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Abstract— This paper considers estimation of pixel-wise
monotonic increasing (or decreasing) data from a time series of
noisy blurred images. The motivation comes from estimation of
mechanical structure damage that accumulates irreversibly over
time. We formulate a Maximum A posteriory Probablity (MAP)
estimation problem and find a solution by direct numerical
optimization of a log-likelihood index. Spatial continuity of the
damage is modeled using a Markov Random Field (MRF). The
MRF prior includes the temporal monotonicity constraints. We
tune the MRF prior, using a spatial frequency domain loopshap-
ing technique to achieve a tradeoff between noise rejection and
signal restoration properties of the estimate.

The MAP optimization is a large-scale Quadratic Program-
ming (QP) problem that could have more than a million of
decision variables and constraints. We describe and implement
an efficient interior-point method for solving such optimization
problem. The method uses a preconditioned conjugate gradient
method to compute the search step. The developed QP solver
relies on the special structure of the problem and can solve the
problems of this size in a few tens of minutes, on a PC.

The application example in the paper describes structural
damage images obtained using a Structural Health Monitoring
(SHM) system. The damage signal is distorted by environmental
temperature that varies for each acquired image in the series.
The solution for the experimental data is demonstrated to provide
an excellent estimate of the damage accumulation trend while
rejecting the spatial and temporal noise.

Index Terms— Optimal estimation, spatio-temporal filter-
ing, regularization, interior-point method, isotonic regression,
Markov Random Field.

I. I NTRODUCTION

W E consider a time series of noisy blurred images
where the underlying signal is pixel-wise monotonic

increasing (or decreasing). The paper describes an optimal
estimation approach for such signal. The problem formulation
is motivated by estimation of mechanical structure damage
from a time series of diagnostic images. The damage accu-
mulates irreversibly over time. The application example in the
paper is structural damage estimation using a Structural Health
Monitoring (SHM) system. The damage signal is blurred and
contains sensor noise and a variation caused by environmental
factors.

Development of SHM systems has been attracting much
attention recently; see [56], [57], [58] for a representative
sample of the work. The main applications of SHM are in
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aerospace and civil engineering for automated monitoring
of structural integrity for high value assets. In particular,
mandatory periodic inspections of aircraft structure could be
automated using SHM. The SHM data acquired between
aircraft flights or for civil structures are subject to broadly
varying environmental conditions, such as temperature. An
effective estimate of structural damage must be unaffected by
or correctable for environmental conditions. Detection of a
defect of ‘significant’ size must be almost entirely free from
false alarms and missed faults. This motivates the problem
considered herein.

The model for a series of images where underlying
monotonic change is distorted by noise and blur might be
potentially useful for applications in geophysics (e.g., earth-
quake prediction, petroleum extraction), in medical imaging
(e.g., detecting a growing tumor from a series of images), in
environmental sciences (e.g., detecting irreversible changes,
such as global warming trends), and others.

Deblurring of noisy images is covered in many textbooks,
e.g., [14], [18], [33]. Particularly relevant to this work are
the papers [21], [23], where deblurring filters are designed
in spatial frequency domain by loopshaping based on formal
engineering specifications. In [21], [23], the coefficients of
a noncausal 2-D IIR filter are obtained by solving a design
problem formulated as a linear program (LP). An extension
to spatio-temporal filtering of a series of images (motivated
by SHM applications) is considered in [25]. The filter input
is a series of noisy blurred images; the output is cleaned
images emphasizing the underlying signal and reducing the
noise. The 3-D IIR filter design proposed in [25], [26] shapes
both the spatial response and the time response of the filter by
finding the 2-D spatial operators in the filter as a solution to an
LP. We use an LP-based shaping of the spatial regularization
operator in this paper as well, but for a completely different
filter structure.

Linear spatio-temporal filtering does not take into account
the monotonic nature of the damage accumulation. There
is substantial earlier work on estimation with monotonicity
constraints. This work on ‘isotonic regression’ has been driven
by applications in statistics and operations research and is
summarized in the books [2], [50]. Most of that work considers
univariate data, lesser part considers multivariable data, and
none deals with image data.

Monotonicity constraints in signal processing problems
were considered in [20], [22], [49], [53], [55]. Maximum A
posteriori Probability (MAP) estimation assuming a monotonic
walk prior model of the trend leads to Quadratic Program-
ming (QP) problems, which can be efficiently solved. When
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estimating monotonic signals, the filtering approach based on
constrained optimization provides a substantial improvement
over standard linear filtering methods. Some applications of
optimization-based estimation based on monotonic walk mod-
els are discussed in [27], [54]. The source of monotonicity
considered there is an irreversible nature of faults in the
system.

This paper considers an extension of the earlier monotonic
walk models to a series of images monotonic in time. The pro-
posed MAP estimation problem formulation is related to the
cited work in monotonic trending. The fundamental difference
here is the inclusion of spatial information about the images.
Our observation model assumes a finite impulse response
(FIR) blur operator. In the prior model, the spatial smoothness
of the underlying image is described using a Markov Random
Field (MRF) model. The overall MAP problem is formulated
as a large scale QP problem with the linear monotonicity
constraints, where the decision variables include the series of
image estimates.

A number of prior papers formulate image processing
problems as QPs and other constrained convex optimization
problems, e.g., see [15], [16], [17], [30], [38], [35]. One issue
with the prior work in optimization-based image processing
is that the solutions do not scale up well. Another issue is
that these optimization approaches are problem specific and
require manual tweaking. They are not available as packaged
software, such as standard QP and LP solvers.

The image processing QP problem considered in this paper
can be solved using standard QP solvers, when the total num-
ber of variables (i.e., the pixels in the image series) is modest,
say, under10000. (High quality solvers that can directly
handle a QP problem of large size include LOQO [60] and
MOSEK [42].) Unfortunately, standard solvers do not scale
to practical image sizes. In particular the SHM application
considered in Section V of this paper has the size (the total
number of pixels) of just under a million, well beyond what
standard QP solvers can handle.

