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Abstract

This paper studies the effect of discretizing the parametrization of a dictionary used for
Matching Pursuit decompositions of signals. Our approach relies on viewing the continuously
parametrized dictionary as an embedded manifold in the signal space on which the tools of
differential (Riemannian) geometry can be applied. The main contribution of this paper is
twofold. First, we prove that if a discrete dictionary reaches a minimal density criterion, then
the corresponding discrete MP (dMP) is equivalent in terms of convergence to a weakened
hypothetical continuous MP. Interestingly, the corresponding weakness factor depends on a
density measure of the discrete dictionary. Second, we show that the insertion of a simple
geometric gradient ascent optimization on the atom dMP selection maintains the previous
comparison but with a weakness factor at least two times closer to unity than without opti-
mization. Finally, we present numerical experiments confirming our theoretical predictions for
decomposition of signals and images on regular discretizations of dictionary parametrizations.

Keywords: Matching Pursuit, Riemannian geometry, Optimization, Convergence, Dictionary,
Parametrization.

1 Introduction

There has been a large effort in the last decade to develop analysis techniques that decompose
non-stationary signals into elementary components, called atoms, that characterize their salient
features [1–5]. In particular, the matching pursuit (MP) algorithm has been extensively studied [2,
6–11] to expand a signal over a redundant dictionary of elementary atoms, based on a greedy
process that selects the elementary function that best matches the residual signal at each iteration.
Hence, MP progressively isolates the structures of the signal that are coherent with respect to the
chosen dictionary, and provides an adaptive signal representation in which the more significant
coefficients are first extracted. The progressive nature of MP is a key issue for adaptive and
scalable communication applications [12,13].

A majority of works that have considered MP for practical signal approximation and com-
pression define the dictionary based on the discretization of a parametrized prototype function,
typically a scaled/modulated Gaussian function or its second derivative [6,14,15]. An orthogonal
1-D or 2-D wavelet basis is also a trivial example of such a discretization even if in that case
MP is not required to find signal coefficients; a simple wavelet decomposition is computation-
ally more efficient. Works that do not directly rely on a prototype function either approximate
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such a parametrized dictionary based on computationally efficient cascades of filters [16–18], or
attempt to adapt a set of parametrized dictionary elements to a set of training signal samples
based on vector quantization techniques [19,20]. Thus, most earlier works define their dictionary
by discretizing, directly or indirectly, the parameters of a prototype function.

The key question is then: how should the continuous parameter space be discretized ? A fine
discretization results in a large dictionary which approximates signals efficiently with few atoms,
but costs both in terms of computational complexity and atom index entropy coding. Previous
works have studied this trade-off empirically [6,15]. In contrast, our paper focuses on this question
in a formal way. It provides a first attempt to quantify analytically how the MP convergence is
affected by the discretization of the continuous space of dictionary function parameters.

Our compass to reach this objective is the natural geometry of the continuous dictionary. This
dictionary can be seen as a parametric (Riemannian) manifold on which the tools of differential
geometry can be applied. This geometrical approach, of increasing interest in the signal processing
literature, is inspired by the works [21, 22] on Image Appearance Manifolds, and is also closely
linked to manifolds of parametric probability density function associated to the Fisher information
metric [23]. Some preliminary hints were also provided in a Riemannian study of generalized
correlation of signals with probing functions [24].

The outcome of our study is twofold. On the one hand, we analyze how the rate of convergence
of the continuous MP (cMP) is affected by the discretization of the prototype function parameters.
We demonstrate that the MP using that discretized dictionary (dMP) converges like a weak
continuous MP, i.e. a MP algorithm where the coefficient of the selected atom at each iteration
overtakes only a percentage (the weakness factor) of the largest atom magnitude. We describe
then how this weakness factor decreases as the so-called density radius1 of the discretization
increases. This observation is demonstrated experimentally on images and randomly generated
1-D signals.

On the other hand, to improve the rate of convergence of discrete MP without resorting to a
finer but computationally heavier discretization, we propose to exploit a geometric gradient ascent
method. This allows to converge to a set of locally optimal continuous parameters, starting from
the best set of parameters identified by a coarse but computationally light discrete MP. Each
atom of the MP expansion is then defined in two steps. The first step selects the discrete set
of parameters that maximizes the inner product between the corresponding dictionary function
and the residual signal. The second step implements a (manifold2) gradient ascent method to
compute the prototype function parameters that maximize the inner product function over the
continuous parameter space. As a main analytical result, we demonstrate that this geometrically
optimized discrete MP (gMP) is again equivalent to a continuous MP, but with a weakness factor
that is two times closer to unity than for the non-optimized dMP. Our experiments confirm that
the proposed gradient ascent procedure significantly increases the rate of convergence of MP,
compared to the non-optimized discrete MP. At an equivalent convergence rate, the optimization
allows reduction of the discretization density by an order of magnitude, resulting in significant
computational gains.

The paper is organized as follows. In Section 2, we introduce the notions of parametric

1This density radius represents the maximal distance between any atom of the continuous dictionary and its
closest atom in the discretization.

2In the sense that this gradient ascent evolves on the manifold induced by the intrinsic dictionary geometry.

2



dictionary in the context of signal decomposition in an abstract Hilbert space. This dictionary is
then envisioned as a Hilbert manifold, and we describe how its geometrical structure influences
its parametrization using the tools of differential geometry. Section 3 surveys the definition of
(weak) continuous MP providing a theoretical optimal rate of convergence for further comparisons
with other greedy decompositions. A “discretization autopsy” of this algorithm is performed in
Section 4 and a resulting theorem explaining the dependences of the dMP convergence relatively to
this sampling is proved. A simple but illustrative example of a 1-D dictionary, the wavelet (affine)
dictionary, is then given. The optimization scheme announced above is developed in Section 5.
After a review of gradient ascent optimization evolving on manifolds, the geometrically optimized
MP is introduced and its theoretical rate of convergence analyzed in a second theorem. Finally, in
Section 6, experiments are performed for 1-D and 2-D signal decompositions using dMP and gMP
on various regular discretizations of dictionary parametrizations. We provide links to previous
related works in Section 7 and conclude with possible extensions in Section 8.

2 Dictionary, Parametrization and Differential Geometry

Our object of interest throughout this paper is a general real “signal”, i.e. a real function f
taking value on a measure space X. More precisely, we assume f in the set of finite energy
signals, i.e. f ∈ L2(X,dµ) = {u : X → R : ‖u‖2 =

∫

X |u(x)|2 dµ(x) < ∞}, for a certain
integral measure dµ(x). Of course, the natural comparison of two functions u and v in L2(X,dµ)
is realized through the scalar product 〈u, v〉L2(X) = 〈u, v〉 ,

∫

X u(x) v(x)dµ(x) making L2(X,dµ)
a Hilbert3 space where ‖u‖2 = 〈u, u〉.

This very general framework can be specialized to 1-D signal or image decomposition where
X is given respectively by R or R

2, but also to more special spaces like the two dimensional
sphere S2 [25] or the hyperboloid [26]. In the sequel, we will write simply L2(X) = L2(X,dµ).

In the following sections, we will decompose f over a highly redundant parametric dictionary of
real atoms. These are obtained from smooth transformations of a real mother function g ∈ L2(X)
of unit norm. Formally, each atom is a function gλ(x) = [U(λ)g](x) ∈ L2(X), for a certain
isometric operator U parametrized by elements λ ∈ Λ and such that ‖gλ‖ = ‖g‖ = 1. The
parametrization set Λ is a continuous space where each λ ∈ Λ corresponds to P continuous
components λ = {λi}0≤i≤P−1 of different nature. For instance, in the case of 1-D signal or
image analysis, g may be transformed by translation, modulation, rotation, or (anisotropic)
dilation operations, each associated to one component λi of λ. Our dictionary is then the set
dict(g, U,Θ) ,

{

gλ(x) = [U(λ)g](x) : λ ∈ Θ
}

, for a certain subset Θ ⊆ Λ. In the rest of the
paper, we write dict(Θ) = dict(g, U,Θ), assuming g and U implicitly given by the context. For
the case Θ = Λ, we write D = dict(Λ).

We assume that g is twice differentiable over X and that the functions gλ(x) are twice differ-
entiable on each of the P components of λ. In the following, we write ∂i for the partial derivative
with respect to λi, i.e. ∂

∂λi , of any element (e.g. gλ(x), 〈gλ, u〉, . . . ) depending on λ, and
∂ij = ∂i∂j . From the smoothness of U and g, we have ∂ij = ∂ji on quantities built from these
two ingredients.

Let us now analyze the geometrical structure of Λ. Rather than an artificial Euclidean distance

3Assuming it complete, i.e. every Cauchy sequence converges in this space relatively to the norm ‖ · ‖2 = 〈·, ·〉.
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dE (λa, λb)2 ,
∑

i(λ
i
a − λib)

2 between λa, λb ∈ Λ, we use a distance introduced by the dictionary
D itself seen as a P -dimensional parametric submanifold of L2(X) (or a Hilbert manifold 4 [27]).
The dictionary distance dD is thus the distance in the embedding space L2(X), i.e. dD(λa, λb) ,

‖gλa
− gλb

‖.
From this embedding, we can define an intrinsic distance in D, namely the geodesic distance.

