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Nonuniform Sampling of Periodic
Bandlimited Signals
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Abstract—Digital processing techniques are based on repre-
senting a continuous-time signal by a discrete set of samples. This
paper treats the problem of reconstructing a periodic bandlimited
signal from a finite number of its nonuniform samples. In practical
applications, only a finite number of values are given. Extending
the samples periodically across the boundaries, and assuming that
the underlying continuous time signal is bandlimited, provides a
simple way to deal with reconstruction from finitely many samples.
Two algorithms for reconstructing a periodic bandlimited signal
from an even and an odd number of nonuniform samples are
developed. In the first, the reconstruction functions constitute a
basis while in the second, they form a frame so that there are more
samples than needed for perfect reconstruction. The advantages
and disadvantages of each method are analyzed. Specifically, it is
shown that the first algorithm provides consistent reconstruction
of the signal while the second is shown to be more stable in
noisy environments. Next, we use the theory of finite dimensional
frames to characterize the stability of our algorithms. We then
consider two special distributions of sampling points: uniform and
recurrent nonuniform, and show that for these cases, the recon-
struction formulas as well as the stability analysis are simplified
significantly. The advantage of our methods over conventional
approaches is demonstrated by numerical experiments.

Index Terms—Interpolation, nonuniform sampling, periodic
signals, reconstruction, recurrent nonuniform sampling, stability,
uniform sampling.

1. INTRODUCTION

IGITAL signal processing and image processing rely on
Dsampling a continuous-time signal in order to obtain a dis-
crete-time representation of the signal. Sampling theory has a
long history and finds its roots in the work of Cauchy [1] and
Gauss. Its name has almost become synonymous with that of C.
E. Shannon, who, amongst others, is credited with the statement
of the uniform sampling theorem [2]. The Shannon—Whittaker
theory states that from uniformly spaced samples, one may re-
construct a signal that contains no frequencies above half the
sampling rate (a limit to which Nyquist’s name has become at-
tached). The importance and attraction of this theorem is that
the samples of a bandlimited signal at an appropriate rate con-
tain all information needed to reconstruct the signal.
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Shannon’s reconstruction theorem applies only to the case
of uniform samples. There are a variety of applications in
which the samples cannot be collected uniformly and the data
are known only on a nonuniformly spaced sampling set. In
communication theory, when data from a uniformly sampled
signal are lost, the result is generally a sequence of nonuniform
samples [3], [4]. The problem of signal reconstruction from its
nonuniform frequency-domain samples arises in computerized
tomography (CT) and magnetic resonance imaging (MRI)
[5]. There are also applications where we can benefit from
introducing irregular sampling (e.g., quantization methods [6]).
In all of these examples, standard reconstruction techniques
developed mainly for uniformly spaced samples [2] cannot be
applied.

It is well established that a bandlimited signal is uniquely
determined from its nonuniform samples, provided that the av-
erage sampling rate exceeds the Nyquist rate. The essential re-
sult is incorporated in the reconstruction theorem by Yao and
Thomas [7]. Different extensions of the nonuniform sampling
theorem are known [8]. Specifically, Yen considered the case
where a finite number of uniform sampling points migrates in
a uniform distribution to near distinct points [8]. He also con-
sidered the case of recurrent nonuniform sampling. A review of
these reconstruction methods can be found in the tutorial article
by Jerri [9]. Efficient filterbank reconstruction techniques from
recurrent nonuniform samples were developed in [10].

Numerical implementation of all the reconstruction algo-
rithms mentioned before is impossible on a digital computer
due to practical limitations of the methods. Specifically, the
reconstruction functions typically have infinite length. Thus,
in practice, to overcome this problem, the infinite functions
involved in the reconstruction must be truncated. In [11],
finite-impulse response (FIR) filters were developed to re-
construct a nonperiodic-bandlimited signal from its recurrent
nonuniform samples. Polynomial impulse-response FIR filters
for reconstruction of two-periodic nonuniformly sampled
signals were proposed in [12]. In both of these methods,
perfect reconstruction is impossible; instead, the FIR filters
are designed to optimize the least-squares and minimax re-
construction errors. Another issue is that in most practical
applications, we only have a finite number of samples, while
the reconstruction algorithms above require infinite data sets.
Thus, the problem of reconstructing an infinite-length signal
reduces to that of approximating the signal from a finite number
of nonuniform samples.

In this paper, we consider the problem of reconstructing a pe-
riodic bandlimited signal from nonuniform samples. Given a fi-
nite number of samples, we can always extended them period-
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ically across the boundaries. Fortunately, in many practical sit-
uations, the functions under consideration are not arbitrary, but
possess some smoothness properties, so that the signal can be
regarded as approximately bandlimited. This approach is fre-
quently encountered in image processing [13], where we are
given a finite number of samples from a space-limited 2-D func-
tion. There are also applications, where the underlying signal is
periodic. For example, a 2-D signal given in polar coordinates
is periodic in its azimuthal coordinate [14].

Several iterative reconstruction methods for periodic ban-
dlimited signals from nonuniform samples have been previously
suggested [15], [16]. The method proposed by Marvasti in [15]
is based on a sample and lowpass filter strategy in order to
update the current solution. This strategy requires an accurate
choice of the relaxation parameter and it is not always guaran-
teed to converge to the correct solution. An adaptive weights
algorithm was presented in [16] as an alternative to Marvasti’s
approach to provide stable reconstruction. It turns out that this
algorithm is sensitive to the sampling ratio of the reconstructed
signal and may require a high number of iterations to converge.
In [17], a noniterative block-based reconstruction approach
was developed. This method requires the inversion of large
complex-valued matrices and is designed to work only for
special sets of nonuniform samples. In the case of an odd
number of nonuniform samples, a closed-form (non iterative)
reconstruction formula can be obtained using the Lagrange
interpolation formula for trigonometric polynomials [18]. For
an even number of samples, Lagrange interpolation for expo-
nential polynomials results in a complex-valued interpolation
function [19], [20]. What is lacking therefore is a closed-form
method for reconstruction of a periodic bandlimited signal
from an even number of nonuniform samples using real-valued
functions. Furthermore, as we show in Section III, in the over-
sampled case, Lagrange interpolation provides reconstruction
in a space which is larger than the space in which the original
signal is contained. In noisy environments, this fact inserts
perturbations to the reconstruction which are not in the space
of the reconstructed signal (i.e., high-frequency components of
the noise).

Our goal in this paper is to fill these gaps in the theory of
nonuniform sampling of periodic bandlimited signals. Specif-
ically, we derive closed-form algorithms involving real-valued
functions for reconstructing a periodic bandlimited signal from
an even and an odd number of nonuniform samples. We also de-
velop reconstruction algorithms for oversampled periodic ban-
dlimited signals, which provide reconstruction in the original
signal space. In addition, we focus on some practical aspects of
the reconstruction algorithms: stability and efficient implemen-
tation of the reconstruction. In [4], stability was discussed in the
context of recovery of lost samples in nonperiodic bandlimited
signals. In this paper, we provide a general framework for inves-
tigating the stability of noniterative methods for reconstruction
of periodic bandlimited signals. The condition number is used
to characterize the relation between the discrete-time noise of
the samples and the resulting continuous-time error. We then
apply our results to two specific sampling cases: uniform and
recurrent nonuniform sampling, which are the most common
in practical applications. We show that uniform sampling re-
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sults in the most stable and simple reconstruction algorithm.
We note that similar results were derived in [21] for iterative re-
construction methods of periodic bandlimited signals. Recurrent
nonuniform sampling is of interest in digital signal processing
due to its ability to represent the sampling process as a bank
of digital-to-analog (D-to-A) converters [22]. Here, we develop
efficient filterbank structures for the reconstruction of periodic
bandlimited signals from recurrent nonuniform samples.

This paper is organized as follows. In Section II, we start with
a brief definition of frames and the space of periodic bandlim-
ited signals. In Section III, we discuss the reconstruction of a
periodic bandlimited signal from nonuniformly spaced samples.
In Section IV, based on the theory of frames and the recon-
struction method of Section III, we develop a new algorithm for
the oversampled case. We then compare these two algorithms
and discuss advantages, disadvantages, and properties of each
method. Sections V and VI focus on the reconstruction of pe-
riodic bandlimited signals from uniform and recurrent nonuni-
form samples, respectively. In these sections, we derive simple
reconstruction formulas and show that the stability analysis in
these cases is simplified significantly. We then develop an ef-
ficient interpretation of the reconstruction processes from uni-
form and recurrent nonuniform samples using continuous-time
linear time-invariant (LTI) filters. Experiments supporting our
theoretical results and comparisons to standard methods found
in the literature are provided in Section VII. A summary con-
cluding the work is given in Section VIII. In the various sections,
key results are stated and their detailed derivation is included in
the appropriate Appendix.

