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On Bounds and Algorithms for Frequency
Synchronization for Collaborative Communication
Systems
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Abstract— Cooperative diversity systems are wireless commu- In fact, in [1] it is shown that a collaborative system can
nication systems designed to exploit cooperation among use have the same diversity order as an equivalent MISO system.

to mitigate the effects of multipath fading. In fairly general Eppi0ying a collaborative protocol in a wireless network ca
conditions, it has been shown that these systems can achleveI . th Il th hout of th work. Th
the diversity order of an equivalent MISO channel and, if the also Increase the overa roughput ot the network. 1he use

node geometry permits, virtually the same outage probabity can ~ Of relaying is a special case of network coding and as shown
be achieved as that of the equivalent MISO channel for a wide in [10], the capacity of a relay (or coded) network is greater

range of applicable SNR. However, much of the prior analysis than in a traditional point-to-point network.
has been performed under the assumption of perfect timing ah 1 gesign a practical collaborative communication system,

frequency offset synchronization. In this paper, we derivethe . :
estimation bounds and associated maximum likelihood estiators  ©N€ of two methods may be used. The signal modulation and

for frequency offset estimation in a cooperative communicton ~ €oding may be designed to be naturally robust to synchro-

system. We show the benefit of adaptively tuning the frequeryc nization errors [11], or alternatively, the frequency aimdirig

of the relay node in order to reduce estimation error at the offsets are estimated and subsequently compensated [£2]. W

destination. We also derive an efficient estimation algoriim, explore the second option in this paper. Algorithms and bsun

based on the correlation sequence of the data, which has mean . .

squared error close to the Cranér-Rao Bound. for standard synchronization are found.m [13]-[15]. The re
lated case of a MIMO channel with multiple frequency offsets
is treated in [16], [17]. In this paper, we provide more dstai

|. INTRODUCTION and extend the results of [18]. We derive the transmission

frequency the relay must use to optimally reduce the vaeianc

Collaborative communication systems employ cooperah%? the frequency estimator at the destination by minimizing

among nodes in a wireless network to increase data thromgh&ue Cramér-Rao Bound (CRB) of the frequency estimators

and robustness to signal fading. Much of the research doaﬂeeach receive node. By using the CRB, our frequency

in this area has concentrated on information theore“duses.uselection algorithm is independent of algorithm choice. We

protocols, and coding while assuming perfect synchrongl-so provide an efficient frequency estimation algorithm fo

tion [1]-[6]. In this paper, we explore frequency synchro; .
nization of a collaborative system and provide estimatiotne collaborative system.
Y P In [12], Shin et. al. describes a specific protocol, which

bounds and practical algorithms having performance close t . . . o )
the bounds. we use in this paper, for collaborative communication with

. . S)énchronization among three nodes: a source, a relay, and
In a collaborative system, nodes that would have remaing o .
a destination. The protocol is based on a two-phase trans-

silent during some period of time adapt to their surrounsing,_ . . o . .
and collaborate with the source and destination nodes.eThgénsISSIOn within each frame [1], [4], a listening phase and a

. - . . cooperation phase. Within each phase there is a preamble
systems, sometimes termed cooperative diversity systeseas, P P P P

o . containing synchronization signals. In the listening ghas
distributed protocols to greatly improve performance OVele relay receives and decodes the source’s message. During

traditional point-to-point communication systems. One- i hg cooperation phase, the relay re-encodes and transmits

provement to system performance comes in the form of ad . . : _
" : . : € message cooperatively with the source. This process is
robustness to signal fading [1], [2]. An effective way to edle . g
illustrated in Figuréll.

robustness is to increase the spatial diversity by usingipheil The synchronization algorithms in [12] are ad-hoc and

antennas as in a MIMO system [7], [8]. However, when con- S
S , : . meant only to serve as a proof-of-concept that synchranizat
sidering a network of low-cost wireless devices, the sizé an

. ) o ; is possible with collaborative systems. In this paper, wévde
cost of multiple antennas is prohibitive for these devid@s [ P . Y IS paper, d
. 2~ the CRB for optimal frequency offset estimation for the slas
A way for low cost nodes to realize much of the benefit of g

. . : o of systems discussed above. We show there exists an optimal
MIMO system is through collaborative (cooperative) divgrs , . Y o b
(with respect to minimizing the CRB) frequency of transmis-
This work was sponsored by the Department of the Air Forceeunds'or_‘ for the _relay_ node based on: 1) the accuracy of eSt'maF'o
Contract FA8721-05-C-0002. Opinions, interpretatiorsnatusions and rec- during the listening phase and 2) the SNR of all node pairs.
ommendations are those of the authors and are not necgssadibrsed by \n\le derive the maximum-likelihood (ML) frequency estimator
the United States Government. f h . de. Th . icall
Portions of this work are to appear in the Proceedings of thernational or eacn receive node. ese estimators are asymptotically

Conference on Distributed Computing Systems, June, 2007. efficient, meaning they achieve the CRB at high signal-ts&0
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Link sdk . '

