFT/ICFFT
Ours [6] Ours [7] [8]

7 6 24 25 24 24 -
15 16 74 77 76 - 91
31 54 299 315 307 - -
63 97 759 805 804 - -
127 216 2576 2780 3117 - -
255 586 6736 7919 6984 - -
511 1014 23130 26643 27192 -
1023 2827 75360 - 77276 - -

In Table I, we also compare the additive complexities of our
CFFTs to those in [6]–[8], the best results of CFFTs in the
open literature to our knowledge2. In Table I, some entries are
blank due to unavailability of comparable data: the additive
complexity of DCFFT of length 1023 is not provided in [6];
only length-7 ICFFT was provided in [7] and only length-
15 SCFFTs was provided in [8]. For length-7 FFT, both our

2A length-15 DCFFT with 76 additions was reported in [16].
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TABLE II
COMPLEXITIES OFFULL FFTS

n
Horner’s rule Goertzel’s alg. [5] [33] Bergland’s alg. Prime-factor [2] Our DCFFTs

Mult. Add. Mult. Add. Mult. Add. Mult. Add. Total Mult. Add. Total Mult. Add. Total Mult. Add. Total
7 36 42 12 42 6 26 29 29 174 - - - 9 37 82 6 24 54
15 196 210 38 210 16 100 41 97 384 - - - - - - 16 74 186
31 900 930 120 930 60 388 289 289 2890 - - - 108 612 1584 54 299 785
63 3844 3906 282 3906 97 952 801 801 9612 - - - - - - 97 759 1826
127 15876 16002 756 16002 468 3737 2113 2113 29582 - - - - - - 216 2576 5384
255 64516 64770 1718 64770 646 35503 1665 5377 30352 5610 5610 89760 1135 3887 20902 586 6736 15526
511 260100 260610 4044 260610 - - 13313 13313 239634 39858 39858 717444 6516 17506 128278 1014 23130 40368
1023 1044484 1045506 9032 1045506 - - 32257 32257 645140 42966 42966 859320 5915 30547 142932 2827 75360 129073

DCFFT and SCFFT achieve the smallest additive complexity
of the ICFFT in [7]; for lengths 15, 31, 63, and 127, our CFFTs
have additive complexities 4%, 5%, 6%, and 7% smaller than
those reported in [6]; for lengths 255 and 511, our CFFTs
reduce additive complexities by 15% and 13%, respectively,
than their counterparts in [6]. To compare our length-7 DCFFT
with that in [6], see Appendix A.

We also compare our results to other FFT algorithms in
Table II. For Horner’s rule [34], Goertzel’s algorithm [14],
Zakharova’s method [5], the complexities are reproduced from
[6] except that the complexities of length-1023 FFTs are repro-
duced from [2]; the complexities of Bergland’s algorithm [35]
and the prime-factor FFTs [2] are obtained from [2], [3]. For
reference, we also consider the algorithm proposed by Wang
and Zhu [33], which is known to be asymptotically fast, and
its complexities are obtained from [33, eq. (11) and (12)].

Since all the algorithms require both multiplicative and ad-
ditive complexities, it is clear that a metric for the total com-
plexities is needed for comparison. We use a weighted sum
of the additive and multiplicative complexities as the metric,
assuming the complexity of each multiplication is2m − 1
times as that of an addition. Our assumption is based on
both hardware and software considerations. In hardware imple-
mentation, a multiplier overGF(2m) generated by trinomials
requiresm2 − 1 XOR andm2 AND gates (see, e.g., [36]),
while an adder requiresm XOR gates. Assuming that XOR
and AND gates require the same area, the area complexity of
a field multiplier is2m times that of an adder overGF(2m).
In software implementation, the complexity can be measured
by the number of word-level operations (see, for example,
[37]). Using the shift and add method as in [37], a multiplica-
tion requiresm− 1 shift andm XOR word-level operations,
respectively while an addition needs only one XOR word-
level operation. Whenever the complexity of a multiplication is
more than2m−1 times as complex as that of an addition (for
example, in the hardware implementation described above),
our assumption above underestimates the relative complexity
of multiplications and hence puts our results in a disadvantage
in comparison to other FFT algorithms since CFFTs have
reduced multiplicative complexities. We would also like to
point out the similarity between our metric and the one used
in [33], where the multiplication overGF(2m) was treated2m
times as complex as an addition.

The total complexities of Horner’s rule, Goertzel’s algo-
rithm, and [5] are not presented in Table II since the advantage
in complexities of our CFFTs over Horner’s rule, Goertzel’s

algorithm, and [5] is clear: our CFFTs require fewer multi-
plicationsand fewer additions; the savings achieved by our
CFFTs are very significant, and in some cases the multiplica-
tive complexities of our CFFTs are only small fractions of
other algorithms. We remark that the multiplicative complex-
ities of Zakharova’s method are closer to those of CFFTs,
which is not surprising given their similarities [6]. The total
complexities of [33], Bergland’s algorithm, the prime-factor
FFTs [2] and our CFFTs are presented in Table II, since
in comparison to these algorithms our CFFTs have smaller
multiplicative complexities but higher additive complexities.
In comparison to [33], our CFFTs achieve total complexity
savings of 69%, 52%, 73%, 81%, 82%, 49%, 83% and 80%
for lengths7, 15, . . . , 1023, respectively. For lengths 255, 511,
and 1023, our CFFTs achieve total complexity savings of 83%,
94%, and 85% over Bergland’s algorithm, and 26%, 69%, and
10% over the prime-factor FFTs [2], respectively.

We remark that, as in many previous works (see, for ex-
ample, [6]–[8]), only the multiplications and additions are
considered in the complexity comparison. This is reasonable
if the CFFTs are implemented by combinational logic, and the
required numbers of multiplications and additions translate to
the numbers of finite field multipliers and adders in combina-
tional logic. Under the same assumption, memory overhead
and intermediate memory access are not considered in the
comparison above. This would not be the case if CFFTs were
implemented in software, but this is beyond the scope of this
paper.
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APPENDIX A
LENGTH-7 DCFFT

• Pre-additionsp = (p0, p1, . . . , p8)
T = Pf ′ require 8

additions:p0 = f0, p2 = f2 + f4, p3 = f1 + f2, p4 =
f1 + f4, p1 = p2 + f1, p6 = f6 + f5, p7 = f3 + f6,
p8 = f3 + f5, andp5 = p6 + f3.
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• Pointwise multiplicationsg = (g0, g1, . . . , g8)
T = c · p,

wherec = (1, 1, α, α2, α4, 1, α, α2, α4)T , need 6 multi-
plications

• Post-additionsF = (F0, F1, . . . , F6)
T = AQg require

16 additions:t0 = g3 + g4, t1 = g0 + g1, t2 = g1 + g5,
F0 = g0 + t2, t3 = g2 + g4, t4 = g8 + t3, t5 = g7 + t4,
F5 = t1 + t5, t6 = g6 + t4, t7 = t1 + t6, F6 = t0 + t7,
F3 = F6 + t5, t8 = t3 + t2, F2 = F3 + t8, F1 = F2 + t6,
andF4 = t2 + t7.
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