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Abstract—Translation-invariant interpolation of frequency do-
main functions by means of Fourier transforms of Pólya frequency
functions, which belong to the Bochner class of interpolation ker-
nels, is presented. For the implementation, we use an adaptive in-
terpolation process which is a variant of the recently introduced
adaptive residual subsampling method. Moreover, it is shown that
adaptive residual subsampling with Pólya interpolation kernels is
an excellent preprocessing interface when used in conjunction with
the well-known vector fitting (VF) rational modeling algorithm.

Index Terms—Adaptive interpolation, causality, quasi-rational
modeling, radial basis functions, rational modeling.

I. INTRODUCTION

R ADIAL basis functions (RBF) constitute a powerful tool
for translation-invariant interpolation on nonuniformly

sampled data. They are used extensively for scattered data
interpolation [1], medical imaging [2] and are also frequently
applied to neural networks [3]. As a consequence of Bochner’s
theorem [4], the most salient feature of radial basis functions is
that the interpolation process they induce is always well-con-
ditioned. In general multivariate interpolation with radial basis
functions [1], [5], Bochner’s theorem and the related Schoen-
berg theorem [6], are the main theoretical tools instrumental in
the selection of well-conditioned positive definite interpolation
kernels [7].

In this paper, we first discuss the translation-invariant interpo-
lation of frequency domain functions by means of Fourier trans-
forms of Pólya frequency functions [8]–[10], which although
belonging to the Bochner class of interpolation kernels, are not
necessarily RBFs. We select two pertinent Pólya interpolation
kernels, a rational noncausal radial kernel, and a new quasi-ra-
tional quasi-causal kernel. This results in rational, respectively,
quasi-rational approximations of the input frequency domain
function. For the practical implementation, we use a local adap-
tive interpolation process which is a variant of the recently in-
troduced adaptive residual subsampling (ARS) method [11].
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Second, we deal with the rational approximation and interpo-
lation problem, which arises naturally in signal processing [12],
numerical analysis [13] and system identification [14]. In that
context, the vector fitting (VF) algorithm [15], which was shown
[16] to be a modified version of the Sanathanan-Koerner [17],
[14] approach, has grown very popular in the Applied Mathe-
matics and Engineering communities. For instance, VF has its
own website which references 36 papers on the subject.1

In this paper, we show that ARS with the Pólya interpolation
kernels introduced earlier provides an excellent preprocessing
interface when used in conjunction with the VF algorithm for
obtaining rational models over a given frequency range. The
reason for this is that ARS automatically generates the sam-
pling nodes (unspecified and presumed equispaced by default
in VF) and the starting poles (chosen more or less heuristically
in VF [15]) which are required for the initialization of the VF
algorithm. This results in a composite algorithm, performing the
sampling and modelling of the input frequency domain function
in a fully automatic way. Of course, ARS preprocessing requires
the availability of an analytic formula (an oracle run in the back-
ground) for the frequency domain function which we want to ap-
proximate. If only discrete sampled-data are available, which is
often the case in practice, the oracle might consist of an interpo-
latory engine (linear, spline, etc.) mapping the discrete samples
on a “smooth” analytic formula, but this is not exhaustive.

Finally, three pertinent examples, one analytical causal, one
analytical noncausal, and one real-world (a bandstop filter from
EM-simulations), show the versatility and strength of the pro-
posed method.

II. PRELIMINARIES

Definition 1: A complex-valued continuous function is
called positive definite on if

(1)

for any pairwise different points , and
. The function is called strictly

positive definite on if the only vector that turns (1) into an
equality is the zero vector.

Definition 2: A complex-valued function is called radial
if where is the Euclidean norm in .

1Website available online at http://www.energy.sintef.no/produkt/VECTFIT/
index.asp. Searching for the keyword “Vector Fitting”’ on Google Scholar also
yields 323 undisputable hits concerning the VF algorithm and its variants.
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Theorem 1 (Bochner): A complex-valued function is
positive definite on if and only if it is the Fourier transform
of a finite nonnegative Borel measure on , i.e.,

(2)

Moreover, let be a nonnegative finite Borel measure on
whose carrier is not a set of Lebesgue measure zero. Then the
Fourier transform (2) is strictly positive definite on .

Proof: See [4]. Note that in (2) may be equivalently
replaced by , where is the Radon–Nikodym
derivative .

Theorem 2 (Schoenberg): A continuous function
is positive definite and radial on for all

if and only if it is of the form

(3)

where is a finite nonnegative Borel measure on .
Proof: See [6].

