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Abstract—In this paper, we first propose a novel common
subexpression elimination (CSE) algorithm for matrix-ve¢or mul-
tiplications over characteristic-2 fields. As opposed to pviously
proposed CSE algorithms, which usually focus on complexity
savings due to recurrences of subexpressions, our CSE aldhm
achieves two types of complexity reductions, differentiabavings
and recurrence savings, by taking advantage of the cancelan
property of characteristic-2 fields. Using our CSE algorithm,
we reduce the additive complexities of cyclotomic fast Fouer
transforms (CFFTs). Using a weighted sum of the numbers of
multiplications and additions as a metric, our CFFTs achiee
smaller total complexities than previously proposed CFFTsand
other FFTs, requiring both fewer multiplications and fewer ad-
ditions in many cases.

Index Terms—Common subexpression elimination (CSE), Com-
plexity theory, Convolution, Discrete Fourier transforms (DFTSs),
Galois fields, Multiple constant multiplication (MCM), Reed—
Solomon codes.

I. INTRODUCTION

Discrete Fourier transforms (DFTs) over finite fields have
widespread applications in error correction coding [1]r Fo
Reed-Solomon codes, all syndrome-based bounded distance
decoding methods involve DFTs over finite fields [1]: syn-
drome computation and the Chien search are both evaluations
of polynomials and hence can be viewed as DFTSs; inverse
DFTs are used to recover transmitted codewords in transform
domain decoders. Thus efficient DFT algorithms can be used
to reduce the complexity of Reed—Solomon decoders. For ex-
ample, using the prime-factor fast Fourier transform (FFT)
in [2], Truong et al. proposed [3] an inverse-free transform-
domain Reed-Solomon decoder with substantially lower com-

henceforth in this paper. DCFFT has been shown to be efficient
for full DFTs of lengths up to 511 [6], and ICFFT and SCFFT
are particularly suitable fgvartial DFTs which compute only

part of the spectral components and are important for such op-
erations as syndrome computation of Reed—Solomon decoders
[7], [8l.

Although CFFTs in [6]—[8] achieve low multiplicative com-
plexities, their additive complexities (numbers of adutis
required) are very high if implemented directly. The meth-
ods used in [6]-[8] somewhat alleviate the problem, but the
additive complexities of CFFTs in [6]—[8] remain quite high
In this paper, we first propose a novel common subexpression
elimination (CSE) algorithm, and then use it to reduce the
additive complexities of various CFFTs. The contributiarfis
this paper are:

« To minimize the additive complexities of CFFTs is a spe-
cial case of the well-known collection-of-sums problem,
which is NP-complete [9], [10]. Aiming to reduce ad-
ditive complexities, previously proposed CSE algorithms
focus primarily on identifying recurring subsets of sum-
mands (we refer to this as subexpressions or patterns).
In contrast, our CSE algorithm, which has only poly-
nomial complexity, also takes advantage of two other
types of complexity reductions enabled by the underlying
characteristic-2 fields: in addition to explicit recurring
subexpressions mentioned above, our CSE algorithm also
considers implicit subexpressions for additional savings
since the difference between two sums may require fewer
additions than one of the two sums, our CSE algorithm

plexity than time-domain decoders; FFT techniques are used
to compute syndromes for time-domain decoders in [4]. *
Using an approach similar to those in previous works (see,
for example, [5]), cyclotomic FFT (CFFT) was recently pro-
posed [6] and two variants were subsequently considered [7]
[8]. To avoid confusion, we refer to the CFFT proposed in [6]
as direct CFFT (DCFFT) and those in [7] and [8] as inverse
CFFT (ICFFT) and symmetric CFFT (SCFFT) respectively
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also captures savings of this type.

We investigate the properties of the three types of CFFTs
mentioned above and establish the relations among them.
We first show that the three types of CFFTs have the
same multiplicative complexities assuming the same bi-
linear forms. Furthermore, we establish thatder direct
implementation, all three types of CFFTs have the same
additive complexities. Finally, we show that there is a
mapping between SCFFTs and ICFFTs that preserves
the additive complexitieeegardless of implementation
Thus, from the perspective of both multiplicative and ad-
ditive complexities, SCFFTs and ICFFTs are equivalent.
Our results simplify the analysis of their multiplicative
and additive complexities as well as performance com-
parison.

Using our CSE algorithm, we reduce the additive com-
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plexities of full CFFTs greatly. In comparison to the fullremark that bothQ and P are binary and usually sparse. For
CFFTs in [6]-[8], the best results to our knowledge, outetails of CFFTs, please refer to [6].
CFFTs have 4%-15% smaller additive complexities while Two variants of CFFTs were proposed in [7], [8]. First,
maintaining the same multiplicative complexities. Comby using the same permutation for bath and f, SCFFTs
pared to some previously proposed FFTs techniques, quoposed in [8] satisfyF’ = L7 A" f', where F' = IIF
CFFTs require fewer multiplicatiorand fewer additions. and f/ = IIf. SCFFTs are so named because they have
In comparison to some other FFTs techniques, our CFF§gmmetric transform matrices, that 5/ A’”" = A'L. It is
require fewer multiplications but more additions; in suckasy to deduce thad’ = ITA. ICFFTSs, proposed in [7], are
cases, the total complexities, obtained by assuming thmtsed on inverse DFTs and satisy = L~'A~'f, where
a multiplication overGF(2™) is as complex a@8m — 1 F” is also a permutation of’. Both SCFFTs and ICFFTs
additions, of our CFFTs are smaller. require fewer multiplications than DCFFTs for partial DETs
The rest of the paper is organized as follows. In Sedfibn Where only a subset of componentshhare needed.
we briefly review various CFFTs and CSE algorithms to make The multiplicative complexity of each CFFT, i.e., the num-
this paper self-contained. Sectibnl Il presents our CSB-algoer of multiplications required, is the total number of non-
rithm. We investigate the properties of and relations amo#igvial scalar multiplications in all cyclic convolutionhat
the three types of CFFTs in Sectibnl IV. CFFTs with reducd8, the multiplicative complexity ot; - P; f; is the number
additive complexities are obtained by using our CSE algorit of non-one elements ie; (no element is zero iw;), which

and presented in Sectidd V. is determined by the cyclic convolution algorithms. To find
the optimum cyclic convolution algorithms with the minimum
Il. BACKGROUND multiplicative complexities in CFFTs is still an open prefyi.