S " d The system model is defined in this section. During each
) phase, a preamble consisting of a certain number of samples
Link sr (I, for listening andN,. for cooperation) used for frequency
synchronization. We assume the transmission channel 4is fre
qguency selective with channel impulse respo@sesamples
Relay long. Due to differences in local oscillator charactecistithe
operating frequency of each node is slightly different. [fgt
Listening Phase (£) denote the operating frequency of the source node and simila
definitions for f,. and f;. The notationsd is used to denote
the source to destination link and likewise for andrd. As
link sd is used in each phase, lef, denote the link during
the listening phase angti. be for the cooperation phase.
Each transmitted signal is received and converted to base-

-~
,CD N Link sd
| N

Coopera‘tive \ band for subsequent processing. During the listening phase
space-time coding Link 7d the baseband signal of ”nke {sdy, sr} is expressed as [15]
\ ] Yan] = e?*™ams, [n] + wy[n], (1)

where n is the sample indexf, is the frequency offset
Cooperation Phase (c) between the two nodes of link normalized by the sample
rate,wy[n] is the noise generated in the electronics of receiver
Fig. 1. lllustration of the two phases in a three node codjpergommuni- p ¢ {d’ 7«} (destination or relay node respectively), aﬂ;!n]
cation system. is the combination of the known training signals, (=
[20[0], ..., m[N, — 1]]T) and the effects of the frequency
selective channel, given by

P-1
ratio (SNR). However, the ML solution is computationally salh] = Z halk]ze[n — K.
expensive and we therefore derive a practical correlation k=0

based estimation algorithm with performance close 0 the ihis equation,[n] are the samples of the channel response

CRB. For the purposes of this paper, we assume a freqUeRGY jink  and P is the duration of the channel response. We
selective fading model and that timing synchronization hags me. for each link. the length of the channe? is the
been performed. Future papers will extend this work to idelu g4 e Writing [L) in m:':\trix form gives

timing estimation and synchronization. We also assume all
training sequences are constant modulus signals. Ya =V, Xh, +wy (2

This paper is organized as follows, Sectigh Il outlines th&here[V ], , = ¢/*7/<" is a diagonal matrix anfiX]; . =
mathematical model describing the signals involved in theli — k| is a Toeplitz matrix where,[k] = 0 for £ < 0 and
frequency estimation portion of each phase. The CRB and ML= V-
estimators are derived in Sectidng Il IV for the listeni  In the cooperation phase, the signal is defined as follows,
and cooperation phases respectively. Se¢iibn V provides so _
simulation results to illustrate the behavior and perfaroea Yo = ViuXsahs + Vs, Xeabra +wa, ®)
of frequency estimation in the three node relay system whiléhere we assume the frequengy, is constant over both
Sectior V] shows the mean squared error (MSE) performarpieases. For each receiverthe noise is assumed to be a zero-
of each algorithm as compared with the CRB. mean circularly symmetric complex Gaussian random vector

The following notation is used throughout: italic letters wy ~ CN(0,571).
(x) represents scalar quantities, bold lowercase lettgjs (
represent vectors, bold uppercase lettek$ {epresent matri-
ces,(-)T denotes transposé,) denotes complex conjugation

() = (-)" denotes complex conjugate transpdsé,denotes We assume the maximum frequency offset is bounded and
the Zt;noIrEm of ZveCttOﬂi(t~g denotest t?e real partt of a_t(rz]omplemse this information to calculated the CRB and ML frequency

t”“:?} e, "é(') eno SIS i/eXpeQC ation operta (t)I': WIG res.peggtimators. In the remainder of the paper, we assume thesnode
o the random variablev, N (x,0”) represents the Gaussian, stationary and thus the signals have no Doppler spread.

SN . : 5 5
distribution with meany. and variances® and CA(u, o”) A statistical model for the frequency offset is used as prior

represents the circularly symmetric complex GaUSSiamdiStinformation to aid in frequency estimation. Let the operati
bution,i.e.,where the real and imaginary parts are independqcpéquency of each node € {r, s, d} be modeled as
and identically distributed Gaussian random variablesh wit T

variances? /2. Im = fo+ Gm.,

In the general case, the frequency offsets between nodes
can take on any values within the Doppler spread of the
'system plus the frequency differences of the local osoiltat



where f, is the mean operating frequency apd is a random where A is a scalar in this case. L&Dy, = 2n — 1 — Ny
variable with mean zero and varianeg€,. We assume the be a diagonal matrix such that

random variableg,,, are independent. For this paper, we also P

assumeo2, = o2 for all nodesm, which is an appropriate —V;=jrD/Vy. (6)
model when considering a group of identical nodes cooper- of

ating together. The frequency offsets to be estimated are ffhe submatrices ofI5) are computed as

difference between two of these independent random vasabl 92

and thus the frequencieg, for a € {sd, sr,rd}, have mean A = — | D/Xh|

zero, varianc&o7, and are correlated. fjﬁ
A =—h*'X*D,X

2
[1l. LISTENING PHASE f
In the listening phase, the destination and the relay receiv E= ;X*X-

the same signal through two different channels. We drop t .
subscripta when considering only the single node-to—nod@%ne of these components depend on the random varjable

link. To derive a good estimator for the frequency, it is usef _and tlherefore the_ eﬁﬁe?atlonl (4)tgoeds away. The mdirix

to know the distribution ofy,,. However, this is not known, IS only non-zero In the Hirst element and 1S