Definition 3: A nonnegative measurable function on
satisfying is called a Pólya frequency
function provided it satisfies the following condition : for every
two sets of strictly increasing numbers

(4)

we have

(5)

Theorem 3 (Schoenberg): The double-sided Laplace trans-
form of a Pólya frequency function converges in a vertical
strip containing the origin, and can there be written as

(6)

where is an entire function of the form

(7)

(8)

Moreover, when , the function is of class
such that the derivatives have exactly simple

real zeros for all values of .
Proof: See [8]–[10].

Definition 4: A function is called quasi-rational if it
can be written as , where is a rational
function and is an entire function (not a polynomial). The
quasi-rational function is stable whenever the rational
function is stable, i.e., all its poles are in the open left
half-plane.

A very interesting, very simple Corollary of Theorem 3 (in
fact it follows from its converse, see [9]) is that there exist Pólya
frequency functions such that their double-sided Laplace
transform is a quasi-rational function. This can e.g., be seen by
taking for in (8), yielding

(9)

Definition 5: The causality index of a function
with inverse Fourier transform

(10)

is defined as

(11)

provided, of course, that . It is easy to prove
that and

(12)

Theorem 4: Let

(13)

with all and . Then

(14)

Proof: The premises imply that

(15)

This can be written as

(16)

and the result follows.
For a function satisfying the premises of Theorem 4, in

other words, a function that is the Fourier transform of a
nonnegative function, it can be shown that the following explicit
expression for the causality index holds:

(17)

III. TRANSLATION INVARIANT INTERPOLATION

The basic problem in approximating a given frequency
domain response over a certain frequency range is to
construct an approximation to data specified at distinct
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points in . A simple solution consists in choosing
functions and then looking for the unique combination of

these functions which interpolates the data at the given points.
For this process to be successful, the set of functions chosen
must be linearly independent over the set of interpolation
points . If the functions are
then the interpolation problem admits a solution provided the
interpolation matrix is invertible and not too
ill-conditioned. In translation invariant interpolation we con-
sider , where , called the interpolation
kernel, is strictly positive definite on . By Definition 1 this
implies that the interpolation matrix is
invertible. By Theorem 1, we therefore require that

(18)

where is a nonnegative finite Borel measure on whose car-
rier is not a set of Lebesgue measure zero. This will certainly
be the case when the Radon–Nikodym derivative

is a Pólya frequency function. This is what we will sup-
pose throughout the sequel.

A. Rational Noncausal Radial Interpolation Kernel

The simplest even rational function in (9) is obtained
for and , and .
In that case, , and the interpolation kernel is

(19)

where

(20)

is the Pólya frequency function. Note that, by Theorem 2, the
function is a strictly positive definite radial function with
Borel measure . It is also clear that the
causality index . The poles of a translate

in the Laplace domain are . Hence, we con-
clude that the kernel (19) is a well-conditioned rational radial,
but noncausal and nonstable interpolation kernel.

B. Quasi-Rational Quasi-Causal Interpolation Kernel

The simplest causal stable rational function in (9) is
obtained for and and .
In that case, , and the interpolation kernel is

(21)

with Pólya frequency function

(22)

where is the Heaviside unit step function. The poles of a
translate in the Laplace domain are .
Hence, the kernel (21) is a causal (causality index 1) and stable
interpolation kernel. Unfortunately, Theorem 1 indicates (see

Fig. 1. Logarithm of the quasi-rational quasi-causal Pólya frequency function.

also [7]) that this kernel will be ill-conditioned, since
on the negative reals. We can remedy this by taking a positive
value for . In that case, , and the inter-
polation kernel is

(23)

with Pólya frequency function

(24)

where is the complementary error function. The Pólya
frequency function (24) is an entire function for , which is
always positive in , and, hence, the interpolation
kernel (23) is better conditioned than the interpolation kernel
(21). A typical plot of the logarithm of for and

is shown in Fig. 1. The causality index of can be
calculated as

(25)

We can fix the causality index by putting , with causality
parameter , which redefines the interpolation kernel as

(26)

with causality index

(27)

The function defined in (27) is strictly decreasing with
and . The poles of a translate

in the Laplace domain remain . Hence we con-
clude that the kernel (26) is a well-conditioned quasi-rational,
quasi-causal (for sufficiently small) and stable interpolation
kernel.
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IV. ADAPTIVE RESIDUAL SUBSAMPLING INTERPOLATION

As we have seen previously, the task in translation-invariant
interpolation is to approximate a given function as

(28)

This leads to the system of linear equations

(29)

where the interpolation matrix is and
. In the interpolation kernels analyzed in the previous

section, the kernel depends on an additional free multiplicative
shape parameter , i.e., , where we have two pos-
sible choices for namely

(30)

(31)

This leads to the more involved approximation

(32)

with interpolation matrix . Naturally, one
wants the interpolation error

(33)

to be as small as possible (with respect to a given threshold) over
the whole frequency range . The interpolation error, al-
though zero at the nodes , can still be substantial in each of the
open intervals , and hence the interpolation process
must be accomplished adaptively in order to achieve an overall
uniformly small interpolation error. We follow the approach ad-
vocated in [11]. The shape parameters are chosen as

(34)

where the parameter is chosen as

(35)

The ARS method [11] then proceeds as follows. First, an initial
mesh using (in the examples in the sequel we always take

) equally spaced nodes is generated and the interpo-
lation approximation of the function is constructed. Next, the
interpolation error at the midpoints between the nodes is com-
puted. Midpoints at which the error exceeds a threshold are

Fig. 2. Logarithmic error for the submarine cable with rational noncausal ARS.