. In this paper, we use the cyclic convolution algorithms i6][1

A. Cyclotomic FFTs The additive complexity of each CFFT is determined by the
Given a primitive element € GF(2™), the DFT of a vector two matrix-vector multiplications in which both matricesea

f=(fo,fi,-., fn—1)" isdefined ag" £ (f(a®), f(a'),..., binary. For example, in DCFFTs, the matrices at€) and

f(a”*l))T, where f(z) 2 Y ') fir' € GF(2™)[z[l. A P. Due to the large size oAQ, direct computation of the

new cyclotomic FFTs algorithm was proposed in [6], anthatrix-vector product will result in high additive complix

for short lengths (up to 511 [6]) it is computationally effi-A heuristic algorithm based on erasure decoding [17] wad use

cient. Representing(z) as a sum of linearized polynomialsin [6] to reduce the additive complexity. Similar optimizat

by cyclotomic decomposition [6], [8], cyclotomic FFF = was also used in [7]. Another fast matrix-vector multiptioa

ALf = ALIIf, where A is ann x n binary matrix,L = algorithm is the Four Russians’ algorithm [18], but it is &ds

diag(Lo, L1, ..., L;—1) is a block diagonal matrix with squareon preprocessing and fails to efficiently exploit the matrix

matricesL;’s on the diagonal] is the number of cyclotomic structure. CSE is another commonly used technique for fast

cosets,f’ = (fi, fiF,....£75)7 is a permutation of the matrix-vector multiplication.

input vector f, andII is a permutation matrix. Suppode;

corresponds to a coset of size;, using a normal basis of

GF(2™:) generated byy;, then L, becomes a circulant matrix B. Common Subexpression Elimination

[11]: Consider a linear transfori™ = M X, whereY and X
%2” %21 %2"”’1 are n- and n/-dimensional column vectors, respectively, and
M is ann x n/ matrix containing only 1, -1, and 0. Clearly,

1 2 0
Lo

(1) such a transform requires only additions and subtractitins.
o o was shown that it is an NP-complete problem [9, Ensemble
A2 42 L 2 Computation], [10, Collection of Sums] to minimize the num-
ber of additions and subtractions.
A special type of the collection-of-sums problem is the
MCM problem [19], where the relative position of a bit patter

be computed as a cyclic convolution, for which fast bilinefi’lyithin th_e matrri]x is of n]? t;rgporta(\)nce EZO]' Thisni_sl a \;alid
form algorithms are available [12]-[15]. These fast algoris  23SUmption in the case of the = (2o, ¢, ..., " )

: : ; 7 7 with ¢ = 2 or ¢ = 27!, which is common in filters. Thus,
ZZTC??PV\Z;?;TNIS err];ztini f&:i@?f lij}mel(ﬁfbélPéfZ;r;j patterns that differ in re_Iative po;itions o_nIy can be oheai
P, are binary matrices;; = R;b; is a precomputed constant]crom one of them b_y shn_‘t ope_ran_ons. This class of problems
vector, and stands for pointwise multiplications. Combininghave wide applications in finite wppulse response (FIR) fil-
all the terms, a DCFFT is given h§f — AQ(c- Pf'), where ters [19]-[25]. Graph-based algorithms [24], [25] syntkhes

Q and P are both block matrices, for which the blocks of_pirected acyclic graphs, in which partial sums define nodes a

the diagonal are the zero matrices and the diagonal bloeks gllpifts are annotated on_edges. In [24], optimal _solutiprrs ca
e obtained by exhaustive search of all topologies with high

’s and P;’s respectively, anad = (¢l ,c7,...,¢" ). We ) ; -
Qi ! P y (e, €1 €-1) computational complexity. Entropy and conditional enyrop

1in this paper, vectors and matrices are represented byaueldétters, and are used in [25] for vertex decompOSition- Pattern-basgd—al
scalars by normal letters. rithms [19]-[23], [26], [27] reduce the MCM complexity by

Henceforth in this paper we assunig’s in L are always
constructed by normal bases and we £ayn () is a circulant
matrix generated byy;. Thus the product ofL; and f; can



first identifying recurring patterns, which are combinasof matrix. For the column positions wher®/,., and M., rows
non-zero positions, and then calculating them only onceyThr, andr. (r, # r.) of M respectively, both have ones, the
usually use canonical signed digit (CSD) representation difference (or sumM,.. — M. of the two rows has zeros. If
identify potentially sharable subexpressions. The algors in - M,  — M, contains fewer entries than one of the two rows,
[19], [21]-[23], [26], [27] use weight-2 subexpressionstias say M, , we can reduce the total number of additions by
primitive elements. In contrast, [20] searches for the égh first computingY;,, and then computing,., =Y, + (M, —
weight common subexpressions. M, )X. Let us denote the numbers of non-zero entries in
To minimize the number of additions in the matrix-vectoM,.,, M, , andM, — M, asw,, w., andw,, respectively,
multiplications in CFFTs over characteristic-2 fields dbns the differential saving (the number of additions saved)ver
tutes a different type of the collection-of-sums problerheve by w. — wy — 1. Since we are only concerned about positive
X is over characteristic-2 fields. This implies two propestie savings, we uséw., — wq — 1)* £ max{0, w. — wq — 1} in
(1) the summands are independent, and (2)1tedn M are our algorithms.
equivalent to—1 and additions are equivalent to subtractions. The price for the differential saving is that nd#§, must
The second property is noted but not utilized in [19]. Due tbe computed befor&’. , putting a dependency between the
the two properties, CSE techniques for the MCM problem at@o sums. We use an ordered péit,,r.) to represent this
not suitable for the problem considered in this paper. Hgiari dependency; we calV,. , the sum computed first, the par-
CSE techniques proposed in the context of MCM probleemt, and refer toY,, as the child. Since each ordered pair
result in modest complexity reductions since they do nog takntroduces a dependency, to keep track of all dependency, we
advantage of the second property (see, for example, [19]ke a digraph to keep track of all ordered pairs, where the
For the first property, sophisticated CSE techniques, éshec vertices are the row numbers in the ordered pairs and the
those relying on CSD representation, that are tailored fBr Fedges are from the parent to the child in each pair. We call
filters (see, for example, [20]-[25hannot be directly ap- this graphdependency graphenceforth in this paper. There
plied to our problem; to adapt these algorithms to our probleis no conflicting dependency as long as the dependency graph
is not straightforward and requires nontrivial researdbref. is acyclic. Thus, before any ordered pair can be added to
Hence, we do not consider CSE techniques for the MCMe dependency graph, it is necessary to check whether the
problem in this paper. addition of the new ordered pair will introduce cycles in the
Two CSE algorithms that account for the cancelation progependency graph; if yes, this ordered pair is called cycle-
erty were proposed in [6], [28], and we will compare our CSkaducing and hence not permissible. Cycle detection can be

algorithms against these. done recursively.
When an ordered pair,, ) is added to the dependency
. A N OVEL CSE ALGORITHM OVER graph, bothM and X need to be transformed. We first append
CHARACTERISTIC-2 FIELDS Y,, to X as a new summand. We also repldeg,, with the

We propose a novel CSE algorithm with polynomial comdifferenceM ,.. — M, ; then due to the new summand , a
plexity that significantly reduces the additive complesdtiof new column with a single one at theth position and zeros
CFFTs. Although our CSE algorithm does not guarantee & other positions is appendedd. We call these operations
minimize the additive complexities, it may do so in some differential transformation.
cases, especially when the size of the problem is small. Our differential transformations bear some similarities t

Let us establish the terminology to describe our CSE algthe erasure correction approach used in [17]. As pointed out
rithms. For a matrix-vector multiplicatioh” = M X, where in[17], Y = M X is equivalent toqM | I[(XT, YT)T = o,

Y = (Yo,Y1,...,Yo )" and X = (Xo, X1,..., X,v—1)"  which defines a codé€ with all codewords(X”,Y7)T; to
aren- andn’-dimensional column vectors andl is ann xn’  computeY = M X is equivalent to erasure correction with
matrix, we refer to the components ¥ as sums and the erased based d@h After a series of differential transformations
components inX' as summands. Note that the sum&irhave as described above, the matrix-vector multiplication iees
one-to-one correspondence with the rowsVih, and in direct v = M’X’, where X’ = (XT,Y’T)T, Y’ consists of
computation the number of additions required to computetife summands corresponding to all the parents in the ordered
sum is the number of ones in its corresponding row mingygiirs, andM’ has the same number of rows &$. By adding
one. Hence, with a slight abuse of terminology, we sometimgg-zero columns taVI’, we can find a matrix4” such that
use rows and sums in an exchangeable manner. Similarlg ther = p”(X7, Y")T. Hence(M” — [0 | I)(XT, YT =

is a one-to-one correspondence between the summands an@®th®hus our differential transformations lead to a different
columns inM, and we sometimes use columns and summanglgrity check matrix for the same code Furthermore, the
in an exchangeable fashion below. acyclic property for the dependency graph ensures¥haan