S0 it is reasonable to design an estimator based on the “worst (aQL(f)> s
f— f’

case” distribution constrained to the known statistios,, a il =— o2
ere [y is the Fisher information of the random variatfle

mini-max estimator. As frequency estimation is inherently
andL(f) is the log-likelihood off. The CRB for an estimator

non-linear, an asymptotic analysis is performed in the hi
SNR regime i(e., SNR> 1). Under this assumption, the : ) ; i

pf fis then[J, *]11, which can be calculated using the Shur
M [21] to be

()

variance of a ML or maximum a posteriori (MAP) estimato

is equal to the CRB. In the remainder of this section, we shd@mPleme

that a Gaussian distribution with mean zero and variarﬁe o2 -1

for ¢,, maximizes the CRB of the frequency estimate over all Cp = (—2|]P>§(D3Xh||2 + Ff> ,

distributions with the same mean and variance. We theneleriv 7

the MAP estimator off. where Py = I — X(X*X) 'X* is the projection matrix
onto the space orthogonal to the rangeXof As the Fisher

A. Craner-Rao Bound information is a positive number, it is clear that, to find the

The unknown parameters in the single node-pair mddel (4/frst case (maximum) CRE;; must be minimized. We use
are f (which is modeled as a random variable with mealhe following Lemma to show how this variable is minimized.
zero and varianc@cr}) and hfl The CRB is defined to _ S
be the diagonal entries of the inverse Fisher InformationlLe€mma 1:Let p,(-) represent the family of distributions

variables, the FIM is expressed in the following form [19] distributed ag, (). The minimum of the Fisher information
of z, as defined in[{7), over the family of distributions with

Jo =Es(Joip) + Iy, (4)  varianceo? is achieved when
where the expectation is taken over the random varigble Po(2) = N(0,02)
2
Joip = —FEw | =er L
o <5959T (y|f)) Proof: Consider the following experiment: without any data,

is the standard (non-random parameter) FIM, with expextatidesign an estimatot for the random variable:. The log-
over the noise distribution, anbi(y/|, f) oc =|jy — V;Xh||? likelihood in this case id.(z) = logp,(2). If 2 =0, then this
is the log-likelihood of the data vector when the valueshof estimator is unbiased and its variancesis By the Cramér-
and f are held constant. The matril is defined as follows: Rao Theorem,

32

35 = Bt (e B
) S ~ Therefore,F, > L with equality being achieved when~
where L(f) = logp(f) andp(f) is the distribution function N(0,5?). 7 O

of the random variablef. For the parameter vectat! =
[f hT hT], the FIM has the following form [20]

1

var(2) £ 0% > ok
z

By Lemma[l, the maximum CRB (over all distributions pf
with variance207) is

A A A X
Jogy=| A" 0 E ; (5) 272 1\
AT E 0 Cr = | =5 IPxDeXh|* + 5= | . ®)
o 20f

1The parameteb ; is considered known as it is a property of the receiver
hardware. Also, the noise variane& is uncoupled with the other parameters 2The {1,1} block of a block matrix inverse i$A='11 = (A11 —
and is estimated separately with no penalty. A12A2’21A21)*1.



B. MAP Estimator of frequency The two frequencies to be estimated at the destination node

As a result of the preceding analysis, we use a Gauss@fi€ fra and foa.
prior distribution onf to calculate the MAP estimator. This
choice of prior represents the least informative prior df ah Covariance of frequencies
distributions with variancea} and mean zero. For a particular

channel gairh, the log-likelihood of the data is Before calculating the MAP estimator gty and f,q, we

compute the least informative joint prior distribution.rggj

Ly, f)=lnp(y, f) = lnp(y|f) + Inp(f) the covariance matrix of these random variables is found and
-1 o 1 then we show that the joint Gaussian distribution is thetleas
o< —5lly = Vs Xh[|" + Ef : ) informative prior.

N ) . To proceed, we calculate the covariance matri¥'Qf fs,,
The apparent additional factor of two associated wﬁhs due ande,,.. The mean off,; andf,, are zeroE(f2,) = E(f2) =

to the fact thatf has areal Gaussian distribution as opposed t¢,;2 gnq E(fsafs) = U?. Now considerE(c.,) (we Show

complex (as in the first term above). For any given frequengyere that the MAP estimator derived above is asymptotically

the maximum of this expression ovhris achieved when unbiasedi.e., E(e,,) — 0 for high SNR). Using the definition
h(f) = (X*X)_IX*V}y. (10) of ey and m),

To find the MAP estimator off, we substitute[{20) intd 9) esr = —fsr +&

and minimize the negative, o2

o . 1 * 2 r_r2
§—argrr};n{|Vfoz Ryl +4U?f }

2
f= argmm{|H’&V;‘cyll2 + ”—2f2} SNGED
f 4o . .
f By expressing the expectation as
We note that as ; goes to infinity (no prior information), the B
estimator [(Tl1) is the standard ML frequency estimator [22]. E(esr) = Ey,, (Ee., 1., (§ = fsrlfor)),

the conditional expectatioB,_ |, (¢|fs.) needs to be calcu-
lated. Continuing the asymptotic analysis, for high SNR, we
In the cooperation phase, the destination node receives gBglacey with its mean and obtain

superposition of signals coming from the source and relay.