Fig. 3. Logarithmic error for the submarine cable with rational noncausal ARS
interfacing nonstable VF.

accepted as new nodes, and (old) nodes that lie between two
adjacent midpoints whose error is below a smaller threshold
are removed. In our analysis, we take . The two
end points are always left intact. Note that a judicious choice of
the threshold is important, since a too low value will adap-
tively create a more dense node set than actually needed. The
shape parameters are calculated according to (34), and the in-
terpolation approximation is recomputed using the new node set

old nodes removed nodes new nodes until the threshold
is satisfied on the entire node set. In other words, the adapta-

tion process follows the adaptive paradigm of solve-estimate-re-
fine/coarsen until a stopping criterion is satisfied.
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Fig. 4. Logarithmic error for the submarine cable with rational noncausal ARS
interfacing stable VF.

Fig. 5. Logarithmic error for the submarine cable with quasi-rational quasi-
causal ARS.

V. INTERFACE WITH VF

In the VF algorithm [15] (without linear term), one solves the
overdetermined system with prescribed nodes
and starting poles

(36)

in a least squares sense for the unknown residues , in order
to obtain the rational approximation

(37)

Once the residues obtained, solving the rational equation

(38)

then defines the mapping (old poles) to (new poles), i.e.,
. The iterative scheme then proceeds as follows. Starting with

some chosen set of poles we obtain the new set of poles
and so on, until a satisfactory fit is obtained. This of course

requires a number of (hopefully not too much) iterations. The
VFalgorithmcaneasilybemodifiedtoguaranteecausalstability,2

by pole flipping schemes, which is what we adopt here. More
pertinent implementation details can be found in [15] and [16].

The problem with the VF approach is twofold. The first
problem is that the sequence of nodes must be given,
which implies that some kind of preprocessing sampling was
done earlier, most likely equispaced, and hence potentially
suboptimal. A second problem is the choice of the starting
poles, which is quite heuristic in general. All these problems
disappear when one pre-interfaces the VF algorithm with the
ARS module, as described previously, the sequence and
selectable starting poles are generated automatically by the
adaptive method. Since the number of poles generated by the
adaptive module is of the order of the number of sampling
nodes, we select a limited subset of poles corresponding to
the maximum norm, i.e., the poles corresponding to the
largest values of

(39)

In other words, we select the poles corresponding with the
largest values of the ratios . Interfacing the ARS method
with VF therefore provides a fully automated approximation
environment. There remains the choice of the interpolation
kernel to be used, in our specific case the rational noncausal
radial kernel versus the quasi-rational quasi-causal kernel.

VI. NUMERICAL SIMULATIONS

In the numerical simulations which follow, we implement
three algorithms.

1) The ARS algorithm, with respect to the chosen interpola-
tion kernels.

2) The classic VF algorithm, called VF for comparison pur-
poses, with equispaced nodes and heuristic starting poles
as in [15].

3) The preprocessing of VF with ARS, called ARS+VF,
which is compared with classic VF.

In all simulations, the number of iterations needed for the VF al-
gorithm are indicated between parentheses in the corresponding
figures.

A. Submarine Cable

The transfer function of a submarine cable [18] is given by

(40)

2Note that causal stability of poles in the !-domain requires <fipg < 0 or
equivalently =p > 0.
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Fig. 6. Logarithmic error for the submarine cable with quasi-rational quasi-
causal ARS interfacing nonstable VF.

Fig. 7. Logarithmic error for the submarine cable with quasi-rational quasi-
causal ARS interfacing stable VF.

This is a causal function with inverse Fourier transform (impulse
response)

(41)

The angular frequency range is and the
parameter . The causality parameter is cor-
responding with a causality index , and the
threshold in the rational noncausal radial case and

in the quasi-rational quasi-causal case. The VF inter-
face is run with 40 poles and iterations. The error measure
utilized is the logarithm of the absolute error, i.e.

(42)

Fig. 8. Logarithmic error for the noncausal example with rational noncausal
ARS.

