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Abstract—This paper considers estimation of pixel-wise aerospace and civil engineering for automated monitoring
monotonic increasing (or decreasing) data from a time series of of structural integrity for high value assets. In particular,
noisy blurred images. The motivation comes from estimation of mandatory periodic inspections of aircraft structure could be
mechanical structure damage that accumulates irreversibly over . .
time. We formulate a Maximum A posteriory Probablity (MAP) a.Utomate_d using SHM'_ The SHM data ac-quwed between
estimation pr0b|em and find a solution by direct numerical a|rcraft f||ghtS or fOI‘ C|V|| structures are SUbJeCt to broadly
optimization of a log-likelihood index. Spatial continuity of the varying environmental conditions, such as temperature. An
damage is modeled using a Markov Random Field (MRF). The effective estimate of structural damage must be unaffected by
MREF prior includes the temporal monotonicity constraints. We ¢ cqrrectable for environmental conditions. Detection of a
tune the MRF prior, using a spatial frequency domain loopshap- e . .
ing technique to achieve a tradeoff between noise rejection and defect of S|gn|f|cant_ size must be qlmost _ent|rely free from
signal restoration properties of the estimate. false alarms and missed faults. This motivates the problem

The MAP optimization is a large-scale Quadratic Program- considered herein.
ming (QP) problem that could have more than a million of  The model for a series of images where underlying
decision variables and constraints. We describe and implement monotonic change is distorted by noise and blur might be

an efficient interior-point method for solving such optimization . o . .
problem. The method uses a preconditioned conjugate gradient potentially useful for applications in geophysics (e.g., earth-

method to compute the search step. The developed QP solverduake prediction, petroleum extraction), in medical imaging

relies on the special structure of the problem and can solve the (e.g., detecting a growing tumor from a series of images), in

problems of this size in a few tens of minutes, on a PC. environmental sciences (e.g., detecting irreversible changes,
The application example in the paper describes structural g ch as global warming trends), and others.

damage images obtained using a Structural Health Monitoring Deblurring of noisv images is covered in manv textbooks
(SHM) system. The damage signal is distorted by environmental 9 y g y ’

temperature that varies for each acquired image in the series. €., [14], [18], [33]. Particularly relevant to this work are
The solution for the experimental data is demonstrated to provide the papers [21], [23], where deblurring filters are designed
an excellent estimate of the damage accumulation trend while in spatial frequency domain by loopshaping based on formal
rejecting the spatial and temporal noise. engineering specifications. In [21], [23], the coefficients of
Index Terms—Optimal estimation, spatio-temporal filter- a noncausal 2-D IIR filter are obtained by solving a design
ing, regularization, interior-point method, isotonic regression, problem formulated as a linear program (LP). An extension
Markov Random Field. to spatio-temporal filtering of a series of images (motivated
by SHM applications) is considered in [25]. The filter input
. INTRODUCTION is a series of noisy blurred images; the output is cleaned

E consider a time series of noisv blurred ima eimages emphasizing the underlying signal and reducing the
. . ' noisy b 9%0ise. The 3-D IIR filter design proposed in [25], [26] shapes
where the underlying signal is pixel-wise monotoni

%oLh the spatial response and the time response of the filter by

Increasing (or decreasing). The paper describes an optmﬁ ing the 2-D spatial operators in the filter as a solution to an
estimation approach for such signal. The problem formulati . We use an LP-based shaping of the spatial regularization

: : : o in thi I f letely diff
from a time series of diagnostic images. The damage ac%ﬁ-grrf::lrjé?u:els paper as well, but for a completely different

mulates irreversibly over time. The application example in the Linear spatio-temporal filtering does not take into account

paper is structural damage estimation using a Structural Hea} E monotonic nature of the damage accumulation. There

Eﬂo%r:gﬁ]r;ngeﬁygosi:ztz% ;t\]/(;r(ij;irgzgcz;%rc‘ja:aIse?:\ljirrro(ar?maeqn a?ubstantial earlier work on estimation with monotonicity
y constraints. This work on ‘isotonic regression’ has been driven

fa(gors.l t of SHM ; has b ttracti by applications in statistics and operations research and is
evelopment o systems has been attracling MUg(] 1,3 rized in the books [2], [50]. Most of that work considers

attention recently; see [56], .[57]’ [5.8] for a represemat“.’&nivariate data, lesser part considers multivariable data, and
sample of the work. The main applications of SHM are Rone deals with image data
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estimating monotonic signals, the filtering approach based sme is to find an effective preconditioner. For a spatially
constrained optimization provides a substantial improvemdnvariant blur operator, fast Fourier transform (FFT) can be
over standard linear filtering methods. Some applications applied in approximate inverse preconditioners to produce
optimization-based estimation based on monotonic walk moeery efficient PCG schemes [61], [28], [43]. In [16] those
els are discussed in [27], [54]. The source of monotonici®CGs are incorporated in an iterative method for solving
considered there is an irreversible nature of faults in thetal variation minimization problems. Iterative methods are
system. generalized to deblurring problems with general non-quadratic
This paper considers an extension of the earlier monotofiidelity criteria in [29]. The preconditioners mentioned above
walk models to a series of images monotonic in time. The proannot be directly applied to our problem. One of this paper
posed MAP estimation problem formulation is related to theontributions is finding an effective preconditioner for the
cited work in monotonic trending. The fundamental differendenage-processing QP problem in question.
here is the inclusion of spatial information about the images.The contributions of this paper can be summarized as
Our observation model assumes a finite impulse resporsfows.
(FIR) blur operator. In the prior model, the spatial smoothnessgirst we introduce a new type of image processing prob-
of the underlying image is described using a Markov Randoggims for a time series of images where underlying data are
Field (MRF) model. The overall MAP problem is formulatedsixe|-wise monotonic. Apparently, despite its usefulness, such
as a large scale QP problem with the linear monotoniCiptoplem formulation has not been considered earlier.

constraints, where the decision variables include the series 0§,.4q we propose an approach to MAP optimal estimation
image estimates. i i _for the problem in question. A sparse MRF prior model is
A number of prior papers formulate image processiNgseq 1o account for the monotonicity and spatial smoothness
problems as QPs and other constrained convex opt|m_|zat|6)fnthe underlying image. We propose an optimal sparsity-
problems, e.g., see [15], [16], [17], [30], [38], [35]. One issUfesering method for tuning the MRF prior such that the

with the prior work in optimization-based image processinap solution satisfies engineering specification for noise
is that the solutions do not scale up well. Another issue llﬁjection and estimation error

that these optimization approaches are problem specific an hird, we propose an interior-point method for sovling the

require manual tweaking. They are not available as packa . .
software, such as standard QP and LP solvers., QS problems of the formulated type. A Matlab implementation

. . ) Lo of the solver on a PC is suitable for practical-size problems.