In this paper we use a specialized interior-point method for
solving the QP problems withl1 regularization penalties and
positivity constraints. The method computes the search step
using a preconditioned conjugate gradient (PCG) approach. A
version of the method is described in more detail in [32].
The method is very efficient for all size problems; it is
particularly efficient for very large problems such as the one
considered herein. A simple Matlab implementation of the
method, discussed in more detail in Section IV, can solve the
QP problems with an excess of two million variables and two
million constraints. For finite impulse response blurring and
regularization operators, the method scales almost linearly in
the number of variables (pixels). Extensive numerical compar-
ison shows that the proposed method is far more efficient and
scalable than MOSEK for a class of problems in question.

The idea of using truncated Newton methods or PCG meth-
ods for image enhancement, deconvolution, and deblurring is
not completely new; e.g., see [41]. Truncated Newton methods
have been applied to large-scale problems in several other
fields, e.g., image restoration [16], support vector machines
[36], and logistic regression [37]. The most important is-

sue is to find an effective preconditioner. For a spatially
invariant blur operator, fast Fourier transform (FFT) can be
applied in approximate inverse preconditioners to produce
very efficient PCG schemes [61], [28], [43]. In [16] those
PCGs are incorporated in an iterative method for solving
total variation minimization problems. Iterative methods are
generalized to deblurring problems with general non-quadratic
fidelity criteria in [29]. The preconditioners mentioned above
cannot be directly applied to our problem. One of this paper
contributions is finding an effective preconditioner for the
image-processing QP problem in question.

The contributions of this paper can be summarized as
follows.

First, we introduce a new type of image processing prob-
lems for a time series of images where underlying data are
pixel-wise monotonic. Apparently, despite its usefulness, such
problem formulation has not been considered earlier.

Second, we propose an approach to MAP optimal estimation
for the problem in question. A sparse MRF prior model is
used to account for the monotonicity and spatial smoothness
of the underlying image. We propose an optimal sparsity-
preserving method for tuning the MRF prior such that the
MAP solution satisfies engineering specification for noise
rejection and estimation error.

Third, we propose an interior-point method for sovling the
QP problems of the formulated type. A Matlab implementation
of the solver on a PC is suitable for practical-size problems.

Finally, we demonstrate the approach in an important
aerospace application – structural health monitoring. We de-
scribe an experimentally collected set of SHM data subject to
temperature variation and demonstrate the formulation, tuning,
and solution of the QP-based image processing problem with
monotonicity constraints. A superior quality of recovering
underlying damage maps from the SHM data is demonstrated.

Figure 1 shows the implementation steps for the proposed
optimization-based image estimation approach. The first block
shows the data and decision variables in the MAP estimation
problem, which is formulated in Section II. The parameters of
a sparse MRF prior model are considered as tuning factors.
Section III describes a method for tuning the MRF model.
The tuning is done off line and is reflected by the second
block in Figure 1 diagram. A specialized large scale convex
solver discussed in Section IV of the paper is applied on-line
to compute the filtered data as a solution to the QP problem
and is shown as the next to last block in Figure 1 diagram.
Finally, Section V describes an SHM application including the
data collection experiments, implementation of the proposed
approach through the steps outlined in Figure 1, and image
processing results.

Fig. 1: Optimization-based estimation of damage.
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II. OPTIMIZATION -BASED ESTIMATION PROBLEM

This section introduces a formal mathematical problem
statement. Consider an observed data setY comprising a
sequence of the available diagnostic images. A truth data setX
comprises a sequence of the corresponding underlying damage
maps.

Y = {Y (1), ..., Y (Nt)}, (1)

X = {X(1), ..., X(Nt)}, (2)

whereY (t) ∈ <N1,N2 are the observed damage images and
X(t) ∈ <N1,N2 are underlying damage images.

The problem is to estimateX from Y . An optimal statis-
tical estimate can be obtained by maximizing the conditional
probability, P (X|Y ). In accordance with the Bayes formula,
the probability of the hidden underlying data conditional to
the observed data can be factorized as

P (X|Y ) = P (Y |X)P (X)/c, (3)

wherec = P (Y ) is a constant independent ofX. The MAP
(Maximum A posteriori Probability) estimate can be obtained
by solving the optimization problem

L = − log P (Y |X)− log P (X) → min . (4)

In order to formulate the optimization-based estimation
problem in more detail, we need to define
• the observation modelP (Y |X), the first factor in (3),

and
• the prior probabilityP (X), the second factor in (3).
The observation model and the prior probability are dis-

cussed in detail in the subsections to follow. We show that
the MAP estimate (4) can be expressed as a QP, a convex
constraint optimization problem of the form

L =
1
2

Nt∑
t=1

‖Y (t)−B∗∗X(t)‖2F +
1
2

Nt∑
t=1

(X(t), R∗∗X(t))

+
1
ρ

Nt∑
t=2

‖X(t)−X(t− 1)‖1 → min (5)

subject toX(t)−X(t− 1) ≥ 0, t = 2, . . . , Nt (6)

where(U, V ) denotes a dot product of the two imagesU and
V considered as flat vectors;‖U‖2F = (U,U); ‖U‖1 is the
1-norm (sum of the absolute values of the pixels); andR is a
non-causal 2-D FIR convolution kernel with a maximum tap
delayM and entriesrlm.

The first sum in (5) is the data fit error corresponding
to the observation model. The inverse problem of estimating
X(t) from Y (t) by minimizing the fit error is ill-conditioned.
The last two sums in (5) correspond to the prior probability;
they add a spatial and a temporal regularization terms. The
constraints come from the temporal part of the prior model.

The QP optimization problem (5)–(6) can be solved nu-
merically. Solving the QP problem yields an optimal estimate
X. The solutionX depends on the choice of the spatial
regularization operatorR (5). In what follows we consider
R as a tuning parameter and choose it to achieve the desired
filtering performance. Section III considers how this can be
done.