This later has been used in a similar context in the work of Grimes and Donoho [22] and we follow
here their approach. For our two points λa, λb, assume that we have a smooth curve γ : [0, 1] → Λ
with γ(t) =

(

γ0(t), · · · , γP−1(t)
)

, such that γ(0) = λa and γ(1) = λb. The length L(γ) of this

curve in D is thus given by L(γ) ,
∫ 1
0 ‖ d

dt gγ(t)‖dt, assuming that gγ(t) is differentiable5 with
respect to t.

The geodesic distance between λa and λb in Λ is the length of shortest path between these
two points, i.e.

dG(λa, λb) , inf
γ(λa→λb)

∫ 1

0
‖ d
dt gγ(t)‖dt, (1)

where γ(λa → λb) is any differentiable curve γ(t) linking λa to λb for t equals to 0 and 1
respectively.

We denote by γ
λaλb

the optimal geodesic curve joining λa and λb on the manifold D, i.e. such
that L(γ

λaλb
) = dG(λa, λb), and we assume henceforth that it is always possible to define this

curve between two points of Λ. Note that by construction, dG(λa, λb) = dG(λa, λ′) + dG(λ′, λb),
for all λ′ on the curve γ

λaλb
(t).

In the language of differential geometry, the parameter space Λ is a Riemannian manifold
M = (Λ,Gij) with metric Gij(λ) = 〈∂igλ, ∂jgλ〉. Indeed, for any differentiable curve γ : t ∈
[−δ, δ] → γ(t) ∈ Λ with δ > 0 and γ(0) = λ, we have

‖ d
dt gγ(t)

∣

∣

t=0
‖2 = γ̇i(0) γ̇j(0)Gij(λ), (2)

with u̇(t) = d
dtu(t), and where Einstein’s summation convention is used for simplicity6.

The vector ξi = γ̇i(0) is by definition a vector in the tangent space TλΛ of Λ in λ. The
meaning of relation (2) is that the metric Gij(λ) allows the definitions of a scalar product and
a norm in each TλΛ. The norm of a vector ξ ∈ TλΛ is therefore noted |ξ|2 = |ξ|2λ , ξiξjGij(λ),
with the correspondence ‖ d

dt gγ(t)|t=0‖ = |γ̇|. For the consistency of further Riemannian geometry
developments, we assume that our dictionary D is non-degenerate, i.e. that it induces a positive
definite metric Gij . Appendix A provides additional details.

We conclude this section with the arc length (or curvilinear) parametrization “s” [28] of a
curve γ(s). It is such that |γ′|2 , γ′i(s) γ′j(s)Gij(γ(s)) = 1, where u′(s) = d

dsu(s). From its
definition, the curvilinear parameter s is the one which measures at each point γ(s) the length
of the segment of curve already travelled on γ from γ(0). Therefore, in this parametrization,
λa = γ

λaλb
(0) and λb = γ

λaλb
(dG(λa, λb)).

4This is a special case of Image Appearance Manifold (IAM) defined for instance in [21, 22]. It is also closely
linked to manifolds of parametric probability density function associated to the Fisher information metric [23].

5Another definition of L exists for non differentiable curve. See for instance [22].
6Namely, a summation in an expression is defined implicitly each time the same index is repeated once as a

subscript and once as a superscript, the range of summation being always [0, P − 1], so that for instance the
expression aibi reads

PP−1

i=0
aibi.
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3 Matching Pursuit in Continuous Dictionary

Let us assume that we want to decompose a function f ∈ L2(X) into simpler elements (atoms)
coming from a dictionary dict(Θ), given a possibly uncountable and infinite subset Θ ⊆ Λ. Our
general aim is thus to find a set of coefficients {cm} such that f(x) is equal or well approximated
by fapp(x) =

∑

m cm gλm
(x) with a finite set of atoms {gλm

} ⊂ dict(Θ).
Formally, for a given weakness factor α ∈ (0, 1], a General Weak(α) Matching Pursuit de-

composition of f [2, 29], written MP(Θ, α), in the dictionary dict(Θ) is performed through the
following greedy7 algorithm :

R0f = f, A0f = 0, (initialization),

Rm+1f = Rmf − 〈gλm+1
, Rmf〉 gλm+1

, (3a)

Am+1f = Amf + 〈gλm+1
, Rmf〉 gλm+1

, (3b)

with : 〈gλm+1
, Rmf〉2 ≥ α2 supλ∈Θ 〈gλ, Rmf〉2. (3c)

The quantity Rm+1f is the residual of f at iteration m+1. Since it is orthogonal to atom gλm+1
,

‖Rm+1f‖2 = ‖Rmf‖2 − 〈gλm+1
, Rmf〉2 ≤ ‖Rmf‖2, so that the energy ‖Rmf‖2 is non-increasing.

The function Amf is the m-term approximation of f with Amf =
∑m−1

k=0 〈gλk+1
, Rkf〉 gλk+1

.
Notice that the selection rule (3c) concerns the square of the real scalar product 〈gλ, Rmf〉.

Matching Pursuit atom selection is typically defined over the absolute value |〈gλ, Rmf〉|. How-
ever, we prefer this equivalent quadratic formulation first to avoid the abrupt behavior of the
absolute value when the scalar product crosses zero, and second for consistency with the quadratic
optimization framework to be explained in Section 5. Finally, to allow the non-weak case where
α = 1, we assume that a maximizer gu ∈ dict(Θ) of 〈g, u〉2 always exists for any u ∈ L2(X).

If Θ is uncountable, our general Matching Pursuit algorithm is named continuous Matching
pursuit. In particular, for Θ = Λ, we write cMP(α) = MP(Λ, α). The rate of convergence (or
convergence) of the cMP(α), characterized by the rate of decay of ‖Rmf‖ with m, can be assessed
in certain particular cases. For instance, if there exists a Hilbert space S ⊆ L2(X) containing
D = dict(Λ) such that

β2 = inf
u∈S, ‖u‖=1

sup
λ∈Λ

〈gλ, u〉2 > 0, (4)

then the cMP(α) converges inside S. In fact, the convergence is exponential [30] since 〈gλm
, Rm−1f〉2 ≥

α2β2 ‖Rm−1f‖2 and ‖Rmf‖2 ≤ ‖Rm−1f‖2 − α2β2‖Rm−1f‖2 ≤ (1 − α2β2)m‖f‖2. We name
β = β(S,D) the greedy factor since it charaterizes the MP convergence (greediness).

The existence of the greedy factor β is obvious for instance for finite dimensional space [30],
i.e. f ∈ C

N , with finite dictionary (finite number of atoms).
For a finite dictionary in an infinite dimensional space, as L2(X), the existence of β is not

guaranteed over the whole space. However, there exists on the space of functions given by
linear combination of dictionary elements, the number of terms being restricted by the dictionary
(cumulative) coherence [29].

In the case of an infinite dictionary in an infinite dimension space where the greedy factor
vanishes, cMP(α) convergence is characterized differently on the subspace of linear combination

7Greedy in the sense that it does not solve a global ℓ0 or ℓ1 minimization [1] to find the coefficients cm of fapp
above, but works iteratively by solving at each iteration step a local and smaller minimization problem.
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of countable subsets of dictionary elements. This question is addressed separately in a companion
Technical Report [31] to this article. We now consider only the case where a non-zero greedy factor
exists to characterize the rate of convergence of MP using continuous and discrete dictionaries.

4 Discretization effects of Continuous Dictionary

The greedy algorithm cMP(α) using the dictionary D is obviously numerically unachievable
because of the intrinsic continuity of its main ingredient, namely the parameter space Λ. Any
computer implementation needs at least to discretize the parametrization of the dictionary, more
or less densely, leading to a countable set Λd ⊂ Λ. This new parameter space leads naturally to
the definition of a countable subdictionary Dd = dict(Λd). Henceforth, elements of Λd are labelled
with roman letters, e.g. k, to distinguish them from the continuous greek-labelized elements of
Λ, e.g λ.

For a weakness factor α ∈ (0, 1], the discrete Weak(αd) Matching Pursuit algorithm, or
dMP(α), of a function f ∈ L2(X) over Dd is naturally defined as dMP(α) = MP(Λd, α). The
replacement of Λ by Λd in the MP algorithm (3) leads obviously to the following question that
we address in the next section.

Question 1. How does the MP rate of convergence evolve when the parametrization of a dictio-
nary is discretized and what are the quantities that control (or bound) this evolution ?

4.1 Discretization Autopsy

By working with Dd instead of D, the atoms selected at each iteration of dMP(α) are of course
less optimal than those available in the continuous framework. Answering Question 1 requires
a quantitative measure of the induced loss in the MP coefficients. More concretely, defining
the score function Su(λ) = 〈gλ, u〉2 for some u ∈ L2(X), we must analyze the difference be-
tween a maximum of Su computed over Λ and that obtained from Λd. This function u will be
next identified with the residue of dMP(α) at any iteration to characterize the global change in
convergence.

We propose to found our analysis on the geometric tools described in Section 2.

