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Power-Efficient Resource Allocation and
Quantization for TDMA Using Adaptive
Transmission and Limited-Rate Feedback
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Abstract—Power-efficient scheduling and resource allocation
are critical tasks for wireless sensor networks as well as com-
mercial and tactical radios relying on IEEE access standards for
power-limited communications. Tailored for such applications, this
paper formulates and solves analytically novel convex optimization
problems offering globally optimal user scheduling, as well as rate
and power allocation for time-division multiple access (TDMA)
in time-division-duplex or frequency-division-duplex operation.
Through a limited-rate feedback link the access point provides
quantized channel state information to the transmitters (Q-CSIT)
based on which users adapt their modulation and code choices
to the intended fading channel. When the quantizer needed to
form the Q-CSIT is not prescribed, a joint allocation-quantization
scheme is devised to minimize average transmit power subject to
average rate and bit error rate constraints. The novel design cou-
ples adaptive transmission modes with quantization regions which
are constructed to attain at least a local minimum of the average
transmit power. Fairness in resource allocation is guaranteed by
design. Transmit power and quantization region books are effi-
ciently obtained offline while the online Q-CSIT based operation
turns out to entail only a few feedback bits. Analysis and simula-
tions include a perfect CSIT benchmark and reveal substantial
power savings (as high as 15 dB) with low-overhead feedback.

Index Terms—Adaptive algorithms, convex optimization, mul-
tiple access, power control, quantization, resource management,
scheduling, wireless sensor networks.

I. INTRODUCTION

W ITH power efficiency emerging as a critical issue to
extend battery lifetime in both commercial as well as

tactical radios and wireless sensors, power-efficient resource
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allocation has attracted growing attention for additive white
Gaussian noise (AWGN) channels [17], [8], [21], and time
division multi-access (TDMA) fading channels [3], [20]. Re-
source allocation for fading channels is studied in [15], [10]
and power-efficient policies for TDMA are investigated from
an information-theoretic perspective in [18]. Assuming that
both transmitters and receivers have available perfect (P-)
channel state information (CSI), the approaches in [18] not
only provide fundamental power limits when each user can
support an infinite number of capacity-achieving codebooks,
but also yield guidelines for practical designs where users can
only support a finite number of adaptive modulation and coding
(AMC) modes with prescribed symbol error probabilities.

While the assumption of P-CSI (exact values of fading channel
coefficients) at the transmitters (P-CSIT) renders analysis and
design tractable, it may not be always realistic due to possible
channel estimation errors, feedback delay and jamming [9], [13].
These considerations motivate a limited-rate feedback model,
where only quantized (Q-) CSI is available at the transmitters
through a few of bits of feedback from the receiving access point.
Based on limited-rate feedback, [12] minimized transmit power
of single-antenna orthogonal frequency-division multiplexing
(OFDM) systems; while a number of recent works capitalize on
limited-rate feedback for multi-antenna systems; see, e.g., [14],
[5, Ch. 13] and references therein.

In this paper, we deal with wireless TDMA systems in
the power-limited regime where single-antenna users rely on
Q-CSIT to transmit with AMC, as described in Section II. From
a high level view, our contributions consist of formulating and
solving analytically constrained optimization problems with the
objective of minimizing the weighted average of the system’s
aggregate transmit power, under average rate and bit error
rate (BER) constraints. In addition to algorithms, valuable in-
sights are gained on the fundamental limits for power-efficient
TDMA with limited-rate feedback. Our unifying framework
incorporates fairness in its design variables and encompasses a
globally optimal P-CSIT based resource allocation scheme for
time-division-duplex systems (Section III). This scheme is used
to initialize and benchmark the Q-CSIT based solution which
is particularly attractive for frequency-division-duplex systems
(Section IV). When the book of quantization regions required to
form the Q-CSIT is prescribed, the user scheduling and power
control schemes we develop based on convex optimization
algorithms are computationally efficient and are guaranteed to
be globally convergent (Sections IV-A and IV-B).

We further develop an iterative (block-coordinate descent)
joint allocation-quantization algorithm to optimize the man-
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agement of transmit power and rate resources together with
the form of Q-CSIT used by the terminals (Sections IV-C and
IV-D). Coupling an innovative construction of power-efficient
quantization regions with the choice of AMC modes reduces
complexity in the off-line design of the quantizer but also leads
to low-overhead feedback requirements in the on-line operation
of the TDMA system. Simulated test cases compare the novel
schemes against a heuristic alternative and the fundamental
limits derived in [18] (Section V). The conclusions (Section VI)
contend that analysis and simulations corroborate the high
potential for practical deployment in view of the sizeable
power savings that result at affordable off-line complexity and
low-overhead messages fed back during the on-line operation.

II. PRELIMINARIES AND PROBLEM STATEMENT

Consider terminals (users) in uplink TDMA frame-based
communication with an access point over wireless flat fading
channels adhering to the following operating conditions:

(oc-1) Each user transmits in a sep-
arate user-specific time slot relying on a finite set of
adaptive modulation and coding (AMC) pairs (modes

) each with corresponding rate .
(oc-2) Flat fading channel coefficients

remain invariant over a frame of duration but are
allowed to vary from frame-to-frame (block fading model).
With denoting transposition, the resultant vector
of channel gains is ergodic with
continuous joint cumulative distribution function (CDF)

assumed known; e.g., Rayleigh if
are jointly complex Gaussian.

All users are allowed to transmit per frame over nonoverlap-
ping nonnegative fractions whose duration depends
on the channel realization . If we suppose without loss of gen-
erality (w.l.o.g.) that each frame has duration , then
clearly . Notice that the latter allows all
users, or at the other extreme no user, transmitting over a given
frame. Furthermore, if denotes rate in bits/sec/Hz, then
the th user’s transmission rate per frame is . Like-
wise, we will let denote the transmit power of user

per frame.
According to (oc-1), user can select in each frame a modula-

tion with rate along with a channel code with rate

to transmit with AMC rate . In
addition to these prespecified AMC rates (that can be dif-
ferent from user to user), it is also possible for each terminal to
transmit with linear combinations of by time sharing their
usage over its own slot. For instance, using the mode over

percentage of the slot and the mode in the re-
maining time, user can transmit over a frame with
rate , where

and . In
general, user can transmit with rate

(1)

where we note that the first mode corresponds to zero
rate (in which case the user defers since ) and the last

mode corresponds to the maximum rate each
user can transmit with.

To respect user-specific quality of service requirements,
transmissions in our TDMA system will also adhere to average
rate and bit error rate (BER) constraints. With denoting
expectation with respect to (w.r.t.) the vector of channel gains,
the average rate of user is given by

(2)

and must remain above a prescribed1 and feasible average rate;
i.e., with .

Likewise, the average BER constraint will satisfy
, where

(3)

stands for the instantaneous BER function which naturally
depends on the transmit rate , receive-power and
the variance of the additive white Gaussian noise (AWGN)
at the receiver which for notational brevity is fixed here
to 1. As an example, it is known that the function for
an -ary QAM mode can be well approximated as

, where are
modulation-dependent constants [6]. (In the coded case, the
AMC rate must be multiplied by
and the coding gain can be taken into account through the
constant .)

The relationship (3) between transmit-rate, transmit power
and BER will play an instrumental role in reaching our objective
to minimize the weighted average transmit power (with weights

)

(4)

given requirements and availability of channel
state information at the transmitters (CSIT).