Each of these signals is transmitted with a slightly differe  Ec_, 7., (§|fsr) ~argmin {HVfPfceV?VfMXeherIQ

frequency due to system imperfections. The purpose of this 2f

section is to derive a mini-max estimator for the two freqren + 4UT2 f2}, (24)
a

offsetsfsq andf,4. The estimator is mini-max in the sense that

we design the (asymptotically) minimum variance estimat@fhore the approximation is exact in the limif — 0. We

given that the prior distribution on the frequencies maxesi perform the change of variable§, — 0 and f = f — f
the estimator variance. We show there exists an optimgh efore V; =L The first termTinIIIId,) is o

transmit frequency for the relay, which reduces the vaganc
of frequency estimation at the destination. hz7~XZVfP§_([V}X€hsra

As the relay has an estimate ¢f, (which is correlated o '
with fsq and f,q4) this information is useful in reducing thewhich is greater than or equal to zero 5‘_”d iny equal to zero
variance of the estimate at the destination. We assume ¥aen f = 0 (i.e., f = f,). This function is thus locally
frequency transmitted from the relay is adjusted accortiing Convexabout the point = f, and therefore locally quadratic.

IV. COOPERATIONPHASE

the following rule, The second order Taylor series approximation is
fr,TXéfr _’str WQH]P))L(@DZthSTHQfNQ'
- .fr - 'Y(fs’r + 657‘) (12) Q

where~ is a parameter to be optimized ang. £ fsr — fo» The value@ can be considered the effective signal power
is the estimation error from the listening phase. We chool¥luding all system and estimation gains. Returnindtg),(14
this rule as it is a linear function of the estimate and thus
analytically tractable. When = 0, no frequency adjustment

2
is made €.g.,when the estimate,, provides no information E(¢|fsr) ~argmin{ Q- (f — for)® + 0_7“2 f?
about the source’s frequency), and when= 1, the relay Y 4o
transmits its own estimate of the source’s frequency (thus \{
trusting the estimate to provide all of the information ¢afalie Q
about the source’s frequency). We now express the frequency = Q+—Kfsr' (15)
difference between the destination and the relay as

Completing the mean of,.,
frd:fd_fr,TX Q
:fsd_(l_’y)fsr'i_’yesr- (13) E(eST):E<mfsr_fsr) =0



because the mean df;,. is zero and thus the estimator is Ao = h*dx de Vi.DX,
asymptotically unbiased.

Continuing on with the covariance, and zero for terms not listed. The diagonal matfik. is
B 2K, defined similar taD, in @) with N, replacingN,.
Elfarear) = E(farBlear|far)) = Q+K0f For data obtained during the listening phase, the matrix
and similarly E(fue.) = 0% where K is defined 70If(Ys:) 18
in (I5). Following a similar argument as above féite?,) - )
yields the result that the variance ef, is F£-0%, which A = ?HDlxehsdeH

is equal to the CRB in[{8). Thu$_{lL1) is an asymptotically

— 1 *
efficient estimate of the frequency. In summary, =330 = EXEXZ

2 : ! QK SEWES % 0, X7 DX,
Cov(fsdafsr,esr) =0y 1 2 OTK . |
5 2K 2K and zero for terms not listed.

Q+K Q+K QFK

To calculateE(Jg¢), note that only the(1,2) and (2,1)

With this covariance matrix calculated, the covariance %tross terms of the submatrices abave (A5, Z1 o, A, ...)
fsa and frq is are dependent on the frequencies. In each casé the depgnden

N o 2 (18)# is of the formAV’; 'V B whereA andB are deterministic
Rioifra = 0F (+)Q+K  5(1=y+7)Q+K |- (16)  matrices or vectors. Looking at thé”" term of Vi Vi
Q+K Q+K

_ _ B((V3,, Vi hun) = B/ s~
B. Cramér-Rao Bound in Cooperative Phase °
Recall the signal models for the cooperation phase (3) awfiered, = 2n—1—N.. This expectation is just the character-

the listening phasé]2) as well as the relation between the tigtic function of the random variablg..— f,4 evaluated atrd,,
frequencies to be estimatefly and f., @3). The unknown (denoted asby ;s ,(7dy)). Let [M],, = @y, ,—y,,(7dyn) be
parameters ar.ésdi fT’dl sde y hyg, andhsd@ For Compactness a dlagonal matrix, then we repladé} Vj 4 with M in all
definef = [f.a fq]7. The deterministic FIM Io¢) is a Cross terms of the FIM blocks. The FIM is then expressed as
(24-6P) x (2+6P) matrix with the structure of{5) wherA is B
2 x 2. Given the frequency random variables, the distributions FIM = E(Joj¢) + Je (17)

of y. andy,4, are independent and the joint distribution '@vherle is nonzero only in the upper left x 2 block and

written as this block is equal t&¢, the Fisher information matrix ofq
P(Yer Ysdys £) = p(ye|E)p(ysa, |£)p(E) and f,4. Using the Shur complement of the upper I2fk 2
_ ) block of (I7), the CRB for the frequencies are the diagonal
and the FIM is written as entries of