Our CSE algorithm achieves two kinds of savings: diffelbe recovered by using the parity check mathi&” — [0 | 1.
ential savings and recurrence savings, as defined in Sectigfom this perspective our differential transformationirsikar

[M-Aland [M-B] respectively. to that of the message passing part of [17]: both find an
_ _ ) alternative parity check matrix with smaller Hamming wegyh
A. Differential Savings for the codeC, which can be used to compulé. However,

LetY = M X represent a matrix-vector multiplication, indifferent search methods are used to obtain alternativigypar
which X is over characteristic-2 fields anMf is a binary check matrices in our work and in [17].



B. Recurrence Savings strategy in which, based on existing subexpressions, wetry

find an alternative expression that requires fewer additfon
We refer to the number of occurrences of a subexpres«,m

sion (or pattern in the rows M) aspattern frequencyand  \yhen introducing forced patterns for a sum, new summands

define therecurrence savingof each pattern as its patterioy the sum are introduced. If any new summand is a sum, this
frequency minusl. After a subexpression is identified, Wentoquces dependency between the two sums, and possibly
append the subexpression X as a new summand, amdl ¢y cjes in the dependency graph. We replace with Y; in

is updated accordingly. These operations are referred 104gs gimple example above to illustrate such a case. If weforc
a recurrence transformation. A sequence of recurrence-trahe patternX, — X, + Y, pattern onYp, we havey; —
formations can E)e described in a matri%( decomposition forr?’i+X2+X3+X6 — X5+ Xg. Although it reduces the number
M = Mp]l,—, T:, whereT; = [I | G;]", the row vector f aqditions by one, it requires that, should be computed

G corresponds to a subexpressidd,z has no pattern recur- pefore ;. Since forced patterns introduce new dependency,
rence, ands is the number of identified subexpressions. Thyge il keep track of this using the dependency graph and

i i i ion- fi ) — . ) . .
Y is computed |(rzj+e})sequent|(?)l fashion: first assigt) = X, cycle detection is necessary in recurrence transformsiion
then computeX =T;X" fori=0,1,...,K —1,and \vo consider forced patterns.

finally computeY = M X5 Foro <i< K—1, let M®

K-1 — Ar() x(9) . . .
denoteM r[[,—;, T, andY = M'VX"". C. Approximate Dynamic Programming

Compared with the matrix splitting method [20], recurrence We have discussed two kinds of transformations that result

transformations keep track of the identified subexpressaan . . . . . L
. . . in_differential savings and recurrence savings. A remainin
new summands, instead of simply removing them. To reduce ..~ ~. . .
. . guestion is: how should we coordinate the transformations
the computational complexity of pattern search, our CSB-alg

. ! associated with differential savings and recurrence g&@n
rithm looks for only two-summand subexpressions. Howev h 9

. o t is, which kind of saving is more preferable? A seem-
since each two-summand subexpression is in turn appen et?1

: . ingly straightforward answer would be to use a simple greedy
as a summand and multi-summand subexpressions can be_ex:

. . ategy: choose one transformation with the greateshgavi
pressed recursively as two-summand subexpressions, dur o .
. L : : nstead of this simple greedy strategy, we adopt a different
algorithm efficiently exploits the recurrence savings othbo

two-summand patterns and multi-summand patterns. strategy. We justify our choice by approximate dynamic pro-
gramming [29] below.

One limitation of the recurrence transformations above 1S \gte that both differential and recurrence transformation
that it considers only explicit subexpressions, missinglieit ., pe expressed in a matrix decomposition form. Thus the

subexpressions that are hidden by cancelation. We will NQWjjection-of-sums problem can be viewed as a dynamic pro-
identify implicit subexpressions throudierced patterns To gramming problem [29], where the cost to be minimized is

this end, after a two-summand patteks + X, is identified o nymber of additions and each differential or recurrence
and introduced as a new summahd, we try to impose the yansformation corresponds to one stage. The total cost-is d
pattern on the rows containingnly X, or X; by replacing 5ieq byA — Z_K—lg(i) + Jr whereg® € {0,1} is the

Xo with X7 4+ X, or X; with X+ X,,. After forcing patterns cost of Stagei a|31:dOJR is the cost of implementingV/ 5.

X1+X, or Xo+X, on rowr;, if previously identified patterns | ot ;s denoteM and X after the ith stage as theu ("

emerge due to cancelation and therefore lead to complexity xX@ and they are the state variables. The idea of ap-
savings, we transform{ ., to reflect the forced pattern. If theproximate dynamic programming is to approximate and op-

forced pattern does not lead to any saving, we QO not t.ramst{imize the cost-to-goJ [29]. Suppose after the transforma-
M,,. Since a forced pattern leads to complexity savimly tjons in Stagei, the matrix-vector multiplication is given by

when they match previously identified patterns, we search ttie — MDX® Since under direct computation, it needs
rows only for previously identified patterns. Since we keea/ M(i)) _ 1, additions whereW(M(i)) is the nur,nber of
track of all two-summand patterns, we first search the rOWs in M@ we useJ(i') — o® (W(M(i)) _ n) as a lin-
for previously identified patterns that includg or Xy, which . approximation of the cost-to-go, wheré) approximates
is inserted due to the forced pattern. If we find a previously, _'<~i-1 () WMD) — ’ Wh () — (A —
ont " | Sihot) /(WMD) ~ ). When ) = (
identified pattern, say; = X; + Xy, in row r;, we replace

i-1 () @y _ ) — — Sl @)
Xi; + Xo by X; and continue to search for all previouslyzdjzodgtjh) / (tvi/(M S) ") ﬁ S_t'AEh Izjzofé.ﬁls
identified patterns that includ&;, and so on. Indeed fhe cost-1o-go. SUppose Tor Stageis fargest difter

. ential and recurrence savings asrg) and s\, respectively.
Now we illustrate the advantage of the forced pattern methga 95 & Sr - esSp Y
ased on the above approximation, we can find a transforma-

by a simple example. Say we have established three patterns L . .
45X = X1 + Xo, X5 = X3+ X4, and Xe — Xo+ X,. Now S0R that minimizes the cost-to go. If a differential tréms

let us consider the sufy = X, + X2 + X3, which does not irzagt:\c/)gnlsb Cg;?;;gim?) ria;r[l/x( ]\V;e('l?)ht_if}fir glﬁetrr\?,?ssgom?tlo
contain the identified patterns,, X5, or X¢ explicitly. But if (i+1)y (i)_ ) d T

we force X on Y, we haveYy = X, + Xo+ X3+ Xg, which W(M) = W(M™) — s,” — 1. Then the appr%mate
becomesY, = X5 + X, after replacing previously identified OPtimal cost-to-go is the smaller betweefV - (W(M") —
patternsX; + X, with X, and X5+ X, with X5 as described s — n) and 1+ a® - (WMD) - st -1 —n). Thus
above. In this simple example, by forcing the pattern we cedua differential transformation is preferred Wheﬁ) > sﬁl) +

the number of additions by one. In a nutshell, it is a greedy— 1/a(¥, and a recurrence transformation is preferred if



s < s 41-1/a®. Although it is difficult to compute.(? rOw.

since A is actually unknown, fortunately the choice betweenll4 Go to Stef]1.1 until there is no recurrence saving.
differential saving and recurrence saving does not regbige [1.5 If there is a reversal pattern, reverse the differestiat
precise value ofd. It is obvious thatd < a9 < 1 for any ing and go to Step]1.3.