The forms of CSIT to be considered are perfect (P) and quan-
tized (Q). Essentially perfect (P-)CSIT, i.e., each realization ,
can be acquired at the terminals with sufficiently long training
sequences when the fading process is relatively slow and a re-
verse link is available as in time-division-duplex operation. On
the other hand, Q-CSIT offers the only practical option with fre-
quency-division-duplex systems where channel reciprocity does
not hold; hence, CSI in e.g., the forward link cannot be obtained
via training over the reverse link. The Q-CSIT in such systems
is provided through a finite-rate feedback channel and is typ-
ically described by a codeword of the forward channel

. If falls in a quantization region over which user
can support mode , then in order to describe (i.e., index) all

the possible vector quantization regions, the
codeword must carry bits, where

1All average (prescribed) quantities x in this paper will be denoted with �x

(respectively �x).
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stands for the ceiling operator. This number of feedback bits
can be prohibitive for large; but as we will see in Sections III
and IV, a significantly smaller number suffices for online oper-
ation of our AMC-based TDMA system.

Existing resource allocation approaches allow for general
multiple access but assume infinite size capacity-achieving
Gaussian codebooks, instantaneous or average rate constraints,
AWGN channels and/or P-CSIT only operation [15], [10], [17],
[3], [21]. Our TDMA setup on the other hand is tailored for
CDMA2000 1 EV-DO, WCDMA HSPDA and IEEE 802.16a
standards [7], where the goal is to develop resource allocation
schemes based on AMC modes under practical average rate
and BER constraints. In addition to P-CSIT, we will develop
optimal Q-CSIT based algorithms which besides resource
allocation will be optimized w.r.t. the chosen quantization
regions and for implementation purposes must entail affordable
feedback.

Since fairness is a key issue in multi-access systems, we will
close this section remarking that our framework guarantees fair-
ness in resource allocation through two different mechanisms:
i) the weights in the objective function and ii) the pre-
scribed average rate constraints .

III. OPTIMAL RESOURCE ALLOCATION BASED ON P-CSIT

In this section, we derive power-efficient resource allocation
for TDMA based on AMC and P-CSIT. The motivation is three-
fold: i) for time-division-duplex systems operating over slow
fading channels where the duration of the aggregate downlink-
uplink slot is considerably smaller than the channel coherence
time, P-CSIT can be assumed available via sufficiently long
training through the reverse link; ii) P-CSIT based allocation
will guide the design steps and provide a feasible initializa-
tion of its Q-CSIT based counterpart we will develop in the
next section for frequency-division-duplex systems; and iii) per-
formance of P-CSIT based allocation will benchmark that of
Q-CSIT. (This should not be surprising since P-CSIT is a lim-
iting form of Q-CSIT with infinite number of feedback bits).

Given P-CSIT , the average rate of user can be
expressed in terms of the known AMC modes
and the unknown fractions as [cf. (1) and (2)]

. In addition, given and
it is possible for each rate to solve (3) w.r.t. the transmit

power to obtain , where de-
notes the inverse function. Furthermore, time-sharing implies
that any rate expressed by a linear combination of AMC
modes as in (1), gives rise to the same linear com-
bination of corresponding minimum transmit powers, call
them , which meet the
prespecified BER constraint for a given . Hence, the
transmit power of user per realization can be expressed in
terms of the powers and the unknown fractions

as ; and therefore,
.

Recapitulating, transmit power and transmit rate per user are
both expressible as a function of and are coupled in
a way that automatically satisfies the BER constraints per real-
ization . Hence, the power-efficient allocation under P-CSIT

amounts to finding the vector which comprises the frac-
tions so that (“s.
to” stands for subject to)

(5)

with denoting the Lagrange multi-
pliers associated with the average rate constraints2 and ignoring
temporarily the constraint on time fractions, the Lagrangian of
this constrained minimization problem can be written as

(6)

where the instantaneous cost function
depends on the th entry of

corresponding to the th average rate constraint. The Lagrange
dual function is then given by

and the solution for the dual problem of (5) is
.

Since (5) is a strictly feasible and convex optimization
problem (w.r.t. ), its optimum coincides with that of the
dual problem [2, pp. 226]. Consider now the user index
and mode index for which the cost function in (6) is minimized
per channel realization as

(7)

Then it follows readily that ,

But for this last lower bound is satisfied
as an equality if we assign the entire frame to the terminal and

2Throughout � (respectively �) will denote Lagrange multipliers associated
with average rate (respectively BER) constraints. Superscript (also used in
cost functions ') will indicate that the corresponding quantity relies on P-CSIT
to obtain the optimal (always denoted by ) user-time allocation � . For Q-CSIT,
we will use e.g., � when computing optimal power allocation p.
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have it transmit with AMC mode ; hence, for the optimum
allocation of time fractions per realization we have

then and

for (8)

or the rare (and somewhat trivial) case where all users defer

then (9)

The nontrivial allocation (8) clearly satisfies
(likewise the trivial one in

(9) renders this sum 0); and since either one of the two is
optimum per realization , they also minimize the average
transmit power in (5) provided we have a means of obtaining
the optimum Lagrange multiplier vector . Notice that in
general since otherwise the trivial case
is always in force. With the optimum time allocation in (8)
the optimum average rate (power) can be found after retaining
only the summand (respectively ) in (5)
and integrating over the known CDF of .

To find we will satisfy each average rate constraint in
(5). Specifically, if the argument denotes iteration index and

a stepsize, we rely on iterating until convergence the
recursion

(10)

where ensures that the Lagrange multipliers
are always nonnegative as they should for our minimization
problem. Recursion (10) represents a standard (sub-)gradient
update whose fast convergence to the unique global optimum

from any initial condition, say , is always
guaranteed because the objective as well as the constraints in (5)
are convex w.r.t. ([1], Proposition 6.3.1).

In practice, in (10) can be replaced by
, where

are realizations of generated from , particularly
easily when channels across users are independent, or, when

are (even correlated) complex Gaussian.
Recalling the user-time allocation policy in (8) or (9),
at most one user-mode pair is nonzero for each

per iteration. Notice that is used now in
(7) to compute the winner terminal and mode

per realization , based on which we find
and for

and , and 0 otherwise. As
stopping rule for the iterations in (10), we check whether the
relative difference
of the dual function [defined after (5)] drops below a preselected
tolerance level, in which case we return .
The trivial case for which convergence occurs to for
some , implies that the corresponding average rate is satisfied
as a strict inequality (cf. the Karush–Kuhn–Tucker conditions
[2, pp. 243]).

Before summarizing our P-CSIT based allocation scheme, it
is worth in this optimization problem (as well in those of the
ensuing section) to pay attention on what can be obtained of-
fline and what is needed during the online operation. Clearly,
since the expected value in (10) requires only knowledge of
the channel gain CDF , the optimum Lagrange multipliers
can be found offline using long-term statistical information of
the wireless fading channel. Interestingly, with available
off-line and perfect knowledge of obtained from the reverse
link, the access point needs to broadcast online only the index

of the minimum-cost terminal along with the index
of its minimum-cost mode found as in (7). Using

those, the “winner user” will transmit with AMC rate
and power . This low
overhead in the feedback results because we posed average (as
opposed to instantaneous) rate constraints. Through the use of
AMC modes, the BER constraints in the P-CSIT based opera-
tion are also automatically satisfied for each channel realization
(and thus on average as well). In addition, the average rate con-
straints are decoupled across users which implies that the gain

needed for the winner-terminal to select its transmit power
is readily available from the reverse link in time-division-duplex
systems; i.e., it is not necessary for the access point to broadcast
the realization . In summary, we have established the following
proposition.