II. PRELIMINARY NOTIONS

A. Periodic Bandlimited Signals

We consider the problem of reconstructing a periodic ban-
dlimited signal from its nonuniform samples. A real periodic
signal z(t) € L9[0,T] with period T that satisfies the Dirichlet
conditions! has the following Fourier series representation:

z(t) = % + Z (ak cos (—27;“) + by sin (—27;]“))

k=1

oo /.2 k
> ckeXp{J u t} ()

k=—o0

where L»[0,T] is the space of square-integrable functions on
the interval [0, 7] and ag, by, ci are the Fourier coefficients
of the trigonometric and exponential representations of z(t),
respectively, and are given by

2 [T 27kt

ar = T/o x(t) cos <T> dt
2 [T 27k

by, = T/o x(t) sin <7er1&> dt

I —j2mkt
ck:T/O x(t)exp{%}dt. 2)

IThe signal z(¢) is absolutely integrable over one period, has a finite number
of maxima and minima in one period, and is continuous.
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The Fourier transform of z(t) is defined as

oo

X(w) = /oo p(t)e Mt = > b <w - #) 3)

- k=—oc0

where §(w) is the Dirac delta function.

A T-periodic signal z(t) is said to be bandlimited to 27 K /T
if ¢4, = 0 for |[k| > K. Such signals are also known as
trigonometric polynomials of degree K [18]. We denote the
space of T-periodic signals bandlimited to 27w K /T by Vx and
refer to such signals as K -bandlimited. From (1), we conclude
that Vi is spanned by the 2K 4+ 1 orthonormal functions
{e=12mR/T _K < k < K}, namely

Vi :span{e*ﬂ”Kt/T,...,1,...,ej2”Kt/T}. ()

The dimension of Vi is M = 2K + 1.

B. Frames and Bases

Our approach to reconstructing z(t) € Vg from its N
nonuniform samples {z(¢;)}¥ is to represent it as a linear
combination of functions ¢;(t) € L2[0,T7, i.e.,

N
= al(ti)ei(t) ()
=1

where the functions {¢;(#)}_, can be linearly independent, in
which case they form a basis for the space Vi, or they can be
linearly dependent, in which case they form a frame for the sub-
space V. Frames and bases provide a general framework for
studying nonuniform sampling of periodic bandlimited signals
[23]. The family of functions {@;(t)}Y; € V(¢p) is called a
frame for V() if there exist constants A > 0and B < oo such
that for all z(t) € V(y) [24]

Allz(®)]? < ZI

Here, (z(t),y(t)) = (1/T) fo t)dt is an inner
product of two T-periodic functlons z(f) and y(¢) and
lz()]> = (x(t),z(t)) is the squared norm of x(t). The
constants A and B in (6) are called the frame bounds and

= N/M is the redundancy, where M is the dimension of
V( ).IfN = M (i.e.,r = 1, then {(p;(¢)} Y, is a basis). If the
two frame bounds are equal A = B, then the frame is called
a tight frame. If, in addition, N = M, then {y;(¢)}, is an
orthonormal basis. The frame bounds can be determined as the
highest and lowest eigenvalues of the frame correlation matrix
R, with the 7jth element

Rij = (pi(t), (1)) (7)

For a more comprehensive treatment of frames and bases, see,
for example, [24].

t),0i(t)* < Blla@®)|®.  (©6)

C. Stability Analysis

One of the most important properties of a reconstruction al-
gorithm is its stability, namely, the effect of a small perturba-
tion of the samples on the reconstructed signal. If the samples
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{x(t;)} ¥, of the signal () in (5) are perturbed by a sequence
{w;}¥ |, then, according to [25], the perturbation in the output
T (t) satisfies

A |Pwll _ llzw®)lLap0,7) B ||Pw]|
Bllz(t)ll = lNz®)llL.0m Allz(ty)]]

where P is an orthogonal projection onto the orthogonal com-
plement of the null space of the frame operator, and ||¢|> =
1/N ZL , ¢2 denotes the squared norm of vector ¢ in an N-di-
mensional vector space. Based on the inequality (8), Unser and
Zerubia [26] defined the condition number of the reconstruction
algorithm as the ratio

®

K= )

The quantity (9) provides an indicator of the stability and overall
robustness of the reconstruction. The optimal situation is obvi-
ously k = 1, which holds in the case of an orthonormal basis
or a tight frame. We observe from (7) that x depends on the dis-
tribution of the sampling points only and not on the sampled
signal. This number may be very large in critical cases, where
samples are very close to each other or large gaps exist between
sampling points. As a result, the reconstruction algorithm be-
comes very unstable in these cases.

The calculation of « directly from the eigenvalues of the cor-
relation matrix R can be computationally demanding for large
values of V. In Sections V and VI, we develop methods for ef-
ficient evaluation of the resulting condition number for the case
of uniform and recurrent nonuniform sampling.

III. RECONSTRUCTION FROM NONUNIFORM SAMPLES

The problem of reconstructing a T-periodic K -bandlimited
signal z(t) from its samples was first considered by Cauchy
in 1841 [1] and was later investigated by several authors [19],
[27]-[30].

A straightforward approach to reconstructing z(t) of (1) from
N nonuniform samples {z(¢,) N_ ! is to solve the set of N

linear equations with 2K + 1 unknowns {en}E &

K
§ cke]277ktp/T7

p=0,...,N —1. (10)
k=—K
Equation (10) can be expressed in matrix form as
x = Ac (11)
where the matrix A is given by
e—i2rKto/T .. ei2mKto/T
e—i2nKt /T 0i27Kt1/T
. . (12)
eijWI(.tN—l/T - i ejQﬂ'Kt.N_l/T
and
x = (z(to) x(t1) w(ty-1))"
c=(c_cxg - ¢ i)'
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This method requires computing the inverse (if N = 2K +1) or
pseudoinverse (if N > 2K + 1) of the N x (2K + 1) matrix A
of (12), which is computationally demanding for large values of
N. In addition to the computational complexity, this approach
does not provide insight into the behavior of the reconstruction
algorithm in noisy environments and we cannot use efficient
signal-processing techniques, such as filtering and convolution
in the reconstruction process.

Instead, we propose an alternative reconstruction strategy,
where we directly represent the signal z(t) as a linear combi-
nation of reconstruction functions {5, ()}, i.e.,

N-1

2(t) = 3 w(t,)hy (1),

p=0

(13)

This method, together with the theory of frames, allows us to
analyze the stability of the reconstruction algorithm and gain in-
sight into the reconstruction process. It will also lead to efficient
filter and filterbank structures for reconstruction from uniform
and recurrent nonuniform samples, as we show in Sections V
and VL

The set of reconstruction functions {h,(¢)} for N = 2K + 1
uniform samples was first treated by Cauchy [1] and later by
Stark [27], Brown [30], and Schanze [29] in different ways. Re-
construction from any even number N of uniform samples was
considered in [28] and [29]. As we show in Section V, these re-
sults are all special cases of Theorem 1 derived in this section.

Reconstructing a periodic bandlimited signal from nonuni-
form samples is considerably more complicated. When the
number of sampling points N is odd and it satisfies N > 2K +1,
x(t) can be obtained using the Lagrange interpolation formula
for trigonometric polynomials [18]. For any even N greater
than 2K + 1, Lagrange interpolation generates a set of complex
valued functions {h,(t)} [19], [20]. In Theorem 1, we will
show that reconstruction can be obtained using real-valued
functions that are simpler than those derived in [19].

Theorem 1: Let x(t) be a T-periodic signal bandlimited to
2w K /T. Then, z(t) can be perfectly reconstructed from its N >
2K + 1 even number of nonuniformly spaced samples z(t,) as

N-1
w(t) = > w(ty)hy(t) (14)

p=0

where

_ oy V=1 sin (Tt
hy(t) = cos (W(t tp)) H ( T ) (15a)

T ) et sin ()’
a#p

For completeness, we recall the known result that reconstruction
from N > 2K + 1 samples with N odd can also be obtained via
(14) with [18]

N-1 gin (ﬂ(t_m)

hy(t) = T /.
P 32[2 sin ('“'(tp_tq))

(15b)

S
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Proof: Let {tp}ff:_ol denote a set of nonuniformly dis-
tributed sampling points of a periodic bandlimited signal z(¢)
such that 0 < tp < --- < ty—1 < T, where T is the pe-
riod of x(t). Using the periodic property of the signal (i.e.,
z(t,) = xz(t, + nT)), we see that arbitrary sampling of a
periodic signal corresponds to a recurrent nonuniform sampling
scheme of nonperiodic signals according to which a group of
N samples repeats itself along the nonperiodic signal with
period T'. A formula for reconstructing a bandlimited signal
from recurrent nonuniform samples was derived by Yen in [§]
and is given by

o N-1 ap(—l)"N Hfl\;—Ol sin —W(t;t“)
z(t)= Z Z z(t, + nT) ﬂ(tnTtp)( )
n=—oo p=0 - T
(16)
where
N-1 1
a, = H W (17)
q=0 Sl 7T
q#p