Figs. 2 and 5 show the logarithmic error with rational noncausal,
respectively, quasi-rational quasi-causal ARS without VF post-
processing. Figs. 3 and 4 indicate that in order to obtain good
results, one needs to incorporate the stability requirement in the
VF loop. This is because noncausal ARS generates both stable
and unstable poles, and hence VF without stability enforcement
yields a highly noncausal result which cannot possibly corre-
spond with the inherently causal nature of the submarine cable
transfer function. It is also seen that classic VF is generally
better than ARS VF for positive frequencies. Exactly the con-
trary is seen in Figs. 6 and 7 for quasi-causal ARS: there sta-
bility enforcement is not really an issue since VF starts with
the stable poles generated by quasi-causal ARS and since the
target transfer function is causal. On the other hand, enforcing
stability for known causal transfer functions is the correct pro-
cedure to follow in general. It should of course be noted that
quasi-causal ARS+VF produces better results than noncausal
ARS VF, even with a larger threshold . It is also seen that
classic VF performs well versus ARS+VF, except in the vicinity
of where VF cannot resolve the square root branch-point
singularity.

B. Noncausal Example

Here we consider the transfer function

(43)

Since is real, this is a noncausal function with causality
index . Note that the inverse Fourier trans-
form of is not expressible in terms of elementary func-
tions. The angular frequency range is . The
chosen causality parameter is and the threshold

in the rational noncausal radial case and in the
quasi-rational quasi-causal case. The VF interface is run with
40 poles and iterations. Figs. 8 and 11 show the log-
arithmic error with rational noncausal, respectively, quasi-ra-
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Fig. 9. Logarithmic error for the noncausal example with rational noncausal
ARS interfacing nonstable VF.

Fig. 10. Logarithmic error for the noncausal example with rational noncausal
ARS interfacing stable VF.

tional quasi-causal ARS without VF postprocessing. Figs. 9 and
10 indicate that in order to obtain good results, one should cer-
tainly not incorporate stability enforcement in the VF loop. This
is because the transfer function is strongly noncausal in this ex-
ample. Exactly the same can be concluded from Figs. 12 and
13. It should of course be noted that quasi-causal ARS VF pro-
duces better results than noncausal ARS VF, even with a larger
threshold and even for noncausal functions. It is also clear
that ARS+VF performs better than classic VF.

C. Real-World Example

As a last example, we consider the frequency response
of a microwave bandstop filter. All frequency-domain data sam-
ples were simulated with the planar full-wave electromagnetic

Fig. 11. Logarithmic error for the noncausal example with quasi-rational quasi-
causal ARS.

Fig. 12. Logarithmic error for the noncausal example with quasi-rational quasi-
causal ARS interfacing nonstable VF.

simulator Agilent EEsof Momentum [19], [20]. Since
arises from real-world physical data (but is not necessarily a ra-
tional function), it is a causal function. The frequency range is

(rescaled in GHz for this particular example).
A plot of the absolute value of the transfer function
is shown in Fig. 14. It is seen that the frequency response ex-
hibits high activity in the stopband and near the end of the fre-
quency range. The chosen causality parameter is and
the threshold in the rational noncausal radial case and

in the quasi-rational quasi-causal case. The VF inter-
face is run with 12 poles and iterations. Figs. 15 and 16
show the logarithmic error with rational noncausal, respectively,
quasi-rational quasi-causal ARS with VF postprocessing and
stability enforcement. It is seen that the last approach yields the
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Fig. 13. Logarithmic error for the noncausal example with quasi-rational quasi-
causal ARS interfacing stable VF.

Fig. 14. Absolute value of the transfer function of the real-world microwave
bandstop filter.

best results, as could be expected. It is also seen that ARS VF
performs better than classic VF.

VII. CONCLUSION

We have discussed the translation-invariant interpolation of
frequency domain functions by means of Fourier transforms of
Pólya frequency functions, which belong to the Bochner class of
interpolation kernels. Two pertinent Pólya interpolation kernels
were considered, a rational noncausal radial kernel, and a new
quasi-rational quasi-causal kernel. For the implementation we
have used the fast adaptive ARS interpolation process, which
moreover provides an excellent preprocessing interface when
used in conjunction with the rational VF algorithm. The result
is a composite algorithm, performing the sampling and model-
ling of the given frequency function in a fully automatic way. An

Fig. 15. Logarithmic error for the real-world example with rational noncausal
ARS interfacing stable VF.

Fig. 16. Logarithmic error for the real-world example with quasi-rational
quasi-causal ARS interfacing stable VF.

interesting generalization would of course be to extend the algo-
rithm to multivariate quasi-rational radial basis function adap-
tive interpolation and multivariate VF. Work is currently under
way to proceed and (hopefully) succeed in that research direc-
tion.
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