Proposition 1: Under (oc-1) and (oc-2), minimization of the
weighted average transmit power under average rate and BER
constraints reduces to the constrained minimization problem (5)
over user-time fractions . Its almost surely optimal solution
corresponds to a greedy allocation [cf. (7) and (8) or (9)] where
at most one minimum-cost user transmits over the entire
frame with a minimum-cost AMC rate and minimum power
adapted to the P-CSIT so that the prescribed BER is
satisfied. The Lagrange multipliers required to ob-
tain the minimum cost are computable at the access point offline
using the channel gain CDF; while the online operation requires
low overhead for feeding back
carrying bits from the access point to
the terminals.

Although we allowed users to share each frame at the outset,
the power-efficient allocation ended up being a greedy (or
opportunistic) one. The opportunity per channel realization is
given at most to a single user transmitting with a single AMC
mode minimizing the functional which captures
the smallest net transmit power cost (power spent minus rate
rewarded) depending on the channel quality . Notice that the
larger the “winner-user” channel gain , the higher transmit
rate can be afforded while meeting the prespecified
BER constraint. At the other extreme, if all users experience
a deep fade we will have , in which
case and all users will defer [cf. (9)]. These
observations show that the optimum allocation asserted by
Proposition 1 is in the spirit of the well known water-filling
principle typically encountered when maximizing sum-capacity
subject to power constraints.

When the winner pair entails the zeroth transmission
mode, which terminal gains access to the channel is irrel-
evant since the transmit-configuration of all user terminals
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is identical no matter who the winner is. This means that
instead of indexing any mode-user combination (which
requires feedback bits) it
suffices to index any active mode-user combination along
with the all-users-defer case. This explains why only

feedback bits suffice as per
Proposition 1. A couple of remarks are now in order.

Remark 1: It is intriguing that the P-CSIT based
“winner-takes-all” optimal allocation which has been de-
rived for rate maximizing general multiple access systems
under average power constraints assuming infinite-size ca-
pacity-achieving codebooks [10] carries over to the specific
TDMA setup considered here which relies on a finite pool of
AMC modes to minimize average transmit power under average
BER and rate requirements. Note that in addition to differences
in the criterion, constraints and operating conditions, the for-
mulation here accommodates transmission modes used in the
standards.

Remark 2: In finding the optimal user-mode pair in (7) it was
tacitly assumed that the net costs have a unique
maximizer . However, this is not the case when the max-
imum is attained by multiple user-mode pairs
for a given fading state . Interestingly, the event of having
more that one winner per slot has Lebesgue measure zero for
ergodic fading channels with continuous CDF—the typical case
in wireless systems. As a result, the allocation implemented
when multiple winning users tie has measure zero contribution
to the average power cost; and thus any arbitrary (deterministic
or random) assignment to a single user among those tied yields
the same average cost; see also [15, Lemma 3.15] for related
comments in a different context. This explains the almost sure
optimality asserted in Proposition 1. For deterministic channels
or random channels with discrete probability density functions
however, these ties are not measure-zero events and have to be
accounted for [22]. Specifically, the optimal time-sharing frac-
tions among the multiple winners must be determined to ensure
that the individual rate constraints are satisfied.

IV. OPTIMAL RESOURCE ALLOCATION AND QUANTIZATION

BASED ON Q-CSIT

In this section we deal with power-efficient TDMA based
on AMC and Q-CSIT, a setup particularly appealing for fre-
quency-division-duplex systems in the power-limited regime.
When quantization regions are a priori specified, the
schemes in this section yield the optimal allocation of user
times and power allocations per frame. At least as important,
the present section develops a systematic block-coordinate
descent algorithm to jointly optimize the allocation as well as
the selection of quantization regions that influence the form of
Q-CSIT used.

But before specifying this form, it is instructive to point
out the differences emerging when one replaces P-CSIT with
Q-CSIT. Those appear in at least two facets:

(d1) with the Q-CSIT vector containing a finite
number of (say ) bits, only a finite number of choices
(namely ) are available for the terminals to adapt; and
(d2) in lieu of , the coupling of transmit rate with transmit
power that allows one to be computed from the other for a

prescribed BER (via (3)) is no longer possible. This in turn
implies three things: (i) an extra set of power variables

, where ,
in the optimization problem; along with (ii) an extra set of
Lagrange multipliers associated with average BER con-
straints that must now be explicitly accounted for; and (iii)
impossibility to express transmit power in terms of the frac-
tions which allow for linear combinations through
time sharing; as a result, henceforth only the original
TDMA fractions will be used per user to form the
user-time allocation vector .

Since a quantizer is basically a classifier, to define the Q-CSIT
we need to specify the input, output, type and number of classes
as they relate to our problem at hand. These are as follows:

(oc-3) For each terminal we consider classes,
as many as its AMC modes; the input is and the output
is the vector indexing the selected mode ;
if and terminal is selected by the allo-
cation scheme, then it transmits with rate
and power both of which are assumed con-
stant over the region . If not a priori specified, the
regions are found using a suitable distance crite-
rion as elaborated in Section IV-C. We will show that the
winner-takes-all policy is also optimum when Q-CSIT is
used. This implies that the Q-CSIT vector does not
need to index each and every quantization region but only
the one corresponding to the winner user, namely

, i.e., the index of the selected
terminal and its selected mode index .

The novel coupling of AMC modes with quantization regions
introduced by (oc-3) is motivated by the P-CSIT based setup
where even though a linear combination of rates was allowed,
the nontrivial solution ended up entailing only a single AMC
rate for the “winner terminal.” This coupling will prove ben-
eficial not only in formulating tractable convex optimization
problems for optimal resource allocation but further in reducing
the feedback overhead. Contributing to the overhead reduction
is also the fact that quantization in (oc-3) is decoupled across
users. In essence, we have quantization problems each en-
tailing classes; hence the Q-CSIT under (oc-3)
will only need to carry bits
(we will see that this number can be further reduced to

). The quantization regions per user are
nonoverlapping across modes but for a given mode they overlap
across users; i.e., with denoting set intersection (union),
we have for , but
for ; and certainly , where

denotes the domain of in the CDF which is a subset of
the nonnegative -dimensional real vectors . Had we cou-
pled quantization also across users, we would have a single clas-
sification problem with nonoverlapping regions but with more
classes .

One could be tempted to rely on a conventional channel
quantizer with output the index of the region and centroids

lying “close” to in e.g., the minimum mean-square
error (MMSE) sense, as in the scalar or vector Lloyd quantizer
[11]. However, this approach is clearly suboptimum in two
counts: first, the average BER constraints would be impossible
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to guarantee due to the aforementioned (d2); and second, the
MMSE optimal quantizer would not ensure optimality in the
minimum transmit power sense sought here.