A. Observation Model

Consider a probabilistic model for a single diagnostic image
at timet. We assume that the imageY (t) contains the blurred
underlying damage dataX(t) contaminated by noisee(t). The
observation model has the form

Y (t) = B∗∗X(t) + e(t), (7)

where B is a spatially-invariant blur operator expressed by
a FIR (finite impulse response) PSF (point spread function)
kernel. The notation∗∗ in (7) stands for two-dimensional con-
volution. Handling of boundary conditions is not considered in
detail herein. We assume that one of the standard approaches
of image processing analysis is used; see, e.g., [14], [18], [33]
for more detail. The noisee(t) is assumed to be an identically
distributed spatially uncorrelated gaussian noise (white noise)
with zero meanq, e(t) ∼ N(0, q). In that case the observation
probability is

P (Y (t)|X(t)) =
1
Zt

exp
(
− 1

2q
‖Y (t)−B ∗ ∗X(t)‖2F

)
, (8)

where‖U‖F is the Frobenius norm of the image arrayU (the
sum of the squared pixel values) andZt is a scaling constant.
The noisese(t) in (8) are independent for differentt. Thus,
log P (Y |X) in (4) can be computed by taking a logarithm of
(8) and summing up overt. This yields the first sum in (5).

B. Spatial MRF model

This and the next two subsections introduce the spatio-
temporal prior probability modelP (X) leading to (5)–(6).
In this subsection we consider a single time samplet. Let
xjk = xjk(t) be a pixel of the imageX = X(t) The indexes
[j, k] define alattice point. We will introduce a neighborhood
of a lattice point, a square of the size2M +1 centered at this
point

Njk = {[l, m] : (|l − j|, |m− k| ≤ M, [l, m] 6= [j, k])} . (9)

A MRF probability structure specifies conditional probabil-
ity for a pixel to be defined by the pixels in the neighborhood
(9)

P (xjk|X(t)\{xjk}) = P (xjk|{xlm : l, m ∈ Njk}) , (10)

whereX(t)\{xjk} means the entire imageX(t) excluding the
pixel xjk.

Under a positivity constraint assumption (no configuration
has a probability equal to zero), the Hammersley-Clifford
theorem [5] says that an MRF can be expressed as a Gibbs
Field with the probability structure

P (X(t)) =
1
Z

exp
( ∑

c∈C
−Vc(xc)

)
, (11)

whereC is the set of all cliques (sets of the lattice points that
are all neighbors of each other),Vc(·) arepotential functions,
andZ is a scaling factor.

Defining the potential functionsVc(·) allows specifying a
consistent MRF model. Following the common practice in
image processing, we consider spatially invariant potential
functions with the cliques consisting of one or two points. We
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use quadratic potential functions, which leads to a Gaussian
MRF (GMRF) with the potential

∑

c∈C
Vc(xc) =

∑

jk

Vjk

=
1
2

∑

jk

(
r00x

2
jk +

M∑

l,m=−M, l,m 6=0

rlmxjkxj+l,k+m

)
. (12)

By substituting (12) into (11) and calculating (10), the
conditional probability structure can be expressed in the form

xjk = r00ejk +
M∑

l,m=−M ; l,m 6=0

rlmxj+l,k+m (13)

whereejk are white noise variables. The GMRF model (11),
(12) expresses that if a damage is present at a given pixel,
there is likely a correlated damage in the neighboring pixels.

The prior model in (11) and (12) can be written in the form.

P (X(t)) =
1
Zt

exp
(
−1

2
(X(t), R ∗ ∗X(t))

)
. (14)

The necessary and sufficient condition for (14) to represent
a valid probability density function is that the 2-D FIR
convolution kernelR is symmetric and positive-definite [34].
Section III considers selection ofR in more detail.

C. Temporal model

Let us now consider a time evolution of damage at a given
spatial location, for a single image pixel. To introduce the
model we will temporarily ignore the spatial dependencies and
consider a scalar underlying damage signalx(t).

Consider a first-order random walk model.

x(t + 1) = x(t) + ξ(t), (15)

whereξ(t) is i.i.d. (independent identically distributed) noise
sequence. To reflect the fact that the damage is accumulating
irreversibly, we assume that the noise incrementsξ(t) are
always nonnegative, the respective probability distribution is
zero for negative argument. Such monotonic damage accu-
mulation model corresponds to the Palmgren-Miner rule used
in mechanical damage analysis. Additional discussion and
references can be found in [20], [22].

We use an exponential model for the damage accumulation
noiseξ in (15).

ξ ∼
{

e−x/ρ, x ≥ 0
0, x < 0.

(16)

The prior probability can be expressed as a product of the
independent probabilities

P (X) =
1
Z1

exp

(
−

N∑
t=2

Vξ(x(t)− x(t− 1))

)
, (17)

whereVξ(x) = − log pξ(x). In accordance with (16),

Vξ(x) = |x/ρ|+, (18)

where|x|+ = x, for x ≥ 0, and |x|+ = +∞, for x < 0.
Consider a scalar observationy(t) for the same pixel. The

observation model (7) can be written asy(t) = x(t) + e(t).

By computing the observation model probabilityP (Y |X) and
substituting the prior model (17) into the MAP problem (4)
for the data available over time horizonN we get

L =
N∑

t=1

1
2q
‖x(t)− y(t)‖2 +

1
ρ

N∑
t=2

x(t) → min (19)

subject tox(t)− x(t− 1) ≥ 0, (t = 2, . . . , N).(20)

The QP problem (19)–(20) withx(t) scalar is, equivalent to
an isotonic regression problem (see [2], [6], [50]) and can be
solved very efficiently, in a linear time. In what follows we
consider a generalization of the known problem (19)–(20) for
a univariate time series signal to a time series of images.

D. Optimal estimation problem - spatio-temporal model

We are now ready to introduce a composite spatio-temporal
model combining the spatial MRF of Subsection II-B and the
monotonic in time damage accumulation model of Subsec-
tion II-C. We will formulate the model as a 3-D MRF, causal
in time and noncausal in the spatial coordinates.

Fig. 2: An example of the neighborhood (21) of a lattice point
[n1, n2, t] used in defining the MRF (M=2).