1, and hence differential transformations are usually prete

over recurrence transform?)tlpns even Whgh_ sr . This 'S in two rows, there is no positive differential saving if tees
particularly Fhe case whert?) is s_mall. For exampl_e, the ratio 0 recurrence saving. This is the reason for the termination
of thg required ”“”}Eﬁr of gddmons after applying our CS ndition in Step11.4. In Steds 1.1 ahd 1.3, we randomly
a{%’f’ ?Sthcr:;’aarlrdgvgya” 12r;c7zi<lnsnbitwien?:rr]e%sle65a2? i?\lgr(se.a-ge]gsselea one transformation among those with thegreatest
ah'l () yd (0 g O $ CSE al “ h hdifferential savings and thg. greatest recurrence savings re-
whiie s,” and s, ~ decrease. Dur agqnt m treats t gpectively. There is a tradeoff between search space (armthe
differential transformations with preference in all cases erformance) and search complexity: greageand!,. enlarge
. . . ks
We comment that the simple greedy strategy which selegﬁte search space that may lead to greater savings at thesexpen

i) (i i . )
the greater one betweer}’ and 5"’ mentioned above cor- o higher complexity. In our workiy = I, = 2 appears enough

responds to always setting®) = 1 in approximate dynamic o most cases. For matrices with small sizes, the additiona
programming, which does not provide a good approximatiogympjexity caused by expanding the searching space islysual
Our simulation results confirm this observation, as theediff 4¢0rqable. For large matrices, we uke = I, = 1. Since
ential saving first strategy usually leads to better reshiisi  5jgorithm([J is a randomized algorithm, the result of each run
the simple greedy strategy. _ _ may vary. However, simulation results show that the vaganc
Since we are using approximate dynamic programming gatween different runs is relatively small in comparisorthie
every stage, choosing a differential saving does not tat® iy, mber of required additions.
account all recurrence savings in future stages. Thus foeso o, sequential transformation &f in Sectior 1-B is simi-
stages it may be an unwise choice. We propose a methoddpyg the CSE algorithm in [26], but the algorithm in [26] doe
identify such differential savings and reverse them. 3gy- ot take advantage of the cancelation property of chaiatiter
Xo+ X1 +Xo+ Xy andY; = Xo+ Xy + X5 +Yo asaresult 5 fields as Algorithn{l. With forced patterns, Algoritt 1
of the differential saving from an ordered pdl, 1). Since (akes advantage of the cancelation property not only by dif-
Yo+ Xo = Xi + X5 + X3, we can replac&o + Yo in Y1 by  ferential savings but also by recurrence savings. Althodigh
X1+ X2+ X3 and itis clear that, andY; have a common gqrithm[ and those in [17], [28] all take advantage of the
subexpressioX; + X + X3. Using the subexpressioi, +  cancelation property of characteristidields, they use quite
Xy + X3 effectively reverses the differential transformatioRjifrerent strategies. Algorithril] 1 uses a top-down approach
represented by0, 1). To identify a reversal of this kind, we (q pyild the addition sequence by reducing the binary matrix
search foreversal patternsa reversal patterli; +- X consists yhjle a bottom-up approach starting from summands was used
of a sumy; and one of its summands;. In contrast to other i, [28]. The CSE algorithm in [17] first rebuilds the binary ma
patterns, this pattern may have a recurrence saving of Z&fg from low-weight linear combinations of rows, then regs
that is, it appears only once. It can be shown that suchy@ matrix top-down using recurrence savings. Also, aigou
reversal saves only one addition, regardless of _the freuwerﬂhe method in [17] takes advantage of the cancelation ptpper
of the reversal pattern; thus, such a reversal is meanmgw erasure decoding in the message passing part, it faile to d
only when there are no other subexpressions invol¥indor g in its CSE part. As we will show in Sectibd V, Algorittith 1

instance, in the above example, if there are more than tWoyqs to significantly better results than the method in.[17]
recurrences oy + X4, the subexpressioiy, + X, results

in a greater saving thak, + X,. Thus it will be efficient to

. D. Fast CSE
search for reversal patterns only after all recurrencengavi . _ _ .
are accounted for. When the size ofMf is large, the time complexity of Algo-

Our CSE algorithm, shown below in Algorithid 1, has twdithm[l may be prohibitive. We propose several improvements
major steps, Stefid 1.1 afll 1.3, and they are referred to asttheeduce the time complexity of Algorith 1.

Since differential savings are due to the overlapping ones

differential and recurrence steps respectively. In Algorithm [, we restart the differential step after each
) ) o recurrence step. But the possibility that new differengiay-
Algorithm 1. Common Subexpression Elimination ings emerge after we identify a pattern for recurrence spvin

.1 Identify the non-cycle-inducing pairs of rows with the is quite small. In order to reduce the complexity, we do not
greatest differential savings, select one pair out of theravisit the differential step after the recurrence stepdrated,
randomly, and transform bothZ and X as described essentially decoupling the two steps. This not only redtices
above. time complexity by reducing the number of times Stép 1.1 is

0.2 Repeat Step 1.1 until there is no differential saving. repeated, but also enables us to further accelerate bqib ste

1.3 Identify the two-summand patterns with thegreatest by space-time tradeoff, which will be discussed below. Note
recurrence savings, select one out of them randomtiiat our simulation results show that the decoupling of e t
Replace all occurrences of the selected pattern withsteps results in only negligible performance loss.
new entry. On those rows with only one entry of the Now that the differential step is standalone, it is necgssar
pattern, force the pattern if it leads to less 1's in th® avoid repeated exhaustive searches. There areroniys



in M, so all possible differential saving can be putinrann  occur recursively, for each row at most— 1 different rows

array D, where D,; stands for the differential saving of themay be stored ink.

ordered pair of rowsr;, ;). An exhaustive search is needed Our CSE algorithm incorporating the above improvements

to initialize D. Afterwards, at mos2(n — 1) entries (namely, is shown in Algorithn .

the non-diagonal entries in row and cqum_nrj) qf the array Algorithm 2. Fast CSE

need to be updated after each ordered pairr;) is added to

the dependency graph. Whenever one pair of rows is detect

to be cycle-inducing, its differential saving will be setfioand

hence it is excluded from future consideration for diffeiain

transformations. As the number of possible pairs decreas&3

continuously, the search will be increasingly simpler. '
T . . .4

A similar idea can be used to reduce the time complexity o% 5
the recurrence step. Since elimination of one pattern wilyo =
change a small portion of the pattern frequencies, to expedi
searches, we store the recurrence savings and update them
after each recurrence transformation.