Here, the average sampling rate should be greater or equal than
the Nyquistrate (i.e., N > 2K +1). Substituting the nonuniform
samples z(t,) = z(t, + nT) into (16), we have

N-1 o ay(—1)"N Hfl\’:—ol sin (ﬂ(t;tq)>
.’l?(t) = Z x(tp) Z w(t—nT—t,) .
p=0 n=-—00 T

(18)

We now define the function h,,(¢) as the function which mul-

tiplies the pth sampled value in (18). Using the relation sin(¢ —
nm) = (—1)"sin(t), we can express h,(t) as

ap(=1)"™ T sin (2472)

w(t—nT —tp)
T

hp (t) =

(19)

It is easily seen that h,(t) is periodic in T and satisfies the
Dirichlet conditions and, therefore, has the following Fourier
series representation:

hy(t) = Z cpe? 2R/ T

(20)
k=—o0c0
where
17 ,
L = —/ By (t)e 927kt T Qg (21)
T Jo
Substituting h,(¢) into (21), we have
o . w(t—nT—t,)
g g ()
k T 0o ﬁ(t—r,LTT—tp)
N—1
t—nT —1t .
x I sin <w> e~I2T kT g4 (22)
q=0
q#p
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To simplify (22), we replace ¢ by anew variable u = t —nT —t,,.
The integration limits are changed accordingly to I,, = [-nT —
tp, T—nT—t,). Using the fact that e 727" = 1 for any integers
n and k, (22) reduces to

a, _ sm
cp = P j2rkt, /T 2: / ﬁu

ty — tg .
X H sin (L)> e~ 12/ Ty, (23)
q#p

In Appendix A, we explicitly calculate the Fourier coefficients
ci of (23) and show that for IV even

bor—1+bokt1 N
P 5 e k| < >
0, otherwise

—j2nkt, /T
J / , 24)

where the complex coefficients b; are the result of expanding the

product of sines in (78). As we will see, the exact values of b;

do not matter, as they will cancel out in the final expression.
Substituting (24) into (20)

N/2
hy (1) Z bop_ 1 €327k (tE=t)/T
k_—N/2
N/2
5 Z bop 4162 R(E—tR)/T (25)
k=—N/2

Denoting I; = 2k — 1 and I = 2k + 1 in the first and the
second terms of (25), respectively, and using the property (80)
of the coefficient set b; with the fact that by11 =b_n_1 = 0,
we have

N-1
hp(t):%z’ejw—tpw S by edmh /T
l1=—N+1
N-1
+a_pe—j7f(t—tp)/T Z by, ™2 (t=tp)/T
2 lo=—N+1

a N—1
= e t=t/T ] sin

q=0

=t
qF#p < ' )

+ a_pe—jw(t—tp)/T Nl:f sin m(t —tq)
2 T

q=0
q#p
N=1 o} 7T(t*tq)
r(t—tp)> Sm( T )
= cos (26)
< T ql;l(:] sin 7T(tpT—tq))
q#p
completing the proof of the theorem. [ |

Note that the Lagrange interpolation formula of (15b) can be
obtained by applying mathematical derivations, similar to (25)
and (26), for the case of NV odd.

In the next subsection, we discuss properties of the recon-
struction algorithm proposed by Theorem 1.
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A. Properties of the Reconstruction Functions

Combining (20) and (24), the reconstruction functions
{hy(t)} of (15) can be expanded into finite sums of complex
exponential functions

LN/2]

j2rlt) T
§ cpre?%" /

I=—|N/2]

hy(t) = 27)

where || denotes the floor operator, which rounds down to the
nearest integer. This representation will be used in Section IV
to develop an alternative reconstruction algorithm for nonuni-
formly oversampled periodic bandlimited signals. From (27),
we conclude that the functions hy,(¢) are periodic in 7" and have
a limited number of harmonics (i.e., they are bandlimited). The-
orem 2 will establish that they are also linearly independent and
define the space of periodic bandlimited signals for which the
set of functions {h,(¢) i)v " constitutes a basis.

Theorem 2: The set of reconstruction functions {h, (¢)} ;}\:01
defined by (15a) for N even constitutes a basis for the space V,
where

TI'(Nt—O't)> ' (28)

V=Vny_ i
(N 2)/2US1H< T

Here, 0, = ZI])V:_OI t,,and Vi is the space of T'-periodic K -ban-
dlimited functions.

Proof: To prove Theorem 2, we have to show that the
set of N functions {h,(¢) ]])\7;01 of (15a) spans the N-dimen-
sional space V' of (28). It follows directly from Theorem 1 that
V(n—2)/2 is in the span of {hp(t)};,vz_ol. We also observe that
the function z4(¢) = sin(w(Nt — o4)/T) is orthogonal to any
function in V{y_2) /2. Therefore, the dimension of the space V'
itself is IV and we need to show that the function x5(t) is also
in the span of {hp(t)}]]jvz})l. In terms of Theorem 1, we have to
prove that

N-1

z5(t) = Z s (tp)hp (1)

p=0

(29)

Substituting zs(¢) and the exponential expansions of the
functions {h,(t) M=l which are given in (27) into (29), we

p=0>
have
N-1 N/2 '
zs(t) = Z zs(tp) Z cpleﬂ”“/T. (30)
p=0 l:*N/Q

Since z5(t) is a sine function with frequency 7 N/T, only the
terms with |/| = N/2 in (30) contribute to the reconstruction of
the signal x5(t). Using this fact, (30) can be rewritten as

MZ

iL’S (Cp( N/2)€ —JmNt/T +Cp(N/2)€j7rNt/T) . (3D

=0

=

It can be shown that the complex coefficients c,_x/2) and
Ccp(N/2) are given by [31, App. C]

* a (_1)(N/271) —jmo
v/ = vy = g e 7T (32)

Authorized licensed use limited to: Technion Israel School of Technology. Downloaded on May 27, 2009 at 02:41 from IEEE Xplore. Restrictions apply.



MARGOLIS AND ELDAR: NONUNIFORM SAMPLING OF PERIODIC BANDLIMITED SIGNALS

and the constant a,, is defined in (17). Substituting (32) into (31),
results in

N/2—1)N-1
(—1)WV/2=1) xs(tp)@(ejﬂ(m_ot)/:r_e—jw(Nt—ot)/T) )

2N -1 72
p=0
(33)
The last expression can be simplified to
v N-1
. (7m(Nt—0,)\ (—=1)(N/2=1)
zs(t) = sin < T ) N1 apts(ty).
p=0
(34)

Theretofore, our problem reduces to the proof of the following
trigonometric identity:

N-1
Z ap sin (w) — (_1)(N/2—1)2N—1‘ (35)
p=0

Substituting constants a,, and o; into (35), we have

N1 Sin< Ail (W(tpT—tq))>

q=0,9#p

o 1\(N/2—1)oN—1
o = () 2N-1 (36)
PZO Hq:O}q;&pSln (#)

The proof of (36) is given in Appendix B. ]

From Theorem 2, we observe that the functions {h(¢) é\f:_ol
do not span a complete space of periodic bandlimited signals.
To complete this space to V2, we need to add any function
of the form sin(w (Nt — )/T), where § # oy + Tn and n is
an integer. Note, that in the case of N odd, the reconstruction
functions of (15b) span a complete space V(y_1)/2-

An important observation from Theorem 2 is that in the over-
sampled case (i.e., N > 2K + 1), the functions {h,(t)} span
a space which is larger than the space Vi containing the signal
x(t) that is sampled. This fact is the basis for the development
of an alternative reconstruction method in Section IV.

We can immediately verify that the reconstruction functions
{hp(t)};y:})l of Theorem 1 have the interpolation property,
namely

1. k=p
%“”:{d k¢£

If 2(t) is not bandlimited, then the reconstruction Z(¢) given by
Theorem 1 is not equal to z(¢). Nonetheless, the interpolation
property (37) guaranties consistent reconstruction of the signal
z(t) (.e., Z(t,) = x(t,)). Consistency is an important prop-
erty for many signal/image-processing applications [25]. One
such application is the recovery of missing samples from the set
of remaining samples [3], [4]. In this application, consistency
guarantees the desirable property that the set of the remaining
samples stays unchanged after reconstruction.

In the next section, we develop an alternative reconstruction
algorithm for oversampled periodic bandlimited signals, where
the set of reconstruction functions constitutes a frame.

k,p=0,1,....N—1. (37)
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Fig. 1. Power spectrum of a signal (solid line) and white noise (dashed line).

IV. FRAME-BASED RECONSTRUCTION

A. Philosophy of the Approach

Theorem 1 in Section III provides perfect reconstruction of
periodic bandlimited signals from nonuniform redundant (N >
2K + 1) and nonredundant (N = 2K + 1) samples. From
Theorem 2, it follows that in the case of redundant sampling, the
set of reconstruction functions proposed by Theorem 1 spans a
space which is larger than the space of the signal Vi . Thus, the
fact that the signal is oversampled is not taken into account in the
reconstruction process (i.e., the narrow band signal bandlimited
to 27 K /T is reconstructed with functions of wider support).