The MRF will be defined using the following neighborhoods
of the lattice point

Kjk(t) = {[l, m, τ ] : ([l, m] ∈ Njk for τ = t,

[l,m] = [j, k] for τ = t− 1, )} (21)

whereNjk is as defined in (10) The neighborhood (21) is
illustrated in Figure 2. It includes a spatial coordinate square
of the size2M + 1 centered at the lattice point and a point
shifted back one step in time.

The MRF probability structure assumes that the spatial
relation is independent of the temporal relation, so the con-
ditional probabilities are products of spatial and temporal
ones. Such separable stochastic models are commonly used
in multidimensional signal processing.

We use the following Gibbs Field potential extending and
combining (12) and (17):

V (X) =
t=N∑

jk,t=1

Vjkt +
1
ρ

t=N∑

jk,t=2

|xjk(t)− xjk(t− 1)|+ (22)

Vjkt =
1
2
r00xjk(t)2 +

1
2

M∑

l,m=−M

l,m6=0

rlmxjk(t)xj+l,k+m(t) (23)

where the notation|x|+ is the same as in (18). In Figure 2
the neighborhood lattice nodes used in defining the potential
(22), (23) are shown as shaded circles.
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The prior model (11), (22), (23) can be expressed in the
form.

P (X) =
1
Z

exp

(
−1

2

Nt∑
t=1

(X(t), R ∗ ∗X(t))

− 1
ρ

Nt∑
t=2

‖X(t)−X(t− 1)‖1
)

(24)

where we assume thatX(t)−X(t− 1) ≥ 0; if that inequality
is violated, thenP (X) = 0.

The MAP formulation (4) can be obtained by multiply-
ing the independent probabilitiesP (Y (t)|X(t)) (8) to yield
P (X|Y ) and by substitutingP (X) from (24). The MAP
estimate can be expressed through a negative log-likelihood
index as in (5)–(6).

III. L OOPSHAPING TUNING OF THE ESTIMATOR

The filtering properties of a solution to (5)–(6) depend on
the regularization operatorR. While other parameters of the
problem could be traced back to the problem physics, we
considerR as a free filter design parameter. The operatorR
should be set up to ensure an adequate performance of the
filter. This section considers how this could be done.

A. Tuning requirements

We start by considering the steady state response of the
filter. Assume thatX(t) = X∗, Y (t) = Y∗, andN À 1. Sub-
stituting this into (5)–(6) leads to the steady-state optimization
problem

1
2q
‖Y∗ −B ∗ ∗Xe‖2F +

1
2
(Xe, R ∗ ∗Xe) → min . (25)

To obtain an optimal estimateXe we assume thatY∗ =
B ∗ ∗X∗ + e∗, wheree∗ is the steady state noise. Substituting
this into the unconstrained linear-quadratic problem (25) and
solving for Xe yields

Xe = (BT B + R)−1BT BX∗ + (BT B + R)−1BT e∗, (26)

where we introduced linear operatorsB andR. For an image
U , these operators can be defined asBU = B ∗ ∗U and
RU = R ∗ ∗U . If an imageU is considered as a flat vector,
the operatorsB and R correspond to square matrices of
compatible size. Multiplying an image vector by such matrix
yields the same result as a respective 2-D convolution;BT is
a transposed matrix.

The inverse operator in (26) corresponds to inverting a very
large matrix. The QP solver described in Section IV uses an
iterative inversion method for a constrained version of the
problem. (The unconstrained problem (25) is a special case).
At each iteration, only forward computations are performed
and the operatorsB and R are applied as FIR convolution
operators.

The first term in (26) includes a recovery gain for the steady
state signalX(t) = X∗ and the second term contains the noise
amplification gain. The design goal is to find an optimized
tradeoff between the recovery gain(BT B+R)−1BT B being
close to unity (requiresR to be small) and the noise amplifi-
cation gain(BT B + R)−1BT being small (requiresR to be
large). This tradeoff is considered in more detail below.

B. Design of regularization operator

The convolution operatorR can be conveniently designed
in a spatial frequency domain; this is similar with established
approached to filter design. The frequency domain analysis
and design is relative simple cmputationally and conceptually
at the cost of neglecting the boundary effects.

To maintain the analysis rigor we embed the problem into a
setup with modified boundary conditions. Most of the literature
on MRF uses toroidal (circulant) boundary condition for fre-
quency analysis. Another possibility is to consider an infinite
lattice. Inside the image domain, away from the boundary, the
two approaches are essentially equivalent.

This section considers the lattice to be infinite and uses a lin-
ear time-invariant spatially-invariant (LTSI) system model. The
lattice is regular and the interactions between the neighbouring
cells defined by the MRF potential (22)-(23) are identical for
each cell up to the respective coordinate shift. More detailed
justification of using LTSI models can be found in [1], [11] for
distributed feedback systems and in [23] for multidimensional
IIR filter design. A related but different filter design problem
is considered in [21]. Boundary condition issues, which arise
when the true system is not spatially infinite, can be integrated
into the framework described herein as a deviation from the
LTSI model, see [24], [39], [40].

We will use two-dimensional two-sided z-transform formu-
lation for analysis in this section, see [47]. Let us denote by
λ1 andλ2 the indeterminants corresponding to the two spatial
indexes on the lattice. We will alternatively interpretλ1 and
λ2 as complex variables in the 2-D two-sided z-transform or
as unit index shift operators; this should be clear from the
context.