Having specified the Q-CSIT form, we proceed to ex-
press the average power, rate, BER and variables involved
in the ensuing optimization problems. Since the adap-
tive configurations are finite as per (d1), the transmit
power of user per channel realization is a
discrete random variable; while the corresponding time
fraction is a continuous one over . Hence,

, where the last equality
follows after splitting the integral over the nonoverlapping
quantization regions. But since under (oc-3) the transmit power
per region is constant, we arrive at (recall that , and
thus the defer-mode need not be included)

(11)

Arguing along the same lines it follows readily that the average
transmit rate can be expressed as (recall also that )

(12)

where the integral can be interpreted as the probability that ter-
minal uses mode (i.e., takes the value ).

The fact that the rate per user is a random variable in
adaptive transmissions prevents one from expressing the av-
erage BER by simply integrating (3) over , as when
the rate is deterministically constant. Instead, we need to
express as the ratio of the average number of erroneously
received bits over the average number of transmitted bits per
frame. The denominator is simply the average rate in (12).
Arguing as in (11) and (12), the numerator of this ratio is

, where is
the instantaneous BER of user using mode . (Notice that
since the rate is constant over , different from (3),
does not appear in .) Hence, the average BER constraint
under (oc-1)–(oc-3) can be expressed as: ,

(13)

To simplify (13), we will replace the denominator with from
(12). This could render the solution of the ensuing optimization
problem more conservative (if the rate constraints in (12) were
not met tightly), because we impose stricter average BER con-
straints. With this replacement, the constrained optimization we
seek to solve in this section is (14), at the bottom of the page.

Clearly, if regions are given a priori (using e.g., uniform,
Lloyd or entropy-based quantizers per ), then the problem
variables reduce from to .

In what follows, we will first solve (14) w.r.t. when
and are given (Section IV-A). Part of this user time allocation
sub-problem will be all one needs for the on-line Q-CSIT based
optimal resource allocation that utilizes the optimal power-book

and possibly the optimal quantization regions , both of
which are obtained off-line. Construction of (Section IV-B)
and (Section IV-C) will also rely on part of the time allo-
cation solution. For their off-line optimization we will follow
a block-coordinate approach where during the st block
iteration two of the three vectors from the

th iteration will be used to obtain the third one for the st
iteration, until convergence (Section IV-D).

A. Optimal User-Time Allocation

Here we solve (14) for when and are given. The
resultant solution will be useful in three cases: (i) for resource
allocation when and/or are prescribed by the
system setup; (ii) for the on-line phase where and

are fixed to their optimal values obtained in the off-line
phase; and (iii) for the off-line phase to obtain when

and are available from the previous block-
coordinate iteration.

Since is known, for a given realization
the mode for the transmit rate and power

, if user is selected, are also known [cf. (oc-3)].
As in Section III, the dual function evaluated at the optimum
value of the multipliers can be written as

, where the instantaneous cost
function

(15)

depends on the optimum Lagrange multiplier
corresponding to the th average rate (BER) constraint.
Upon defining the minimizing user index for this cost as

, and repeating the
arguments we followed to derive (8) and (9) we find, with

(14)
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and
given, that

then and

for (16)

or, the trivial case where all users defer:

then (17)

The time allocations in (16) and (17) clearly satisfy the con-
straint ; and since either one holds true
per they also minimize the average transmit power in (14)
provided we have a means of obtaining the optimum Lagrange
multiplier vectors and .

Based on , the wanted multipliers are computed off-line
to satisfy the average rate and BER constraints
through the sub-gradient iterations (18) and (19) [cf. (10)].

(18)

(19)

As in Section III, recursions (18) and (19) are guaranteed to con-
verge to the optimum pair starting from any initial
condition because the problem (14) is convex in the variables

.
Similar to in (10), the integrals in (18) and (19) are re-

placed in practice by sums over realizations . During
iteration , if falls in region the multipliers

and are used in (15) to compute the
winner terminal which contributes a summand with
known rate to the integral (now sum) in
(18) and a summand with known power to
the integral (now sum) in (19). Notice that the two (sub-)gra-
dient updates per user should be run and terminated jointly.
Again, we stop the iterations by checking the relative difference

of the dual function (defined after (14)) against
a preselected tolerance; and if smaller, then we return

and .
With the nonnegative multipliers com-

puted off-line using the channel gain CDF, for each realization
during online operation the access point only needs to: (i) select
per user from the given quantization and power books and

the region that falls into, and thus the rate
and corresponding power ; (ii) evaluate the cost in
(15) for all to select the winner (minimum cost)

terminal ; and (iii) feedback for
the winner terminal to select rate and power from its known
quantization and power books (or for all users to defer if the
trivial case in (17) is active). Summarizing, we have proved
that:

Proposition 2: Under (oc-1)–(oc-3), if and are given,
then Q-CSIT based almost surely optimal user-time allocation
is uniquely given by (16) or (17) and is solely determined
by the cost in (15). The optimum La-
grange multiplier vectors and are computable
at the access point off-line using the channel gain CDF;
while the on-line operation requires low-overhead feedback of

carrying
bits from the access point to the terminals.

Except for the difference in the cost, it is worth noting that
when the quantization regions and the power book are specified
the optimal user-time allocation based on Q-CSIT ends up being
also greedy, similar to the P-CSIT based one we saw in Proposi-
tion 1. The nonpositive cost can be viewed
as a link quality indicator of user (the smaller the better),
based on which at most one (minimum-cost) user is allowed to
transmit per frame. If there are multiple users ,
attaining the same minimum cost , arbitrary time sharing
of the frame or assignment of the entire frame to one of them
at random will be equally optimal. The dependence of
on the channel but also on the multipliers and
shows that the terminal with “best” link quality actually incurs
the smallest net cost in terms of the fulfilled average power and
BER requirements minus the average rate it is rewarded. As with
P-CSIT where all users defer when , the deep-fading con-
dition with Q-CSIT corresponds to having .
Because we seek to minimize average power under average rate
and BER constraints, letting users to transmit during deep fades
only gains small rate rewards at high power and BER costs; i.e.,
the intuition behind the optimal user-time allocation solution in
Proposition 2 is to save transmit power for better channel instan-
tiations which entail smaller net costs with higher rewards, and
thus gain power efficiency.

Remark 3: We already pointed out in Remark 1 the differ-
ences between this paper’s allocation schemes and the P-CSIT
based ones in [15], [10] with regards to the operating conditions
and the feedback overhead. Albeit greedy, our optimal sched-
uling policies based on either P-CSIT or Q-CSIT are also fair in
the sense that they satisfy the average individual rate and BER
requirements even if at most one winner terminal takes all re-
sources per channel realization. In addition to , fair-
ness is imposed explicitly through the weights em-
ployed in the objective function. Indeed, if average transmit
power is more critical for terminal , it suffices to assign to it a
larger so that the optimal solution weighs more reduction of
its power consumption. If on the other hand transmit rate is more
critical for terminal , its average rate requirement would be
naturally higher and the optimal policy will fairly present more
chances for terminal to transmit even if it has worse average
SNR than others. In a nutshell, the optimal user-time alloca-
tions of Propositions 1 and 2 not only minimize average transmit
power but are also fair by construction.
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B. Off-Line Construction of the Optimal Transmit-Power Book

In this subsection, we are given quantization regions (pre-
scribed as or provided by the previous block iteration as

) and the optimal user-time mapping obtained
as in the previous subsection. The goal is to solve off-line (14)
w.r.t. in order to obtain the transmit-power book , when all
other variables have been optimized, or to produce for the
next block iteration.