Because not all patterns exist and the number of possib
patterns will decrease continuously, it will require lessrage
space if we keep track of only the patterns with positive recu
rence savings. However, this will involve an exhaustived®ga Our simulation results show that after a single run, the
to update the pattern frequencies each time after a paterrlifference between the total additive complexities oladiby
identified, which may results in high time complexity whemgorithms[d andR is negligible. However, the time complex-
the size of M is large. Instead, we keep track of all patterity of Algorithm [2 is much smaller than that of Algorithii 1.
frequencies, including those with no recurrence savings, i For example, whe\ is a255 x 255 matrix, for a single run
two-dimensional arrayR. Suppose after the differential stepsAlgorithm[1 needs about ten hours while Algorithin 2 finishes
are over, and’ hasrn columns. Initially, R is an upper trian- in approximately five minutes. The difference in run time is
gle array withn — 1 rows, whereR;; is the recurrence saving greater for matrices with larger sizes. Since Algoritfihsd a
of the two-summand patter®; + X, ;41 for0 <i<n—2 are both probabilistic, the speed advantage of Algorithm 2
and0 < j < n — i — 2. The recurrence saving arrag is over Algorithm[1 enables us to run Algorithh 2 many more
arranged in this fashion so that frequency updates can be dtimes, enhancing the possibility of obtaining a better ftesu
by direct addressing without search and it is not necessarythan using Algorithni 1l within the same amount of time.
remove frequencies. When a new pattern is identified, the two
summand pattern becomes tfie+ 1)th summand. Thus, the E- Example
frequency of theth and the(n + 1)th summands is appended Now we provide an example of Algorithid 2. At the begin-
to theith row. Furthermore, a new row with only one elementing, K is empty and

1 Initialize the differential saving arrafp and K.

.2 Find the non-cycle-inducing pairs of rows with the

greatest differential savings i, randomly choose one,

eliminate it, and updat® and K accordingly.

Repeat Stepl 2.2 until there is no positive entrylin

Initialize the recurrence saving arr#/

Find the patterns with thie greatest recurrence savings

in R, randomly choose one, replace all occurrences of it.

On those rows with only one entry of the pattern, force

the pattern if it leads to less 1's in the row. Upddte

.6 Repeat Stepl 2.5 until all entries R are zero.

2.7 If there is a reversal pattern, reverse the differesas}
ing, updateR, and go to Stepl2.5.

the frequency of theth and(n + 1)th summands, will be the 101 1 1 1 3 1 0
last row of R. After X; + X is identified as a subexpression, 111 1 1 2 1 2 0
all frequencies related t&; or X; need to be updated. Thatis, M = 1 10 1 1 D = 1 3 -1 o0
Ry —y—q forall i’ < i, Ry j_jy_1 forall j/ < j, Rim_i_1 01110 0 2 0 -1

for all i" > 4, and R; j»_;_, for all 5 > j are updated
accordingly. Furthermore?; ;_;_; is set to zero.
During Steg 1L.1, our CSE algorithm keeps only one copy

Choosing(0, 1) and adding a column corresponding the new
gpmmandYO, we have

each row. Actually one row can have different decomposijon 101110 -1 -1 1 0
based on differential savings with different rows. To explo r(1) _ 010001 D— -1 -1 2 0
the best differential saving for each row, a modified differal 110110 1 0 -1 0

01 1.1 0 0 0 0 0 -1

saving update scheme is developed.

_Let us assume that the ordered pais, r.) is selected for since (1,0) is cycle-inducing, its saving is simply set to -1.
differential transformation, which replace®f,, with M, . e also setk, to (1,1,1,1,1) to keep track ofM .

For rowr; (r; # rp), there are two possible differential sav- Choosing(1, 2), the matrices are updated as
ings: one between,, and M, and the other betweeM’Tc - 0

and M’T If the latter is greater, we simply updafe,;. If the

former is greater, the differential saving.; is not changed M® =
and M, is saved so that it can be used wh@y is selected.

If two savings are equal, it is randomly chosen which copy to L
use. Since we may need different copieshdt,., for eachr;, -1 -
a three-dimension arrai whose entrykK;; keeps a copy of D= -1 -1
M, corresponding tdD;; if M, provides a greater differ- -1 0 -1
ential saving thanMf/, with regard toM,,. Since this can Lo 0 0 -1

o = O




Note that(2,0) is cycle-inducing so there is no positivethe child row needs to be updated, which requires at most
differential saving left. 2n/ comparisons. Correspondingly, computing the differéntia

Now we enter the recurrence transformations. The recsavings relative to the new child row needs uRtd(n — 2)
rence saving arrag for M%) is initialized to all zeros except comparisons since the parent row is ineligible. So it wiketa
that Ro o = 1, which corresponds to the pattefh, + X3. atmosty,_, (20 (n—2)+2n/+g—1) = O(n'+n?n/)
HenceGy is (0,0,1,1,0,0,0) and the algorithm stops at  comparisons. UpdatindC does not requires extra computa-
tion. Therefore the number of total comparisons for diffeia

10001001 transformations i€ (n* + n’n’).
01 0 0 01 0O e . .

Mp= 00100010 To initialize R, we scan the matrix row by row to find the
0100000 1 recurrences of each two-summand pattern. For any row, we

increasel;; by one if the two-summand pattefty; + X4 ;1

and the recurrence saving array becomes all zeros. Themema present. Since there are at mastl’s in a row, it has at
ing matrix M r needs five additions. The identified pattermostn’(n’ — 1)/2 two-summand patterns and hence requires
X3 + X3 also needs one addition. S8 = M X can be at mostn/(n’ — 1)/2 additions. Thus Stef 2.4 needs at most
calculated by six additions, whereas a straightforwardliémp nn’(n’ — 1)/2 additions. For the first recurrence transforma-
mentation ofY = MX requires 12 additions. Note thattion, it will need at mostn+n')(n+n'—1)nn’/2 comparisons
techniques such as forced patterns or reversal patternmareto find the greatest inR, because there argr + n')(n +
applicable in this simple example. Nevertheless, sincarittie n’ — 1)/2 possible two-summand patterns whenrabums in
easily verified thal” = M X cannot be done in five additions,Y have become summands after differential transformations.
our CSE algorithm minimizes the number of additions in thiafter that, to identify each two-summand pattern, it needs
case. Note that if we only use recurrence savings, the resultt- n + n’)(s +n +n’ — 1)/2 — 1 comparisons, where is
will be seven additions. the number of identified patterns. After a pattern is idegdifi
all rows with the pattern need to be updated. For each pattern
it needs to go through at most rows. Hence it requires at
most 2nn’ comparisons. If the pattern is forced, it needs to

Since the reduction of additive complexities depends @b through all identified patterns, which requires at mdst
M only, the output of Algorithni for a given CFFT cancomparisons for one row angh’s comparison fom rows. It
be used for any input vector. Hence Algoritith 2 is simplyequires at mostn/(n’ — 1)/2 additions to update®. Under
precomputation and its complexity should not be considasedjrect computation, M requires at mostn’ additions. By
part of the complexities of CFFTs. To show that Algorithin 2 igjentifying one pattern, the number of additions incredses
computationally tractable, we provide an order-of-magnitudegne while saving at least one addition than direct compartati
analysis for the time and area complexity of Algorittith Zased on this observation, we deduce that there are at most

F. Time and Storage Complexities

below. nn’/2 identified patterns. Thus the number of comparisons re-
Algorithm[2 requires only four types of operations: addinauired in StefR.5 is at mognf’oﬂ—l ((s+n4n")(s+ntn'—

two rows, inserting or removing entries from a row, searghin /2 1+2nn/+nn/s) ~ O(n®n/3). The number of required
for a two-summand pattern in a row, and comparison to fing