The image processing QP problem considered in this paper_. I q h hi s

can be solved using standard QP solvers, when the total numt nally, we demonstrate the approach in an Important
n — structural health monitoring. We de-

ber of variables (i.e., the pixels in the image series) is modedfrospace applicatio _
say, under10000. (High quality solvers that can directlyscr'be an experimentally collected set of SHM data subject to

handle a QP problem of large size include LOQO [60] angmperature variation and demonstrate the formulation, tuning,

MOSEK [42].) Unfortunately, standard solvers do not sca%nd solution of the QP-based image processing problem with

to practical image sizes. In particular the SHM applicatiowomto_niCity constraints. A superior quality_of recovering
considered in Section V of this paper has the size (the topcﬂderlylng damage maps from the SHM data is demonstrated.

number of pixels) of just under a million, well beyond what Figure 1 shows the implementation steps for the proposed
standard QP solvers can handle. optimization-based image estimation approach. The first block
In this paper we use a specialized interior-point method f§hows the data and decision variables in the MAP estimation

solving the QP problems with, regularization penalties andProblem, which is formulated in Section Il. The parameters of

positivity constraints. The method computes the search s@pParse MRF prior model are considered as tuning factors.
using a preconditioned conjugate gradient (PCG) approach.SRCtion [ll describes a method for tuning the MRF model.

version of the method is described in more detail in [32].h€ tuning is done off line and is reflected by the second
The method is very efficient for all size problems; it ilock in Figure 1 diagram. A specialized large scale convex
particularly efficient for very large problems such as the orRo!ver discussed in Section IV of the paper is applied on-line
considered herein. A simple Matlab implementation of th§& compute the filtered data as a solution to the QP problem
method, discussed in more detail in Section IV, can solve tR8d is shown as the next to last block in Figure 1 diagram.
QP problems with an excess of two million variables and twoinally, Section V describes an SHM application including the

million constraints. For finite impulse response blurring and@ta collection experiments, implementation of the proposed
regularization operators, the method scales almost linearlydRProach through the steps outlined in Figure 1, and image
the number of variables (pixels). Extensive numerical compdocessing results.

ison shows that the proposed method is far more efficient and

scalable than MOSEK for a class of problems in questiol [Accumulated Optimization Specialized Sequence of
H H S f Problem f L -scal Deblurred and
The idea of using truncated Newton methods or PCG ﬁgoﬂﬂf{,‘:? o/ Spatio-temporal —» Spares QP |—»| Denoised
i i i Damage Maps Filtering and Solver Maps
ods for image enhancement, deconvolution, and deblurril dammaapge oo s Tondiny it xa0)

not completely new; e.g., see [41]. Truncated Newton metl
have been applied to large-scale problems in several other
fields, e.g, image restoration [16], support vector machines
[36], and logistic regression [37]. The most important is-

Fig. 1: Optimization-based estimation of damage.



IEEE TRANSACTIONS ON SIGNAL PROCESSING, SUBMITTED MAY 2007 3

II. OPTIMIZATION-BASED ESTIMATION PROBLEM A. Observation Model

This section introduces a formal mathematical problem Consider a probabilistic model for a single diagnostic image
statement. Consider an observed data etomprising a at timet¢. We assume that the ima@&t) contains the blurred
sequence of the available diagnostic images. A truth dat¥ seunderlying damage dat&(¢) contaminated by noisg(t). The
comprises a sequence of the corresponding underlying damageervation model has the form

maps. Y (t) = BoX (t) + e(t), (7)

Y ={¥@,...Y(N)}, @) where B is a spatially-invariant blur operator expressed by

X ={X(1),..., X(N)}, @ aFR (finite impulse response) PSF (point spread function)
where Y (t) € RV1-V2 are the observed damage images art@rnel. The notatior in (7) stands for two-dimensional con-
X(t) € RV1M2 are underlying damage images. volution. Handling of boundary conditions is not considered in

The problem is to estimaté& from Y. An optimal statis- detail herein. We assume that one of the standard approaches

tical estimate can be obtained by maximizing the conditionaf image processing analysis is used; see, e.g., [14], [18], [33]
probability, P(X|Y"). In accordance with the Bayes formulafor more detail. The noise(t) is assumed to be an identically
the probability of the hidden underlying data conditional tdistributed spatially uncorrelated gaussian noise (white noise)
the observed data can be factorized as with zero meany, e(¢) ~ N(0, ¢). In that case the observation

P(X]Y) = P(Y|X)P(X)/c, 3) probability is

wherec = P(Y) is a constant independent &f. The MAP  P(Y (¢)|X (1)) = Zi exp <21||Y(t) — Bx *X(f)ﬁw) , (8)
(Maximum A posteriori Probability) estimate can be obtained ! ?
by solving the optimization problem where||U||r is the Frobenius norm of the image arr@y(the
) sum of the squared pixel values) afgis a scaling constant.
L = —log P(Y|X) —log P(X) — min. The noises(t) in (8) are independent for differemt Thus,
In order to formulate the optimization-based estimatioleg P(Y'|X) in (4) can be computed by taking a logarithm of

problem in more detail, we need to define (8) and summing up over This yields the first sum in (5).
« the observation modeP(Y|X), the first factor in (3),
and B. Spatial MRF model
« the prior probabilityP(X), the second factor in (3). This and the next two subsections introduce the spatio-

The observation model and the prior probability are disemporal prior probability modeP(X) leading to (5)—(6).
cussed in detail in the subsections to follow. We show thai this subsection we consider a single time sampléet
the MAP estimate (4) can be expressed as a QP, a conyex = x,,(t) be a pixel of the imageX = X (¢) The indexes

constraint optimization problem of the form j, k] define alattice point We will introduce a neighborhood
L 1 of a lattice point, a square of the si2é/ + 1 centered at this
_ 2 i
L= B ;_1 Y (t) — B=X ()% + 3 ;Zl(X(t),R**X(t)) point

Nijw = {1, m] - (Il = jl, Im — k| < M, [l, m] # [j, k])}. (9)

Ny
1 .
+=> IX(t) = X(t—1)Js —min  (5) A MRF probability structure specifies conditional probabil-
= ity for a pixel to be defined by the pixels in the neighborhood
subject toX (¢) - X (¢t —1) >0, ¢t=2,..., N; (6) (9

where (U, V) denotes a dot product of the two imagésand , ) — . . ,

V considered as flat vector§i/||2. = (U,U); |U]; is the Plopl XWNMesnd) = P (@jel (@ 2 Lm € Nowh), - (10)

1-norm (sum of the absolute values of the pixels); #his a WhereX (¢)\{z;,} means the entire imag€(t) excluding the

non-causal 2-D FIR convolution kernel with a maximum tapixel z;x.

delay M and entries,,. Under a positivity constraint assumption (no configuration
The first sum in (5) is the data fit error correspondinfas @ probability equal to zero), the Hammersley-Clifford

to the observation model. The inverse problem of estimatifigeorem [5] says that an MRF can be expressed as a Gibbs

X (t) from Y (t) by minimizing the fit error is ill-conditioned. Field with the probability structure

The last two sums in (5) correspond to the prior probability; 1
they add a spatial and a temporal regularization terms. The P(X(t)) = - exp (Z Vc(fc)), (11)
constraints come from the temporal part of the prior model. ceC

The QP optimization problem (5)—(6) can be solved nwvhereC is the set of all cliques (sets of the lattice points that
merically. Solving the QP problem yields an optimal estimatre all neighbors of each othef),(-) arepotential functions
X. The solution X depends on the choice of the spatiahnd Z is a scaling factor.
regularization operato? (5). In what follows we consider Defining the potential function¥,(-) allows specifying a
R as a tuning parameter and choose it to achieve the desicedisistent MRF model. Following the common practice in
filtering performance. Section IlIl considers how this can hbenage processing, we consider spatially invariant potential
done. functions with the cliques consisting of one or two points. We
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use quadratic potential functions, which leads to a Gaussi@y computing the observation model probabil®(Y| X') and

MRF (GMRF) with the potential substituting the prior model (17) into the MAP problem (4)
for the data available over time horizav we get
Z Ve(we) = Z Vik N N
ceC k 1 1 .
’ L o= Y o-le®) =y + - > a(t) > min  (19)
:12 TooT3y, + Z TimT kT (12) = P =
AN A subject toz(t) ~ #(t ~1) 2.0, (t=2,..., NX20)

By substituting (12) into (11) and calculating (10), thd he QP problem (19)—(20) with(¢) scalar is, equivalent to

conditional probability structure can be expressed in the ford isotonic regression problem (see [2], [6], [50]) and can be
solved very efficiently, in a linear time. In what follows we

consider a generalization of the known problem (19)—(20) for
a univariate time series signal to a time series of images.