One of the main reasons for oversampling is to reduce the
average power of additive noise or quantization error, in the
samples {z(¢p)}, [32], [33]. To clarify how the redundancy
may contribute to the reconstruction process, we consider
uniform sampling of a nonperiodic signal f(¢) bandlimited
to Wg. The Shannon—Wittaker theory guarantees perfect re-
construction of such signals from uniformly spaced samples
taken at the Nyquist interval Tg = /W, where sinc(¢/Tq)
is chosen as the reconstruction function [2]. Reconstruction
with sinc(¢/Tg) is equivalent to ideal low-pass filtering
in the frequency domain, where the support of the filter is
[-W¢, Wg]. In the oversampled case in which the sampling
period is Ty < T¢, according to the Shannon—Wittaker theory,
perfect reconstruction is obtained with an ideal low-pass filter
of support [-W, W], where any W, < W < W, with
Wy = w/Ty will lead to perfect reconstruction. When the
samples f,, = f(n1p) of the signal are corrupted by white
noise (e.g., as a result of quantization [33]), we obtain only
an approximated version of the signal f(t). Fig. 1 shows the
power spectral density of the signal bandlimited to Wg and
white noise. From Fig. 1, we can immediately conclude that
the optimal choice is to use a low-pass filter with support
[-Wq, Wg]. This was mathematically proved in [32, p. 137],
where it was also shown that the set of shifted versions of the
function sinc(¢/Tq) constitutes a tight frame for the space of
signals bandlimited to Wg. This approach is advantageous in
analog-to-digital conversion techniques, where it is practically
easier to increase the sampling rate than to reduce the quantiza-
tion error (i.e., quantization step size [34]).

This oversampling example is easily analyzed and understood
without frame formalism. However, in more complicated repre-
sentations, the frame approach is needed. For example, frame-
based algorithms for redundant sampling and reconstruction in
arbitrary spaces were proposed in [35].
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B. Reconstruction From Nonuniform Samples Using Frames

Consider now the reconstruction of a periodic bandlimited
signal. In the oversampled case, if the samples are cor-
rupted by noise, then applying a low-pass filter of support
[-2n K /T, 27 K/T] to the reconstructed signal can reduce the
average power of the noise. We denote this low-pass filtering
as an operator Py, which zeros all harmonics higher than K of
the periodic signal z(t). Formally

§ Ck e]27Tkt/T

Pra(t (38)

where x(t) is a T-periodic signal that is not necessarily bandlim-
ited. We can immediately show that Pg, defined in (38), is an
orthogonal projection of a T-periodic signal z(¢) onto the sub-
space of T-periodic K -bandlimited signals Vi . Applying Pg
to the reconstructed signal of (14) results in

a(t) = Px Y alt NZ ) Prchy(

(39)

which is equivalent to a reconstruction with the set of func-
tions {Pxh,(t)}. Computing these functions explicitly leads
to the following reconstruction theorem. Since the proof is te-
dious, we do not provide it here, but rather refer the reader to
[31, Theor. 4.1].

Theorem 3: The problem of reconstructing a T'-periodic
K -bandlimited signal from arbitrary spaced samples, consid-
ered in Theorem 1, can be solved by (14), with

hy(t) = Ozpo + Z <apk cos (27;“) — Bpi sin (%kf)) .

(40)
For N odd
ap(—1)k TP
o =" 3 eos(7)
PEG K
ap(—1) . (TP
Boe = g Y sin (T) (1)
PEG K
where Gy, is the set of all possible sums of values {t,}’\ pa o s

when (N — 1)/2 + k of them are chosen with a negative sign

and (N — 1)/2 — k are positive.
For N even
_ ap(_l)k . (TP . (TP
o =i | 2 () = X sin ()
PEG], PEG,,
_ap(_l)k T Y
=" | 20 cos (F7) = 2 eos () | @2
peGT, ean

where the set { G DG k} consists of all possible sums of
values {t,}27 q:() , when N / 2 + k of them are chosen with the
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TABLE I
SUMMARY AND COMPARISON OF TWO RECONSTRUCTION METHODS
[ Theorem 1 [ Theorem 3
Perfect reconstruction in Vi Yes Yes
Interpolation property Yes No
Set of reconstruction functions forms Basis Frame
Stability of reconstruction Less stable | More stable

negative sign and IN/2 — k are positive. The value of ¢,, appears
with positive and negative signs in G;’k and G, respectively.

The explicit formulas for calculating the coefficients oy, and
Bpr, of (41) and (42) are obtained by applying the orthogonal
projection Py of (38) onto (27). To determine the properties
and relation of these reconstruction methods, we rely on the
following proposition.

1) Proposition 1: ([24, p. 95]): Let {¢;(t)}Y.; be a Riesz
basis for the space W with frame bounds Ay and Byy, and let
P denote the orthogonal projection of W onto a closed subspace
V. Then, { P, (t)}¥ | is a frame for V with frame bounds Ay
and By, such that Ay > Aw and By < Byy.

Proposition 1 leads directly to the conclusion that the set of
functions { P h,(t)} of (40) constitutes a frame for the space
Vi with redundancy ratio r = N/(2K + 1). From Proposi-
tion 1, we may also conclude that the frame bounds of the set
{Prh,(t)} are tighter (no looser) than the bounds of the set
{hy(t)} of (15). As aresult, the condition number x = A/B of
the frame {Px h,(t)} is no larger than « of {h,(¢)}.

In the ideal case in which z(t) is K-bandlimited and its
samples are not corrupted by noise, the reconstruction func-
tions (15) and (40) both lead to perfect reconstruction of z(t).
However, when z(t) is not truly bandlimited or its samples
{z(tp)} are corrupted by noise, these two methods lead to
different reconstructions. Note that the interpolation property
(37) no longer holds when using (40) (i.e., in the nonideal
case, the reconstructed signal Z(¢, ) does not necessarily satisfy
Z(tp) = x(tp)).

To conclude this section, we summarize the basic properties
of the reconstruction functions {h,(¢)} developed in Theorem 3
and compare them to the properties of the reconstruction func-
tions of Theorem 1 in Table I.

In the following sections, we consider two special cases of
sampling: Uniform and recurrent nonuniform sampling.

V. RECONSTRUCTION FROM UNIFORM SAMPLES

The most popular form of sampling used in the context of
digital signal processing (DSP) is uniform sampling in which
t, = pT'/N, due to its simplicity and stability of reconstruction.
The formulas for reconstructing a periodic bandlimited signal
from uniform odd, even, and redundant samples were already
developed in [1], [27], [29], and [30]. In this section, we show
that these results are all special cases of Theorems 1 and 3. We
then analyze the stability of the reconstruction algorithms.

A. Reconstruction Formulas

To simplify the expression for h,(t) of Theorem 1 for this
case, we first show that product of sines in (15) has an equiva-
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lent representation, which holds only for the case of uniformly
spaced data

N-1 gin (W(t;tq)> sin (N""(;_tp))

i sin (2tertd)  Nsin (2e)
q9Fp

(43)

The proof of (43) is given in Appendix C. The last expression is
a scaled Dirichlet kernel Dy (¢) [18], which plays an important
role in the theory of DSP. Substituting (43) into (15), we have

. Nm(t—ty)
]S\ir;i(n(w(qt"’rip_)) ) N odd

hy(t) = (44)

. Nw(t—t
sm(%

w(t—tp)>
COS =
( T Nsin(w) ’

which is equal to the reconstruction function derived in [1], [27],
[30], and [29].

In Appendix D, we show that for the uniformly oversam-
pled periodic bandlimited signal, the frame-based reconstruc-
tion function is given by

N even

sin (w<2K+;><t—tp))

. w(t—tp)
N sin (T)

which is equal to the reconstruction function derived in [28] in
a different way.

hy(t) = (45)

B. Reconstruction With an LTI Filter

For uniform samples, the reconstruction (14) can be ex-
pressed as z:(t) = s(t) * h(t), where s(t) is an impulse train of
samples

N-1
s(t) = z(t,)o(t — t,) (46)
p=0
and
N“(H(T_)) , N odd
h(t) = B sin( 21) 47)
it T N even.

From (46), it follows that z(¢) is obtained by filtering s(¢) with
an LTI filter with an impulse response h(t) given by (47). This
filtering operation is schematically shown in Fig. 2(a).

The frequency response H(w) of the continuous-time filter
h(t) of (47) is given by (48), shown at the bottom of the page,
which was obtained by calculating the Fourier transform of (47).
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Fig. 2. Reconstruction from uniform samples using a continuous-time filter.
(a) Filtering scheme. (b) Frequency response of the filter for N = 10.

The frequency response H(w) of (48) for the case N = 10
(even) is shown in Fig. 2(b).