Because transmit-power variables under Q-CSIT are op-
timized independently from transmit-rate modes which are
coupled with quantization regions [cf. (oc-3)], the average rate
constraints are not present here. The same is true for the time
fraction constraints since is given. Hence, the optimal
power allocation problem reduces to

(20)

Since and we can always increase sufficiently
to render arbitrarily small, it is possible to meet
any prescribed average BER constraint; thus, the minimization
problem in (20) is always feasible. In fact, with the objective
being convex in and likewise for the constraint (since
is a convex function of the transmit-power) the problem in (20)
is also convex. This implies that similar to the previous subsec-
tion fast algorithms are available to find its unique global op-
timum.

To this end, we again follow the Lagrange multiplier method
and equate the derivative of the Lagrangian w.r.t.

to zero, to obtain the KKT conditions

(21)

where: stands for the derivative of the BER function
w.r.t. ; denotes the optimum multiplier as-
sociated with the th BER constraint; and is the
same for the th implicit constraint . Since
(20) is convex, strong duality holds and the KKT conditions
are sufficient and necessary for global optimality [2]. Inter-
estingly, when the set is given, transmit-power
optimization is decoupled across users. Thus, solving (20)
is equivalent to solving small problems; i.e., , it suf-
fices to: subject to

.
Furthermore, we prove in the Appendix that i) at the op-

timum we have , which implies that all
the average BER constraints are satisfied as strict equalities;
ii) if , then in which case

; and iii) if , the optimum
transmit power for certain pair(s) is , in which

case . We will henceforth exclude case iii) by just

removing zero-power AMC modes from the given and re-
formulating (20) with the more compact containing AMC
modes with nonzero optimum power values. With this reduc-
tion, we ensure that ; but since , we
can simplify (21) and seek as the solution of the nonlinear
equation

(22)

where the second summand is known so long as the multiplier
is available ( denotes derivative of w.r.t. ).

Multiplier can be determined by satisfying the average
BER constraint as a strict equality; i.e., upon defining

(23)

we need to find for each the root of the nonlinear equation
. Note that in order to stress the dependence

of on the multiplier in (22), we explicitly wrote the
powers in (23) as .
Because is convex and monotonic, the roots of

and in (22) and (23) can be found
efficiently with scalar sub-gradient iterations which will have
guaranteed convergence to the unique pair even
with arbitrary initialization.

Specifically, consider the th iteration and suppose that
is available. Using it in (22) instead of , we iterate the
recursion

(24)

until convergence, and set equal to the limit. Based on
, we next update the multiplier to closer satisfy (23)

using

(25)

and then go back to rerun (24) with replacing to find
, and so on.

The stopping rules in these two nested recursions are similar
to those in the previous subsection. As detailed before, the in-
tegrals involved in (22) and (23) are replaced in practice with
averages over channel gain realizations, drawn from the CDF

, and the approximation can be made arbitrarily accurate
since all these are generated and computed off-line. Especially
for the power allocation optimization where decoupling across
users allows for one-dimensional iterations per user, it is pos-
sible instead of the sub-gradient updates (24) and (25) to resort
to simpler e.g., bisection based alternatives which also exhibit
fast convergence (geometric in the error) while bypassing the
need to find appropriate stepsizes and .
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Summing up the results of this subsection we have:
Proposition 3: Under (oc-1)-(oc-3), if and are given,

then Q-CSIT based power allocation is provided by the unique
global optimum of (20). The optimal for each pair
is either , or, the unique positive root of (22) which
is computed efficiently (along with the associated optimum La-
grange multiplier) using a pair of nested one-dimensional iter-
ations off-line.

Per user , Proposition 3 asserts what could be interpreted
as quantized power water-filling across the quantization regions

. Indeed, as is convex and mono-
tonic, it is clear for the optimal power that: i) it increases
as increases [cf. (22)]; and ii) it decreases as increases
[cf. (23)].

C. Off-Line Construction of the Optimal Quantizer

Here the user-time allocation mapping and the power
book obtained as described in the last two subsections are
given, and the goal is to optimize (14) w.r.t. . Clearly, this step
is not necessary when the quantization regions are available be-
forehand as . It is present only in the optimization of
the joint allocation-quantization task to obtain when

and are available from the pre-
vious block iteration. Upon convergence of the block iteration,
the off-line solution of this subsection will return the optimal
book of quantization regions for use during the on-line op-
eration.

Since is given, the time fraction constraints in (14) are
not present here. And because (oc-3) entails quantization
problems decoupled across users, the pertinent optimization
problem per user is to

(26)

Notice that the quantization regions define regions of integra-
tion in (26). Since (26) is generally nonconvex w.r.t. these limits
of integration, similar to all quantizer design problems, guaran-
teeing the global optimum is challenging and finding it with ef-
ficient algorithms is generally impossible.

Nonetheless, pursuing again a Lagrange multiplier ap-
proach, we form the Lagrangian

,

where and denote respectively the optimum
multipliers corresponding to the average rate and BER con-
straints, and the instantaneous cost function is given by: for

,

(27)

with . To find the regions minimizing this cost,
we should clearly assign each realization to if and only
if its th entry satisfies

. But this readily yields the quantization regions
optimizing (26) for user as

(28)

These regions can be constructed as soon as the optimum
nonnegative multipliers involved in the cost
are found (note that depends on and ,

and therefore in (28) are in fact functions of
and ). If in (27), then no extra
computation is needed since (28) is directly implementable,
and the constraints are satisfied as strict inequalities (cf. the
complementary slackness [2]).

But if and , then the corresponding
constraints are satisfied at the optimum as equalities. This im-
plies that writing the dual function in (26) as

, the optimum multipliers can
be found as roots of the nonlinear (29) and (30)

(29)

(30)

where denotes the partial derivative of w.r.t. (re-
spectively ), and the dependence of the quantization regions
on the wanted Lagrange multipliers is indicated in the limits of
the integrals. To solve these equations one could be tempted to
use nested iterations similar to those in (24) and (25). Unfortu-
nately, since the nonlinear functions now are not guaranteed to
be convex, sub-gradient iterations can only assure convergence
to a (possibly nonunique) local optimum which also depends on
the chosen initialization.

For this reason, we instead advocate to solve (29) and (30)
by searching exhaustively over the two-dimensional space

. For each candidate pair of multipliers, the in-
tegrals involved are evaluated as discussed in the previous
subsections by generating realizations drawn from the
CDF . Even though a two-dimensional search is not as
efficient as a sub-gradient iteration or a line search, it is still
manageable since it is performed off-line and yields the op-
timum solution regardless of the initialization. One more feature
of this particular search is that it can be terminated (very) early
in some cases. Indeed, as soon as we find multipliers at which
the nonlinear function values satisfy and for
a preselected tolerance , we stop searching. At this point we
should also reflect back on (oc-3) to appreciate the importance
of decoupling the design of quantization regions across users.
Had we jointly optimized across all pairs, the
need would arise to search over a -dimensional space for
obtaining the associated optimum Lagrange multiplier vectors
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which is computationally more burdensome when compared to
the two-dimensional searches involved under (oc-3).

To recap the results of this subsection, we have established
that:

Proposition 4: Under (oc-1)-(oc-3), if and are fixed,
the quantization regions optimizing (26) are given by
(28) for each user . Computing the optimal La-
grange multipliers needed to obtain these op-
timal regions amounts to solving (29) and (30) per user, which
requires a total of two-dimensional exhaustive searches that
are computed off-line.