M

T = Too€jk + E TimTj+1,k+m (13)
l,m=—M; l,m#0

Whereejk are white noise variables. The GMRF model (11). Opt|ma| estimation prob|em - Spatio_tempora| model

(12) EXpresses that if a damage is_ present at a given. pixelWe are now ready to introduce a composite spatio-temporal
there is I_|kely a co_rrelated damage in the ne_lghbprmg plXel?ﬁodel combining the spatial MRF of Subsection II-B and the
The prior model in (11) and (12) can be written in the forn}‘nonotonic in time damage accumulation model of Subsec-

1 1 tion II-C. We will formulate the model as a 3-D MRF, causal
PX(0) = z, P (_Q(X(t)’ I+ *X(t>)) ' (34) " in time and noncausal in the spatial coordinates.

The necessary and sufficient condition for (14) to represent
a valid probability density function is that the 2-D FIR
convolution kernelR is symmetric and positive-definite [34].
Section Ill considers selection @t in more detail.

C. Temporal model

Let us now consider a time evolution of damage at a given
spatial location, for a single image pixel. To introduce the o ) o ) )

modgl we will temporarily _ignore the spgtial dependencies apgl; 2: An example of the neighborhood (21) of a lattice point
consider a scalar underlying damage sign@). [n1, na, t] used in defining the MRF (M=2).

Consider a first-order random walk model.
_ The MRF will be defined using the following neighborhoods
rt+1) ==(t) +£(1), (15) of the lattice point
where((¢) is i.i.d. (independent identically distributed) noise _ . ] _ .
sequence. To reflect the fact that the damage is accumulating Kin() = {lL,m, 7]+ ([l’m] € N for =1,
irreversibly, we assume that the noise incremeqtts are [[,m] =[j,k] for T =t —1,)} (21)
always nonnegative, the respective probabili'ty distribution 1',t¢;herej\/j,c is as defined in (10) The neighborhood (21) is
zero for negative argument. Such monotonic damage acqusstrated in Figure 2. It includes a spatial coordinate square

mulation model corresponds to the Palmgren-Miner rule usgflthe size2)M + 1 centered at the lattice point and a point
in mechanical damage analysis. Additional discussion agHifted back one step in time.

references can be found in [20], [22]. The MRF probability structure assumes that the spatial
We use an exponential model for the damage accumulatigfiation is independent of the temporal relation, so the con-
noise¢ in (15). ditional probabilities are products of spatial and temporal
/P >0 ones. Such separable stochastic models are commonly used
£~ { 0, Y (16)  in multidimensional signal processing.

] - We use the following Gibbs Field potential extending and
The prior probability can be expressed as a product of t'&%mbining (12) and (17):

independent probabilities

t=N t=N
1
N —
1 VIX)= Y Vieet— Y laju(t) =@t = Dls (22)
P(X) = 7, &P <— Z Ve(z(t) —x(t - 1))) ; (17) k=1 P ikie2
t=2 M
. 1 1
whereVe(z) = —log ps(x). In accordance with (16), Vike = 5rooacjk(t)z + 3 Z Tim @k (t) T 541, k4m (1) (23)
l,m=—M
Ve(z) = |z/pl+, (18) 1,m=0
where|z|, = z, for > 0, and|z|; = +oo, for z < 0. where the notatiorjz|; is the same as in (18). In Figure 2

Consider a scalar observatigiit) for the same pixel. The the neighborhood lattice nodes used in defining the potential
observation model (7) can be written g&) = z(¢t) + e(t). (22), (23) are shown as shaded circles.
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The prior model (11), (22), (23) can be expressed in thig Design of regularization operator

form. The convolution operatofz can be conveniently designed
1 1 X in a spatial frequency domain; this is similar with established
P(X) = 7 &P (‘2 Z(X(t),R* *X (1)) approached to filter design. The frequency domain analysis
t=1 and design is relative simple cmputationally and conceptually

1 at the cost of neglecting the boundary effects.
) ; 1X () — X(t - 1)”1> (24) To maintain the analysis rigor we embed the problem into a
- ) . ) setup with modified boundary conditions. Most of the literature
where we assume thaf (i) — X (¢ —1) > 0; if that inequality o, MRF uses toroidal (circulant) boundary condition for fre-
is violated, thenP(X) = 0. _ . quency analysis. Another possibility is to consider an infinite
_ The MAP formulation (4) can be obtained by multiply a4ice nside the image domain, away from the boundary, the
ing the independent prpbgbllltleB(Y(tﬂX(t)) (8) to yield 4, approaches are essentially equivalent.
P(X]Y) and by substituting?(X) from (24). The MAP 1, 'section considers the lattice to be infinite and uses a lin-

estimate can be expressed through a negative log-likelihogg i e_invariant spatially-invariant (LTSI) system model. The
index as in (5)~(6). lattice is regular and the interactions between the neighbouring

The filtering properties of a solution to (5)—(6) depend Oﬁach cell up to the respective coordinate shift. More detailed

the regularization operataR. While other parameters of theJUStification of using LTSI models can be found in [1], [11] for
problem could be traced Back 1o the problem physics distributed feedback systems and in [23] for multidimensional

considerR as a free filter design parameter. The operd{orvm? filter design. A related but different filter design problem

is considered in [21]. Boundary condition issues, which arise
should be set up to ensure an adequate performance of thée : : P :
. . . : ) whén the true system is not spatially infinite, can be integrated
filter. This section considers how this could be done.

into the framework described herein as a deviation from the
LTSI model, see [24], [39], [40].

L We will use two-dimensional two-sided z-transform formu-
We start by considering the steady state response of ﬁgﬁon for analysis in this section, see [47]. Let us denote by

f|IFer._Assu_m.e that¥ (¢) = X.., Y(t) =Y., and N > 1. .Su.b' . )H and \, the indeterminants corresponding to the two spatial
stituting this into (5)—(6) leads to the steady-state Opt'm'zat'?ndexes on the lattice. We will alternatively interpret and

A. Tuning requirements

problem Ao as complex variables in the 2-D two-sided z-transform or
iHy* — BxxX.||3 + E(Xe,R* «X,) — min. (25) @S unit index shift operators; this should be clear from the
2q 2 context.
To obtain an optimal estimat&. we assume that, = The FIR regularization operatoR in (24), (5) can be

B++X, +e,, Wheree, is the steady state noise. Substitutingxpressed through a 2-D transfer function

this into the unconstrained linear-quadratic problem (25) and . i

solving for X, yields (A1, A2) = Z Tij A1 @7)

—M<ij<M

X.=(B"B “'BTBX. + (BB BT, (2 - :

e=( _ +R) . +( +R) ¢ ’_( 6) Similarly the FIR blur operatoB in (7) can be expressed
where we introduced linear operatdBsandR. For an image through a transfer functiob(\;, \2). Using the transfer func-
U, these operators can be defined B8 = B * +U and tion notation, (26) can be expressed as