The FIR regularization operatorR in (24), (5) can be
expressed through a 2-D transfer function

r̂(λ1, λ2) =
∑

−M≤i,j≤M

rijλ
i
1λ

j
2. (27)

Similarly the FIR blur operatorB in (7) can be expressed
through a transfer functionb(λ1, λ2). Using the transfer func-
tion notation, (26) can be expressed as

xe(λ1, λ2) =
b̂∼(λ1, λ2)b̂(λ1, λ2)

b̂(λ1, λ2)b̂∼(λ1, λ2) + r̂(λ1, λ2)
x∗(λ1, λ2)

+
b∼(λ1, λ2)

b̂(λ1, λ2)b̂∼(λ1, λ2) + r̂(λ1, λ2)
e(λ1, λ2), (28)

where b̂∼(λ1, λ2) = b̂(λ−1
1 , λ−1

2 ).
The filter frequency responses can be obtained by consid-

ering the transfer functions in (28) on the unit circle, for
λ1 = eiv1 and λ2 = eiv1 where v1, v2 ∈ [0, 2π] are real
frequencies. The frequency responses of the operatorsR and
B are

r(v1, v2) = r̂(eiv1 , eiv1), b(v1, v2) = b̂(eiv1 , eiv1). (29)

The design requirements are different in band and out-of-
band. In-band frequency set is defined asΩIn ≡ {(v1, v2) :
b(v1, v2) > h0}, whereh0 is a design parameter. In band the
gain of the blur operator is sufficiently high and we can strive
to invert it such that the signal is restored with a minimal
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distortion. Out-of-band set is a complement of the in-band
set. Out of band the blur operator gain is low and the noise
overwhelms the signal. We give up the filter performance
and specify limited noise amplification only. The in-band
performance requires possibly small error of recovering the
truth signalx∗. The first term gain in (26) should be close to
unity inside the in-band frequency setΩIn.∣∣∣∣1−

|b(v1, v2)|2
|b(v1, v2)|2 + r(v1, v2)

∣∣∣∣ ≤ s, (v1, v2) ∈ ΩIn, (30)

wheres is a performance parameter. (We further uses as a
slack variable in the optimization).

The above filter performance objective should be combined
with a requirement of noise amplification gain being limited
(does not exceed an allowed valuee0). This can be expressed
as ∣∣∣∣

b(v1, v2)
|b(v1, v2)|2 + r(v1, v2)

∣∣∣∣ ≤ e0. (31)

In this paper we assume that the blur operatorB has
central symmetry. Thus, the corresponding frequency response
b(v1, v2) = b̂(eiv1 , eiv1) is real for all frequencies. When
designing the FIR regularization operatorR we will look for
a symmetric solution such thatr(v1, v2) is real and positive.

For a symmetricR the real transfer function can be ex-
panded as

r̂(λ1, λ2) =
Mc∑

m=0

cmPM
m (λ1, λ2), (32)

where PM
m (λ1, λ2) are elementary polynomials defining the

symmetry. The expansion (32) explicitly showsMc + 1 inde-
pendent parameterscm for the assumed symmetry type. We
considercm to be decision parameters for the filter design.
We assume an 8-fold symmetry:rm,n = r−m,−n = r−m,n =
rm,−n = rn,m = r−n,−m = r−n,m = rn,−m. Then

PM
0 (λ1, λ2) = 1,

PM
j (λ1, λ2) = λj

1 + λ−j
1 + λj

2 + λ−j
2 , (j = 1, . . . , M)

PM
M+j(λ1, λ2) = λj

1λ
j
2 + λ−j

1 λj
2 + λj

1λ
−j
2 + λ−j

1 λ−j
2 ,

PM
2M+k(λ1, λ2) = λlk

1 λmk
2 + λlk

1 λ−mk
2 + λ−lk

1 λmk
2

+λ−lk
1 λ−mk

2 + λmk
1 λlk

2 + λmk
1 λ−lk

2 + λ−mk
1 λlk

2 + λ−mk
1 λ−lk

2 ,

(lk = 1, . . . , mk − 1; mk = 2, . . . , M),

where the expansion size isMc +1 = 1+2M +M(M−1)/2.
The last equation gives a general case of the 8-fold symmetry
and hask = 1, . . . , M(M − 1)/2, the second equation gives
a special case ofmk = lk, the first equation gives a special
case ofmk = 0 (or, the same,lk = 0).

The frequency response (32) can be expressed in the form

r(v1, v2) = P̄T (v1, v2)x, (33)

x = [s c0 c1 . . . cMc ]
T , (34)

where x ∈ <Mc+2 is the decision vector including all the
independent coefficients, i.e., our optimization variables and
the additional decision variable - the slack variables in (30).
The regressor vector is

P̄T (v1, v2) = [0, PM
1 (eiν1 , eiν2), . . . , PM

Mc+1(e
iν1 , eiν2)]

For each spatial frequencyν, the frequency response
r(v1, v2) is a linear function of the decision parameter vector
x. Note that sincer(v1, v2) ≥ 0, the denominators in (31),
(30) are real positive. By mutiplying (31) and (30) through by
the denominators and collecting all the terms we obtain the
following constrained optimization problem

s → min, (35)

subject to c(v1, v2) + DT (v1, v2)x ≥ 0, (36)

where the vectorc(v1, v2) and the matrixDT (v1, v2) collect
the linear inequalities expressing the problem (29), (31), (30),
(34), (33).

The problem (35), (36) is convex. Similar to [24] one can
introduce a grid of the frequency points and consider the
inequality constraints (36) on the grid only. The problem then
becomes a large linear program that can be efficiently solved
by an off-the-shelf LP solver. The result of the solution is the
optimal decision vectorx, which defines the regularization
operatorR in accordance with (32), (34). The design of the
regularization operatorR needs to be carried out once, off-
line, and provides a tuning for the proposed optimization-
based filter. A specific example of the design is considered
in Section V.

IV. A SPECIALIZED LARGE-SCALE QP SOLVER

This section describes an interior-point method for solving
the problem (5)–(6). We follow the notation in Subsection III-
A and with some overload of notation consider the images
X(t) andY (t) as flat vectors in<N1N2 obtained by stacking
all image elements.