As we will also confirm by simulations, Proposition 4 yields
for each terminal a set of nonoverlapping consecutive inter-
vals, i.e., , by assigning to
the region minimizing the Lagrangian of (26). Intuitively,
can be interpreted as the utility of each transmitted bit and
as the cost of each erroneously received bit. With this inter-
pretation, the Lagrangian function of assigning to the region

represents the average of the net cost which
takes into account transmit power and BER expenditures minus
transmit-rate rewards. Note also that if the th user
should clearly defer because the cost of assigning to an ac-
tive region is higher than the cost of assigning it to
the inactive region which incurs zero cost. A remark
is now in order on the relationship of this subsection’s design
with the vast literature on vector quantization; see e.g., [4].

Remark 4: Let us consider the distortion metric

(31)

which coincides with in (27) when , and
equals 0 when . (Recall that in the optimum user-time
allocation or 0.) Based on (31), we can view mini-
mization of the Lagrangian as minimizing the average distortion
metric

(32)

This in turn implies that finding as in (28) can be in-
terpreted as a nearest-neighbor rule [4] with the nonstandard
metric in (31), according to which

(33)

Casting the design of single-user multi-antenna systems with
limited-rate feedback in a vector quantization framework has
gained popularity recently; and variants of Lloyd’s algorithm
[11] have been put forth in this context; see e.g., [5], [19] and
references therein. The main contribution of Proposition 4 to
quantization is the adoption of a distortion metric minimizing
weighted average transmit power in a TDMA setup where users
rely on AMC modes that are coupled with the quantization re-
gions per user [cf. (oc-3)]. The impact of this coupling in prac-
tice is major since it allows online usage of the quantizer de-
signed off-line with low overhead in the feedback channel.

D. Joint Allocation-Quantization Algorithm

In this subsection, we combine our results from
Sections IV-A–C to tackle the joint resource al-
location-quantization (JRAQ) problem in (14).
The resultant JRAQ block-coordinate descent al-
gorithm minimizes the global objective function

,
by fixing two of the three sets of variables and
minimizing w.r.t. the third one as summarized next:

Algorithm 1: JRAQ: Produce using the CDF initial
quantization regions and transmit-power variables

which are feasible. Select tolerance , initialize
objective at and set the iteration index .

J1) Given and , obtain from
Proposition 2.

J2) Given and , obtain from
Proposition 3.

J3) Given and , obtain from Proposition
4.

J4) Stopping criterion: Calculate the objective using
and . If ,

return the th resource allocation and quantization
variables and stop. Otherwise, increase by 1 and
go to J1).

In each of the four steps J1–J4, the global objective is
guaranteed not to increase and is lower bounded by the corre-
sponding optimal P-CSIT based solution. In addition, Propo-
sitions 2–4 assert that iterations in each step will converge to
the unique global optimum of each individual sub-problem and
these solutions can be found analytically (but not in closed form
except for ). Hence, we are ensured that the JRAQ algo-
rithm will converge in a finite number of iterations at least to a
local minimum [1, Theorem 2.7.1].

One reason that the block-coordinate descent iterations of
JRAQ may not reach the global optimum is the fact that the min-
imization problem in (14) is nonconvex w.r.t. the quantization
region variables . Of course, this lack of convexity is inherent
to all optimization problems dealing with vector quantization in-
cluding the celebrated Lloyd algorithm [11]; i.e., it is not unique
to our formulation. Nevertheless, in accordance with the wide-
spread success of Lloyd’s algorithm in practice, our simulations
too confirm that the resulting Q-CSIT based JRAQ algorithm
always achieves power efficiency close to the optimal P-CSIT
solution that we developed in Section IV-A. And since P-CSIT
is the limit of Q-CSIT as the number of feedback bits grows
large, the P-CSIT solution lower bounds the Q-CSIT based one.
This then corroborates that our JRAQ algorithm indeed attains
near-global optimality.

Initialization: Critical to this claim of near-global optimality
but also to the speed of convergence is the choice of the initial
block variables and needed to start up step J1. As a
word of caution, if JRAQ is initialized randomly not only con-
vergence speed may suffer severely but more importantly the
block component iterations may fail to yield even a feasible so-
lution. Recognizing the importance of initializing the JRAQ al-
gorithm with a feasible set of variables, our idea is to rely on
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the results of the P-CSIT based solution to initialize our Q-CSIT
based one.

These considerations prompt us to replace in (28)
with the P-CSIT based cost

from (7), and initialize the quantization regions per
user using

(34)

As we commented earlier, requires only knowledge of
the channel gain CDF; and for each , the transmit power
also required in is computed by inverting (3)
as , where is available from
the pool of AMC modes.

To initialize the transmit-power vector, we take a conservative
approach and adopt

(35)

Because all quantities from the P-CSIT based solution have been
derived to meet the average rate (and implicitly also the average
BER) constraints, it follows readily that the initialization pro-
vided by (34) and (35) yields feasible variables. In fact, since
the maximum transmit power is considered in (35), the average
BER constraints will be over-satisfied.

Practical Considerations: Having clarified its initializa-
tion, we will close this section with practical considerations
pertaining to the off-line and on-line operation of the JRAQ
algorithm. Given in J1, we only need to compare

instantaneous cost functions to find the winner user as in
(16). The sub-problems in J2 and J3 are decoupled across
users. Given per user in J2, we only need to solve
a nonlinear problem (22) to obtain the transmit power

; while the optimal quantization (28) per user
in J3 can be determined by comparing cost functions in

(27). Therefore, the optimization in each step exhibits linear
complexity in the number of users if the optimal Lagrange
multipliers are available. Furthermore, for the problems of the
form encountered in steps J1 and J2, recent convex optimization
solvers are very fast and can reliably find Lagrange multipliers
for problems of much larger dimension than those expected in
our TDMA setting; see e.g., ([2], Chapter 1) where problems
involving 100 or more variables are tackled with affordable
complexity, requiring as few as 10–100 sub-gradient iterations.
Efficient algorithms are also available in [4] to solve vector
quantization problems similar to the one in J3.

As far as the online operation, recall that only part of step
J1 is involved. Indeed, with inputs and all
computed off-line, it is possible for the access point to find the
most power-efficient user-mode pair and feed back to the termi-
nals the corresponding Q-CSI vector per channel realiza-
tion carrying only bits (cf. Proposition
2). Except for the trivial case (where all users defer) the winner
terminal “awarded” the frame also keeps its own transmit-power
books and based on the instantaneous feedback it transmits
over the scheduled time frame with the scheduled power and

AMC rate. (Since the optimal power book
is calculated by the AP and broadcasted to all users during the
initialization phase, the assumption that each user knows its
own book is not restrictive.) We reiterate that only must
be fed back per channel realization while recalculation of the
books and is necessary only when the fading channel
CDF, user rate requirements or user population changes.

To appreciate the practical merits of the JRAQ algorithm con-
sider a pragmatic example of active TDMA users,
each supporting different AMC modes , as in the
IEEE 802.16 standard. During the online operation of JRAQ,
the access point in principle only needs to feed back 5–6 bits
per fading state (i.e., coherence time). The overall feedback is
included in the UL-MAP message which is encapsulated in a
downlink frame to schedule the subsequent uplink frame; see
[7, Sec. 6.2.7]. Q-CSIT based feedback operation is also stan-
dardized in other systems, e.g., via the data rate control (DRC)
channel in CDMA 2000 1xEV-DO; and via the channel quality
indicator (CQI) reporting in WCDMA HSPDA. In short, the
feedback overhead for on-line operation of the JRAQ algorithm
is certainly affordable by most practical systems.