- . nn'/2—1 Il ~ 2,13
the greatest saving. During the optimization, while the au additions is at mosp>"g ™" (nn'(n' —1)/2) ~ O(n*n").
) ) ; ssuming additions have the same complexity as compar-
ber of columns in the matribx\/'" increases continuously,.

the number of 1's in each row decreases. To facilitate row " itis negligible. To identify one reversal patterreds

a : L S
additions, for each row we only store the positions of 1's as g’ (n — 1), and its complexity is also negllgl_ble compared
sorted list. Since the origindlf hasn’ columns, adding two 10 those of other parts. Hence the complexity of our CSE

i i 3,13 4 6 H —

rows is equivalent to merging two sorted lists of size at mog{gonthm IsO(n"n + n’), or (_)(n ) assuming: = n -

n’, which requires at mot»’ comparisons. For simplicity, we The time complexity above is for one run of AlgoritHh 2.
it is necessary to run it

assume inserting or removing entries in a row has the sam&ce Algorithm[2 is probabilistic,
complexity as adding two rows. Searching for a two-summafultiple times to _obtaln good results. However, a very large
pattern in a row needs at mastcomparisons. We assume thé'Umber of runs is not necessary even for large problems,
complexity of either appending an entry to a row or updatirg"ce the variance between different runs is reIaung_yItsma
a matrix entry is negligible. in comparison with the total number of required additions.
Now since differential transformations described in SBs  The storage complexity of Algorithfl 2 includes five parts:
_2’ andjz_s and recurrence transformations in Sﬂépmél, N, D R, K, and the list of identified two-summand patterns.
and[2.6 are independent, we can analyze them separatelyF®i M, it is at mostnn'. For D, it is n* and can be reduced
Stepl2.1, the initialization of the differential savingarD 10 n(n—1) sinceD;; is not necessary. Since there are at most
needs to add rows fan(n — 1)/2 times, so it takes at mostnn’/2 identified patterns, the storage Bfis at most(nn’/2+
n(n — 1)n’ comparisons. The result of StBp 2.2 is an acycli¢ + 7')(nn'/2 + n+n' —1)/2 and it takes at mostn’ to
digraph with at most nodes, so at most(n — 1)/2 pairs of keep the list of identified patterns. The three-dimensianaly
rows are identified. To identify one pair of rows, we need d requires at most: times of M. Hence the total storage
mostg — 1 comparisons, where is the number of remain- complexity is at mosO(n°n'?), or O(n*) assumingn = n'.
ing pairs of rows. After one differential saving is identifie ~ Note that the upper boundh’/2 of the number of identified



patterns for am x n’ matrix is usually not tight. For example,turn determine the coset size;’'s. As in [6], we assume the
for a 1023 x 1023 matrix, only less than 30,000 patterns areéame normal basis is used for all cyclotomic cosets of the

identified in our simulation. same size. Hence, all CFFTs also depend on the normal basis
selected for each subfieldF'(2™:). For simplicity, we denote
IV. RELATIONS AMONG VARIOUS CFFTs the collections of DCFFTs, SCFFTs, and ICFFTs for different

Our CSE algorithm can be used to reduce the additive cofii'S: m:'s and the normal bases @ S, andZ, respectively.
plexities of various CFFTSs. In this section, we will investte Next, we investigate the impact on computational complesit
their properties and establish the relations among theris. TRf CFFTs by the two factors above. We will consider first
study also simplifies the analysis of their multiplicativeda Multiplicative complexities and then additive compleasti

additive complexities as well as performance comparison jRmma 2. Assuming that the same bilinear forms are used,

SectionlV. _ _ DCFFTs, SCFFTs, and ICFFTs as defined@), (3), and (@)
Let us first study the properties of a block diagonal matrix;ye the same multiplicative complexities.

L = diag(Lo, L1,...,L;—1), where L;’s are all circulant o o _
matrices. ClearlyL;’s are all symmetric and hendk is also Proof: The multiplicative complexity is determined by
symmetric. We formally present a result mentioned in [7] arff€ number of non-one entries &nin DCFFTs and SCFFTs

[30, pp. 273], which can be proved easily by inspection. ~ Or ¢* in ICFFTs (all elements i or c* are non-zero). Since
using normal bases, the number of 1'sdrand ¢* are both

Lemma 1. GivenL = diag(Lo, L1, . .., Li—1) thatis aP{ock the number of all-one rows in alR;’s. Thus the multiplicative
dlagonfilllmazr{x where{/{’s are all circulant, its inverse. ™ = complexity is independent of the choices of normal bases and
diag(L, ", L; ",...,L; ")) is also a block diagonal matrix independent of the constant vectarsr c*. -
where L; ''s are all circulant. Furthermore, suppos&; is  The additive complexities of all CFFTs are due to the matrix-
generated byy; and b, = (vi,77,...,77 ' ) is a normal yector multiplications needed in CFFTs. Clearly, the numbe
basis, thenL; ' is a circulant matrix generated by;, where  of additions required to compute any matrix-vector muikipl
(B, BZ,.... 87" ) is the dual basis ob;. catonY = MX varies with the implementation. In the

Thus, for DCFFTs and SCFFTS, £, is a cyclic convolution following, we will consider additive complexities undereict
and can be calculated by the biIine:;r fo@n(R;b; - Pif,) — computation. As pointed out in Sectibn ITI-C, to compiie=

Q,(ci-Pif,) [L2]-[15], whereb; — (i, v2....,72" ). For M X by direct computation, it needs’ (M) — n additions.
|CZFFTS, byl LemmalL; ' f, is also a cyciic convolution given In some cases the additive complexities of two matrix-vecto
by the bilinear foerZ»(RZ»(B- B2, B2 P.f) = multiplications can be related_ r(_ega_rdless of _w_nplemem_tatl
Q,(ct - P;f,). There ére ldif;érér;t bi7linlear formsZ o;‘ cyclicWe say two matrix-vector multl_pl!cat!ons ae@ld|t|\{ely equiv-
convolution and all of them can be used in CFFTs. Henceforf'illent if one matrix-vector multiplication can achieve any ad-
ditive complexity the other can, and vice versa. An impadrtan

we assume that theamebilinear forms @;’s and Q,’s) are ¢ additi val . in the following |
used in all CFFTs. In this paper, we focus on the CFFTs Wi%ﬁ%& Sroolflve equivalence 1s given In the fofowing lemma

the following forms:
: : ! : r
DCFET F — AL#’ Lemma 3. If two binary matricesM and M satisfy M’ =

TIMTI', whereIl andIT’ are two permutation matrices, then

= AQ(c- Pf’) (2)  the matrix-vector multiplications defined i\ and M’ are
SCFFT F' =LTAT{ additively equivalent.

=Pl (c- (AQ)"f) (3)  with a slight abuse of terminology, we say two CFFTs are
ICFFT F'=L7'A7'f add?t@vely equjvaleniwhen their corresponding matrices are

_ PT(C* ) QTAflf) 4) additively equivalent. By a straightforward proof, we hake

following property:

where@ and P are binary matrices and usually sparse, and
A is a dense binary square matrix. Note that the equﬂltyr(]:%
is due toL = QCP where C = diag(cg,c1,...,Cn—1);
the equality [(#) follows[{8) and is a direct application o
Lemmall. Due to the symmetric properties bfand L™,
the above CFFTs have alternative forms: DCFFTs are alsdwe now consider additive complexities for all CFFTs when
given by F = AI;T(c . QTf’); SCFFTs are also given bynormal bases vary, too.