The observation model (7) can be expressed as

Y (t) = Bx(t) + e(t),

whereB ∈ <N1N2×N1N2 is the blurring operator. matrix cor-
responding to the convolution operatorB. Similarly, we will
consider the regularization operator matrixR ∈ <N1N2×N1N2

corresponding to the convolution operatorR.
The problem (5)–(6) can be written as

L =
1
2

Nt∑
t=1

[‖Y (t)−BX(t)‖2 + X(t)T RX(t)
]

+
1
ρ

Nt∑
t=2

‖X(t)−X(t− 1)‖1 → min, (37)

subject toX(1) ≥ 0, X(t) ≥ X(t− 1), (t = 2, . . . , Nt), (38)

where the inequalityX(1) ≥ 0 is introduced without a loss
of generality (we can always offsetX(t) by mint Y (t)). The
problem (37)–(38) is a convex QP with the total number of
variablesM = N1N2Nt.

We introduce new variables

Z(1) = X(1), Z(t) = X(t)−X(t− 1), t = 2, . . . , Nt.

In terms of these new variables, (37) is equivalent to finding
Z(1), . . . , Z(Nt) ∈ <N1N2 that solve

G(Z) → min (39)

subject toZ(t) ≥ 0, t = 1, . . . , Nt, (40)
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where the decision vector isZ = (z(1), . . . , z(Nt)) ∈
<N1N2 × · · · × <N1N2 and the objective is

G(Z) =
1
2

Nt∑
t=1

(‖Y (t)−B[Z(1) + · · ·+ Z(t)]‖2

+[Z(1) + · · ·+ Z(t)]T R[Z(1) + · · ·+ Z(t)]
)

+
1
ρ

Nt∑
t=2

Z(t).

If Z?(t) = (Z?(1), . . . , Z?(Nt)) solves the problem (39)–
(40), then

X? = (X?(1), . . . , X?(Nt)) ∈ <N1N2 × · · · × <N1N2

with X?(t) = X(0) +
∑t

k=1 Z?(k) solves the original prob-
lem (5)–(6).

A. The barrier method

The logarithmic barrier for the nonnegativity constraints
Z(t) ≥ 0 in (39) is

Φ(Z) = −
Nt∑
t=1

N1N2∑

i=1

log Zi(t), (41)

with domain

dom Φ = {Z = (Z(1), . . . , Z(Nt)) ∈ <N1N2×· · ·× <N1N2 :
Zi(t) > 0, i = 1, . . . ,M, t = 1, . . . , Nt}.

The logarithmic barrier function (41) is smooth and convex in
its domain.

We augment a weighted objective function of (39) by the
logarithmic barrier (41), to obtain

φτ (Z) = τG(Z) + Φ(Z), (42)

whereτ > 0 is a weighting parameter. This function is smooth,
strictly convex, and bounded below, and so has a unique
minimizer Z?(τ) ∈ <M . The set{Z?(τ) | τ > 0} defines a
curve in<M , parameterized byτ , which is called thecentral
path. In particular, the minimizer of (42) is no more thanM/τ -
suboptimal, so the central path leads to an optimal solution.
See [8,§11] for more on the central path and its properties.

In a classic primal barrier method, the barrier subproblem
that finds the minimizer of (42) is solved for an increasing
sequence of values ofτ . The Newton method for each sub-
problem is initialized at the optimal solution of the previous
one. A typical method for increasing the parameterτ is to
multiply it by a factor on the order of10 (see,e.g., [8, §10.3]).
This is repeated untilM/τ is smaller than the required tol-
erance. Standard references on interior-point methods include
[44], [45], [62], [63].

B. A truncated Newton interior-point method

We describe a method for solving the large-scale QP prob-
lem of the form (39)–(40). The method is the same as the
barrier method except that the search direction is computed
approximately, using a preconditioned conjugate gradients
(PCG) method. When the search direction in Newton’s method
is computed approximately, using an iterative method such

as PCG, the overall algorithm is called aconjugate gradient
Newton method, or a truncated Newton method[51], [12].
Truncated Newton methods have been applied within interior-
point methods; see,e.g., [59], [48].

The search direction is computed as an approximation to
the solution. The Newton system for the central path problem
of minimizing (42) has the form

H∆Znt = −g,

whereH = ∇2φτ (Z) ∈ <M×M is the Hessian of the barrier
objective andg = ∇φτ (Z) ∈ <M is the gradient. The Hessian
H is symmetric and positive definite matrix.

The PCG algorithm [13,§6.6] computes an approximate
solution of the Newton system. It uses a preconditionerP,
a symmetric positive definite linear operator on<M×M . We
will not go into the details of the PCG algorithm, and, instead,
refer the reader to [31], [52], [45].

We use a simple preconditionerP that approximates the
Hessian ofτG(z) with its diagonal entries, while retaining
the Hessian of the logarithmic barrier:

P = τ diag(∇2G(Z)) +∇2Φ(Z),

where I ∈ <M×M is an identity matrix,η is a parameter,
anddiag(S) is a diagonal matrix obtained by setting the off-
diagonal entries of the matrixS to zero. The preconditioner
is a diagonal matrix, since∇2Φ(Z) is also a diagonal matrix,

∇2Φ(Z) =




diag(Z(1))
. . .

diag(Z(Nt))


 ∈ <M×M .

Here diag(A) is the diagonal matrix whose diagonal entries
are the entries ofA.

The PCG algorithm needs a good initial search direction
and an effective truncation rule.

Initial point. A good initial search direction requires on
average fewer iterations of the PCG algorithm, and therefore
can accelerate the method. There are many choices for the
initial search direction,e.g., zero or the search direction found
in the previous step of the method. The previous search
direction appears to have a small advantage over the negative
gradient and zero.

Truncation rule.The truncation rule for the PCG algorithm
gives the condition for terminating the algorithm. Our imple-
mentation uses a simple truncation rule: the PCG algorithm
stops when either the cumulative number of PCG steps exceeds
the given limit Npcg, or the gradient is less than the relative
toleranceεpcg. We change the relative tolerance adaptively as

εpcg = min {0.1, ξη/‖g‖2} , (43)

whereη is the duality gap at the current iteration andξ is an
algorithm parameter. The choice ofξ = 0.01 appears to work
well for a wide range of problems. In other words, we solve
the Newton system with low accuracy at early iterations, and
solve it more accurately as the duality gap decreases. Since the
convergence of the PCG algorithm is usually very fast, there
is no significant effect ofNpcg on the overall performance, as
long as the limit is set to a large value.
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Each iteration of the PCG algorithm involves a handful of
inner products, the matrix-vector productHp with p ∈ <M

and a solve step with the preconditionerP in computingP−1r
with r ∈ <M . The solve stepP−1r can be computed inO(M)
flops, sinceP is diagonal.