V. SIMULATED TESTS

In this section, we first test the JRAQ algorithm for a two-user
( ) Rayleigh flat-fading TDMA channel3 and then check
performance with a higher number of users.

The available system bandwidth is 100 KHz, and the
AWGN has two-sided power spectral density Watts/Hz. The
fading channel gains have mean , and are as-
sumed uncorrelated. The average signal-to-noise ratio (SNR)
for user is . Unless otherwise specified, we
suppose that each user supports quadrature am-
plitude modulation (QAM) modes, namely BPSK, 8-QAM and
32-QAM; hence, the corresponding (here uncoded) transmis-
sion rates are 1, 3, and 5 bits/symbol. The instantaneous
BER in this case can be well approximated as [6]

. In all simulations, the prescribed av-
erage BER requirements are .

With dB for , we test the P-CSIT based re-
source allocation scheme of Section III as well as the Q-CSIT
based JRAQ algorithm of Section IV-D. To assess the role of
optimal user-time and power allocation, we also test a heuristic
Q-CSIT based approach, where all users are assigned equal time
fractions per frame (i.e., ) and each terminal
transmits with fixed power regardless of the AMC rate it
adopts. For every candidate and channel gain , the ac-
cess point selects an AMC mode per user so that
the instantaneous BER meets the prescribed average BER; i.e.,
so that . This choice corresponds to
a conservative quantizer since except for the boundaries of the
resultant quantization regions, the average BER requirement is
always over-satisfied. With such a quantization, each terminal’s
transmit power is then optimized to also meet the average rate

3Note that a two-dimensional channel spaceD (K = 2) facilitates visualiza-
tion of e.g., the power region [18], the quantization regions and the user-time al-
location. On the other hand, since JRAQ implements a winner-takes-all strategy
it collects the maximum multiuser diversity that the channel provides. Hence,
K = 2 represents a worse case scenario and the validity of the performance
claims holds for a higher number of users.
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Fig. 1. Total power consumption for different resource allocation schemes with
different power weight ratios w =w and w = 1 when �� = �� =

10 ; �R = �R = 100 kb/s, and �
 = �
 = 0 dB.

constraint; i.e., is found using an one-dimensional search
(e.g., bisection) as the root of the nonlinear equation

(cf. (5) with
and ). Notice that due to its

simplicity, the quantization approach of this heuristic scheme
is actually widely employed in practical systems with adaptive
transmissions, including those in the CDMA2000 1xEVDO and
the WCDMA HSDPA standards.

We first consider individual average rate requirements:
100 kb/s and 100 kb/s. With different power weights,
Fig. 1 (top) depicts the weighted total power consumption for
these three schemes; while Fig. 1 (bottom) depicts the perfor-
mance loss of the two Q-CSIT based TDMA systems w.r.t.
the P-CSIT solution in order to gauge the price paid by the
limited-rate feedback operation. We observe that: i) the JRAQ
algorithm clearly outperforms the heuristic Q-CSIT scheme
(yielding around 6 dB savings); and ii) the gap between JRAQ
and P-CSIT solutions is very small. Since the P-CSIT solution
lower bounds all Q-CSIT based alternatives, this confirms that
our block component iterative algorithms are indeed near-glob-
ally optimal. Recall that the P-CSIT based scheme is only
suitable for TDD operation in relatively slow fading, where the
channel can be accurately estimated and channel reciprocity
holds; whereas the near-optimal Q-CSIT based one applies to
both TDD and FDD systems.

To assess the fundamental limits of average power-efficiency
in our Q-CSIT and P-CSIT based TDMA systems, it is pos-
sible to define regions where average power vectors must lie
for prescribed sets of average rate and BER requirements. If
convex, the boundaries of these regions provide the lowest av-
erage transmit powers attainable by different weight vectors

in our weighted average power minimization framework.
Notice that these power regions can be thought of as duals of the
capacity regions in [15] and [10].

Given a feasible triplet , i.e., a triplet satisfying
the constraints in (14), we define the region of achievable av-
erage transmit-power vectors for the Q-CSIT based setup as

(36)

For a prescribed pair of vectors and
, we take the union of achievable regions in (36)

over the feasible set of triplets and define the
region of average powers in Q-CSIT based TDMA systems as

(37)

Likewise, upon replacing the triplet with the
pair and the right-hand side of the inequality in
(36) with , we can define the region

of achievable average transmit-power vectors
for the P-CSIT based minimization in (5); and after taking

the union as in (37), the corresponding region of
of all average transmit-power vectors for the P-CSIT based
TDMA system [18]. As the latter is convex, its boundary points
are attained by solving (5) for all possible weight vectors

[18].
In the case of users, we plot these power regions

for two sets of individual average rate requirements: i)
kb/s, kb/s, and ii) kb/s, kb/s.

Fig. 3 depicts on the plane the regions
and lying on the north-east side of their bound-
aries defined by the lines which correspond to the different av-
erage rate requirements (average BER requirements are fixed
to ). For any fixed pair ( ) of average
transmit powers within each power region, there always exists a
corresponding resource allocation policy achieving the required
average rate and BER. Furthermore, any transmit-power op-
timal solution yielding the smallest weighted sum of average
transmit powers corresponds to a boundary point. Notice that
with , the power regions are symmetric w.r.t. the line

; while they are nonsymmetric for . Re-
call that P-CSIT can be seen as the limiting form of Q-CSIT
as the feedback rate goes to infinity. With more information at
the transmitters, we can perform more intelligent resource allo-
cation. This explains why the Q-CSIT based power regions are
always contained within the P-CSIT based ones. Note however
that when the inequality present in the definition (36) is strict,
the Q-CSIT regions in Fig. 3 are actually conservative estimates.
Nonetheless the resultant average power regions for the Q-CSIT
based TDMA are very close to their P-CSIT based counterparts.
This implies that also with regards to fundamental limits, the
JRAQ algorithm is near-globally optimal.

To assess performance of the JRAQ algorithm as the number
of users increases, Fig. 2 depicts the total weighted average
transmit power for different values of with 50 kb/s,

and 3 dB remaining fixed . Two major con-
clusions can be drawn from Fig. 2: i) the gap between P-CSIT
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TABLE I
PERFORMANCE OF THE JRAQ ALGORITHM FOR DIFFERENT TEST CASES (FOR CASES II AND IV THE RATE REQUIREMENT FOR USER 2 IS 50 KB/S)

Fig. 2. Total power consumption for different resource allocation schemes with
different number of users (w = 1; 
 = 3 dB, �� = 10 , and �R = 50

kb/s 8k).

Fig. 3. Power regions for P-CSIT and JRAQ policies (�� = �� = 10 ; �
 =

�
 = 0 dB).

based resource allocation and JRAQ remains small for all tested
configurations; and ii) the gap between JRAQ and the heuristic
Q-CSIT allocation widens as the number of users increases. This
is because the opportunistic channel access in JRAQ exploits the
multi-user diversity provided by the uncorrelated fading chan-
nels, whereas the fixed channel assignment implemented by the
heuristic Q-CSIT allocation does not.