Evidently, in both cases of odd and even number NV, the filters
are bandlimited. For N odd, H (w) is a low-pass filter (LPF) for
periodic uniformly sampled signals with a cutoff frequency of
m(N —1)/T.Inthe case of N even, H(w) is wider than the LPF
with cutoff frequency (N —2) /T but is not an LPF with cutoff
7N /T. For the frame-based reconstruction of (45), H(w) is an
LPF with cutoff frequency 2w K /T.

C. Stability of Reconstruction With Bases

We now analyze the stability of the reconstruction functions
(44), based on the calculation of the correlation matrix R, de-
fined in (7). Due to the special structure of R for uniformly
spaced samples, the calculation of its eigenvalues and the con-
dition number ~ are immediate.

In the case of N odd, the entry (4, k) of the correlation matrix
R (i.e., the inner product of two periodic functions h;(t) and
hi(t)) is given by (h;(t), hr(t)) = (1/N)é(i — k), or equiva-
lently, R = (1/N)Inxn, where Iy is the N x N identity
matrix. Therefore, for NV odd, the set of reconstruction functions
of (44) constitutes an orthonormal basis for the space V(y_1)/2,
and its condition number is x = 1, which is the lowest possible
value for . Due to the low condition number, the set {h,(¢)}
of (44) provides stable reconstruction in the presence of noise.
Results for the case of IV even, are summarized in the following
theorem.

(N-1)/2

+ o= ),
Hw) = n=—(N-1)/2
and (@ = o) + ond (w+ o

)+ X (w2,

(N-2)/2 (48)

n=—(N-2)/2
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Theorem 4: The set of reconstruction functions of (44)
for N even constitutes a basis for the space V, where
V= Vin—2)2Ucos(rNt/T) and its condition number
sk = 2.

Proof: The first statement is obtained from substituting the
set of uniform samples into (28) and using the fact that sin(f —
w/2) = cos(f).

To prove that kK = 2, calculating the inner products of the
functions h;(t) and hg(t), we have

2N —1 . ]C
2N2 =
Rit ={ 5=, (i—Fk)odd (49)

—gvz, (i—k)evenandi # k.

From (49), R is a symmetric circulant matrix of the form

a b =b b
b a b -b

R=|-b b a b (50)
b —-b b a

where b = 1/(2N?) and a = 1/N — b. Denoting the N values
of the first row of the matrix R by r,, n = 0,...,N — 1, we
have Rix = 7'(k—i) moa ~- Since R is circulant, its eigenvalues
{\m} ,Nn;(l) can be easily calculated as the discrete Fourier trans-

form of r,, [36]

N-1 '
Am = rpe2mmm/N, (51)
n=0
Substituting the values of the first row of R into (51)
N-1 '
Am =a+b—b Z e]wnefj%rnm/N
n=0
a—(N-1b, m=1%
= N (52)
{ a+b, m# 5.
The condition number & is then
a+b
T A (N— b (53)
|

From Theorem 4, we conclude that the set of functions
{h,(t)} is not an orthonormal basis, for which x = 1. We also
observe that x does not depend on N and T'; thus, the set never
converges to an orthonormal basis. As a result, reconstruction
from an even number of uniform samples, where x = 2, may
be less stable compared to N odd, where x = 1 and the set
{h,(t)} is orthonormal.

D. Stability of Reconstruction With Frames

Our main result concerning the reconstruction with frames is
stated in the following theorem.
Theorem 5: The set of reconstruction functions of (45) con-
stitutes a tight frame for the space V.
Proof: See [31, p. 58]. [ |
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Fig. 3. Recurrent nonuniform sampling distribution for N, = 3 and M, = 2.

From Theorem 5, we conclude that frame-based reconstruc-
tion with functions (45) leads to the lowest possible condition
number x = 1. Since the number of reconstruction functions is
N and the dimension of the space Vi is 2K + 1, the redundancy
ratio 7 of this tight frame is N/(2K + 1).

Reconstruction with frames is also popular due to its ability
to remove the high-frequency components of the noise. It was
shown in [32] that for the case of reconstruction of nonperi-
odic bandlimited signals from uniform samples that the power
of white additive noise is reduced by a factor of . This result
holds also for uniform sampling of periodic bandlimited signals.
The theoretical derivations of this section will be supported by
simulation results in Section VII.

VI. RECURRENT NONUNIFORM SAMPLING

We now consider the case of recurrent nonuniform sampling.
In this form of sampling, the sampling points are divided into
groups of N, nonuniformly spaced points. The groups have a
recurrent period, which is denoted by 7;.. One group of nonuni-
form samples repeats itself M, times along the T'-periodic
signal z(t), where M, T,, = T. Denoting the points in the first
recurrent group by t,., » = 0,1,... N, — 1, the complete set
{tp };)\T:_Ol of sampling points in one period 7 is

ty € {tr+nTy, 1=0,...Ny—1, n=0,... M, —1} (54)

or equivalently

tP :thOdN,‘_i_ LNiJ T’I‘? p:0717N_1 (55)

An example of a sampling distribution for the case /V,, = 3 and
M, = 2 is depicted in Fig. 3.

This sampling scheme can be regarded as a combination of
N, sequences of uniform samples with M, points each, taken
with interval T,.. This interpretation of the sampling method
is schematically shown in Fig. 4. Recurrent nonuniform sam-
pling arises in a variety of applications, among them conversion
of continuous-time signals to discrete time using a set of N,
A-to-D converters, each operating at the rate 1/7,.. In the gen-
eral case, these IV, converters are not necessarily synchronized,
leading to a recurrent nonuniform distribution of the samples.
From a practical point of view, it is much easier to design a set of
N, converters each with rate 1/7,. than one converter working
at the higher rate of N,./T,.

We first develop a formula for reconstructing a periodic ban-
dlimited signal from recurrent nonuniform samples. We then de-
velop efficient implementations of this reconstruction formula
using continuous-time and discrete-time LTT filters and analyze
the stability of the reconstruction method.
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ejwt“ A_>< T :E(to + nT,)
T
® ewts Ji T 2ty +0T))
T N
T,
eJwin, 1 —>§ I, g;(tN’_l + nTT)

Fig. 4. Recurrent nonuniform sampling model.

A. Derivation of the Reconstruction Functions

Substituting the recurrent nonuniform sampling set of (54)
into (15b) for an odd number of samples (i.e., N = M, N, is
odd), and using the identity (43) which is satisfied for equally
spaced samples and the fact that sin(7(t—6)/T") = — sin(n(t—
6 —T)/T), we have

M,—1 gin (ﬂ(t—tp—mTT))

T
h,(t) =
p( ) sin (w(tpftpfmTr))
m=1 T
N,—1 M,—-1 gip (%)
X
ql;[o o sin (w)
g#pmod N
sin (—Mrwgf_tp)) N,—1 gin (7M”T§f_t“))
M, sin (@) g=0 sin (W)
q#p
[T sin (*=mf="2)
T () °o
T
where
1
b, (57)

o No=1 . [ Myw(ty—ty)\
MT Hq:O,q#p Sin (T

Similarly, we can derive the reconstruction function for an even
number of samples, which results in

N,.—1 . M, 7 (t—t,)
w(t —t,) IT,Zo sin T
hy(t) = by, cos ( T L ) (

) (58)

where b, is defined by (57).

From the definition of the reconstruction functions of (56)
and (58), we can immediately verify that if two functions h;(#)
and h;(t) belong to one of the V,. uniform sets (see Fig. 4) (i.e.,
1t — 7 = mN, where m is an integer), then one function is a
shifted version of the other, namely

hP(t) = h(pmodNr) (t - \‘NirJ Tr> . 59)
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The frame-based reconstruction from recurrent nonuniform
oversampling of periodic bandlimited signals is obtained by or-
thogonal projection of the set {h,(t)} of (56) or (58) onto the
space Vi . We do not give an explicit formula for this set of func-
tions due to the complexity of representation, but we discuss its
properties and provide efficient implementations of the recon-
struction in the following subsections.

B. Reconstruction Using a Continuous-Time Filterbank

We now show that the reconstruction formulas (56) and (58)
from recurrent nonuniform samples can be implemented using a
continuous time filterbank. The ideas of this section are similar
to those developed in [10] for recurrent nonuniform sampling of
nonperiodic signals.