Definition 1. The value Su(λa) is critical in the direction of λb if, given the geodesic γ = γ
λaλb

in the manifold M = (Λ,Gij),
d
dsSu(γ(s))|s=0 = 0, where γ(0) = λa.

Notice that if Su(λa) is critical in the direction of λb, γ
′i(0) ∂iSu(λa) = 0. An umbilical

point for which ∂iSu(λa) = 0 for all i, is obviously critical in any direction. An umbilical point
corresponds geometrically either to maxima, minima or saddlepoints of Su relatively to Λ.

Proposition 1. Given u ∈ L2(X), if Su(λa) is critical in the direction of λb for λa, λb ∈ Λ, then
for some r ∈ (0, dG(λa, λb)),

|Su(λa)− Su(λb)| ≤ ‖u‖2 dG(λa, λb)2
(

1 + ‖d2gγ
ds2

∣

∣

s=r
‖
)

, (5)

where γ(s) = γ
λaλb

(s) is the geodesic in M linking λa to λb.
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Proof. Let us define the twice differentiable function ψ(s) , Su(γ(s)) on s ∈ [0, η], with η ,

dG(λa, λb). A second order Taylor development of ψ gives, for a certain r ∈ (0, s), ψ(s) =
ψ(0) + s ψ′(0) + 1

2s
2 ψ′′(r). Since ψ′(0) = γ′i(0) ∂iSu(λa) = 0 by hypothesis, we have in s = η,

|ψ(0) − ψ(η)| = |Su(λa)− Su(λb)| ≤ 1
2 η

2 |ψ′′(r)|. However, on any s, |ψ′′(s)| = 2 |
〈

d
dsgγ(s), u

〉2
+

〈gγ(s), u〉
〈

d2

ds2
gγ(s), u

〉

| ≤ 2 (‖ d
dsgγ(s)‖2+‖ d2

ds2
gγ(s)‖) ‖u‖2, using the Cauchy-Schwarz (CS) inequal-

ity in L2(X) in the last equation. The result follows from the fact that ‖ d
dsgγ(s)‖ = 1.

The previous Lemma is particularly important since it bounds the loss in coefficient value
when we decide to choose Su(λb) instead of the optimal Su(λa) in function of the geodesic distance
dG(λa, λb) between the two parameters. To obtain a more satisfactory control of this difference,
we need however a new property of the dictionary.

We start by defining the principal curvature in the point λ ∈ Λ as

Kλ , sup
ξ : |ξ|=1

‖ d2

ds2
gγξ(s)

∣

∣

s=0
‖, (6)

where γξ is the unique geodesic in M starting from λ = γξ(0) and with γ′ξ(0) = ξ, for a direction
ξ of unit norm in TλΛ.

Definition 2. The condition number of a dictionary D is the number K−1 obtained from

K , sup
λ∈Λ

Kλ. (7)

If K does not exist (not bounded Kλ), by extension, D is said to be of zero condition number.

The notion of condition number has been introduced by Niyogi et al. [32] to bound the local
curvature of an embedded manifold8 in its ambient space, and to characterize its self-avoidance.
Essentially, it is the inverse of the maximum radius of a sphere that, when placed tangent to the
manifold at any point, intersects the manifold only at that point [33, 34]. Our quantity K−1 is
then by construction a similar notion for the dictionary D seen as a manifold in L2(X). However,
it does not actually prevent manifold self-crossing on large distance due to the locality of our
differential analysis9.

Proposition 2. For a dictionary D = dict(Λ),

1 ≤ K ≤ sup
λ∈Λ

[

〈

∂ij gλ, ∂kl gλ
〉

Gik Gjl
]

1
2
, (8)

where Gij = Gij(λ) is the inverse10 of Gij .

8In their work, the condition number, named there τ−1, of a manifold M′ measures the maximal “thickness”
τ of the normal bundle, the union of all the orthogonal complement of every tangent plane at every point of the
manifold.

9A careful study of local self-avoidance of well-conditioned dictionary would have to be considered but this is
beyond the scope of this paper.

10Using Einstein convention, this means GikGkj = GjkG
ki = δij , for the Kronecker’s symbol δij = δij = δij = 1 if

i = j and 0 if i 6= j.
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The proof is given in Appendix B since it uses some elements of differential geometry not
essential in the core of this paper. The interested reader will find also there a slightly lower bound
than the bound presented in (8), exploiting covariant derivatives, Laplace-Beltrami operator and
scalar curvature of M [28]. We can state now the following corollary of Proposition 1.

Corollary 1. In the conditions of Proposition 1, if D has a non-zero condition number K−1,
then

|Su(λa)− Su(λb)| ≤ ‖u‖2 dG(λa, λb)2
(

1 +K
)

. (9)

Therefore, in the dMP(α) decomposition of f based on Dd, even if at each iteration the exact
position of the continuous optimal atom of D is not known, we are now able to estimate the
convergence rate of this MP provided we introduce a new quantity characterizing the set Λd.

Definition 3. The density radius ρd of a countable parameter space Λd ⊂ Λ is the value

ρd = sup
λ∈Λ

inf
k∈Λd

dG(λ, k). (10)

We say that Λd covers Λ with a radius ρd.

This radius characterizes the density of Λd inside Λ. Given any λ in Λ, one is guaranteed
that there exists an element k of Λd close to λ, i.e. within a geodesic distance ρd.

Theorem 1. Given a Hilbert space S ⊆ L2(X) with a non zero greedy factor β, and a dictionary
D = dict(Λ) ⊂ S of non-zero condition number K−1, if Λd covers Λ with radius ρd, and if
ρd < β/

√
1 +K, then, for functions belonging to S, a dMP(α) algorithm using Dd = dict(Λd)

is bounded by the exponential convergence rate of a cMP(α′) using D with a weakness parameter

given by α′ = α
(

1− β−2 ρ2d(1 +K)
)1/2

< α.

Proof. Notice first that since f ∈ S and Dd ⊂ D ⊂ S, Rmf ∈ S for all iteration m of dMP.
Let us take the (m+ 1)th step of dMP(α) and write u = Rmf . We have of course ‖Rm+1f‖2 =
‖u‖2 − Su(km+1), where km+1 is the atom obtained from the selection rule (3c), i.e. Su(km+1) ≥
α2 supk∈Λd

Su(k).

Denote by gλ̃ the atom of D that best represents Rmf , i.e. Su(λ̃) = supλ∈Λ Su(λ). If k̃ is

the closest element of λ̃ in Λd, we have dG(λ̃, k̃) ≤ ρd from the covering property of Λd, and the
Proposition 1 tells us that, with u = Rmf , |Su(k̃)− Su(λ̃)| ≤ ρ2d (1 + K) ‖u‖2, since ∂iSu(λ̃) = 0
for all i.

Therefore, Su(k̃) ≥ Su(λ̃)− ρ2d (1 +K) ‖u‖2 ≥ β2 ‖u‖2 − ρ2d (1 +K) ‖u‖2, and Su(k̃) ≥ β2
(

1−
β−2 ρ2d(1 +K)

)

‖Rmf‖2, this last quantity being positive from the density requirement, i.e. ρd <
β/

√
1 +K.
In consequence, Su(km+1) ≥ α2 supk∈Λd

Su(k) ≥ α2 Su(k̃), implying ‖Rm+1f‖2 = ‖u‖2 −
Su(km+1) ≤ ‖u‖2 − α2 Su(k̃) ≤ ‖u‖2 (1 − α′2β2), for α′ , α

(

1 − β−2 ρ2d(1 + K)
)1/2

. So,

‖Rm+1f‖ ≤ (1 − α′2β2)(m+1)/2‖f‖, which is the exponential convergence rate of the Weak(α)
Matching Pursuit in D when β exists [29,30].

The previous proposition has an interesting interpretation : a weak Matching Pursuit de-
composition in a discrete dictionary corresponds, in terms of rate of convergence, to a weaker
Matching Pursuit in the continuous dictionary from which the discrete one is extracted.

8



About the hypotheses of the proposition, notice first that the existence of a greedy factor
inside S concerns the continuous dictionary D and not the discrete one Dd. Consequently,
this condition is certainly easier to fulfill from the high redundancy of D. Second, the density
requirement, ρd < β/

√
1 +K, is just sufficient since the Proposition 1 does not state that it

achieves the best bound for the control of |Su(λa)− Su(λb)| when λa is critical. It is interesting
to note that this inequality relates ρd, a quantity that characterizes the discretization Λd in Λ, to
β and K, which depend only on the dictionary. In particular, β represents the density of D inside
S ⊂ L2(X), and K depends on the shape of the atoms through the curvature of the dictionary.

Finally note that as β < 1 (from definition (4)) and K > 1 (Prop. 2), the density radius must
at least satisfy ρd <

1√
2
to guarantee that our analysis is valid.

4.2 A Simple Example of Discretization

Let us work on the line with L2(X) = L2(R,dt), and check if the hypothesis of the previous
theorem can be assessed in the simple case of an affine (wavelet-like) dictionary.