/ / T p/\. R "o
F » Qe ,(1A Q )'f'); ICFFTs are aIso_ given by = Lemma 5. All CFFTs inD have the same additive complexity
Q(c* - PA™"f). However, these alternative forms can bﬁnderdirect computation. So do thosedrandZ, respectively.
considered as the forms inl (2] (3), andl (4) with differéht ' ' ‘
and Q matrices. Since we assume all the bilinear forms are Proof: It suffices to prove the first part, and the arguments
the same, we will not consider the alternative forms furtherfor S andZ are similar. First, since different orders of cosets

We observe that all CFFTs if](2)](3), arld (4) are deteresult in additively equivalent DCFFTs due to Lempja 4, we
mined by two factors. First, they all depend on the orderssume the same order of cosets and consider only different
of cyclotomic cosets, i.e., the coset leadér$s, which in  normal bases without loss of generality. Realizing thafiedif

mma 4. For any two CFFTs irD that differonlyin k;'s and
'S, their A’s and L’s are additively equivalent, respectively.
]Ihus, the two CFFTs if® are additively equivalent. The same
property holds forS and Z.



ent normal bases would not chanBeandQ in (2), we focus we haveF’ = A'Q(c - Pf’), where F’ = TIF and A’ =

on how different normal bases impadtQ. ExpressingA as IIA. For an SCFFTF' = PT(c- (A’Q)T '), the additive
[Ag | Ay |-+ | Aj_1] where A; is a (2™ — 1) x m; binary complexity under direct computation 1§ ((A'Q)”) — n/ +
matrix, F = ALf' = [AoLo | ALy | -+ | Al Liq]f'. W(PT)—n. SinceA'Q = I1IAQ, so A’Q and AQ have the
For eachA;, the rows are(2™ — 1)/(2™ — 1) copies of same number of 1's. Since matrix transpose does not change
the set ofm;-bit row vectors with all combinations exceptthe number of 1's}V ((A'Q)T) = W(AQ) and W (P”) =

all zeros. ThusA;’s corresponding to different normal base$?’ (P). Hence any DCFFTs ifi{2) and any SCFFTIh (3) have
in GF(2™#) are equivalent up to permutation. Recall tliat the same additive complexity under direct computation. An
is a block matrices for which the blocks off the diagonadlternative direct computation for both DCFFTs and SCFFTs
are zero matrices and the diagonal blocks @gs. Thus, is to multiply A andQ separately. It is easy to verify that the
AQ =[A0Qy | A1Q |-+ | Ai-1Q,_4]. Thus AQ's corre- conclusion is the same. |
sponding to different normal bases also have the same &&lditi

complexity under direct computation. Hence all DCFFTDin vy CEFTs wiTH REDUCED ADDITIVE COMPLEXITIES

have the same additive complexity under direct computation Using Algorithmi2, we construct CFFTs with reduced addi-
tive complexities for length8™ —1 up to 1023, and we present
their complexities in Tablg I. CFFTs of length beyond 1028 ar
Lemma 6. Given an ICFFTF” = L 'A~'f, there exists not considered because for two reasons: first, lengths loeyon
an SCFFTF' = L'A'" f' such thatL’ = L~ and A’" and 1023 are rarely needed for the primary application coneitler
A~! are equivalent up to permutation, and vice versa. in this paper, Reed—Solomon decoders; second, efficielitcyc
Proof: It suffices to show the first part, and the argugopvolutiqns for CF.FTS of longer lengths (for examplg, 11-
ment for the second part is similar. For a DCFFT given b omt_cycllc convolution for length-2047 CFFTs) are _notlhva
F — ALILf, the transformF* — II-'L-'A-'f is an- ble in [14]-[16]. For all our CFFTs_, the cycI(_)tomlc cosets
other DET V\;hereF* — (Fy, Fo_1, Fy s F) = I'F are ordgred by their Ieade_rg for cyclic convqlutlorjs ofidns
and IT* is’ a permutation rvna'?riix.v G’;\;e;]' ar71 \CEFF” _ Up to nine, we use the b|I|ne_ar forms prowded in [16], and
L 'A"'f, clearly F” — TIF* — TITI* F. Suppose the in- we construct a Ier_1gth-10 cyclic convolution based on thdse o
dices of the components df” = IIF are in the order as lengths two and five, by the Agarwal-Cooley algorithm [31];
(kos ko2 - ko201, 12™-1-1) mod n, then the in- the primitive polynomials and vector-space represematia
dicés of’thevcompone:nts br” — TIF* are in the order a&1— [32, Sec. B.3] are used for all f|eIQS; for each field, we choose
b om— k9 n— o gmo—1 n— k12711 mod n the normal basis whose leader is the smallest power of the
0 0% v e =1 " _primitive element. We observe that the multiplicative com-

Note that both modulo operations above are componentwig -
Sincen — k2 = (n— k)2 mod n, F" is also ordered in cy- p?exmes are the same for all CFFTs due to Lenima 2. Due

clotomic cosets. Let us consider an SCFFT with the same oré%rl‘emm D.’. SCFFTs ar_lq ICFFTs are additively equivalent,
. s 1 oAnT err 1 X and the additive complexities of both SCFFTs and ICFFTs are
of cyclotomic cosetsF"” = L" A"" f" where f' = IIII" f. .
. . X presented together in Talle I. We also observe that SCFFTs
Note that the order of the cyclotomic cosets sizesremains

the same ink” andL~". Thus by Lemmall there exist normaland ICFFTs require more additions than DCFFTs, and the
reason for this was given in [8].

bases such that” = L~!. Choosing such normal bases, we

From Lemmd1l, we establish a relation betw&eandS.

construct an SCFFF” = L~ 'A"Tf” = L7'A~'f. Thus TABLE |
Lil(A”THH* — Afl)f = 0 for arbitrary f and full rank COMPLEXITIES OFFULL CycLOTOMIC FFTs
L™ HenceA™! = A"TII'II. [ | _
. . Additions
Note that Lemmal6 holdsegardless of implementation n | Mult. DCEET SCEFT/ICEET
Since this mapping exists for any ICFFTs or SCFFTs, Lefmma 6 ours | [6] ours | [7] | 18]
implies that ICFFTs and SCFFTs are additively equivalent. 7 6 24 25 24 | 24| -
) " " 15 16 74 77 76 - |91
Finally, we are ready to relate the additive complexities of 31 57 599 315 307 -
all CFFTs under direct computation. 63 97 759 805 804 -
127 | 216 | 2576 | 2780 | 3117 | -
Lemma 7. The DCFFTS, SCFFTS, and ICFFTs @), @, 255 586 6736 7910 6984 -
and (@) all have the same additive complexity under direct 511 | 1014 | 23130 | 26643 | 27192 -
computation. 1023 | 2827 | 75360 | - 77276 | -

Proof: Due to Lemmd.b, it is sufficient to show that the | Tap|ef], we also compare the additive complexities of our
additive cpmplexmes of two CFFTs of different types are thcreTs to those in [6]-[8], the best results of CFFTs in the
same, which holds for an SCFFT and an ICFFT by Lemmas;pen Jiterature to our knowledgen Tablel], some entries are
and[6. Now let us show it is the same for a DCFFT and &§jank due to unavailability of comparable data: the adelitiv
SCFFT. _ o complexity of DCFFT of length 1023 is not provided in [6];