Additional numerical tests of the JRAQ algorithm are sum-
marized in Table I. Its entries illustrate that the constraints are
tightly met and corroborate that our Q-CSIT based block com-
ponent iterations converge to average power efficiency close to
that attained by the P-CSIT based benchmark.

To gain more insight, let us take a closer look at the JRAQ al-
gorithm when kb/s and . The power
and rate loadings are listed in Table II, whereas the quantiza-
tion regions and user-time schedules are depicted in Fig. 4 (dif-
ferent shades represent the user selected to access the channel).
From Table II, we deduce that . This
illustrates the water-filling principle which holds for both the
Q-CSIT based optimal power loading of Section IV-B as well
as for the P-CSIT one of Section III. Indeed, when the channel
is more reliable, higher transmit rate can be afforded at lower
transmit power. Fig. 4 also confirms that the optimal regions

, are nonoverlapping consecutive inter-
vals and can thus be determined by the set of thresholds
represented with boldface lines.

We have seen that with three AMC modes the JRAQ al-
gorithm provides average power efficiency approaching the
P-CSIT based benchmark, while requiring only 3 bits of
Q-CSIT per frame. We next test how the number of feedback
bits affects the performance of JRAQ. For kb/s
and , Table III lists the total average transmit-power
cost for the two-user Rayleigh flat-fading TDMA channel with
a variable number of feedback bits. When one bit is available,
the feedback information only indicates user selection; and
once the winner terminal is picked, it transmits regardless of .
Fig. 4 illustrates that for those realizations that the channel
experiences a deep fade, both users defer as suggested by
our analytical results. Even though the region
for this case is small, the power required to compensate for
these “bad” channels is high (23.05 dBw). Compared to the
power required with 4 feedback bits (8.43 dBw) this represents
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TABLE II
TRANSMIT-POWER (p )) AND AMC RATE (� ) LOADING PER QUANTIZATION STATE RETURNED BY THE

JRAQ ALGORITHM (w = 2=3; w = 1=3; �� = �� = 10 ; �R = �R = 100 KB/S, �
 = �
 = 0 DB)

Fig. 4. Optimal user-time allocation policy and quantization regions ob-
tained by the JRAQ algorithm, where user selections are indicated using
different shades and quantization thresholds are represented with boldface
lines (w = 2=3; w = 1=3; �� = �� = 10 ; �R = �R = 100 kb/s,
�
 = �
 = 0 dB).

TABLE III
AVERAGE WEIGHTED POWER FOR JRAQ WITH A VARIABLE

NUMBER OF FEEDBACK BITS (w = w = 1; �� = �� = 10 ;
�R = �R = 100 KB/S, �
 = �
 = 0 DB)

about 15 dBw in average power savings. As the number of
feedback bits increases, the number of active AMC modes per
user increases too. Somewhat surprisingly, even with only two
feedback bits (when and ), JRAQ provides an
average power cost not too different from the P-CSIT bench-
mark (cf. Table III). This confirms that the user-time allocation
policy plays a major role in power efficiency. Numerical results
also reveal that a few (2–4) AMC modes per user, and thus a
few feedback bits, suffice to close the gap between Q-CSIT and
P-CSIT based TDMA systems.

The convergence of JRAQ is illustrated in Fig. 5, where the
average total weighted power is plotted as a function of the inner
iteration steps. (Recall that for each outer iteration , the JRAQ
algorithm implements three inner steps.) We observe that JRAQ

Fig. 5. Average weighted power evolution of the JRAQ algorithm (w = 2=3;
w = 1=3; �� = �� = 10 ; �R = �R = 100 kb=s; �
 = �
 = 0 dB).

converges after a small number of iterations ( outer iter-
ations which means inner steps). The curve
is not perfectly smooth due to the finite resolution in the nu-
merical integrations involved. Another interesting observation
is that even the first inner iteration step returns a relatively re-
liable solution. Although JRAQ is implemented once off-line
based on the long-term channel statistics, Fig. 5 further demon-
strates the fast convergence of the off-line JRAQ algorithm that
relies on the CDF of the channel gains.

VI. CONCLUSION

We developed a framework to minimize weighted average
transmit power subject to average rate and BER constraints
in wireless TDMA where terminals rely on a pool of AMC
modes and adjust their transmissions according to the lim-
ited-rate feedback they receive from the access point. When
P-CSIT is available, optimal scheduling and resource allocation
policies turned out to be almost surely opportunistic (at most
one user transmitting per frame), as with existing rate-max-
imizing schemes which rely on theoretically infinite-size
capacity-achieving codebooks. Incorporation of average (as
opposed to instantaneous) constraints in our practical P-CSIT
setup enabled efficient off-line computation of the analytical
(and globally convergent) solution based on the continuous
CDF of the channel gains, and led to low overhead in the
feedback link.
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Interestingly, power-efficient policies turned out to be
also opportunistic even for challenging setups where only
Q-CSIT is available. For the case where quantization regions
are prespecified by the system design, we formulated and
solved analytically Q-CSIT based convex optimization prob-
lems yielding power-efficient scheduling and transmit-power
allocation schemes that are globally optimum. We further
tackled the joint resource allocation-quantization (JRAQ)
problem which necessitated formulation and construction of
a nonconventional power-efficient quantizer and simultaneous
optimization of the resource management policies with the
form of Q-CSIT used. The novel design linked quantization
regions with AMC modes on a per user basis, which reduced
complexity and lowered the required feedback overhead. The
JRAQ problem was solved using an efficient block-component
iterative algorithm with guaranteed convergence to at least a
local optimum. (Recall that this is the best one can expect
when nonconvex vector quantization problems are involved.)
Requiring just sub-gradient recursions and two-dimensional
searches, all of which are performed off-line, complexity
of the optimization is certainly affordable. What is more,
the on-line opportunistic scheduling requires a surprisingly
small number of bits in the feedback (in the order of 3–7
per channel instantiation for TDMA systems with 2–16 users,
each with 4–8 AMC modes).

We finally relied on simulated tests to compare our user
scheduling, resource allocation, and JRAQ schemes based on
Q-CSIT against a heuristic alternative and against the P-CSIT
benchmark. These tests confirmed our analytical findings and
demonstrated considerable savings in transmit power relative
to sub-optimum allocation schemes. They also suggest that
the Q-CSIT based JRAQ algorithm holds great potential for
practical deployment since it fits the specs of current ac-
cess standards and with simple enough on-line overhead it
can come surprisingly close to the benchmark P-CSIT based
performance.4

APPENDIX

PROOF OF (22) AND (23)

We will first show that . Arguing by contradic-
tion, we suppose that for a certain and deduce that
[cf. (21)]

(38)

Since , we have that

. By complementary slackness [2] between
and constraint , this implies that , . But
excluding the trivial case where , the average BER
corresponding to user becomes 0.5 which is a contradiction.
Hence, we have . Also by the complementary

4The views and conclusions contained in this document are those of the au-
thors and should not be interpreted as representing the official policies, either
expressed or implied, of the Army Research Laboratory or the U. S. Govern-
ment.

slackness, we have from (21) that either , or, if

(thus ), then

(39)

which readily leads to (22). Since , , the com-
plementary slackness between and the BER constraints
imply readily that the average BER constraints are achieved with
equality as in (23).
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