We select a symmetric and real mother function g ∈ L2(R) well localized around the origin, e.g.
a Gaussian or a Mexican Hat, normalized such that ‖g‖ = 1. The parameter set Λ is related to the
affine group, the group of translations and dilations Gaff . We identify λ = (λ0 = b, λ1 = a), where
b ∈ R and a > 0 are the translation and the dilation parameters respectively. The dictionary D is
defined from the atoms gλ(t) = [U(λ)g](t) = a−1/2 g

(

(t− b)/a
)

, with ‖gλ‖ = 1 for all λ ∈ Λ. Our
atoms are nothing but the wavelets of a Continuous Wavelet Transform if g is admissible [35],
and U is actually the representation of the affine group on L2(R) [36].

In the technical report [31], we prove that the associated metric is given by Gij(λ) = a−2W ,
whereW is a constant 2×2 diagonal matrix depending only of the mother function g and its first
and second derivatives. Since Gij(λ) = a2W−1, K can be bounded by a constant also associated
to g and its first and second order time derivatives.

Finally, given the τ -adic parameter discretization

Λd = {kjn = (bjn, aj) = (n b0 τ
j , a0τ

j) : j, n ∈ Z},

with τ > 1 and a0, b0 > 0, the density radius ρd of Λd is shown to be bounded by ρd ≤
Ca−1

0 b0 +D ln τ , with C and D depending only of the norms of g and its first derivative.
This bound has two interesting properties. First, as for the grid Λd, it is invariant under the

change (b0, a0) → (2b0, 2a0). Second, it is multiplied by 2n if we realize a “zoom” of factor 2n in
our τ -adic grid, in other words, if (b0, τ) → (2n b0, τ

2n). By the same argument, the true density
radius has also to respect these rules. Therefore, we conjecture that ρd = C ′a−1

0 b0 +D′ ln τ , for
two particular (non computed) positive constants C ′ and D′.

Unfortunately, even for this simple affine dictionary, the existence of β = β(S,D) is non trivial
to prove. However, if the greedy factor exists, the control of τ , a0 and b0 over ρd tells us that it
is possible to satisfy the density requirement for convenient values of these parameters.

5 Optimization of Discrete Matching Pursuits

The previous section has shown that under a few assumptions a dMP is equivalent, in terms of
rate of convergence, to a weaker cMP in the continuous dictionary from which the discrete one
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has been sampled.

Question 2. Can we improve the rate of convergence of a dMP, not with an obvious increasing
of the dictionary sampling, but by taking advantage of the dictionary geometry ?

Our approach is to introduce an optimization of the discrete dMP scheme. In short, at each
iteration, we propose to use the atoms of Dd as the seeds of an iterative optimization, such as
the basic gradient descent/ascent, respecting the geometry of the manifold M = (Λ,Gij).

Under the same density hypothesis of Theorem 1, we show that in the worst case and if the
number of optimization steps is large enough, an optimized discrete MP is again equivalent to a
continuous dMP, but with a weakness factor two times closer to unity than for the non-optimized
discrete MP.

In this section, we first introduce the basic gradient descent/ascent on a manifold. Next, we
show how this optimization can be introduced in the Matching Pursuit scheme to defined the
geometrically optimized MP (gMP). Finally, the rate of convergence of this method is analyzed.

5.1 Gradient Ascent on Riemannian Manifolds

Given a function u ∈ L2(X) and Su(λ) = 〈gλ, u〉2, we wish to find the parameter that maximizes
Su, i.e.

λ∗ = argmax
λ∈Λ

Su(λ) (P.1)

Equivalently, by introducing hu,λ = 〈gλ, u〉 gλ, we can decide to find λ∗ by the minimization

λ∗ = argmin
λ∈Λ

‖u− hu,λ‖2. (P.2)

If we are not afraid to get stuck on local maxima (P.1) or minima (P.2) of these two non-convex
problems, we can solve them by using well known optimization techniques such as gradient
descent/ascent, or Newton or Newton-Gauss optimizations.

We present here a basic gradient ascent of the Problem (P.1) that respect the geometry of
M = (Λ,Gij) [37]. This method increases iteratively the value of Su by following a path in Λ,
composed of geodesic segments, driven by the gradient of Su.

Given a sequence of step size tr > 0, the gradient ascent of Su starting from λ0 ∈ Λ is defined
by the following induction [38] :

φ0(λ0) = λ, φr+1(λ0) = γ
(

tr, φr(λ0), ξr(λ0)
)

,

where ξr(λ0) = |∇Su(φr(λ0))|−1 ∇Su(φr(λ0)) is the gradient direction obtained from the gradient
∇iSu = Gij ∂jSu, and γ(s, λ0, ξ0) is the geodesic starting at λ0 = γ(0, λ0, ξ0) with the unit velocity
ξ0 = ∂

∂sγ(0, λ0, ξ0). Notice that ∇i is the natural notion of gradient on a Riemannian manifold.

Indeed, as for the Euclidean case, with ∇ih , Gij ∂jh for h ∈ L2(X), given w ∈ TλΛ, the
directional derivative Dwh is equivalent to Dwh(λ) , wi∂ih(λ) = 〈∇h,w〉λ , wi ∇jh(λ)Gij(λ),
since Gik Gkj = δij.

Practically, in our gradient ascent, we use the linear first order approximation of γ, i.e.

φr+1(λ) = φr(λ) + tr ξr(λ), (11)
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valid for small value of tr (error in O(t2r)). This is actually an optimization method since
∂iSu(φr(λ)) ξ

i
r = |∂Su(φr(λ))| > 0 and Su(φr+1(λ)) = Su(φr(λ)) + tr|∂Su(φr(λ))| + O(t2r) ≥

Su(φr(λ)), for a convenient step size tr > 0. At each step of this gradient ascent, the value
tr is chosen so that Su is increased. This can be done for instance by a line search algo-
rithm [39]. From the positive definiteness of Gij and Gij , a fixed point φr+1(λ) = φr(λ) is
reached if ∇iSu(φr(λ)) = ∂iSu(φr(λ)) = 0 for all i.

More sophisticated algorithms such as Newton or Newton-Gauss can be developed to solve
the Problem (P.2) on a Riemannian manifolds [38, 40] even if, unlike to the flat case, a direct
definition of the Hessian does not exist on differentiable manifolds. However, we will not use them
here as our aim is to prove that a dMP driven by the very basic optimization above provides
already a better rate of convergence than the non-optimized dMP.

5.2 Optimized Discrete Matching Pursuit Algorithm

Let us optimize each step of a discrete MP using the gradient ascent of the previous section.

Definition Given sequence of positive integers κm and a weakness factor 0 < α ≤ 1, the
geometrically optimized discrete matching pursuit (gMP(α)) is defined by

R0f = f (initialization), (12a)

Rm+1f = Rmf − 〈gνm+1
, Rmf〉 gνm+1

, (12b)

〈gνm+1
, Rmf〉2 ≥ α2 sup

k∈Λd

〈gφκm (k), R
mf〉2. (12c)

Notice that the best atom gνm+1
is selected in the set Φm , {gφκm (k) : k ∈ Λd} ⊂ D. Elements

of Φm are determined by applying the optimization function φr : Λd → Λ of our gradient ascent
defined in (11) on elements of Λd. In consequence, Φm depends on Rmf and is thus different at
each iteration m.

Rate of convergence The following theorem characterizes the rate of convergence of the
optimized Matching Pursuit defined in (12).

Theorem 2. Given the notations and the conditions of Theorem 1, there exists a sequence of
positive integers κm such that, the gMP(α) decomposition of functions in S ⊂ L2(X) optimized
κm steps at each iteration m, is bounded by the same rate of convergence as a cMP(α′′) using the
corresponding continuous dictionary D with α′′ = α(1− 1

2 β
−2 ρd (1 +K))1/2 ≤ α.

In other words, for α = 1, a gMP is equivalent to a cMP with a weakness factor two times
closer to unity than the one reached by a dMP in the same conditions. Before proving this result,
let us introduce some new lemmata.

Lemma 1. Given a function u ∈ L2(X) and a dictionary D of non-zero condition number K−1, if
λa is critical in the direction of λb, and if λb is critical in the direction of λa, i.e. γ

′i(0) ∂iSu(λa) =
γ′i(d) ∂iSu(λb) = 0 for γ = γ

λaλb
the geodesic joining λa and λb and d = dG(λa, λb), then

|Su(λa)− Su(λb)| ≤ 1
2 ‖u‖

2 dG(λa, λb)
2 (1 +K). (13)
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Proof. Without loss of generality, assume that Su(λa) ≥ Su(λb). If this is not the case, we can
switch the labels a and b. Let us define λ(θ) = γ(θd) with θ ∈ [0, 1] on the geodesic γ = γ

λaλb
.

We have λa = λ(0) and λb = λ(1). Using the Corollary 1, the two following inequalities hold :
Su(λ(θ)) ≥ Su(λa)−‖u‖2 dG(λ(θ), λa)2 (1+K) and Su(λ(θ)) ≤ Su(λb)+‖u‖2 dG(λ(θ), λb)2 (1+K).