Jo = Jgie(ye) + Joie(ysa,) + Js-
The blocks of the matrixy¢(y.) are
272

o

Cr=(A—2R{AE "A*} +F;) . (18)

In the sequel, we desire to make conclusions about the
D. X4 ha,||? performance of the collaborative system based on the dkrive
bounds. As the absolute phase of the signal at each node
is hard to control and cannot be relied on to remain stable
over time, we find the worst case CRB and use this in

972 the subsequent discussion. That is, fgr = h,e’?, find 10)

Ape=Agc= 79% {h}, X%, V; Vys,D?X,qh,q}  maximizing the CRBI(T8). The resulting expression is
d

A11.,(: =

272
A22 [ HDchdhrd||2
94

1 * ~ — N —1

Ei1, = —5Xig, Xea, Cramax = (A - 2abAZ'A"} +Fr) ,  (19)
d

Sy, = X*erd whereA;; = A;; and
1 ~ ~ —272 9

B, =85, = o . Vi, Vi Xed A=A = 2 abs{h;, X;, MD?X,shq} .

d

A1 = 12” 2. X5 DX, Effectively, the phase is chosen to maximize magnitude of
Ud the off-diagonals of the matrix to be inverted [n]19), which

Agy o = h*dX DeX,a in turn maximizes the dlagongls of the inverse (the negative

signs are chosen for the off-diagonal terms because the FIM

jw of the prior distribution, as calculated in the next sectialso

A12,c = 7._— sde Vf deTdD er

2 has negative off-diagonal terms).



C. Distribution of Frequencies 1

We now desire to find the distribution gf; and f,.4, which
maximizes the CRB for a given frequency covariaitge(1g). 09
In order to do this, we assume the training sequences are
chosen to provide near optimal performance. Examiring, (19) : : : :
an ideal set of training sequences would zero out the off- 08 - SRR : o SRR SRR
diagonal terms inA and also zero out theA=Z ' A*) term. g : : : :
Thus for any constant modulus training sequences, the bes
CRB is

N =

: A o SNR_=-10dB
0.6f g 5 SNR_=0dB
A SNR_=10dB

Cf,opt = (Aopt - Ff)71 (20)

where Agpy = diag{A}. We show in SectiofiV, by simula- v
tion, sequences exist whele {19) is close[id (20). Under the : :
assumption of a good set of sequences, the dependence on tt 0§60 55 50 45 40 -3m 30
distribution of fs; and f.; enters only througt¥s. We use o2 (dB rel. sample rate)
the following lemma to find the distribution maximizing the f
CRB.
. L. . L. Fig. 2. Plot of optimaly as a function of modeled frequency variation. Three

Lemma 2:For A, B, and C positive definite Hermitian cyrves are shown for different values of gain between theceoand relay.

matrices, ifB > C (i.e., B — C is positive definite), then The SNR of the source-destination and relay-destinatictte nuairs are held
p

(A+C)~! — (A +B)! has positive diagonal entries. constant at 0 dB.

Proof: By assumption(A + B) > (A + C), which implies

(A+C)~! > (A+B)~'. Thus the difference of the matricesis 1) Largeoy, or no prior information: By taking the limit
positive definite Hermitian and therefore has positive dieg of the expression fofy,,; aso; — oo, it can be shown that
elements. 0 "opt — 1. In this case, the relay transmits at a frequency

To maximize the diagonal elements of the CIRE (20), LerErnaeBual tp its estimate of the source frequency. By choosiisg th
implies F¢ is as small as possible. Using an argument simth:\rransmlt frequency, the (_)perf'mng frequency Of_ the refay

to the scalar case of Lemni@ 1, the Gaussian distributibﬁ?removed from the estimation procedure as it contains no
satichies this requirement L :, R;l. The assumptions Information about the source-destination frequency.

. 2
that fs, f, f4 and the estimation error from the listening phaS(?1 2) Smaliag. ?’erlesnlgé —0 r(10r ernl/af IS mrl:Ch lalrgsel\rlR
esr are jointly Gaussian is therefore the least im‘ormativerprit an any of the lin S perhaps due to poor channe s).

given the specified variances and correlations. the CRB is minimized whery = 1/2. By looking at the MAP
frequency estimatof_(11) for this limiting case, the fregue

_ estimate is zero. Therefore, no matter whais chosen, the
D. Optimal~y relay just transmits at its own frequency. Whenp is small
With the aim of deriving a mini-max estimator, we desirébut not zero), there is still some information in the freqog
to choosey in (I2) to minimize the trace of¢ (20). As this estimate about the source frequency (besides the infarmati
expression is not intuitive, it is helpful to consider a flatiihng from the local oscillator model), and by choosing~ 1/2,
model. For flat fading,P = 1 and the terms in the optimal both sources of information are used to select the bestririans

CRB (20) are frequency.