RU = R «U. If an imageU is considered as a flat vector, ~ .
0™ (A1, A2)b(A1, A2)

the operatorsB and R correspond to square matrices ofte(/\17)\2) = S (A1, X2)
compatible size. Multiplying an image vector by such matrix b(A1, A2)b™ (A1, A2) + 7(A1, A2)

yields the same result as a respective 2-D convoluti®@h;is n b~ (A1, A2) e, 2a), (28)
a transposed matrix. DA, A)b~ (A, o) + 7(A1, ha)

The inverse operator in (26) corresponds to inverting a very A .
large matrix. The QP solver described in Section IV uses #fiereb™ (A1, A2) = b(AT", A7 ).
iterative inversion method for a constrained version of the The filter frequency responses can be obtained by consid-
problem. (The unconstrained problem (25) is a special caseling the transfer functions in (28) on the unit circle, for
At each iteration, only forward computations are performett = e'* and Xy = e+ wherewv;,v € [0, 27| are real
and the operator® and R are applied as FIR convolutionfrequencies. The frequency responses of the operdtcaad
operators. B are

The first term in (26) includes a recovery gain for the steady v vy vy vy
state signalX (¢) = X, and the second term contains the noise (U1 V2) = F(ETL €M), bur,vg) = b(e, ). (29)
amplification gain. The design goal is to find an optimized The design requirements are different in band and out-of-
tradeoff between the recovery gaiBTB+R)"'BTB being band. In-band frequency set is defined(as, = {(v1,v2) :
close to unity (require? to be small) and the noise amplifi-b(vy,v2) > ho}, wherehq is a design parameter. In band the
cation gain(B”B + R) !B being small (requires? to be gain of the blur operator is sufficiently high and we can strive
large). This tradeoff is considered in more detail below. to invert it such that the signal is restored with a minimal
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distortion. Out-of-band set is a complement of the in-band For each spatial frequency, the frequency response
set. Out of band the blur operator gain is low and the nois¢v,, v2) is a linear function of the decision parameter vector
overwhelms the signal. We give up the filter performance Note that sincer(vq,v2) > 0, the denominators in (31),
and specify limited noise amplification only. The in-band30) are real positive. By mutiplying (31) and (30) through by
performance requires possibly small error of recovering thiee denominators and collecting all the terms we obtain the
truth signalz,. The first term gain in (26) should be close tdollowing constrained optimization problem

unity inside the in-band frequency s€t,,.

3 |b(v1, v2)]?
|b(’01, ’U2>|2 -+ 7"(1)1, ’UQ)
where s is a performance parameter. (We further ysas a
slack variable in the optimization).

' - . 33).
The above filter performance objective should be combméﬁ‘l)’ ( . -
with a requirement of noise amplification gain being limited The problem (35), (36) is convex. Similar to [24] one can

(does not exceed an allowed valel). This can be expressed!ntmduce a grid of the frequency points and consider the

inequality constraints (36) on the grid only. The problem then

$ — min, (35)
<s, (v1,v2) € Q, (30) subject to c(v1,vz) + D7 (v1,v2)z >0,  (36)

where the vector(vy,v2) and the matrixD” (v1, v2) collect
the linear inequalities expressing the problem (29), (31), (30),

as ) e
b becomes a large linear program that can be efficiently solved
(7’21’”2) < eo. (31) by an off-the-shelf LP solver. The result of the solution is the
[b(v1,v2)[? + 7r(v1, v2) optimal decision vector:, which defines the regularization

In this paper we assume that the blur operatrhas operatorR in accordance with (32), (34). The design of the
central symmetry. Thus, the corresponding frequency respomegularization operatof? needs to be carried out once, off-
b(v,v2) = b(e™1,e™1) is real for all frequencies. Whenline, and provides a tuning for the proposed optimization-
designing the FIR regularization operatBrwe will look for based filter. A specific example of the design is considered
a symmetric solution such thatv;, v2) is real and positive. in Section V.

For a symmetricR the real transfer function can be ex-

panded as IV. A SPECIALIZED LARGESCALE QP SOLVER
M. This section describes an interior-point method for solving
(A1, A2) = Z em P (A1, M), (32) the problem (5)—(6). We follow the notation in Subsection IlI-
m=0 A and with some overload of notation consider the images

where P/ (A1, \;) are elementary polynomials defining theX (t) andY'(¢) as flat vectors i "= obtained by stacking
symmetry. The expansion (32) explicitly sho#4. + 1 inde- all image elements.
pendent parameters, for the assumed symmetry type. We The observation model (7) can be expressed as

considerc,, to be decision parameters for the filter design. Y(t) = Ba(t) + e(t)
We assume an 8-fold symmetry,, ,, = 71—y, —p = T—pmn = ’
Fanen = Trm = T—n—m = T—nom = Tn.—m. Then whereB € RM1N2xN1N2 g the blurring operator. matrix cor-

PM (A h) = 1 requnding to the C(_)nV(_)Iution operatbr. Simila;fly],vw?vv]\cll
0 ’ - consider the regularization operator mafRtxe RV1V2x 12

PM(A,x2) =M+ A7+ X +A7,(j=1,...,M) corresponding to the convolution operater

P]J\>[4+j()\la/\2) _ )\Jl‘/\%' + Afj)\é + /\Jl')\Q—j + /\1—3')\2—]‘7 The problem (5)—(6) can be written as

.\ —m —l \M Nt
Pilesnla,2a) = MO 4P e 4 g L= [IV () - BX®) + X()"RX (1)
FATEAGE AT ATEAZ T AT AT 25
(lkzl,...,mkfl;mk:2,...,M), le
. . - Xty —X(t-1 in, (37

where the expansion sizedM.+1=1+2M+M(M —1)/2. +p tz:; X () ( v = min, (37)
The last equation gives a general case of the 8-fold Symme%@/bject toX (1) >0, X(t) > X(t—1), (t=2,...,]N,), (38)
and hask = 1,..., M(M —1)/2, the second equation gives R -7 o
a special case of, = [, the first equation gives a speciawhere the inequalityX (1) > 0 is introduced without a loss

case ofm;, = 0 (or, the same];, = 0). of generality (we can always offséf (¢) by min; Y (¢)). The
The frequency response (32) can be expressed in the fopipblem (37)—(38) is a convex QP with the total number of
_m variablesM = N N5 N;.
rlv,v2) = Po(vi,v)e, (33)  We introduce new variables
x = [scc1o... CMC]T, (34)

Z(1) = X(1), Z(t)=X({t) - X(t—1), t=2,...,N,.
where z € RM-+2 is the decision vector including all the ) } ] o
independent coefficients, i.e., our optimization variables affg terms of these new variables, (37) is equivalent to finding

the additional decision variable - the slack variablim (30). 2 (1);---: Z(N;) € RVV2 that solve
The regressor vector is G(Z) — min (39)

PT(v1,v0) = [0, PM(e™,e™?), ..., Py (e, e™?)] subject toZ(t) >0, t=1,..., Ny, (40)
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where the decision vector i¥ = (z(1),...,2(N:)) € as PCG, the overall algorithm is calledcanjugate gradient
RNz 5L RN1N2 and the objective is Newton methodor a truncated Newton methofb1], [12].
L N Truncated Newton methods have been applied within interior-
G(2)= 5> (IV() ~BIZQ) +---+ Z(1))|> POt methods; see., [59], [48]. .
P The search direction is computed as an approximation to

| N the solution. The Newton system for the central path problem
HZW) + -+ ZWOI"RIZ() + -+ Z()]) + = > Z(t).  of minimizing (42) has the form
P t=2