Therefore, since by definition of λ(θ), dG(λ(θ), λa) = θd and dG(λ(θ), λb) = (1− θ)d, we find
Su(λa)− Su(λb) ≤ ‖u‖2

(

θ2 + (θ − 1)2
)

d2 (1 +K) for all θ ∈ [0, 1]. Taking the minimum over all
θ, we obtain finally Su(λa)− Su(λb) ≤ 1

2 ‖u‖2 dG(λa, λb)2 (1 +K).

In other words, the critical nature of λa and λb divides by two the bound on the decreasing
of Su between them compared to the situation where only one of these points is critical.

Lemma 2. Given a function u ∈ L2(X), assume that Su(λ) has a global maximum at λM , i.e.
∂iSu(λM ) = 0 for all i, and write Tk = {φr(k) : r ∈ N} the trajectory of the gradient ascent
described in (11) starting from a point k ∈ Λd. There exists a λ′ ∈ Tk that can be reached in a
finite number of optimization steps, such that

Su(λM )− Su(λ
′) ≤ 1

2 ‖u‖
2 dG(λM , k)

2 (1 +K). (14)

For the sake of clarity, the proof of this technical Lemma is placed in Appendix C. The main
idea is to find a point in the trajectory Tk that is closer to λM than k, and that is also critical
in the direction of λM so that Lemma 1 can be applied. Let us now enter in the proof of the
previous proposition.

Proof of Theorem 2. In our gMP(α) decomposition of a function f ∈ S ⊂ L2(X) defined before,
given the iteration m+ 1 where u = Rmf is analyzed, denote by λ̃ the parameter of the atom in
D maximizing Su, i.e. Su(λ̃) = supλ∈Λ Su(λ).

If k̃ is the closest element of Λd to λ̃, from the covering property of Λd we have dG(λ̃, k̃) ≤ ρd,
and the Lemma 2 tells us that there exists a finite number of optimization steps κm such that
Su(φκm(k̃)) ≥ Su(λ̃)− 1

2 ρd ‖u‖2 (1 + K) ≥ β2
(

1− 1
2β

−2 ρ2d (1 + K)
)

‖u‖2, where the last term is
positive from the density requirement ρd < β/

√
1 +K.

Therefore, from the selection rule (12c), Su(νm+1) ≥ α2 Su(φκm(k̃)). We have thus ‖Rm+1f‖2 =
‖u‖2−Su(νm+1) ≤ ‖u‖2−α2 Su(φκm(k̃)) ≤ ‖u‖2 (1−α′′2β2), with α′′ , α

(

1− 1
2β

−2 ρ2d (1+K)
)1/2

.

So, ‖Rm+1f‖ ≤ (1 − α′′2β2)(m+1)/2‖f‖ which is also the exponential convergence rate of the
cMP(α′′) in D when β exists.

In Theorem 2, even if the sequence of optimization steps κm is proved to exist, it is actually
unknown. One practical way to overcome this problem is to observe how the ratio |∇Su|

Su
decreases

at each optimization steps, and to stop the procedure once this value falls below a predefined
threshold. This follows from the idea that the closer to a local maximum Su(φr(k)) is, the smaller
must be the optimization step. As it is often the case in optimization problems, an upper bound
on the number of optimization steps can be fixed jointly to this threshold test.

6 Experiments

In this section, dMP and gMP decompositions of 1-D and 2-D signals are studied experimentally
in different situations. These will imply different classes of signals and different discretization of
parametrization of various densities.
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Prior to these experiments, some remarks have to be made about dMP and gMP implemen-
tations. First, for both algorithms, as described in Equations (3) and (12), a full-search has to
be performed in Dd = dict(Λd) to compute all the squared scalar products Su of the current
residue u = Rmf , with atoms gk. We decide thus to reduce the computational complexity of
this full-search with the help of the Fast Fourier Transform (FFT). One component (for 1-D sig-
nals) or two components (for 2-D signals) of the parametrization correspond indeed to a regular
grid of atoms positions, which makes Su a discrete correlation relatively to these parameters.
Moreover, as described in detail in [41,42], we apply the fast boundary renormalization of atoms,
where atoms of D truncated by the limit of the signal remain valid atoms, i.e. of unit norm, and
features that suddenly terminate at the signal boundary are correctly caught in the procedure.
Notice that all our dMP and gMP experiments are performed in the non-weak case, i.e. α = 1.

Second, for the Gradient-Ascent optimization, we realize some simplifications to the initial
formulation : the best discrete atom only is optimized at each MP iteration and κm = κ > 0 for
all m, with κ typically equal to 5 or 10. Even if these two restrictions are not optimal compared
to the method described in the theoretical results, the gain of the optimization in the quality of
signals reconstructions is already impressive. We also set all the step sizes to tr = χ > 0, with
χ = 0.1 in all our experiments. Then, at each optimization step r, we adaptively decrease the step
parameter tr by dividing it by 2 if the ascent condition is not met, i.e. if Su(φr+1(k)) < Su(φr(k)).
If after 10 divisions, the ascent condition still does not hold, the optimization process is simply
stopped.

Finally, let us mention that our algorithms are written in MATLAB c© and are consequently
not truly optimized. The different computation times that we provide through this section allow
us only to compare various schemes, as for dMP and gMP decomposition of the same signal. All
of our experiments were realized on a Pentium 1.73 GHz with 1Gb of memory.

6.1 One Dimensional Analysis

This section analyzes the benefit obtained from gMP, and from an increased density of the discrete
dictionary, when decomposing some specific classes of randomly generated 1-D signals. In our
experiments, each 1-D signal is of unit norm and has N = 213 samples. Each signal consists of
the sum of 100 random bursts, each burst being a rectangular or Gaussian window, depending on
the class of the signal. The position and magnitude of each burst is selected at random, according
to a uniform distribution. The duration of the rectangular window and the standard deviation
of the Gaussian function are selected uniformly within the range [12L,

3
4L], for L = 28. The

mother function of the dictionary is the Mexican Hat function g(t) ∝ (1− t2) e−t2/2. Its scale and
translation parameters are sampled as defined in Section 4.2, following the τ -adic discretization
Λd = {(nb0τ j, a0τ j) : j, n ∈ Z}, with a0 = 1. We work in the non-weak case, i.e. α = 1, for dMP
and gMP, and we set κ = 10 for gMP.

Figures 1(a) and 1(b) analyze how the energy ‖Rmf‖2 of the residual decreases with the
numberm of MP iterations for the random Gaussian and rectangular signals, respectively. Notice
that only a small number of iterations are studied (twelve) since our analysis aims at analyzing
the behaviour of dMP and gMP on one class of signals. However the current residual Rmf
belongs only approximately to the considered class on small m when not many atoms have been
substracted to f = R0f . Results presented are averaged over 20 trials. In each graph, two
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distinct discretizations of the Mexican Hat parameters are considered to provide two discrete
dictionaries, with one (b0 = 1, log2 τ = 0.25) being two times denser than the other (b0 =
2, log2 τ = 0.5), according to the behavior11 of the density radius ρd analyzed in Section 4.2.
Both discrete and geometrically optimized MP are studied for each dictionary. We observe that
gMP significantly outperforms dMP, and that an increased density of the dictionary also speeds
up the MP convergence. By comparing Figure 1(a) and 1(b), we also observe that the residual
energy decreases much faster for Gaussian signals than for rectangular ones, which unsurprisingly
reveals that the Mexican Hat dictionary is better suited to represent Gaussian structures.

Figures 1(c)-1(f) further analyze the impact of the discretization of the dictionary parameters
on MP convergence. In these figures, we introduce the notion of normalized atom energy (NAE)
to measure the convergence rate of a particular dictionary dealing with a specific class of signals
at a specific MP iteration step. Formally, the NAE denotes the expected value of the best squared
atom coefficient computed on a normalized signal when this one is randomly generated within a
specific class of signals. Mathematically, NAE = E

[

〈gλ∗
, u
‖u‖〉2

]

, where u is a sample signal of the

class and the gλ∗
the associated best atom for a fixed greedy algorithm (dMP or gMP). We show

the dependence of NAE on the discretization for the 1st and 30th iteration12 for both rectangular
and Gaussian signals. Results are averaged over 500 trials.

By considering the dMP and gMP curves in Figures 1(c)-1(f), we first observe that the NAE
is significantly higher for gMP than for dMP, which confirms the advantage of using gradient
ascent optimization to refine the parameters of the atoms extracted by dMP. Note that the NAE
for a Gaussian random signal (Fig. 1(c)-1(d)) is nearly one order of magnitude higher than for
a rectangular one (Fig.1(e)-1(f)). This confirms that the Mexican Hat dictionary better matches
the Gaussian structures than the rectangular ones. In all cases, the NAE sharply decreases with
the iteration index, which is not a surprise as the coherence between the signal and the dictionary
decreases as MP expansion progresses.