First, using the periodicity of the recurrent nonuniform sam-
pling and the property (59), which states that all of the functions
in the set (56) or (58) are shifted versions of IV, functions, (14)
can be rewritten as

M,—1N,—1

2= 3 3 wltyenn, Yyt +nT)),

n=0 p=0

(60)

The last expression (60) can be equivalently represented as a
sum of NV,. convolutions

N,—1
w(t) = D sp(t) = hy(t) (61)
p=0
where s, (¢) is an impulse train of samples
M,—1
sp(t) = Y a(nT, +t,)8(x —nT, —t,).  (62)
n=0
For N odd
Hév;()—l sin (]\Lw(t-;tp—tq))
hy(t) = bp —— (63a)
Sin (T)
and for N even
No=1 . Myw(t+ty—ty)
xt\ 1l %, sin (7T )
hy(t) =05 — 63b
»(t) pCOS<T> sin(%t) (63b)

where b, is defined in (57). Equation (61) can be interpreted as a
continuous-time filterbank as depicted in Fig. 5. Each of the N,
uniform sequences of samples s, (¢) formed according to (62)
is filtered by a continuous-time filter H,(w) with an impulse
response given by (63). Summing the outputs of the N, filters
results in the reconstructed signal x(¢).

Note that each subsequence corresponds to uniform samples
at one- N ,.th of the average sampling rate. Therefore, the output
of each branch of the filter bank is an aliased and filtered version
of z(t). The filters, as specified by (63), have the inherent prop-
erty that the aliasing components of the filter outputs cancel in
forming the summed output z(t).
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So(t)
#(nT; + to) ‘?— Ho(w)
SMLS(t— T — to)
Sl(t)
z(nT, +t1) Hy(w) 4’\+>—’ (1)
Zy:o_l 0(t —nT, — t1)
sn,—1(t)
x(nT, +tn.—1) Hy 1 (@)

Z;n.,lz’t;l o(t —nT, —tn,—1)

Fig.5. Reconstruction from recurrent nonuniform samples using a continuous-
time filterbank.

To determine the frequency response H,,(w) of the filter h,(t)
of (63), we note that h,(t) can be expressed as

sin (Mﬂrt) N,.—1 .
hp(t) = by———22 > e T (64a)
sin (—) S
and for NV even
£\ sin (Mot N,—1 .
hp(t) = bp CcoS <7T_> LZ;) Z cpkejk]\ITﬂt/T
T ) sin (%) e
(64b)

where the complex coefficients ¢, are the result of expanding
the product of sines in (63) into complex exponentials.

The first terms in (64) correspond to LPFs with cutoff fre-
quency mM,./T, which we denote as Hypr (w; mM,./T). The
effect of the summation and multiplexing by the exponent is to
create [V, shifted and scaled versions of this bandlimited filter,
ie.,

N,.—1

>

k=—N,+1

knM, wM,
CpkHLPF <w — 5 ) . (65)

T ' T

Hence, we conclude that the filters H,(w) in Fig. 5 are bandlim-
ited to M, N,./T, and each filter H,,(2) is piecewise constant
over frequency intervals of length 27 M. /T This fact allows for
further efficiency in the implementation.

Note that the filter frequency responses H,(w) for periodic
signals are the sampled versions of the filter frequency responses
for the nonperiodic case treated in [10]. This fact is illustrated
in Fig. 6 of the following example.

1) Example 1: We consider the problem of reconstructing a
periodic ten-bandlimited signal z(¢) from recurrent nonuniform
samples with 7" = 27. The set of nonuniform samples in the first
group is given by ¢ty = 0, t; = 0.087, and ¢, = 0.227, repeated
with period 7, = 7/6 so that N, = 3 and M, = 12.

The reconstruction in this case is obtained using a bank of
three continuous time filters. In Fig. 6(a), we depict the third
filter Ho(w) of the filterbank. As we expect, the filter is ban-
dlimited to 7M. N,./T = 12-3/2 = 18, since Hs(w) is created
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|Ho(w)]
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(b)

Fig. 6. Frequency response of H>(w) for the reconstruction methods of The-
orem 1 (a) and Theorem 3 (b).

by three (IV,.) shifted and scaled versions of a filter bandlimited
to M,./2 = 6.

We note that using the frame-based reconstruction also leads
to a filterbank reconstruction, similar to that described in this
section. In Fig. 6(b), we depict the third filter H(w) of the filter-
bank of the reconstruction method of Theorem 3. As expected,
this filter is an orthogonally projected version of the filter de-
picted in Fig. 6(a) onto the space of the reconstructed signal.

C. Interpolation and Reconstruction Using a Discrete-Time
Filterbank

Most of today’s signal-processing operations are performed
on digital computers. Therefore, efficient techniques for digital
processing of the signal are required. Following an analogous
procedure in [10], the continuous-time filterbank of Fig. 5 can be
converted to a discrete-time filterbank followed by a continuous-
time LPF.

The interpolation identity, which was developed in [10],
states that each branch of the continuous-time filterbank of
Fig. 5 can be replaced by an equivalent block. This block
consists of expanding a sequence of samples by a factor of N,
and then filtering by a discrete-time filter

H,(w) = %HP (%) eI N/T | <w. (66)
The filter output is then followed by impulse modulation and
lowpass filtering.

Applying this interpolation identity to each branch in Fig. 5
and moving the impulse modulation and LPF in each branch
outside the summer, we obtain the equivalent implementation
in Fig. 7.

The discrete-time filterbank of Fig. 7 can be used to interpo-
late the uniform samples and to reconstruct the continuous-time
signal from its recurrent nonuniform samples very efficiently,
exploiting the many known results regarding the implementa-
tion of filterbank structures. We also note that due to the na-
ture of periodic signals, each filter in Fig. 7 is of finite length.
Therefore, these filters can be exactly calculated by combining
(64) and (66) and there is no need to approximate these filters
as in the case of infinite length filterbank structures. As with the
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N-1
.'II(TLTT +tNr_1) TN"” HNT—l(w)
Fig. 7. Reconstruction from recurrent nonuniform samples by using a discrete-time filterbank.
continuous-time filterbank, the magnitude response of the dis- T = 5T,
crete-time filters is piecewise constant, which allows for further to t1
. . . . o Tt L
efficiency in the implementation. —e *—e —e e - f t
O TT .o T

D. Stability of Reconstruction

We now provide an analysis of the stability of the reconstruc-
tion, using the set of reconstruction functions {h,(¢)} of (58).
Similar to the case of uniform sampling, we calculate the cor-
relation matrix R of the set {h,(¢)} and provide an efficient
technique for determining its eigenvalues. We also present an
example of recurrent nonuniform samples and investigate the
behavior of the condition number as a function of the sampling
distribution. As we will see, the optimal distribution of the sam-
ples, which results in the lowest value of x in the case of ban-
dlimited signals, is uniform.

Using (59) and the fact that the inner product of two periodic
functions x(t) and y(t) is shift invariant, namely (z(t—7), y(t—
7)) = (z(t), y(t)), we can show that

R(i,7) = R((i + nN,.) mod N, (j + nN,.) mod N). (67)

From (67), we conclude that the matrix R has the following
form:

Ay A, A, Ay, 1
Au,—1 Ay Ay A2
R= ) . ) (68)
A A, Ao

where the submatrices A, andr =0, ..., M, — 1 are N,. X N,
matrices with entries

A, (i) = (hi(t), hjtrn, (1))- (69)
Evidently, R is a block circulant matrix, where each row of
submatrices is a cyclic shift of the row above it [37]. To compute

the eigenvalues of R, we define the discrete Fourier components
of R as

M, —1
Av= > WHFA, k=0,...
r=0

M,.—1  (70)

Fig. 8. Sampling distribution for V,, = 2 and M,. = 5.

where W = ¢ 7(27/M>) [ et { ki ﬁvzro_l be the N,. eigenvalues
of Kk forevery k = 0,..., M, — 1. It was shown in [37] that
the eigenvalues of an Hermitian block circulant matrix are the
eigenvalues of the discrete Fourier components. Therefore, the
eigenvalues of the matrix R of (68) are given by

AR) =Xy, ©=0,...N,—1, k=0,...M, —1. (71)

The last result (71), significantly simplifies the calculation of
the condition number « of the reconstruction algorithm in the
case of recurrent nonuniform samples. Instead of computing NV
eigenvalues of an N x N matrix R, which may be very large,
we compute NV, eigenvalues of the M,. matrices A defined by
(70), where typically N, < N. We note that for the frame-
based reconstruction, the computation of the condition number
is exactly the same.

The following example emphasizes the simplicity of com-
puting « in the case of recurrent nonuniform samples. In this
example, we compare the condition number «, when a basis and
frame are used for reconstruction. We also show that the optimal
distribution of the samples, which results in the lowest possible
value of the condition number, is uniform.

1) Example 2: We consider a recurrent nonuniform set of
samples, where N, = 2, M, = 5, and the period of the re-
constructed signal is 7" = 10. The remaining parameters can be
calculated as T, = T/M,. = 2and N = N,.M, = 10 (even).
Without loss of generality, we assume throughout this example
that g = 0. Thus, the sample #;, which dictates the position of
the second uniform sequence of samples, may take on values in
the range 0 < ¢; < T).. We define the space of the T'-periodic
signal z(t) involved in reconstruction to be V3 (i.e., the redun-
dancy of the frame is » = 10/5 = 2). An example of this set of
samples is presented in Fig. 8, where the vector illustrates the
mobility of the sample ¢;.
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Fig. 9. Comparison between the condition number x of the reconstruction
method of Theorem 1 (dashed line) and of the frame method of Theorem 3
(solid line), as a function of ¢;. The set of recurrent nonuniform samples is
defined in Example 2 and the space of the sampled signal is V5 (r = 2).