HAZnt = -9,
If Z*(t) = (Zz*(1), ..., Z*(Ny)) solves the problem (39)— ) ) .
(40), then whereH = V2¢,(Z) € RM*M is the Hessian of the barrier
objective andy = V¢, (Z) € ®M is the gradient. The Hessian
X = (X*(1), ..., X*(Ny)) € RV o RN H is symmetric and positive definite matrix.
. *(ey t « L _ The PCG algorithm [13§6.6] computes an approximate
:erf: ()5()_(8)_ X(0) + X1 Z7(k) solves the original prob solution of the Newton system. It uses a preconditioRer

a symmetric positive definite linear operator @4’ . We
will not go into the details of the PCG algorithm, and, instead,

A. The barrier method refer the reader to [31], [52], [45].
The logarithmic barrier for the nonnegativity constraints We use a simple preconditiond@ that approximates the
Z(t) > 01in (39) is Hessian ofrG(z) with its diagonal entries, while retaining
N, NiN, the Hessian of the logarithmic barrier:
©(Z) ==Y > logZit), (41) P = 7 diag(V2G(2)) + V28(Z),

t=1 =1
where I ¢ RM*M s an identity matrix,n is a parameter,
anddiag(.S) is a diagonal matrix obtained by setting the off-
dom ® = {Z = (Z(1),...,Z(N,)) € RN N2 ... x ®N1N2 . diagonal entries of the matri§ to zero. The preconditioner
Zit)>0,i=1,...,M, t=1,...,N,}. is a diagonal matrix, sinc&?®(7) is also a diagonal matrix,

The logarithmic barrier function (41) is smooth and convex in diag(Z(1))

its domain. V20(Z) = e RMXM
We_ augment a weighted objgctive function of (39) by the diag(Z(Ny))

logarithmic barrier (41), to obtain

with domain

Here diag(A) is the diagonal matrix whose diagonal entries
0-(Z2)=7G(Z)+ ®(2), (42) are the entries ofd.

. I . L The PCG algorithm needs a good initial search direction
wherer > 0 is a weighting parameter. This function is smooth . '
and an effective truncation rule.

strictly convex, and bounded below, and so has a unique, ... . N L .
o N M . ) Initial point. A good initial search direction requires on
minimizer Z*(r) € ®M. The set{Z*(7) | = > 0} defines a X . .
Ny : S average fewer iterations of the PCG algorithm, and therefore
curve inR™, parameterized by, which is called thecentral )
can accelerate the method. There are many choices for the

path In particular, the minimizer of (42) is no more thaf/7- .. L L
) : . initial search directione.g, zero or the search direction found
suboptimal, so the central path leads to an optimal solution

. . In’ the previous step of the method. The previous search
See [8,511] for more on the central path and its properties. . .
o : . direction appears to have a small advantage over the negative
In a classic primal barrier method, the barrier subproblem "
. A . . .~gradient and zero.
that finds the minimizer of (42) is solved for an increasin

sequence of values of. The Newton method for each sub- Truncation rule.The truncation rule for the PCG algorithm

R . . : ives the condition for terminating the algorithm. Our imple-
problem is initialized at the optimal solution of the previou . . . : :
: : . . mentation uses a simple truncation rule: the PCG algorithm
one. A typical method for increasing the parameteis to

multiply it by a factor on the order of0 (see.e.g, [8, §10.3]). stops when either the cumulative number of PCG steps exceeds

This is repeated untiM//7 is smaller than the required tol-the given limit Nycg, OF the gradient is less than the relative
o . . tgleranceepcg. We change the relative tolerance adaptively as
erance. Standard references on interior-point methods include

[44], [45], [62], [63]. epcg = min {0.1,&n/|| g2}, (43)
o ) wheren is the duality gap at the current iteration afids an
B. A truncated Newton interior-point method algorithm parameter. The choice of= 0.01 appears to work

We describe a method for solving the large-scale QP prabell for a wide range of problems. In other words, we solve
lem of the form (39)—(40). The method is the same as thiee Newton system with low accuracy at early iterations, and
barrier method except that the search direction is computsalve it more accurately as the duality gap decreases. Since the
approximately, using a preconditioned conjugate gradierdsnvergence of the PCG algorithm is usually very fast, there
(PCG) method. When the search direction in Newton’s meth@ino significant effect ofV,., on the overall performance, as
is computed approximately, using an iterative method sufdng as the limit is set to a large value.
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Each iteration of the PCG algorithm involves a handful o¥/. APPLICATION TO STRUCTURAL HEALTH MONITORING
inner products, the matrix-vector produltp with p ¢ RM

- b - _ The proposed signal processing approaches were demon-
and a solve step with the preconditiofiin computingP ~!r

_ o - 3 strated for Structural Health Monitoring (SHM) data collected
with » € R The solve ste@>~ " can be computed i®(M) i |aboratory experiments. The data collection conditions in

flops, sinceP is diagonal. _ _ the experiment were close to a real-life SHM operational
The most computationally expensive operation for a PC&vironment.

step is the matrix-vector produdp with p € RM. The

HessianD = V2V of the quadratic function .
A. SHM sensing system

1 X The experiments employed an SHM sensing system devel-
v=3 SOV (E) -BX@®)|° + X (1) " RX(1) oped by Acellent Technologies. This system uses a network
t=1 of distributed piezoelectric sensors/actuators embedded on a
thin dielectric carrier film called the SMART Lay®@), see
[3], [4]. The SMART Layer technology has both active and
D — block diag(BTB+R”R, ..., BTB+R'R) € RM*M passive sensing ca_lpabilities v_ia the embedded _piezoelect_ric
transducers, see Figure 3. This sensor network is used with
a portable diagnostic unit called the ScanGenie to query,
with diagonal blocksA,, ..., A,. Using the chain rule of monit_or and evaluate the conditi_on of a structure. In Active
differentiation, we can see that the Hessian of the barrié?nsmg Mode, the ScanGenie in turmn gctuateg ea}ch of the
objective V24, at Z has the form transdu_cers to gent_erate pre-selected diagnostic signals and
transmit them to neighboring sensors. The responses can be
H — V2(2) interpreted in terms of damage size and location or material
property changes. In Passive Sensing Mode the SMART Layer
sensors can continuously monitor the structure for impact
events. Both modes permit real-time structural analysis and
evaluation along with constant collection of structural data
and information while the structure/vehicle is in service.

at X = (X(1),...,z(Vy)) is the block diagonal matrix

Here we use blocldiag(A:, ..., A,) to denote a matrix

+ 7L”block diag(B”B+R'R, ..., BTB+R"R)L

whereL is the lower block-triangular matrix

§ ? 8 o 0 Specifically the system can:

L=| _ | e pMxM « Obtain real-time, in-service, data on the integrity of an
Dooron aircraft structure.
r 11 --- 1 « ldentify visible and invisible damage in metal and com-

_ _ posite structures.
The productHp can be computed as the following chain of , Access damage data from structural anomalies including:

operations: i) fatigue cracks in highly loaded metallic fittings, ii)
- delaminations and disbonds in composite components,
Hp =L v, u = Du, v = Lp. and iii) deterioration in bonded joints and iv) projectile
. impact damage.
The vectory can be computed iW(M) flops, andu = Dv « Reduce inspection and structural maintenance costs by
can be computed witlV; convolutions with the blurring and providing an easy tool for maintenance personnel to
regularization filters. Finally, the vectd” « can be computed assess damaged and take preventive action.