The most computationally expensive operation for a PCG
step is the matrix-vector productHp with p ∈ <M . The
HessianD = ∇2Ψ of the quadratic function

Ψ =
1
2

Nt∑
t=1

‖Y (t)−BX(t)‖2 + X(t)T RX(t)

at X = (X(1), . . . , x(Nt)) is the block diagonal matrix

D = block diag(BT B+RT R, . . . , BT B+RT R) ∈ <M×M .

Here we use blockdiag(A1, . . . , Ap) to denote a matrix
with diagonal blocksA1, . . . , Ap. Using the chain rule of
differentiation, we can see that the Hessian of the barrier
objective∇2φτ at Z has the form

H = ∇2Φ(Z)
+ τLT block diag(BT B + RT R, . . . , BT B + RT R)L

whereL is the lower block-triangular matrix

L =




I 0 0 · · · 0
I I 0 · · · 0
...

...
...

...
...

I I I · · · I


 ∈ <

M×M .

The productHp can be computed as the following chain of
operations:

Hp = LT u, u = Dv, v = Lp.

The vectorv can be computed inO(M) flops, andu = Dv
can be computed withNt convolutions with the blurring and
regularization filters. Finally, the vectorLT u can be computed
in O(M) flops. To sum up, the cost of computingHp is
O(M+Nt(Nb+Nr)), whereNb is the total cost of calculating
the matrix vector productsBZ andBT Z with Z ∈ <M , and
Nr is the cost of performingRZ andRT Z. Those products
can be computed efficiently using fast algorithms for two-
dimensional convolution with the FIR kernelsB and R. For
B andR based on FIR convolution kernels, the products can
be computed inO(M) flops.

Since the memory requirement of the truncated Newton
interior-point method is modest, the method is able to solve
very large problems, for which forming the HessianH, let
alone computing the search direction, would be prohibitively
expensive. The runtime of the truncated Newton interior-point
method is determined by the product ofs, the total number of
PCG steps required over all iterations, and the cost of a PCG
step. In extensive testing, we found that the total number of
PCG steps ranges between a few hundred and several thousand
to compute a solution with a relative tolerance of0.01.

V. A PPLICATION TO STRUCTURAL HEALTH MONITORING

The proposed signal processing approaches were demon-
strated for Structural Health Monitoring (SHM) data collected
in laboratory experiments. The data collection conditions in
the experiment were close to a real-life SHM operational
environment.

A. SHM sensing system

The experiments employed an SHM sensing system devel-
oped by Acellent Technologies. This system uses a network
of distributed piezoelectric sensors/actuators embedded on a
thin dielectric carrier film called the SMART LayerR©, see
[3], [4]. The SMART Layer technology has both active and
passive sensing capabilities via the embedded piezoelectric
transducers, see Figure 3. This sensor network is used with
a portable diagnostic unit called the ScanGenie to query,
monitor and evaluate the condition of a structure. In Active
Sensing Mode, the ScanGenie in turn actuates each of the
transducers to generate pre-selected diagnostic signals and
transmit them to neighboring sensors. The responses can be
interpreted in terms of damage size and location or material
property changes. In Passive Sensing Mode the SMART Layer
sensors can continuously monitor the structure for impact
events. Both modes permit real-time structural analysis and
evaluation along with constant collection of structural data
and information while the structure/vehicle is in service.
Specifically the system can:

• Obtain real-time, in-service, data on the integrity of an
aircraft structure.

• Identify visible and invisible damage in metal and com-
posite structures.

• Access damage data from structural anomalies including:
i) fatigue cracks in highly loaded metallic fittings, ii)
delaminations and disbonds in composite components,
and iii) deterioration in bonded joints and iv) projectile
impact damage.

• Reduce inspection and structural maintenance costs by
providing an easy tool for maintenance personnel to
assess damaged and take preventive action.

The SMART Layer can be as thin as 2 - 4 mil and as
a result has little weight. Typical sensor sizes range from
0.125-0.25” in diameter with thickness of 0.01-0.03”. The
sensor network layers can be either surface mounted on both
metallic and composite structure using an adhesive such as
epoxy or embedded inside the composite structures during
manufacturing by placing the sensor film between plies during
lay-up.

Fig. 3: SMART Layer technology has both active and passive sensing
capabilities.
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B. Test data set

Current state-of-the-art damage detection methodologies
rely on the use of baseline data collected from the structure in
the undamaged state. The methodologies are based on com-
paring the current sensor responses to the previously recorded
baseline sensor responses, and using the differences to glean
information about structural damage. However, it is known that
environmental effects, such as temperature differences, will
also cause changes in the sensor signals. Thermal calibration
techniques can be employed to mitigate the effect, but have
limited accuracy, especially if the temperature falls outside of
the calibrated range.

Fig. 4: Flat composite panel with 49 sensors.

In this study, impact tests were conducted on a 4’× 4’
flat composite panel and collected sensor data at multiple
temperatures. There were 49 sensors on the panel in a 7 x
7 grid with 7 inch spacing. The panel was impacted nine
times in the same location to initiate and grow the damage,
see Figure 4. Data was collected after each impact and the
resulting diagnostic images were generated at two different
temperatures: 20◦C and 40◦C. Thermal compensation was
applied only over a small range of temperatures, from 25◦C
- 35◦C, so the generated images fall outside the compensated
range and therefore exhibit both damage and environmental
variation. The images are illustrated in Figure 5.

To generate the images, a technique was employed that
uses the Total Signal Energy (TSE) to calculate damage index
values for each actuator-sensor path. The TSE of the scatter
signal is compared to the TSE of the baseline signal and a
corresponding damage index is calculated. The values for each
path were used to generate a map highlighting the location of
structural changes. The map was then smoothed using a two-
dimensional finite impulse response filter to produce the final
images. These images provide a visual representation of the
location of structural changes and can be used as a qualitative
measure of damage size.