The behavior of the condition number as a function of the
location of ¢ is shown in Fig. 9. The smallest and largest eigen-
values are obtained from (71) by computing the eigenvalues of
52 x 2 matrices, which is much easier than direct calculation of
the eigenvalues of the 10 x 10 matrix R.

As predicted by Proposition 1, the condition number of the
frame method is significantly lower than x of the set of recon-
struction functions of (58). We observe, that in the neighborhood
of t; = 1, the condition number of the frame based method is
very low and it achieves the minimal value for ¢; = 1, where
the recurrent nonuniform sampling set becomes uniform and the
set of reconstruction functions constitutes a tight frame. We also
note that in the reconstruction method of (58), the lowest achiev-
able value of « for this sampling set is 2, as predicted by (53)
for N even.

From this example, we conclude that uniform sampling re-
sults in the most stable behavior of the reconstruction algorithms
of Theorems 1 and 3. Analogous results were presented by Fer-
reira in [21] for the case of reconstructing a periodic bandlim-
ited signal from nonuniform samples using iterative algorithms.
Specifically, it was shown that the best convergence rates of the
iterative approaches result when the distances between the sam-
ples are equal.

Fig. 9 provides a good tool for the practical design of sam-
pling and reconstruction systems. By determining the maximal
value for s, which we are able to tolerate in our reconstruc-
tion system, we can find the minimal-allowed shifts between the
sets of uniform samples in the recurrent nonuniform sampling
scheme. Given this information, we can prevent critical (non-
stable) distributions of samples.

VII. SIMULATIONS

In this section, we complete the theoretical discussions of
Sections III — VI by simulating the proposed reconstruction al-
gorithms. Specifically, we present reconstruction examples for
the methods of Theorems 1 and 3 in a noisy environment. We
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Nonuniform Sampling
T

15 —— T T T

Fig. 10. Reconstruction of a ten-periodic four-bandlimited signal (solid
line) from 18 nonuniform (top), uniform (middle), and recurrent nonuniform
(bottom) noisy samples (marked by dots) using the reconstruction methods of
Theorem 1 (dashed—dotted line) and Theorem 3 (dashed line).

then compare their performance to other algorithms for both
cases, with and without noise. Finally, we demonstrate the per-
formance on reconstruction of nonperiodic bandlimited signals.

A. Reconstruction Example

Our first example illustrates the reconstruction of a periodic
bandlimited signal from nonuniform, uniform, and recurrent
nonuniform noisy samples using the two reconstruction algo-
rithms of Theorems 1 and 3.

We first created in Matlab a ten-periodic four-bandlimited
signal z(t), which belongs to the 9-D space Vj. Then, three sets
of 18 sampling points {¢, } were considered: 1) nonuniform; 2)
uniform; and 3) recurrent nonuniform with N,, = 3, where the
nonuniform points were randomly chosen. The redundancy of
these sampling sets is » = 2. Each sample z(¢,) was perturbed
by zero-mean white Gaussian noise w,, with variance 0.01. We
define the indicator of the reconstruction quality as a relative
mean square error (MSE), given by

MSE — lz(t) — Z()l| £, 10,17
lz ()|l oo, 71

(72)

where Z(t) is the reconstructed signal.

The reconstruction results of z(¢) from nonuniform, uniform,
and recurrent nonuniform noisy samples are shown in Fig. 10 in
the top, middle, and bottom plots, respectively. The MSE values
are summarized in Table II.

We can clearly see from Fig. 10 and Table II that the recon-
structed signal Z(t) is closer to the original signal z(¢) when the
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TABLE II
RELATIVE MEAN SQUARE ERROR OF TWO RECONSTRUCTION
METHODS FOR DIFFERENT SETS OF SAMPLING POINTS

Reconstruction MSE [dB]
Method Nonuniform  Uniform  Recurrent Nonuniform
Theorem 1 -3.62 -16.84 -13.08
Theorem 3 -6.35 -19.87 -19.82

frame method of Theorem 3 is used. An important observation
is that the dashed—doted curve passes through the noisy sam-
ples. This result was expected, since the set of reconstruction
functions of Theorem 1 satisfies the interpolation property (37).

In Table II, we see that the frame method results in the same
reconstruction quality for uniform and recurrent nonuniform
sampling sets. Obviously, we expect less stable behavior in the
case of recurrent nonuniform samples. In this example, a large
portion of the noise energy was removed by orthogonal projec-
tion (8).

B. Comparison of the Reconstruction Methods With Noise

We now compare our approach to standard methods found
in the literature. Specifically, we consider three algorithms: The
first is an iterative method proposed by Marvasti in [15], based
on the following iteration:

i (t) = p—1(t) + AS(z(t) — xx—1(1)) (73)
where A, x(t), and x(t) are a relaxation parameter, the orig-
inal signal, and the result of the kth iteration with x¢(¢) = 0,
respectively. The low-pass filter S is used to update the current
iteration. In our simulations, we chose A = 0.1 and the recon-
struction is obtained after 20 iterations.

The second approach is an iterative adaptive weights method
that was developed in [16]. The adaptive weight value w),
of the pth sample is calculated as an average distance to the
closest sample from each side. The idea is to solve the equation
T a, = Y by utilizing the method of conjugate gradients for
the solution of the Toeplitz-type structure of the system matrix,
where

N-1
> wye 2 EORIT  for i), [k < K

p=0

Tu(kD) =
(74)

and the vector y,, is given by

;N2 '

Yu(k) = Nk ;;) a(ty)wpe 2R /T - for k| < 2K + 1.

(75)

The solution a,, is taken after 20 iterations of the al-

gorithm. The reconstruction is then given by xz(f) =
VT Y0 g aw(n)er2mte/T,

The last method we consider is a block-based approach pro-
posed by Tuncer in [17]. This algorithm can only be used when
the sampling points have the form

tp:(p—l—%)%./ ..N -1

p=0,1,. (76)
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Fig. 11. Reconstruction of periodic 25 bandlimited signals from N = 65
nonuniform samples.

where 7, is a random integer uniformly distributed in [0, L) and
its value is known. This method interpolates the uniform sam-
ples x(t,,) from the set of nonuniform samples x (¢, ) by solving
the system

1

TN WHHC; Wy (t,) = Cax(t,)

(77
where Hisa LN x LN circulant matrix derived from the DFT
of the sampling function, C, and C3 are LN x N expansion
matrices, and W, and Wy are LN x LN and N x N DFT
matrices, respectively.

In our experiment, we considered a 10-periodic 25-bandlim-
ited signal. We chose N = 65 nonuniform samples taken ac-
cording to the nonuniform grid defined in (76) with L. = 10.
This set of samples is corrupted by white Gaussian noise, which
is normalized to fit the signal-to-noise ratio (SNR) value of the
current simulation. The oversampling ratio of this sampling set
is 7 = 1.27. We performed 100 trials per SNR value and the
average result is presented. The periodic bandlimited signal and
the noise sequence are randomly generated for each trial.

Fig. 11 shows the MSE performance of different algorithms.
The MSE of Marvasti’s algorithm is very large. We can clearly
see from Fig. 11 that Tuncer’s results coincide with our method
presented in Theorem 1. Evidently, the frame-based reconstruc-
tion provides better results compared to the reconstruction with
abasis. We also observe that the adaptive weights method shows
good behavior, but for SNR. > 40 dB, our frame-based approach
provides the lowest reconstruction error.

C. Comparison of the Reconstruction Methods Without Noise

We now compare the performance of the proposed algorithms
in the ideal condition, where the noise is equal to zero. The
periodic bandlimited signal is generated, sampled, and recon-
structed similarly to the previous subsection with N = 65 and
L = 10. We provide simulations for different values of K, from
K = 32 to K = 16, for which the oversampling ratios vary
fromkx = 1tox = 1.97.
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Fig. 12. Reconstruction of periodic 25 bandlimited signals from N = 65

nonuniform samples.

The MSE values of the reconstruction as a function of x are
presented in Fig. 12. For the methods of Theorems 1 and 3
and Tuncer’s algorithm, we expect perfect reconstruction (i.e.,
MSE = —o0). However, we see that due to the finite preci-
sion of the computations, very small reconstruction errors are
present. We can see that Marvasti’s and the adaptive weights
methods do not converge to the original signal. We also observe
that the reconstruction quality of the adaptive weights algorithm
depends on the oversampling ratio. Evidently, the behavior for
signals with an average sampling rate equal to the Nyquist rate
(i.e., N = 2K + 1) is poor.