in O(M) flops. To sum up, the cost of computiridp is

O(M+ N¢(Ny+N,.)), whereN, is the total cost of calculating The SMART Layer can be as thin as 2 - 4 mil and as

. T M a result has little weight. Typical sensor sizes range from
the matrix vector productBZ andB' Z with Z € &, and 155 6 55+ iy giameter with thickness of 0.01-0.03". The

: . T
N, is the cost of performingtZ and R”Z. Those products sensor network layers can be either surface mounted on both

can be computed efficiently using fast algorithms for two- . : , :
. . . . metallic and composite structure using an adhesive such as
dimensional convolution with the FIR kernel$ and R. For P 9

. epoxy or embedded inside the composite structures during
B andR based on FIR convolution kernels, the products c : : . . .
be computed irO(M) flops. "’}ﬁ)anufacturmg by placing the sensor film between plies during

lay-up.
Since the memory requirement of the truncated Newtony P

interior-point method is modest, the method is able to solv -
very large problems, for which forming the Hessikh let y >

alone computing the search direction, would be prohibitively
expensive. The runtime of the truncated Newton interior-poin
method is determined by the productsfthe total number of | : : Sehsors | Sehsors

PCG steps required over all iterations, and the cost of a PC ~ Active sensing Passive sensina

step. In extensive testing, we found that the total number B. 3: SMART Layer technology has both active and passive sensing
PCG steps ranges between a few hundred and several thous&Rabilities.

to compute a solution with a relative tolerance0of1.

— —
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B. Test data set 20 DEG, AFTI.E.? 3 IMPACTS 40 DEG, AFTERS IMPACTS

Current state-of-the-art damage detection methodologiepz -
rely on the use of baseline data collected from the structure i
the undamaged state. The methodologies are based on co &
paring the current sensor responses to the previously record g
baseline sensor responses, and using the differences to gle 4
information about structural damage. However, it is known tha
environmental effects, such as temperature differences, wi 20 DEG, AFTER & IMPACTS 40 DEG, AFTER B IMPACTS
also cause changes in the sensor signals. Thermal calibrati
technigques can be employed to mitigate the effect, but havo2 ="
limited accuracy, especially if the temperature falls outside 0 | ...~
the calibrated range.

40

20 o0

40 40

20 20 20

20

20 DEG, AFTER 9 IMPACTS 40 DEG, AFTER 9 IMPACTS

40 40

20 20

Fig. 5: Generated diagnostic images af @0and 40C after 3, 6 and
9 impacts.

Fig. 4: Flat composite panel with 49 sensors.

In this study, impact tests were conducted on ax44’ " in-between temperatures
flat composite panel and collected sensor data at multiple
temperatures. There were 49 sensors on the panel in a 74X7) = a-Y2o(t) + (1 —a-)Yao(t), (k=1,...,m), (44)
7 grid with 7 inch spacing. The panel was impacted nine
times in the same location to initiate and grow the damageheret = nyt + k, (k = 1,...,n) is the time index of
see Figure 4. Data was collected after each impact and the generated data set and are random variables uniformly
resulting diagnostic images were generated at two differedlistributed on the intervald, 1]. We assumed, = 3: three
temperatures: 2@ and 40C. Thermal compensation wasscans were generated according to (44) for each damage state.
applied only over a small range of temperatures, frofiC5 As Figure 5 illustrates, the environment variation is about
- 35°C, so the generated images fall outside the compensagf$s of the signal. For earlier scans, where less damage has yet
range and therefore exhibit both damage and environmerdgbumulated, the signal/noise ratio is much worse then when
variation. The images are illustrated in Figure 5. estimating the damage from the diagnostic image data.

To generate the images, a technique was employed thafve assumed a Gaussian blur model with the half-widtf
uses the Total Signal Energy (TSE) to calculate damage indeX pixels. The PSF operatdt is illustrated on the left plot in
values for each actuator-sensor path. The TSE of the scaft@jure 6. The noncausal FIR operatBrused in the filtering
signal is compared to the TSE of the baseline signal andagyorithms had a maximak6 pixels tap delay along each
corresponding damage index is calculated. The values for eagatial coordinate. We did not identify the prior MRF model.

path were used to generate a map highlighting the location|gktead, we considered the model parameters as tuning factors
structural changes. The map was then smoothed using a typthe filter design.

dimensional finite impulse response filter to produce the final
images. These images provide a visual representation of the
location of structural changes and can be used as a qualitative
measure of damage size.
The overall data set obtained in the experiments containSo.
8 pairs of images with 171x 171 = 29,241 pixels each. °
To demonstrate the proposed optimization filtering approach °s
we used a Bootstraping-like method to increase number of ”APDELZY S XTAPDE:Y S 4" '
images in the sequence. From a single pair of the images ° e ’ e
{Y20(t), Yyo(t)} obtained for the same panel damage at two
different temperatures we creatg > 2 samples. We compute
linear interpolations of the two images to approximate data for

PSF OF BLUR OPERATOR REGULARIZATION PENALTY OPERATOR

5 2

Fig. 6: Spatial operators in the optimization problem statement.
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C. Optimization-based filter design HE R

The QP-optimization-based filtering problem (5)—(6) re- g i o s
quires to define the FIR regularization operatbcoming from s i
the MRF prior model of the data. We designed the filter by
consideringR as a tuning knob and computing it as describec °
in Section lIl.

By assuming a 128 128 spatial frequency grid, the LP
(35), (36) was solved to obtain a central symmetric operata
R with M = 2 tap delays. The in-band frequency <$et, o1
was chosen by considering a set of grid frequencies were tt
blur operator gain exceedsy = 0.55 of the maximal (zero-
frequency) gain. The maximal noise amplification gain in (31) ©
was chosen ag, = 1.25. The design yielded the in-band
signal recovery distortion factor = 0.2 in (30).

MEAN ESTIMATE
a1 !

SIGNAL GAIN IN THE ESTIMATOR (BEEN S
1

N -

] 4 i ; SO T U S S DU S W e

05 01 | i I i | L i | | i I
2 4 B g 10 12 14 16 18 20 22 24
TIME

MAGNITUDE

0 0.5 1 15
Fig. 8: Filtering results for the test data set.
NOISE GAIN IN THE ESTIMATOR

/
1
;‘fj The stopping criterion for the problem of minimizatign is
IV6-(B)]|r < 10-°, | o
= L It was applied to the test data set illustrated in Figure 5.
; Because of the environmental variation, the raw images in
0 0.5 1 15

v Figure 5 show significant variation all over the image. By
experiment design we know that in fact the damage is con-

Fig. 7: Frequency domain design of the regularization operator. Th@ntrated in a single spot.

horisontal axis shows a magnitude of spatial frequency.