The overall data set obtained in the experiments contains
8 pairs of images with 171× 171 = 29,241 pixels each.
To demonstrate the proposed optimization filtering approach
we used a Bootstraping-like method to increase number of
images in the sequence. From a single pair of the images
{Y20(t), Y40(t)} obtained for the same panel damage at two
different temperatures we createnb > 2 samples. We compute
linear interpolations of the two images to approximate data for

Fig. 5: Generated diagnostic images at 20◦C and 40◦C after 3, 6 and
9 impacts.

nb in-between temperatures

Y (τ) = aτY20(t) + (1− aτ )Y40(t), (k = 1, . . . , nb), (44)

where τ = nbt + k, (k = 1, . . . , nb) is the time index of
the generated data set andaτ are random variables uniformly
distributed on the interval[0, 1]. We assumednb = 3: three
scans were generated according to (44) for each damage state.

As Figure 5 illustrates, the environment variation is about
25% of the signal. For earlier scans, where less damage has yet
accumulated, the signal/noise ratio is much worse then when
estimating the damage from the diagnostic image data.

We assumed a Gaussian blur model with the half-widthσ of
1.5 pixels. The PSF operatorB is illustrated on the left plot in
Figure 6. The noncausal FIR operatorB used in the filtering
algorithms had a maximal±6 pixels tap delay along each
spatial coordinate. We did not identify the prior MRF model.
Instead, we considered the model parameters as tuning factors
in the filter design.
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Fig. 6: Spatial operators in the optimization problem statement.
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C. Optimization-based filter design

The QP-optimization-based filtering problem (5)–(6) re-
quires to define the FIR regularization operatorR coming from
the MRF prior model of the data. We designed the filter by
consideringR as a tuning knob and computing it as described
in Section III.

By assuming a 128× 128 spatial frequency grid, the LP
(35), (36) was solved to obtain a central symmetric operator
R with M = 2 tap delays. The in-band frequency setΩIn

was chosen by considering a set of grid frequencies were the
blur operator gain exceedsh0 = 0.55 of the maximal (zero-
frequency) gain. The maximal noise amplification gain in (31)
was chosen ase0 = 1.25. The design yielded the in-band
signal recovery distortion factors = 0.2 in (30).
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Fig. 7: Frequency domain design of the regularization operator. The
horisontal axis shows a magnitude of spatial frequency.

The frequency domain design is illustrated in Figure 7. The
design is central symmetric and the 2-D transfer functions
depend on the magnitude

√
v2
1 + v2

2 of the spatial frequency
vector. The upper plot in Figure 7 shows the estimator signal
gain, the magnitude of the first term transfer function in (28).
The lower plot shows the noise gain, the magnitude of the
second term transfer function in (28).

The QP problem (5)–(6) and, thus, the filtering are fully
described by two spatial FIR operators;B and R. Figure 6
illustrates the assumed blur operator and the designed penalty
operator R. The two remaining scalar parameters in (5)–
(6) were chosen as follows. The initial condition covariance
parameter was assumedq0 = 0. The time regularization
penalty was assumed asρ = 2.

D. Filtering and trending results

The designed optimization-based filter was implemented
using the solver discussed in Section IV. We solved the
problem with relative accuracy1%. The solver allows acieving
much better relative accuracy, but this accuracy is more than
adequate for any practical use. The algorithm was imple-
mented in both Matlab and C, and run on a 3.2GHz Pentium
IV under Linux. We useη = 1 in the adaptive rule in (43).

Fig. 8: Filtering results for the test data set.

The stopping criterion for the problem of minimizationφt is
‖∇φτ (E)‖F ≤ 10−6.

It was applied to the test data set illustrated in Figure 5.
Because of the environmental variation, the raw images in
Figure 5 show significant variation all over the image. By
experiment design we know that in fact the damage is con-
centrated in a single spot.

The filtering results are shown in Figure 8. The displayed
images areX(t)−X(1). We assume that initially there is no
damage and subtract the baseline. The upper plot in Figure 8
shows the last image of the filtered dataX(24) −X(1); the
middle plot shows the last image of the test dataY (24). The
upper plot in Figure 8 has a single peak which accurately
recovers the damage location. The lower plot in Figure 8
displays the time evolution of the filtered signal averaged over
an image patch of 10×10 pixels around the damage peak
(solid line). The dots show the time evolution of an average
value outside of the patch. Both curves accurately reflect the
available ground truth knowledge.

As one can see, the proposed nonlinear filtering scheme
substantially improves the quality of the damage estimate.
Though no ground truth data was available for the test set, the
panel location where it was impacted and where the damage is
likely concentrated is known. This is exactly what the filtered
image shows. Because of the environmental variation, the raw
images show phantom damage in multiple locations on the
plate.

VI. CONCLUSIONS

We have considered deblurring/denoising of a time series
of images pixel-vise monotonic in time. The problem is
motivated by structural health monitoring (SHM). The damage
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accumulating in a structure needs to be distinguished from the
data variation caused by changing environmental conditions.

We have formulated the problem as optimization of a log-
likelihood index using a MRF model of the data. The proposed
method for tuning the spatial regularization operator (MRF
prior) sets the MRF weights based on specifications such as
signal recovery performance and noise rejection.

Because of the monotonicity constraint, a large-scale struc-
tured QP problem needs to be solved numerically to obtain
the estimate. The described interior-point method for solving
large-scale QP problems of this type is implemented in Mat-
lab and can handle quadratic programs with several million
variables and constraints in a few ten minutes or so on a PC.

We have demonstrated an application of the approach to
processing the diagnostic images of structural damage ob-
tained in experiments with a thermal chamber. The varying
specimen temperature shows as a noise affecting the dam-
age data. An application of the proposed signal processing
approach has allowed to recover the damage signal while
completely eliminating the variation.
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