As as example of the functiof,,:, Figure[2 shows plots
ncssdc + nESsd@ 0

Aopt = 0 e o_f sevgral curves of,,: versuss?. The length of the tra?ning
NePrd signal isNy = N. = 16 and the SNR of the source-destination
and link is —3 dB (combining the listening and cooperation phases,
) 290 (147)Srt1/02 the effective SNR i8 dB). The SNR from relay to destination,
Ry — TS F1/0 5 S,q, is also0 dB and there is one curve each f6t, <
£= | 20,(14+4)Sar+1/0? 22772(1*’Y+’72)Ssr+1/<7,20 95 {=10 dB, 0 dB, 10 dB}. For each curve, the transition
2neSsr+1/0% 200 Sar+1/07 from ~,p: = 1 t0 7, = 1/2 appears to occur roughly when
wheren, = Z272Ny(N? — 1) (similarly for n.) and S,q = o “.(nclssdc + 1¢Ssa,) OF 07 ~ 1cSrq. These values of7
Ihwal® s the signal to noise ratio of the source-relay linE' significant because, for example, WhEN< 1¢9,q, (left
oi g y IFlalf of the plot), the assumed prior knowledge of frequency

(sirﬁhilarly for Ssa., Ssa,, andSs,).

An exact calculation of the optimal leads to a long,
complicated expression that depends on the SNR of each |
and the variance of the frequency oscillators. The expoassi
is omitted here as it gives no insight into the problem. Later )
we show there is minimal loss whenis always set to 1. To E- MAP Estimator off.s and f,q
gain some insight into the behavior of consider two limiting To calculate the MAP estimate of,; and f., at the
cases foryyp: of — oo andoy — 0. destination node during the cooperation phase, the covaia

has more weight than the data, whereas Wh%rb NeSsdy
the information in the data is more important than the prior
del.



between these two random variabled (16) is needed. Therefor 01

the values of) and K need to be forwarded to the destination
node. The log-likelihood of the data at the destination is -0.1
/
L(ye:ysap, ) =Inp(yclf) + Inp(ysa,|f) + p(f) g o2
—1 —
x5 [[ysa, = Vs, Xehsa, || (21) £-03
O'd .g_
— = lye—X(B)g|? - =fTR; ', < -04
02 Hyc ( )gH 5 £ 5
where X(f) £ [ Vy X, V5, X | and g7 = S
[ hZ, hl, ]. As before, choose estimates fgrand h.g, -0.6 S—N=8 [
to maximize the likelihood for any given frequency pair, — A N=16 | : :
-0.7 . . . .
5(F) — (X)L -20 -10 0 10 20 30
. g(f) = (X"X) "Xy Source-Destination SNR - S _,
by, (fea) = (X;Xe) ' X;VE Vsd,- ¢
Substituting these estimates intb](21) and minimizing thdg. 3. Plot of the loss in performance caused by binary imgisequence as
negative to obtain the MAP frequency estimator opposed to an arbitrary sequence, and when choosiagl versusy = vopt.

Relay-destination and source-destination SNRs are the sah source-relay
SNR is 10 dB higher.

= argmin { Byl + [P, V r.o¥aa |+

0'2 _
+ TdfTRf lf}- (22) relay set its transmit frequency based on information wecki

. L during the listening phase.
We note the special case ofy — oo (which implies

D) F “ 1 th . 6 ded in the MAP We simulate a three node system in a frequency flat envi-
opt = )- ory = . the covariance {16) needed in the ronment. In all simulations, we use the SNR of the link
estimator simplifies to

(assumingSs,. = Ssq,) @s a reference value. The following
9 20+K configuration is considered: lef,; = Ssqs, and then vary
Ry, tu= crﬁ l 20+K QEK ] ) the link SNR of the source-relay link relative 8, . Let
Q+K N, = N,. The prior distribution for the operating frequency
which has a finite inverse whem; < co. However, when we assume is Gaussian with a variance-df) dB relative to

o — oo, we evaluate the limit oRf—l resulting in the sample ratee(g.,a 2 parts-per-million variance of a local
) oscillator at 900 MHz with 4.5 MHz sample rate [12]).
lim Ry = CCT@ — CCT2LQ Pk, DX /h, || For flat fading channels and constant modulus training
gf 0 oy oy sequences, it is sufficient to choasg= 1 (the vector of all
cy.. ones) andksq;, = 1. A search is performed to fing,.; which

. _ ~ minimizes the CRB[(19). For values af. € {4, 8, 16}
where¢™ = [1 —1] andCy,, is the CRB of the frequency in an exhaustive search over all binary sequences is performed
the source-relay linK{8) witlr; = oc. The penalty term (last (results hold independent of choice between= ~,,; or

term) of the MAP estimato(22) simplifies to ~ = 1) and for values ofV, > 16, a randomized search over
o2 o2 binary sequences is performed. For each valué&vpf(up to
SHIRE = o= (foa — fra)® 128) the optimal far, has the following structure:
5 £ 20, s T ) the optimal sequence far.; has the following structure:

Sequence Designtet a; = [1, —1]T and
Thus the penalty term is a quadratic of the frequency diffege . .
term normalized by the ratio of error variances (noise power a, = la, 1, —a, 4]

over frequency estimation error variance). . .
d y ) wherea,, is length2™ and is the last column of a Sylvester

matrix. Then the lengthiv, = 2™ optimal sequence is
V. SIMULATIONS
In the previous section, we showed the optimalfor Xrd,opt = { _37;71 }
extreme values ofry is either1 or 1/2 and when~,y nel
approachesl /2, its effect is small because the frequencwhereJ is the exchange matrix which reverses the order of
adjustment is going toward zero. In this section, we show ®fements in the vector it multiplies.
simulation, the penalty for choosing= 1 instead ofy = v, For the configuration described above, and wih =
is usually limited to a few tenths of a decibel. Thus, neadl0 S,4., Figure[3 shows the difference between the best
optimal performance is achieved without communicating ampossible CRB[(20) (for any constant modulus sequence and
of the link SNRs back to the relay for calculation 9f,;. ~ = 7.,:) and the worst case CRB_(19) using the binary
We also show the existence of training sequences whete ($8jjuence shown above and= 1. The 0.6 dB difference
is close to [(2D). Finally, we show the benefit of letting théor N, = 4 is primarily due to a non-optimal sequence



-32 A. One-Dimensional ML
: : : As a result of the choice of the training sequence, estimatio
B4 T NG S of the two frequencies is nearly uncoupled. Therefore, per-
£ A : : forming two independent one-dimensional ML searches fer th
@ —36f R : : frequencies is approximately the same as performing tHe ful
g : : two-dimensional ML search as required by the ML algorithm.
B agl o SRERRRRRRTRY A : Given the data vectoy., the one-dimensional ML estimates
© : : : of the frequencies are
om —— S =S
S -40} sr sd ~ " 9 Od 9
2 || s, =108, Fa=argmin {IBL Vvl + 222 @)
E:) f " ’ 4Uf
42 ——vy =0 = . «
0= w fsd :argmfln{”Pi_[nysdzHQ'i_
_ n « gqd
0 -15 -10 -5 0 + P, Vivel? + EfQL (24)

Source—destination SNR - S <d (dB) ) ] ]
which do not take the correlations between the frequenetes i

Fig. 4. Plot of the sum of Cramér-Rao Bounds fay and f,.4. Circle and accoun?' To improve the _estlmat¢§_|(23) and (24)’ we a_SSl’Ime
“x’-marks show bound when2 = —40 dB andy = ~op:, plus marks show the variance of each estimate meets the CRB assuming the

bound wheny = 0, and triangles show bound when= 0 ando; = co  prior information is uncorrelated for each frequency:
(the standard frequency bound assuming no prior informpatiall curves are

for a length 16 training sequence. Cf — (A _ 2§R{AE_1A*} + diag{Rf}_l)ﬂ

where diag{R¢} is a diagonal matrix consisting of the di-

x,4, Whereas the).2 dB difference for other values ¥, agonal e_ntri_es oiF_{f (zer_oing out the other eIements)._This
is due to choosing’ = 1 instead of the optimal value. The@SSumption is valid for high SNR and larg&. Incorporating
loss in performance due to a non-optimal sequence decredf&s knowledge with the prior information, the least sqsare
dramatically asV, increases. These loss values are typical §5timates of the frequencies are
other system configurations as well. The system behavior as a
function of training sequence illustrates the fact that @B [
is insensitive to the selection of these sequences.

Figure[4 shows the sum of the CRB for the two frequenci .
estin%ated at the destination node as a functiorb of .qFor ? Correlation Method
this figure, the SNRs of the source-destination lisk,j and We first describe a standard correlation frequency estimati
relay-destination link §,.) are the same. The circle and «»_method as presented in [23] and then provide an extension to
marks show the CRB when the SNR of the source-relay liftlow this algorithm to work in the presence of two signals
S,, is, respectively, the same as and 10 dB higher tHan with known training sequences. Assuming a single signal in
The plus marks show the CRB when= 0. The difference the presence of flat fading
between t_he le_Js—_mark§ anq the circle and “x"-mark; show yn] = ejQanx[n] twn], 1<n<AN.
the potential gain in estimation performance by changirgg th
relay’s transmit frequency (greater benefit when the SNR Tdhe estimated autocorrelation sequence/ef is

fsanmr } =Re(Re + Cp) ! [ de } } (25)
framra frd

large). The triangles show the CRB when no prior information N
is used. This shows a great advantage of using a prior model R[k] = 1 (y[n)z[n)) (g]i — Klzfi — k]).
when the SNR is low. N-k 22 (