FREQUENCY = (V% +v3)

The filtering results are shown in Figure 8. The displayed
) o o images areX (¢t) — X (1). We assume that initially there is no

The frequency domain design is illustrated in Figure 7. Thgymage and subtract the baseline. The upper plot in Figure 8
design is central symmetric and the 2-D transfer functiong,ows the last image of the filtered datg24) — X (1); the
depend on the magnitudg’vi + v5 of the spatial frequency migdie plot shows the last image of the test det24). The
vector. The upper plot in Figure 7 shows the estimator sigq%per plot in Figure 8 has a single peak which accurately
gain, the magnitude of the firs.t term .transfer funcFion in (28)ecovers the damage location. The lower plot in Figure 8
The lower plot shows the noise gain, the magnitude of thgspiays the time evolution of the filtered signal averaged over
second term transfer function in (28). an image patch of 1010 pixels around the damage peak

The QP problem (5)—(6) and, thus, the filtering are fullysolid line). The dots show the time evolution of an average
described by two spatial FIR operatot8; and . Figure 6 yalue outside of the patch. Both curves accurately reflect the
illustrates the assumed blur operator and the designed pengliijable ground truth knowledge.
operator 2. The two remaining scalar parameters in (5)- As one can see, the proposed nonlinear filtering scheme
(6) were chosen as follows. The initial _condltlon covariancgpstantially improves the quality of the damage estimate.
parameter was assumeg = 0. The time regularization Thoyugh no ground truth data was available for the test set, the
penalty was assumed @s= 2. panel location where it was impacted and where the damage is
likely concentrated is known. This is exactly what the filtered
image shows. Because of the environmental variation, the raw

_ ST ] ) images show phantom damage in multiple locations on the
The designed optimization-based filter was implementgghe

using the solver discussed in Section IV. We solved the
problem with relative accuracy’%. The solver allows acieving
much better relative accuracy, but this accuracy is more than
adequate for any practical use. The algorithm was imple-We have considered deblurring/denoising of a time series
mented in both Matlab and C, and run on a 3.2GHz Pentiuofi images pixel-vise monotonic in time. The problem is
IV under Linux. We usep = 1 in the adaptive rule in (43). motivated by structural health monitoring (SHM). The damage

D. Filtering and trending results

VI. CONCLUSIONS
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accumulating in a structure needs to be distinguished from the|
data variation caused by changing environmental conditions.

We have formulated the problem as optimization of a '0%3

likelihood index using a MRF model of the data. The proposed]
method for tuning the spatial regularization operator (MRF

prior) sets the MRF weights based on specifications such

15
[a

signal recovery performance and noise rejection.

Because of the monotonicity constraint, a large-scale stru&dl
tured QP problem needs to be solved numerically to obtain
the estimate. The described interior-point method for solvingr]
large-scale QP problems of this type is implemented in Mat-

lab

and can handle quadratic programs with several milliq{g]

variables and constraints in a few ten minutes or so on a PC.

We have demonstrated an application of the approach [tél
processing the diagnostic images of structural damage ?R)]
tained in experiments with a thermal chamber. The varying

specimen temperature shows as a noise affecting the dam-

age data. An application of the proposed signal processi%]
approach has allowed to recover the damage signal while

completely eliminating the variation.

[22]

23
VIlI. ACKNOWLEDGEMENTS (23]

Dr. Bao Liu and Dr. Tom Chang from Acellent conducted

data; the authors are greatful for their help and would like to
recognize their contribution. The authors thank Kwangmdé’!
Koh, ISL, Stanford EE Department, for helpful comments

and suggestions in the work on the large-scale sparse Q&

solver. The authors appreciate the contribution of Prof. Fu-Kuo
Chang, Stanford AA Department, in initiating the interaction
between the theoretical and experimental parts of this work27]

(1]

(2]

(3]

(4]

(5]

(6]

(7]
(8]
(9]

[20]

[11]

REFERENCES (28]

B. Bamieh, F. Paganini, and M. Dahleh, “Distributed control of spatially-
invariant systemsEEE Trans. on Automatic Contiol. 47, No. 7, July
2002, pp. 1091-1107.

R. Barlow, D. Bartholomew, J. Bremner, and H. Brurfkatistical
Inference under Order Restrictions; the Theory and Application of
Isotonic RegressigrNew York: Wiley, 1972. [30]
S. Beard, A. Kumar, X. Qing, H. Chan, C. Zhang, and T. Ooi, “Practical
issues in real-world implementation of Structural Health Monitoring
systems,Proc. SPIE on Smart Structures and Material Systeverch  [31]
2005.

S. Beard, P. Qing, M. Hamilton, and D. Zhang, “Multifunctional soft-
ware suite for Structural Health Monitoring using SMART technology,[32]
Proc. 2nd European Workshop on Structural Health Monitoridgly

2004, Germany.

J. Besag, “Spatial interaction and the statistical analysis of lattice
systems (with discussion)Journ. of Royal Statistical Society, Series[33]
B, Vol. 36, No. 2, 1974, pp. 192-326.

M. Best, and N. Chakravarti, “Active set algorithms for isotonic regreg34]
sion; a unifying framework,Mathematical Programmingvol. 47, 1990,

[29]

pp. 425-439. [35]
A. Restrepo and A. Bovik, “Locally monotonic regressiolEEE Trans.

on Signal Processingvol. 41, No. 9, 1993, pp. 2796-2810.

S. Boyd, and L. Vandenberg€onvex OptimizationCambridge Univer- [36]

sity Press, Cambridge, UK, 2004

A. Buades, B. Coll, and J. Morel, A review of image denoising
algorithms, with a new oneSIAM Journ. on Multiscale Modeling and [37]
Simulation Vol. 4, No. 2, 2005, pp. 490-530.

P. Combettes and V. Wajs, “Signal recovery by proximal forward-
backward splitting,” SIAM Journal on Multiscale Modeling and Sim- [38]
ulation, Vol. 4, No. 4, 2005, pp. 1168-1200.

R. D’Andrea and G. Dullerud, “Distributed control for spatially inter-[39]
connected systemslEEE Trans. on Automatic Control/ol. 48, No. 9,

2003, pp. 1478-1495.

11

R. Dembo and T. Steihaug, “Truncated-Newton algorithms for large-
scale unconstrained optimizatioMathematical Programmingvol. 26,
1983, pp. 190-212.

] J. Demmel,Applied Numerical Linear AlgebraSIAM, 1997.

D. Dudgeon and R. Mersereadultidimensional Digital Signal Process-
ing, Prentice-Hall, 1984.

M. Figueiredo and R. Nowak, “An EM algorithm for wavelet-based
image restoration,”IEEE Transactions on Image Processingl. 12,

No. 8, 2003, pp. 906-916.

H. Fu, M. Ng, M. Nikolova, and J. Barlow, “Efficient minimization
methods of mixed';-¢; and¢2-¢; norms for image restorationSIAM
Journ. on Scientific computiny/ol. 27, No. 6, 2006, pp. 1881-1902.

D. Goldfarb and W. Yin, “Second-order cone programming based
methods for total variation image restoratio8JAM Journ. on Scientific
Computing Vol. 27, No. 2, 2005, pp. 622—645.

R. Gonzalez and R. WoodBigital Image Processing2nd ed., Upper
Saddle River, N.J.: Prentice Hall, 2002.

G. Goodwin, M. Seron, and J. De Don€pnstrained Control and
Estimation Springer Verlag, 2004.

D. Gorinevsky, “Monotonic regression filters for trending gradual dete-
rioration faults,”American Control Conferen¢@p. 5394-5399, Boston,
MA, June 2004.

D. Gorinevsky, “Feedback loop design and analysis for iterative local-
ized image deblurring,44th IEEE CDC and ECC’05Seville, Spain,
December 2005.

D. Gorinevsky, “Optimal estimate of monotonic trend with sparse
jumps,” American Control Conf.New York, NY, July 2007.

D. Gorinevsky and S. Boyd, “Optimization-based design and imple-
mentation of multi-dimensional zero-phase IIR filteSEE Trans. on
Circuits and Systems ; Mol. 53, No. 2, 2006, pp. 372-383.