In lengths DCFFTs, A is ann x n matrix, Q is ann xn'  on)y |length-7 ICFFT was provided in [7] and only length-

matrix (2’ > ), and P is ann’ x n matrix. Under direct 15°ScFFTs was provided in [8]. For length-7 FFT, both our
computation, the number of required additions for a DCFFT

defined in[(2) isW (AQ) —n+ W (P) —n'. Sincef’ = IIf, 2A length-15 DCFFT with 76 additions was reported in [16].
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TABLE Il
COMPLEXITIES OFFULL FFTs

n Horner's rule | Goertzel’s alg. [5] [33] Bergland’s alg. Prime-factor [2] Our DCFFTs
Mult. Add. [Mult.] Add. [Mult.] Add. | Mult. [ Add. || Total | Mult. [ Add. ]| Total [Mult.| Add. || Total [Mult.[ Add. || Total
7 36 42 12 42 6 26 29 29 174 - - - 9 37 82 6 24 54
15 196 210 38 210 16 | 100 | 41 97 384 - - - - - - 16 | 74 186
31 900 930 | 120 | 930 60 | 388 | 289 | 289 || 2890 - - - 108 | 612 || 1584 | 54 | 299 785

63 | 3844 3906 | 282 | 3906 | 97 | 952 | 801 | 801 || 9612 97 | 759 || 1826

127 | 15876 | 16002 | 756 | 16002 | 468 | 3737 | 2113 | 2113 || 29582 - - - - - - 216 | 2576 || 5384
255| 64516 | 64770 | 1718| 64770 | 646 | 35503 1665 | 5377 || 30352 | 5610 | 5610 || 89760 | 1135] 3887 || 20902 | 586 | 6736 || 15526
511 | 260100| 260610| 4044| 260610 - - | 13313 13313|| 239634| 39858 39858|| 717444| 6516 | 17506|| 128278 1014 | 23130|| 40368
1023| 1044484 1045504 9032| 1045506 - - | 32257|32257| 645140 42966| 42966|| 859320] 5915 30547|| 142932| 2827| 75360|| 129073

DCFFT and SCFFT achieve the smallest additive complexi@gorithm, and [5] is clear: our CFFTs require fewer multi-
of the ICFFT in [7]; for lengths 15, 31, 63, and 127, our CFFTglicationsand fewer additions; the savings achieved by our
have additive complexities 4%, 5%, 6%, and 7% smaller th&FFTs are very significant, and in some cases the multiplica-
those reported in [6]; for lengths 255 and 511, our CFFTive complexities of our CFFTs are only small fractions of
reduce additive complexities by 15% and 13%, respectivebther algorithms. We remark that the multiplicative cormple
than their counterparts in [6]. To compare our length-7 DTCFHRties of Zakharova’s method are closer to those of CFFTs,
with that in [6], see AppendixJA. which is not surprising given their similarities [6]. Thetab

We also compare our results to other FFT algorithms gpmplexities of [33], Bergland’s algorithm, the prime-fac
Table[Tl. For Horner's rule [34], Goertzel's algorithm [14] FFTs [2] and our CFFTs are presented in Table Il, since
Zakharova’s method [5], the complexities are reproducechfr in comparison to these algorithms our CFFTs have smaller
[6] except that the complexities of length-1023 FFTs areaep Multiplicative complexities but higher additive complies.
duced from [2]; the complexities of Bergland’s algorithns[3 [N comparison to [33], our CFFTs achieve total complexity
and the prime-factor FFTs [2] are obtained from [2], [3]. Fopavings of 69%, 52%, 73%, 81%, 82%, 49%, 83% and 80%
reference, we also consider the algorithm proposed by Wal&gj lengths7, 15, .. .,1023, respectively. For lengths 255, 511,
and Zhu [33], which is known to be asymptotically fast, an@nd 1023, our CFFTs achieve total complexity savings of 83%,
its complexities are obtained from [33, eq. (11) and (12)]. 94%, and 85% over Bergland’s algorithm, and 26%, 69%, and

Since all the algorithms require both multiplicative and adt0% over the prlme-faqtor FFTs [2], _respectlvely.
ditive complexities, it is clear that a metric for the totang- e remark that, as in many previous works (see, for ex-

plexities is needed for comparison. We use a weighted s@fPle; [6]-{8]), only the multiplications and additionsear
of the additive and multiplicative complexities as the rigetr CONSidered in the complexity comparison. This is reasanabl
assuming the complexity of each multiplication s — 1 if the CFFTs are implemented by combinational logic, and the

times as that of an addition. Our assumption is based fefluired numbers of multiplications and additions tratesta

both hardware and software considerations. In hardwarkeimpth€ numbers of finite field multipliers and adders in combina-
mentation, a multiplier ove€F(2™) generated by trinomials ional logic. Under the same assumption, memory overhead
requiresm? — 1 XOR andm? AND gates (see, e.g., [36])’and intermediate memory access are not considered in the

while an adder requires: XOR gates. Assuming that XOR comparison above. This would not be the case if CFFTs were
and AND gates require the same area, the area complexitV’BP'ememed in software, but this is beyond the scope of this

a field multiplier is2m times that of an adder ove&iF(2™). Paper.
In software implementation, the complexity can be measured
by the number of word-level operations (see, for example, ACKNOWLEDGMENT

[37]). Using the shift and add method as in [37], a multiplica
tion requiresm — 1 shift andm XOR word-level operations, The authors would like to thank Prof. P. Trifonov for pro-

respectively while an addition needs only one XOR word4ding details of CFFTs. They are grateful to Prof. M.D. Wagh
level operation. Whenever the complexity of a multiplicatis ~ for introducing them to his fast convolution algorithms.eph
more thar2m — 1 times as complex as that of an addition (fowould also thank Prof. P.D. Chen for valuable discussions.
example, in the hardware implementation described abovéhe authors would also like to thank the reviewers for their
our assumption above underestimates the relative contyplexionstructive comments, which have resulted in significamt i
of multiplications and hence puts our results in a disachgat provements in the manuscript.

in comparison to other FFT algorithms since CFFTs have
reduced multiplicative complexities. We would also like to

point out the similarity between our metric and the one used L APPE'\;D[')XCA":FT
in [33], where the multiplication ove&F (2™) was treatedm ENGTH-
times as complex as an addition. « Pre-additionsp = (po,p1,...,ps)T = Pf’ require 8

The total complexities of Horner’s rule, Goertzel's algo-  additions:py = fo, p2 = fo + fa, p3 = f1 + fo, pa =
rithm, and [5] are not presented in Tablk Il since the adganta fi+ fapr=p2+ f1.06 = f6+ f5. 07 = f3+ e,
in complexities of our CFFTs over Horner’s rule, Goertzel's  ps = f3 + f5, andps = pg + f3.



« Pointwise multiplicationgy = (go, g1, - - -
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[17]

(18]
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[20]

[21]

98)" =c-p, 22
wherec = (1,1,a,a?,0* 1,a,a?,a*)T, need 6 multi-
plications

Post-additionsF' = (Fy, Fy,...,Fs)T = AQg require
16 additionsity = g3 + g4, t1 = go + g1, t2 = g1 + g5,
Foy =go+ta, t3 = go+ ga, ta = gs + 13, t5 = g7 + 14,
F5 :tl +t5, t6 :gg+t4, t7 :t1—|—t6, Fg :t0+t7,
and Fy =ty + t7.
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