The estimate of the frequency is calculated as

M
> R[k]} (26)

f= (M +1) £

VI. SUB-OPTIMAL ALGORITHMS 1 {
arg
The maximum-likelihood frequency estimatbr22) requires

a two-dimensional search over the frequency range of isterevhere M is a design parameter and the frequency estimate is
As this is a computationally expensive approach to estonati unambiguous if
we compare the mean squared error (MSE) performance of If| < 1 )
more efficient, sub-optimal estimation algorithms andantr M+1
duce a correlation based estimator as the best compromibserefore,M trades performance for estimation range. The
between estimation performance and computational effigienperformance of this algorithri (26) is shown in [23] to be elos
In the remainder of this section, we describe the use of tlethe CRB whenM = N/2. To ensure adequate estimation
one-dimensional ML algorithm as applied to the two signainge, the maximum allowed value &f is 12 (corresponding
case and the correlation algorithm for frequency estimatido a range of five standard deviations away from the mean of

and compare their performance. the prior). To incorporate the known prior knowledge of the




frequency variance, the estimafe](26) is adjusted acopitdin -30

the following rule y, W
) 202 ,\_35 T N R R
fr= mf T A0 NN

FTey 5

Wherec?' is the CRB of the frequency estimate with no prior §_45 """"""""""""""""""""""""

information. Let R DB NN e
f=rly,x,0f) e

. ) o _I:g BN e e

be a function that inputs the data vectpr training vector o

x, and prior information, and outputs the frequency estimate £ -60p ———CRB J g {

according to the above algorithm. This algorithm is used 65 —<— Non-adaptive | - & |

without modification during the listening phase to calcalat —6— Adaptive

the estimatef,, = X0, 08). -70 . ' ; ;

&fsr = p(Yor, X, 0) -20 -10 0 10 20

For the cooperation phase, there are two signals present an
the undesired signal acts as interference for the desigelsi

being estimated. The estimates provided by the correlation
algorithm are Fig. 5. Plot of mean squared error of non-adaptive (cirches) adaptive two-
step (triangles) correlation algorithms. The mean squareor is compared

Source—destination SNR - S <d (dB)

fsd,l :p(y07 Xsds Uf)
frd,l :p(ym Xrd, O'f), (28) -30

which exhibit a floor in MSE (see Figufé 5). To improve the
estimates, we project out the undesired signal in the fallgw =20 N o L Lo
manner: g : :

5o og =P 3 : f

Yesd =0V xpaYe E40p gy EERRRREE SERREERE

~ 1 %] X . X

Ye,rd zlP’stdeM}’c, E'-‘ :

. -45 N ]
where the frequency estimates [A](27) ahd (28) are used tc S \ :
calculate the interference signal, which is projected dtie - TR
correlation algorithm is run a second time to find = 50 T RN

fsd,? :/)(S’c,sm Xsd Uf) —<}— Adaptive Correlation

~ o -55 n ; ;
fra2 =p(Yerds Xra, ). 20 -15 -10 -5 0 5 10
. . . . . . Source—destination SNR - S dB
The final frequency estimates, with all prior information sa (4B)
accounted for, is calculated similarly o {25),
R 5 Fig. 6. Plot of mean squared error of full (two-dimension&argh)
. ~ ML (circles), one-dimensional ML (“x"-marks), and adagtivcorrelation
d - d,2
{ ;S o ] = Rf(Rf + Cf) ! [ j;s i ] . (triangles). The mean squared error is compared with the.CRB
rd,corr rd,2

FigureB shows the total MSE (summation of errors frm
and f,.q) of the correlation algorithm compared with the CR
for N. = 16. The triangle markers denote the performance

gnd the adaptive correlation algorithm (triangles). Ea¢h o
Hpese algorithms approaches the CRB asymptotically in SNR.

the algorithm without any adaptation while the circle maske '€ differences in behavior at lower SNRs is attributed to
denote the performance of the adaptive two-step algoritdfif different algorithms entering their threshold regiats
described above. For lower SNRs, the adaptive algorithm HAferent SNRs. A more detailed analysis of this region can
about a 3 dB advantage while the performance differencel§ carried out using the methods of [24].
much greater at higher SNRs (above 15 dB). The performance
of the adaptive algorithm is near optimal. The slight “bump” VII. CONCLUSIONS
in performance of the two algorithms at, = —10 dB SNR In this paper, we have derived the Cramér-Rao bounds
is caused by the interaction of the threshold region (th@reg for frequency offset estimation in a three-node collalbieeat
where the MSE performance breaks away from the CRBpmmunication system. We have shown through simulation,
and the region dominated by prior information (where théhe performance increase obtained by allowing the relay to
algorithms converge to &34 dB MSE relative to the sample change its transmitting frequency. We have also shown there
rate). exists an optimal transmit frequency for the relay node thase
For the same scenario, Figufd 6 compares the three the other link SNRs and the assumed prior knowledge of
estimation algorithms: full (two-dimensional search) maxthe frequency offsets. However, there is only a small (teioth
mum likelihood (circles), one-dimensional ML (“x"-marks) decibels) penalty if the relay always transmits at its eateof
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the source frequency. Simulation results also demonstnate [23] M. Luise and R. Reggiannini, “Carrier frequency reagvin all-digital
existence of binary training sequences that result in \ieg |

loss as compared with an arbitrary constant modulus sequens,

We also derived a computationally efficient correlationduhs

estimation algorithm that has mean squared error perfacean

close to the CRB.
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