To better understand the penalty induced by the discretization of the continuous dictionary,
we now analyze how the rate of convergence for a particular class of signals behaves compared to
the reference provided by a signal composed of a single Mexican Hat function. For that purpose,
an additional curve, denoted dMPa, has been plotted in each graph. This curve is expected to
provide an upper bound to the penalty induced by a sparser dictionary. Specifically, dMPa plots
the energy captured during the 1st step of the dMP expansion of a random (scale and position)
Mexican Hat function, as a function of the discretization parameter log2 τ . As the Mexican Hat
is the generative function of the dictionary, the 1st step of the MP expansion would capture the
entire function energy if the entire continuous dictionary were used, but is particularly penalized
by a discretization of the dictionary. In each graph of Figures 1(c)-1(f), to compare dMPa with
dMP, the dMPa curve obtained with pure atoms (i.e. unit coefficients) is scaled to correspond to
atoms whose energy is set to the NAE expected from the expansion of the corresponding class of
signals with a continuous dictionary. In practice, the NAE expected with a continuous dictionary
is estimated based on the NAE computed with gMP and the densest dictionary (log2 τ = 0.25).

11Obviously equivalent for log2 τ or ln τ variations.
12Note that the NAE at the 30th iteration refers to the NAE computed on the residual signals obtained after

29 iterations of the gMP with the densest dictionary, independently of the actual discrete dictionary considered at
iteration 30. Hence, the reference class of signals to compute the NAE at iteration 30 is the same for all investigated
dictionaries, i.e. for all log2 τ values.
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Figure 1: (a)-(b) Residual energy as a function of the MP iteration. dMP (b0, log2 τ) and
gMP (b0, log2 τ) refer to discrete and optimized MP, computed on a discretization Λd =
{(nb0τ j , a0τ j) : j, n ∈ Z} of the continuous Mexican Hat dictionary. (c)-(f) Normalized atom
energy (NAE) as a function of the log2 τ discretization parameter. b0 is set to one in all cases.
dMP and gMP respectively refer to discrete and optimized MP. dMPa provides a lower bound to
the decrease of NAE with log2 τ , and is formally described in the text.
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The approximation is reasonable as we observe that gMP saturates for small log2 τ values, i.e.
for large densities. We first observe that both the dMP and the dMPa curves nearly coincide
in Figure 1(c). Hence, the MP expansion of a Gaussian signal is penalized as much as the one
of a Mexican Hat function by a reduction of the discrete dictionary density. We then observe
that the penalty induced by a reduction of density decreases as the coherence between signal
and dictionary structures drops. This is for example the case when the signal to represent
is intrinsically sharper than the dictionary structures (Fig. 1(e)-1(f)), or because the coherent
structures have been extracted during the initial MP steps (Fig. 1(d)). This last observation is
of practical importance because it reveals that using a coarsely discretized dictionary incurs a
greater penalty during the first few iterations of the MP expansion than during the subsequent
ones. For compression applications, it might thus be advantageous to progressively decrease the
density of the dictionary along the expansion process, the cost associated to the definition of the
atom indices decreasing with the density of the dictionary13. Hence, it might be more efficient –
in a rate-distortion sense – to use a dense but expensive dictionary during the first MP iterations,
so as to avoid penalizing the MP convergence rate, but a sparser and cheaper during subsequent
steps, so as to save bits. We plan to investigate this question in details in a future publication.

6.2 Two Dimensional Analysis

This section analyzes experimentally the effect of discretizing a dictionary on the Matching Pur-
suit decomposition of images, i.e. with the Hilbert space L2(R2).

Parametrization and Dictionary We use the same dictionary as in [41]. Its mother function
g is defined by a separable product of two 1-D behaviors : a Mexican Hat wavelet in the x-
direction, and a Gaussian in the y-direction, i.e. g(x) = ( 4

3π )
1/2 (1 − x2) exp(−1

2 |x|2), where
x = (x, y) ∈ R

2 and ‖g‖ = 1 [30]. Notice that g is infinitely differentiable.
The dictionary is defined by the translations, rotations, and anisotropic dilations of g. Mathe-

matically, these transformations are represented by operators Tb, Rθ, and Da, respectively. These
are given by [Tb g]

(

x
)

= g
(

x − b
)

, [Rθ g]
(

x
)

= g
(

r−1
θ x

)

, and [Da g]
(

x
)

= (a1a2)
−1/2 g

(

d−1
a x

)

,
for θ ∈ S1 ≃ [0, 2π), b ∈ R

2, a = (a1, a2), a1, a2 ∈ R
∗
+, while rθ is the usual 2× 2 rotation matrix

rθ and da = diag(a1, a2).
In other words, we have a parametrization of P = 5 dimensions and Λ = {λ = (λ0, . . . , λ4) =

(b1, b2, θ, a1, a2) ∈ R
2 × S1 × (R∗

+)
2}. At the end, each atom of the dictionary D = {gλ : λ ∈ Λ}

is generated by gλ(x) = [U(λ) g](x) , [TbRθDa g](x), with ‖gλ‖ = ‖g‖ = 1.
Obviously, the dictionary D is complete in L2(R2). Indeed, translations, rotations and

isotropic dilations alone are already enough to constitute a wavelet basis of L2(X) since g is
an admissible wavelet [35,43]. Finally, as requested in the previous section, from the smoothness
of g and of the transformations U above, the atoms gλ of our dictionary D are twice differentiable
on each component λi.

Spatial Sampling For all our experiments, images are discretized on a Cartesian regular grid
of pixels, i.e. an image f takes its values on the grid X =

(

[0, Nx)× [0, Ny)
)

∩Z
2, with Nx and Ny

the “x” and “y” sizes of the grid. We work in the continuous approximation, that is we assume

13Less distinct atom indices need to be described by the codewords.
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(a) (b)

Figure 2: 300 atoms reconstruction results. (a) dMP : J = 5, K = 8, PSNR : 26.63 dB, 4634s.
(b) gMP : J = 3, K = 4, κ = 10, PSNR : 26.68 dB, 949s.

J = 3 J = 5

K = 4 24.30 dB (834s) 25.88 dB (2327s)

(κ = 5) 26.08 dB (889s) 27.09 dB (2381s)
(κ = 10) 26.68 dB (950s) 27.37 dB (2447s)

K = 8 25.21 dB (1660s) 26.63 dB (4634s)

(κ = 5) 27.05 dB (1715s) 27.92 dB (4703s)
(κ = 10) 27.44 dB (1772s) 28.09 dB (5131s)

Table 1: dMP and gMP applied on Barbara image. Quality (in PSNR) of the reconstruction
after 300 iterations for various J , K and κ. In each table cell, the first row correspond to dMP
result, the second and the third rows to gMP.

that the grid X is fine enough to guarantee that the scalar products 〈·, ·〉 and norms ‖ · ‖ are well
estimated from their discrete counterparts. This holds of course for band-limited functions on
L(R2).

In consequence, in order to respect this continuous approximations and to have dictionary
atoms smaller than the image size, the mother function g of our dictionary D must be dilated in a
particular range of scales so that gλ is essentially band-limited, i.e. a1, a2 ∈ [am, aM]. According
to the definition of g above, we set experimentally am = 0.7 and aM = min(Nx, Ny).

Discrete Parameter Space We decide to sample regularly Λ so that to have Npix = NxNy

positions b, J2 scales a1 and a2 selected logarithmically in the range [am, aM], and K orientations
evenly spaced in [0, π) , with J,K ∈ N. At the end, we obtain the discretized parameter set
Λd = Λd(Npix, J,K) =

{

(b, θn, a1j , a2j′), b ∈ X , n ∈ [0,K − 1], j, j′ ∈ [0, J − 1]
}

, and the
corresponding dictionary Dd(Npix, J,K) = dict(Λd(Npix, J,K)). The number of atoms in the
dictionary is simply |Dd| = J2KNpix.
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Image name dMP gMP (κ = 10)

Barbara 25.94 dB (2707s) 27.86 dB (2820s)
Lena 26.50 dB (2709s) 28.53 dB (2857s)

Baboon 24.06 dB (2770s) 24.93 dB (2900s)
Cameraman 25.80 dB (2807s) 27.62 dB (2918s)
GoldHill 26.54 dB (2810s) 28.12 dB (2961s)
Peppers 24.51 dB (2853s) 26.69 dB (3013s)

Table 2: Comparison of dMP and gMP on different usual images of size 128×128. Computations
have been performed for J = 4, K = 8, 300 atoms. Computation times are given indicatively in
parenthesis.

Results We start our experiment by decomposing the venerable image of Barbara. 300 atoms
were selected by dMP and gMP for various J and K. Results are presented in Table 1. In these
tests, the best quality obtained for dMP corresponds obviously to the finest grid, i.e. J = 5 and
K = 8 (26.63 dB, Fig.2(a)), with a computational time (CT) of 4634s. With 10 optimization
steps (κ = 10), the gMP for the coarsest parametrization (J = 3 and K = 4) is equivalent to the
best dMP result with a PSNR of 26.68 dB and a CT of only 950s, i.e. almost five time faster.
This is also far better than the dMP on the same grid (24.30 dB). The visual inspection of the
dMP image (J = 5, K = 8, Fig.2(a)) and the gMP image (J = 3, K = 4, κ = 10, 2(b)) is also
instructive. Most of the features of the gMP results are well represented (e.g. Barbara’s mouth,
eyes, nose, hair, ...). However, the regular pattern of the chair in the background of the picture,
which needs a lot of similar atoms, is poorly drawn. This can be explained by the fact that this
highly directional structure has to be represented by a lot of similarly oriented and scaled atoms
with similar amplitude. The fine grid of dMP has therefore more chance to correctly fit these
atoms, while the gMP on its coarse grid is deviated in its optimization process to more prominent
structure with higher amplitudes. Notice finally, the best optimized result (PSNR 28.09 dB) is
obtained for κ = 10 on the grid associated to J = 5 and K = 8 orientations.