D. Reconstruction of Nonperiodic Bandlimited Signals

We now focus on the reconstruction of nonperiodic bandlim-
ited signals from nonuniform samples. For this purpose, we
use the overlap-save method described in [38], where the sam-
pled signal is divided into overlapping blocks. Each block is
then assumed to be a periodic bandlimited signal and recon-
structed using one of the methods presented in this paper. To
minimize the boundary effects of this approach, ) samples from
the beginning and end of each reconstructed block are discarded.
Therefore, two consequent blocks overlap by 2(Q) samples.

In this experiment, we generated a random nonperiodic signal
and filtered it using a Kaiser filter with high stopband atten-
uation. Then, 1024 nonuniform samples are chosen according
to (76) with L = 10 corresponding to a redundancy ratio of
r = 1.05. The samples are corrupted by white Gaussian noise,
normalized to fit the SNR value of the current simulation. The
signal is then reconstructed from the set of noisy samples by
using the overlap-save method with N = 64 samples in each
block and (Q = 5. As in the previous examples, we perform 100
simulations per SNR value and present the average result.

The results are presented in Fig. 13. In the case of nonperi-
odic bandlimited signals, Marvasti’s method shows better per-
formance compared to the reconstruction of periodic signals.
In contrast, the performance of the adaptive weights method is
worse compared to the results of Fig. 11. This behavior can be
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Fig. 13. Reconstruction of nonperiodic bandlimited signals from 1024 nonuni-
form samples using the overlap-save method. Each overlapped block has N =
64 nonuniform samples.

explained by noting that x = 1.05 in this example. We also
observe that similar to Fig. 11, reconstruction with basis and
Tuncer’s methods are equivalent, and the frame-based recon-
struction performs better than these two methods.

We summarize this section by noting that the two reconstruc-
tion methods derived in this paper have solutions for an arbitrary
distribution of nonuniform samples that satisfies N > 2K + 1.
Both algorithms provide closed-form solutions without com-
plex-valued arithmetic. The frame-based reconstruction of The-
orem 3 typically provides a better quality of reconstruction, ex-
ploiting redundancy of the sampling set. Finally, in the ideal
case, perfect reconstruction is guaranteed by both methods.

VIII. CONCLUSION

In this paper, we developed two new formulas for reconstruc-
tion of periodic bandlimited signals from nonuniformly spaced
samples. The first formula provides new reconstruction func-
tions for the case of an even number of sampling points. The
second reconstruction formula was developed for the case of
oversampled periodic bandlimited signals. We compared the
two proposed methods and examined the advantages and draw-
backs of each. Specifically, we showed that the first method pro-
vides consistent reconstruction of the signal while the second
is more stable in noisy environments. In order to characterize
the relation between the discrete-time noise of the samples and
the continuous-time error of the reconstruction, we have used
the condition number. The exact formulas for calculation of the
condition number were derived. These conclusions were sup-
ported by theoretical derivations and simulation results.

Finally, we investigated an efficient implementation of the
reconstruction methods for uniform and recurrent nonuniform
sampling. In the case of uniform samples, we calculated the pre-
cise value of the condition number and developed a simple for-
mula for calculation of the condition number in the case of re-
current nonuniform sampling. The performance of our methods
compared to other algorithms was demonstrated with the recon-
struction of periodic and nonperiodic bandlimited signals.
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APPENDIX A
FOURIER COEFFICIENTS CALCULATION

Using the exponential decomposition of sine functions, we
can express the product of sines in (23) as a sum of exponents

N-—1

t, —t
Hsin <—7r(u+jf, q>>
q=0
q#p

i(emm tq>/T_e—j7r<u+tp—tq>/T) (78)
2

Il
QQ 2
Z‘H\II:

b 6j‘/rlu/T (79)

Z

—N+

where the complex coefficients b; are the result of expanding the
product of sines. The power of each exponent in (79) is obtained
as a sum of m positive and N — 1 — m negative powers of
exponents in (78). Therefore, the set of all possible values of
lis definedas! = m — (N —1—m) = 2m — N + 1, for
m € [0, N — 1]. As a result

bp=0, |l=-N+2,-N+4,...,N—2. (80)
Since the coefficients b; will be used to represent the final ex-
pression as the product of sines, the exact values of the coeffi-
cients are not needed.

We observe that the intervals I, in (23) are not overlapping
and the union of all intervals I,, is the set of all real numbers
(.e., Uzozfoo I, = R). For this reason, we replace the sum
and integral operations in (23) by an integral over the domain

u € [— oo]. The coefficients (23) then becomes
ck =a, e—j27rktp/T
sm it
% _/ Z be]ﬂlu/T —J?Trku/Td,ul
T —N+1
:a e—]?ﬂktp/T
N-1 b
« Y b / sin () e=dCm/T)(k=1/2)u gy, - (81])
I=—N+1 -
Using the fact that
. u 17 |Tf| < 05
SInc | = ourier
—T(T) T rect(Tf) = 4 0.5, |Tf]=05  (82)
0, otherwise
we obtain
. = l
Ck =Qp e_J2Wktp/T Z bl rect <k' - 5)
I=—N+1
bor_14bory1  —j2mkt
_Ja % e—J2 k‘fp/T, |k| < % (83)
0, otherwise.
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APPENDIX B
TRIGONOMETRIC IDENTITY OF THEOREM 2
Using the trigonometric identities
sin(a + ) = sinacos § + cos asin 3
cos(a+ ) = cosacos f — sinasin 3 (84)
the numerator of (36) for a given value p can be written as
N-1 .y
CcOoSs Z (77( pT q))
q=0,q#p,q#i
N-1 (tp—tq)
Hq 0,q#p,q#i sin (w )
N-1
wf 5 (o)
t, —t; =0, \qFt
+ cot <7r( pT )> 07z (85)

N-1 t, :
Hq 0,q9#p,q#t sin (ﬂ( ))

Applying (84) recursively onto (85) and summating over p, con-
verts (36) into an expression consisting of the products of an
even number of cotangent functions, which are summed over
all possible combinations of its arguments (i.e., over all possible
combinations of (¢, —t,), for p # ¢). The number of the combi-

nations of the products of n (even) cotangents is [V < N n_ ! ) .

Combining these products into the groups of m = n + 1 sums,
allows the use of the following equation, which is taken from
the standard tables of finite trigonometric series [39, p. 647]

WA Tty —tg)\
ZHcot< = q)-sm(—) (86)
p=1 g=1
qF#p
For n even (m odd), (86) is reduced to

Integrating the products of cotangents of (85) into such
groups and using (87), we can evaluate the expression (85) as

(")

N/2—-1

N/2—-1

1)(N/2=1) Z

1)(N/2=1) Z N(N —1)!
1 2R)(2R) 2k + 1)
N/2 1
1)(V/2=1) Z N!
2k + D)2k + 1)
N/2 1

1)(N/2=1) Z

:(_ )(N/2 1)2N 1

<2k+1)

where the last equation results directly from [39, p. 607].

(88)
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APPENDIX C
PRODUCT OF SINES FOR UNIFORM SAMPLES

To simplify the expression for h,(¢) for uniform samples, we
first introduce two trigonometric identities [39, p. 752]

N-1 .
k sin(N 6
H sin (9 + W) = % (89)
k=0
and [39, p. 752]
N-1
kT N
sin — = SN 1 90)
k=1

Substituting the set of uniform samples ¢, = pT'/N into the
product of sine functions of (15), we have

N—1sin (@)
a#p
1,5 sin (*472)
- sin (@) Jg;_gl sin (”(t q))
_ IS sn(§- %)
sin (W(t tp)) Hq;ég gin ((P;VQ)‘")

B G e VA TG IO

sin (@)( 1)N= 1]_[ sm(WT)

where the last equation results from the fact that sin(f) =
—sin(—#) and sin(f — ) = —sin(f + (1 — ¢)). Using (89)
and (90), we develop an equivalent representation for (91) as

_ sin (W)
v (250) (225

92)

completing the proof.

APPENDIX D
EXPONENTIAL EXPANSIONS FOR UNIFORM SAMPLES

We now express the functions of (44) in exponential form,
where for simplicity, ¢ — ¢, is replaced by 7. For IV odd

1 6ja'rNﬂ'/T _ e—jﬂNT/T
hp(t) = ﬁ ejTrT/T _ e—jTr‘r/T (93)
and for N even
jrT /T —jnr/T\(,jxN7/T _ —jnNt/T
() = Tt ‘ ) o

2N(ej7r7'/T _ e—jTrT/T)
Applying the identity

N —x N = (a:—:vil)(a:Nflﬁ-xN*?’_{_. . .+m7(]v*1)) (95)
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on the term (e/™N7/T — ¢=i™NT/T) of (93) and (94), results in
the reduction of denominators in both expressions. Orthogonal

projection of these functions onto the space Vi results in

K

1 j2mlT
ol =% 35 o
=K

(96)

for both N, even and odd. Using similar derivations, the last
function (96) can be expressed in trigonometric form (44).
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