. 24] D. Gorinevsky, S. Boyd, and G. Stein, “Design of low-bandwidth
the impact tests on the panel and collected the raw sengo} y y g

spatially distributed feedbackEEE Trans. on Automatic Control
(accepted).

D. Gorinevsky and G. Gordon, “Spatio-temporal filter for structural
health monitoring,”American Control Conf.Minneapolis, MN, June
2006

D. Gorinevsky, G. Gordon, S. Beard, A. Kumar, and F.-K. Chang,
“Design of integrated SHM system for commercial aircraft applications,”
5th Internat. Workshop on Structural Health Monitorjrgtanford, CA,
September 2005.

D. Gorinevsky, S. Samar, J. Bain, and G. Aaseng, “Integrated diagnostics
of rocket flight control,” IEEE Aerospace Conferenc8ig Sky, MT,
March 2005.

M. Hanke and J. Nagy, “Restoration of atmospherically blurred images
by symmetric indefinite conjugate gradient techniqudsyerse Prob-
lems Vol. 12, 1996, pp. 157-173.

L. He, M. Burger, and S. Osher, “Iterative total variation regularization
with non-quadratic fidelity,Journ. of Mathematical Imaging and Vision
Vol. 26, No. 1-2, 2006, pp. 167-184.

D. Hochbaum, “An efficient algorithm for image segmentation, Markov
random fields and related problemslburn. of the ACMVol. 48, No.

4, 2001, pp. 686-701.

C. T. Kelley, Iterative Methods for Linear and NonlinearEquations
vol. 16, Frontiers in Applied Mathematics SIAM, Philadelphia, PA,
1995.

S.-J. Kim, K. Koh, M. Lustig, S. Boyd, and D. Gorinevsky, “A method
for large-scale/; -regularized least squares problems with applications
in signal processing and statistic$£EE Journ. of Selected Topics in
Signal Processing2007. (submitted)

J. Lim, Two-dimensional Signal and Image processifnglewood
Cliffs, N.J.: Prentice Hall, 1990.

S. Li, Markov Random Field Modelling in Computer Visid®pringer-
Verlag, 1995.

B. Hunt, “The application of constrained least squares estimation to
image restoration by digital computedEEE Trans. Computersyol.
C-22, No. 9, pp. 805-812, 1973.

S. Keerthi and D. DeCoste, “A modified finite Newton method for fast
solution of large scale linear SVMs,"Journ. of Machine Learning
ResearchVol. 6, 2005, pp. 341-361.

K. Koh, S.-J. Kim, and S. Boyd, “An interior-point method for large-
scalel; -regularized logistic regression,” Submittedmurn. of Machine
Learning Research2006.

V. Kolmogorov, Primal-dual Algorithm for Convex Markov Random
Fields 2005. Microsoft Technical Report MSR-TR-2005-117.

C. Langbort and R. D’Andrea, “Distributed control of spatially reversible
interconnected systems with boundary conditionSIAM Journ. of
Control and OptimizationVol. 44, No. 1, 2005, pp. 1-28.



IEEE TRANSACTIONS ON SIGNAL PROCESSING, SUBMITTED MAY 2007

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]
[51]
[52]

(53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

S. Mijanovic, G. Stewart, G. Dumont, and M. Davies, “Design of
an industrial distributed controller near spatial domain boundaries,”
American Control Conferencd/ol. 4, pages 3574-3580, Boston, MA,
June 30-July 3, 2004.

R. Molina, J. Mateos, and A. Katsaggelos, “Blind deconvolution using
a variational approach to parameter, image, and blur estimatiB&EE
Tran. on Image Processinyol. 15, No. 12, 2006, pp. 3715-3727.
MOSEK ApS, The MOSEK Optimization Tools Version 2.5. User's
Manual and Referenc@002. Availablewww.mosek.com .

J. Nagy, R. Plemmons, and T. Torgersen, “lterative image restoration
using approximate inverse preconditioning,JEEE Tran. on Image
Processing Vol. 5, No. 7, 1996, pp. 1151-1162.

Y. Nesterov and A. Nemirovskylnterior-Point Polynomial Methods in
Convex ProgrammingVolume 13 of Studies in Applied Mathematics
SIAM, Philadelphia, PA, 1994.

J. Nocedal and S. WrightNumerical Optimization Springer Series in
Operations Research. Springer, 1999.

S. Osher, M. Burger, D. Goldfarb, J. Xu, and W. Yin, “An iterative
regularization for method total variation based image restorat®ifM
Journ. on Multiscale Modeling and Simulatiovol. 4, No. 2, 2005, pp.
460-489.

A. Oppenheim, R. Schafer, and J. Buékscrete-Time Signal Process-
ing, Prentice Hall, 1999.

L. Portugal, M. Resende, G. Veiga, and ddige, “A truncated primal-
infeasible dual-feasible network interior point methoNgtworks Vol.

35, 2000, pp. 91-108.

A. Restrepo and A. Bovik, “On the statistical optimality of locally
monotonic regression[EEE Trans. on Signal Processingol. 42, No.

6, 1994, pp. 1548-1550.

T. Robertson, F. Wright, and R. Dykstr®rder Restricted Statistical
Inference New York: Wiley, 1988.

A. Ruszczynski, Nonlinear Optimization Princeton University Press,
2006.

Y. Saad, lterative Methods for Sparse Linear Syster8$AM, Philadel-
phia, 2nd edition, 2003.

S. Samar, D. Gorinevsky, and S. Boyd, “Moving horizon filter for
monotonic trends,/[EEE Conf. on Decision and ContrdParadise Island,
Bahamas, December 2004.

S. Samar, D. Gorinevsky, and S. Boyd, “Embedded estimation of fault
parameters in an unmanned aerial vehicl&sEE Conf. on Control
Applications Munich, Germany, October 2006.

N. Sidiropoulos and R. Bro, “Mathematical programming algorithms
for regression-based nonlinear filtering RYY,” IEEE Tran. on Signal
Processing \Vol. 47, No. 3, 1999, pp. 771-782.

Structural Health Monitoring-The Demands and ChallengésK.
Chang (Editor), CRC Press, Proc. 3rd Internat. Workshop on Structural
Health Monitoring, Stanford, CA, September 2001.

Structural Health Monitoring-From Diagnostics, Prognostics to Struc-
tural Health Managementf.-K. Chang (Editor), Destech Publishing,
Proc. 4th Internat.Workshop on Structural Health Monitoring, Stanford,
CA, September 2003.

Structural Health Monitoring-Advancements and Challenges for Imple-
mentation F.-K. Chang (Editor), Destech Publishing, Proc. 5th Internat.
Workshop on Structural Health Monitoring, Stanford, CA, September
2005.

L. Vandenberghe and S. Boyd, “A primal-dual potential reduction
method for problems involving matrix inequalities,"Mathematical
Programming \Vol., 69, 1995, pp. 205-236.

R. Vanderbei,LOQO User's Manual — Version 3.10997. Available:
/http://www.orfe.princeton.edu/logo.

C. Vogel and M. Oman, “Fast, robust total variation-based reconstruction
of noisy, blurred images,”IEEE Trans. on Image Processingol. 7,

No. 6, 1998, pp. 813-824.

S. Wright, Primal-dual Interior-point Methods SIAM, Philadelphia,
PA, USA, 1997.

Y. Ye, Interior Point Algorithms: Theory and Analysisohn Wiley &
Sons, 1997.

12