For our second experiment, we compare dMP and gMP (κ = 10) 300 atoms approximation of
well known 128×128 pixels pictures, namely Lena, Baboon, Cameraman, GoldHill, and Peppers,
on the same parametrization grid (J = 4, K = 8). For a computational time slightly higher (5%)
than the dMP decomposition, we reach in all cases a significantly higher PSNR with gMP than
with dMP, i.e. the dB gain is within the range [0.87, 2.03].

7 Related Works

A similar approach to our geometric analysis of MP atom selection rule has been proposed
in [24]. In that paper, a dictionary of (L2-normalized) wavelets is seen as a manifold associate
to a Riemannian metric. However, the authors restrict their work to wavelet parametrization
inherited from Lie group (such as the affine group). They also work only on the L2 (dictionary)
distance between dictionary atoms and do not introduce intrinsic geodesic distance. They define
a discretization of the parametrization Λ such that, in our notations, Gij∆λ

i∆λj < ǫ, with ∆λ(k)
the local width of the cell localized on k ∈ Λd. There is however no analysis of the effect of this
discretization on the MP rate of convergence.
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In [14], the author uses a 4-dimensional Gaussian chirp dictionary to analyze 1-D signals
with MP algorithm. He develops a fast procedure to find the best atom of this dictionary in the
representation of the current MP residual by applying a two-step search. First, by setting the
chirp rate parameter to zero, the best common Gabor atom is found with full search procedure
taking advantage of the FFT algorithm. Next, a ridge theorem proves that starting from this
Gabor atom, the best Gaussian chirp atom can be approximated with a controlled error. The
whole method is similar to the development of our optimized matching pursuit since we start
also from a discrete parametrization to find a better atom in the continuous one. However, our
approach is more general since we are not restricted to a specific dictionary. We use the intrinsic
geometry of any smooth dictionary manifold to perform a optimization driven by a geometric
gradient ascent.

8 Conclusions

In this paper, we have adopted a geometrical framework to study the effect of dictionary dis-
cretization on the rate of convergence associated to MP. In a first step, we have derived an upper
bound for this rate using geometrical quantities inherited from the dictionary seen as a manifold,
such as the geodesic distance, the condition number of the dictionary, and the covering property
of the discrete set of atoms in the continuous dictionary. We have also shown in a second step how
a simple optimization of the parameters selected by the discrete dictionary, can lead theoretically
and experimentally to important gain in the approximation of (general) signals.

In a future study, it could be interesting to see how our methods extend to other greedy
algorithms, like the Orthogonal Matching Pursuit (OMP) [44]. However, this extension has to
be performed carefully since we need to characterized the convergence of continuous OMP, as it
is here for the one of MP induced by the existence of a greedy factor.

Our work paves the way for future extensions and advances in two practical fields. As ex-
plained in our 1-D experiments, a first idea could be to analyze carefully the benefit – in a
rate-distortion sense – of using a dense but expensive dictionary during the first MP iterations,
so as to avoid penalizing the MP convergence rate, but a sparser and cheaper dictionary during
subsequent steps, so as to save bits. We plan to investigate this question in details in a future
publication.

Another idea is to analyze the behaviors of gMP in the Compressive Sensing (CS) formalism,
that is after random projection of the signal and atoms. Matching Pursuit is already used
currently as a retrieval algorithm of CS of sparse signals [45–47]. However, recent results [48]
suggests also that for manifold of bounded condition number, their geometrical structure (metric,
distances) is essentially preserved after random projection of their points in a smaller space than
the ambient one. If a natural definition of random projection in our continuous formalism can
be formulated, a natural question is thus to check if the gradient ascent technique survives after
random projection of the residual and the atoms on the same subspace. This could lead to
dramatic computation time reduction, up to controlled errors that could be even attenuated by
the greedy iterative procedure.
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A Complements on the Geometry of (Λ,Gij)
In this short appendix, we provide some additional information on the geometrical concepts
developed in Section 2. First, as explained in that section, the parameter space Λ of the dictionary
D = dict(Λ) is linked to a Riemannian manifold M = (Λ,Gij) with a structure inherited from the
dictionary D ⊂ L2(X). From the geodesic definition (1) and the metric relation (2), we see that
the curve γ

λaλb
(t) ∈ Λ is thus also a geodesic in M. In other words, it is defined only from the

metric Gij and not anymore from the full behavior of atoms of D ⊂ L2(X). In [31], we explain
also that M is in fact an immersed manifold [28] in the Hilbert manifold D ⊂ L2(X), and Gij

is the associated pullback metric. All the geometric quantities of the Riemannian analysis of M,
such as Christoffel’s symbols, covariant derivatives, curvature tensors, etc. can be defined. This
is actually done in the following appendices of this paper.

Second, some important designations can be introduced. The metric Gij(λ) is a (covariant)
tensor of rank-2, i.e. described by two subscript indices, on M. This means that Gij satisfies
a specific transformation under changes of coordinates in TλΛ such that the values of the bi-
linear form14 Gλ(ξ, ζ) , ξi ζj Gij(λ) that it induces are unmodified15. A function f : Λ → R

is a scalar field on M, or rank-0 tensor. A vector field ζ i(λ) on this manifold, which asso-
ciates to each point λ a vector in the tangent plane TλΛ, is a function ζ : Λ → TλΛ ≃ R

P

also named (contravariant) rank-1 tensor, i.e. with one superscript. More generally, a rank-
(m,n) tensor is a quantity T i1 ··· im

j1 ··· jn (λ) m-times contravariant and n-times covariant such that

Gi1k1 · · · Gimkm ξk11 · · · ξkmm T i1 ··· im
j1 ··· jn (λ) ζj11 · · · ζjnn is invariant under change of coordinates in TλΛ

for any vectors {ξ1, · · · , ξm, ζ1, · · · , ζn} in this space.

B Proof of Proposition 2

Let γ be a geodesic in M with curvilinear parametrization, i.e. with |γ′(s)| = 1. Writing γ = γ(s)

and γ′ = d
dsγ(s), we have

d
ds gγ(s) = ∂igγ γ

′i and d2

ds2 gγ(s) = ∂ijgγ γ
′iγ′j+∂kgγ γ′′

k, where we write
abusively ∂igγ = ∂igλ|λ=γ(s) and similarly for second order derivative.

We need now some elements of differential geometry. Since γ is a geodesic in M, it respects
the second order differential equation γ′′k + Γk

ij γ
′iγ′j = 0, where the values Γk

ij =
1
2 Glk

(

∂j Gli +

14Also named first fundamental form [28].
15In the same way that the scalar product between two vectors in the usual Euclidean space is independent of

the choice of coordinates.
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∂i Gjl − ∂l Gij

)

are the Christoffel’s symbols [28] derived from the metric Gij . Therefore, we get

rcl d
2

ds2
gγ = ∂ijgγ γ

′iγ′j − ∂kgγ Γ
k
ij γ

′iγ′j (15)

= ∇ijgγ γ
′iγ′j, (16)

where ∇igγ = ∂igγ and ∇ijgγ = ∇i∇jgγ = ∂ijgγ − ∂kgγ Γ
k
ij are by definition the first order i

and the second order ij covariant derivatives of gγ respectively [28]. In addition, we can easily
compute that for M = (Λ,Gij),

Γk
ij = Gkl 〈∂ijgλ, ∂lgλ〉. (17)

The lower bound of the proposition comes simply from the projection of d2

ds2
gγ(s) onto gγ .

Indeed, for any λ ∈ Λ, since ‖gλ‖2 = 〈gλ, gλ〉 = 1, 〈∂igλ, gλ〉 = 0 and 〈∂ijgλ, gλ〉 = −Gij. By

(15), 〈 d2

ds2 gγ(s), gγ〉 = 〈∂ijgγ , gγ〉 γ′iγ′j = −Gij γ
′iγ′j = −1, and using Cauchy-Schwarz we get

‖ d2

ds2
gγ(s)‖ ≥ 1. Therefore, for ǫ > 0 and γξ : [0, ǫ] → Λ, a segment of geodesic starting from λ

with unit speed ξ,
K ≥ sup

ξ:|ξ|=1
‖ d2

ds2
gγξ(s)

∣

∣

s=0
‖ ≥ 1.

For the upper bound, coming back to any geodesic γ, we need to analyze directly ‖ d2

ds2
gγ(s)‖2.

Using (16) and the expression (17) of the Christoffel’s symbols above, we have ‖ d2

ds2
gγ(s)‖2 =

‖∇ij gγ γ
′iγ′j‖2 ≤ 〈∇ij gγ ,∇kl gγ〉 Gik Gjl, where we used |γ′| = 1 and the Cauchy-Schwarz (CS)

inequality expressed in the Einstein’s summation notation on rank-2 tensors. This latter states
that, for the tensors Aij = ∇ij gγ and Bij = γ′iγ′j , |AijB

ij|2 ≤ |Aij Akl Gki Glj | |Bij Bkl Gki Glj |,
the equality holding if the two tensors are multiple of each other. We prove in [31] the general
explanation for rank-n tensor as a simple consequence of the positive-definiteness of Gij.

Therefore, taking γ = γξ, and since γξ(0) = λ,

K ≤ sup
λ∈Λ

[

〈

∇ij gλ,∇kl gλ
〉

Gik Gjl
]

1
2
. (18)

In the companion Technical Paper [31], we prove that this inequality is also equivalent to

K ≤ sup
λ∈Λ

[

R(λ) + ‖∆ gλ‖2
]

1
2 ,

where R is the scalar curvature of M, i.e. the quantity R = Rijkl Gik Gjl contracted from the
curvature tensor Riklm = 1

2(∂klGim + ∂imGkl − ∂kmGil − ∂ilGkm) + Gnp(Γ
n
kl Γ

p
im − Γn

km Γp
il), and

∆gλ = Gij ∇i∇j gλ is the Laplace-Beltrami operator applied on gλ. The curvature R requires
only the knowledge of Gij(λ) (and its derivatives), implying just one step of scalar products
computations, i.e. integrations in L2(X).

The reader who does not want to deal with differential geometry can however get rid of
the covariant derivatives of Equation (18) by replacing them by usual derivatives. This provides
however a weaker bound. Indeed, using the expression (17) of the Christoffel’s symbols, some easy
calculation provides 0 ≤

〈

∇ij gλ,∇kl gλ
〉

Gik Gjl =
〈

∂ij gλ, ∂kl gλ
〉

Gik Gjl − aijk almn Gil Gjm Gkn,
with aijk = 〈∂ijgλ, ∂kgλ〉.
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Therefore,
〈

∇ij gλ,∇kl gλ
〉

≤
〈

∂ij gλ, ∂kl gλ
〉

Gik Gjl, from the positive definiteness of Gij and
Gij . Indeed, if we write W ijk lmn = GilGjmGkn, and if we gather indices ijk and lmn in the two

multi-indices16 I = (i, j, k) and L = (l,m, n), W IL can be seen as a 2-D matrix in R
P 3×P 3

. It
is then easy to check that the P 3 eigenvectors of W IL are given by the P 3 combinations of the
product of three of the P eigenvectors of Gij , i.e. the covariant vectors ζi respecting the equation
Gij ζj = µ δij ζj for a certain µ = µ(ζ) > 0. The matrix Gij being positive, the eigenvalues ofW IL

are thus all positive, and W IL is positive. Therefore, aIW
ILaL ≥ 0 for any tensor aI = aijk. �

C Proof of Lemma 2

Recall that we use the gradient ascent defined from the optimization function φr such that
φr+1(k) = φr(k) + tr ξr(k), for a sequence of positive step size tr increasing Su at each step,
and for a step direction ξir(λ) , |∇Su(φr(λ))|−1∇iSu(φr(λ)). From this definition, starting from
k ∈ Λ, if limr→+∞ φr(k) = k∞ ∈ Λ exists, then k∞ is a point where ∇iSu(k

∞) = 0 for all i, since
Su(φr+1(k)) = Su(φr(k)) + tr |∂Su(φr(k))| +O(t2r).

How may the trajectory Tk = {φr(k) : r ∈ N} contain a point λ′ satisfying (14) ? Let us write
γr(s) for the geodesic linking φr(k) to λM , and define the distance function ζr = dG(λM , φr(k)).
We have thus γr(0) = φr(k) and γr(ζr) = λM , where λM is the global maximum of Su.

Case 1. If ξi0γ
′
0
j(0)Gij(k) < 0, i.e. the optimization starts in the wrong direction. The function

ψ(s) = Su(γ0(s)) is twice differentiable over [0, ζ0] and for s close to zero, we have ψ(0) > ψ(s)
since ψ′(0) = ∂iSu(k) γ

′
0
i(0) = |∇Su(k)| ξi0γ′0j(0)Gij(k) < 0.

Since λM is a global maximum of Su, ψ(0) < ψ(ζ0) = Su(λM ). Therefore, there exists a
s∗ ∈ (0, ζ0) that minimizes ψ, i.e. ψ′(s∗) = 0 with ψ(s∗) < ψ(0). For λ∗ = γ0(s

∗), this implies
that λ∗ is critical since ψ′(s∗) = ∂iSu(λ∗)γ′0

i(s∗) = 0. From Lemma 1, Su(λM ) − Su(λ∗) ≤
1
2‖u‖2dG(λM , λ∗)2 (1 +K) < 1

2‖u‖2dG(λM , k)2 (1 + K), since dG(λM , λ∗) < dG(λ0, k). Finally, for
any λ′ ∈ Tk, Su(λM ) − Su(λ

′) ≤ Su(λM ) − Su(k), and Su(λM ) − Su(λ
′) ≤ Su(λM ) − Su(λ∗) ≤

1
2‖u‖2 dG(λM , k)2 (1 +K), since Su(k) ≥ S(λ∗).

Case 2. If ξi0γ
′
0
j(0)Gij(k) = 0. We have right away γ′0

i(0)∂iSu(k) = 0, and k is a critical point
in the direction λM . Lemma 1 applied on k gives Su(λM ) − Su(k) ≤ 1

2 ‖u‖2 dG(λM , k)2 (1 + K).
Since Su(λM )− Su(λ

′) ≤ Su(λM )− Su(k) for any λ
′ ∈ Tk, Equation (14) holds.

Case 3. If ξi0γ
′
0
j(0)Gij(k) > 0. Let us analyze the behavior of the distance function ζr.

Let us introduce the function dM (λ) = dG(λM , λ). As for the Euclidean space, it is easy to
prove17 that ∇idM (λ) = −γi(0) if γ is the geodesic linking λ = γ(0) to λM . Therefore, since
ζr+1 = dM (φr+1(k)), a Taylor expansion of dM (λ) around λ = φr(k) provides

ζr+1 = ζr − tr ξ
i
r(k) γ

′
r
j
(0)Gij(φr(k)) + O(t2r). (19)

For r = 0, if t0 is sufficiently small, ζ1 < ζ0 and ζr has either a local minima on a particular step
rm > 0, or it decreases monotically and converges to a value ζ∞ = limr→∞ ζr < ζ0.

16This can be seen as a relabelling of the P 3 combinations of values for ijk into P 3 different one-number indices
I .

17The interested reader will find a proof of this basic differential geometry result in the companion Technical
Report [31].

22



(i) ζ has a local minima ζrm < ζ0 on rm > 0 : Then, ζrm+1 > ζrm and, using (19) with some
implicit dependences, ζrm+1 − ζrm = − trm γ

′ i
rm(0) ξ

j
rm Gij + O(t2rm). Therefore, for a sufficiently

small step trm , γ
′ i
rm(0) ξ

j
rm Gij < 0 and we are in the same hypothesis as Case 1 with the point

λ′ = φrm(k) ∈ Tk instead of k. We obtain then Su(λM )− Su(λ
′) ≤ 1

2‖u‖2 dG(λM , λ′)2 (1 + K) <
1
2‖u‖2 dG(λM , k)2 (1 +K), since dG(λM , λ′) = ζrm < ζ0 = dG(λM , k).

(ii) If ζr decreases monotically for r > 0 : Since ζr ≥ 0, the limit limr→∞ ζr exists and
converges to ζ∞ < ζ0. However, it is not guaranteed that the sequence {φr(k)} converges to
a point of Λ. Fortunately, since for all r > 0, φr(k) remains in the finite volume V0 = {λ ∈
Λ : dM (λ) ≤ dM (k)}, this sequence is bounded in the finite dimensional space Λ. Therefore,
from the Bolzano-Weierstrass theorem on the metric space (Λ, dG(·, ·)), we can find a convergent
subsequence {ri ∈ N : ri+1 > ri} such that limi→∞ φri(k) = k∞ ∈ V0. On this point, we will have
∇iSu(k∞) = 0 for all i. So, k∞ is an umbilical point and, from Lemma 1,

Su(λM )− Su(k∞) ≤ 1
2‖u‖

2 dG(λM , k∞)2 (1 +K).

From now on, we abuse notation and write φri(k) = φi(k). Since ζ2∞ = dG(λM , k∞)2 <
dG(λM , k)2 = ζ20 , we can find a δ > 0 such that dG(λM , k∞)2 + δ < dG(λM , k)2. Therefore,
because limi→∞ Su(φi(k)) = Su(k

∞) by continuity of Su, and since Su(φi(k)) increases monot-
ically with i, there exists a i′ > 0 such that Su(k

∞) − S(φi′(k)) ≤ 1
2‖u‖2 δ (1 + K). With

λ′ = φi′(k) ∈ Tk, we finally get Su(λM )−Su(λ′) < Su(λM ) − Su(k
∞) + 1

2‖u‖2 δ (1+K), so that
Su(λM )− Su(λ

′) ≤ 1
2‖u‖2

(

dG(λM , k∞)2 + δ
)

(1 +K) < 1
2‖u‖2 dG(λM , k)2 (1 +K). This gives the

result and concludes the proof. �
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