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One–bit Distributed Sensing and Coding for

Field Estimation in Sensor Networks
Ye Wang, Prakash Ishwar, and Venkatesh Saligrama†

Abstract

This paper formulates and studies a general distributed field reconstruction problem using a dense

network of noisy one–bit randomized scalar quantizers in the presence of additive observation noise of

unknown distribution. A constructive quantization, coding, and field reconstruction scheme is developed

and an upper–bound to the associated mean squared error (MSE) at any point and any snapshot is derived

in terms of the local spatio–temporal smoothness properties of the underlying field. It is shown that when

the noise, sensor placement pattern, and the sensor schedule satisfy certain weak technical requirements,

it is possible to drive the MSE to zero with increasing sensordensity at points of field continuity while

ensuring that the per–sensor bitrate and sensing–related network overhead rate simultaneously go to zero.

The proposed scheme achieves the order–optimal MSE versus sensor density scaling behavior for the

class of spatially constant spatio–temporal fields.

I. INTRODUCTION AND OVERVIEW

We study the problem of reconstructing, at a data fusion center, a temporal sequence of spatial

data fields, in a bounded geographical region of interest, from finite bit–rate messages generated by

a dense noncooperative network of sensors. The data–gathering sensor network is made up of noisy

low–resolution sensors at known locations that are statistically identical (exchangeable) with respect to

the sensing operation. The exchangeability assumption reflects the property of an unsorted collection of

inexpensive mass–produced sensors that behave in a statistically identical fashion. We view each data

field as an unknown deterministic function over the geographical space of interest and make only the

weak assumption that they have a known bounded maximum dynamic range. The sensor observations

are corrupted by bounded, zero–mean, additive noise which is independent across sensors with arbitrary
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dependencies across field snapshots. Thisnoise has an arbitrary, unknown distributionbut a known

maximum dynamic range. The sensors are equipped with binaryanalog–to–digital converters (ADCs)

in the form of comparators with random thresholds which are uniformly distributed over the (known)

sensor dynamic range. These thresholds are assumed to be independent across sensors with arbitrary

dependencies across snapshots. These modeling assumptions partially account for certain real–world

scenarios that include (i) the unavailability of good initial statistical models for data fields in yet to be

well studied natural phenomena, (ii) unknown additive sensing/observation noise sources, (iii) additive

model perturbation errors, (iv) substantial variation of preset comparator thresholds accompanying the

mass–manufacture of low–precision sensors, (v) significant temperature fluctuations across snapshots

affecting hardware characteristics, and (vi) the use of intentional dither signals for randomized scalar

quantization.

Building upon prior results in [1], [2], and [3], we develop asimple coding and field reconstruction

scheme based on one–bit scalar quantized samples of noisy observations. We characterize the associated

scaling behavior of the MSE of field reconstruction with sensor density in terms of the local and

global moduli of continuity of the underlying sequence of fields. This MSE characterization is for

fixed, positive, and equal sensor coding rates (bits per sensor per snapshot). These achievable results

reveal that for bounded, zero–mean, additive observation noise of unknown distribution, the MSE at

every point of continuity of every field snapshot can be made to go to zero as sensor density increases

while simultaneously sending the per–sensor bitrate and any sensing–related network rate overheads (e.g.,

sensor addresses) to zero. This is possible if the sensor placement and sampling schedule satisfy a certain

uniformity property. This property ensures that the field estimate at any given spatial location is formed

using the observations from increasingly many sensors thatare located within a vanishingly smaller

neighborhood of the location.

The MSE results of this work pertain to uniform pointwise convergence to zero, that is, for every

spatial location of every field, unlike results pertaining to spatially and temporally averaged MSE which

are more commonly encountered. The rate of decay of field reconstruction MSE at a given location

is related to the local modulus of continuity of the field at the given location and time. Specializing

these results to the case of spatially constant fields yieldsan achievable MSE decay rate ofO(1/N)

whereN is the sensor network size.1 A Cramér–Rao lower–bound on the MSE for parameter estimation

1Landau’s asymptotic notation:f(N) = O(g(N)) ⇔ lim supN→∞ |f(N)/g(N)| < ∞; f(N) = Ω(g(N)) ⇔ g(N) =

O(f(N)); f(N) = Θ(g(N)) ⇔ f(N) = O(g(N)) andg(N) = O(f(N)).
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establishes that theO(1/N) MSE scaling behavior is order–optimal in a minimax sense. Since in our

problem formulation, the per–sensor bitrate is held fixed and equal across sensors, in a scaling sense, the

MSE decreases inversely with the total network rate.

Previous estimation–theoretic studies of one–bit distributed field reconstruction have focused on recon-

structing a single field snapshot and have either (i) assumedzero observation noise [1], [2], or (ii) assumed

a spatially constant field (equivalent to scalar parameter estimation) with a one–bit communication as

opposed to a one–bit sensing constraint [3]. The system proposed in this work integrates the desirable

field sensing and reconstruction properties of these apparently different one–bit field estimation schemes

and establishes the statistical and performance equivalence of these approaches. An important hardware

implication of this paper is that noisy op–amps (noisy threshold comparators) are adequate for high–

resolution distributed field reconstruction. This should be be contrasted with the framework in [3] which

implicitly requires sensors to have the ability to quantizetheir observations to an arbitrarily high bit

resolution. A side contribution of this paper is the holistic treatment of the general distributed field–

reconstruction problem in terms of (i) the field characteristics, (ii) sensor placement characteristics, (iii)

sensor observation, quantization, and coding constraintswith associated sensing hardware implications,

(iv) transmission and sensing–related network overhead rates, and (v) reconstruction and performance

criteria. We have attempted to explicitly indicate and keeptrack of what information is known, available,

and used where and what is not.

The randomized scalar quantization model for the sensor comparators not only captures poor sensing

capabilities but is also an enabling factor in the high–fidelity reconstruction of signals from quantized

noisy observations. As shown in [4] in an information–theoretic setting, and alluded to in [2], the use

of identical deterministic scalar–quantization (SQ) in all sensors will result in the MSE performance

being fundamentally limited by the precision of SQ,irrespective of increasing sensor density, even in

the absence of sensor observation noise.2 However, our results further clarify that having “diversity” in

the scalar quantizers, achieved, for example, through the means of an intentional random dither, noisy

threshold, or other mechanisms, can achieve MSE performance that tends to zero as the density of sensors

goes to infinity (Section III-A, Implications). Randomization enables high–precision signal reconstruction

because zero–mean positive and negative fluctuations around a signal value can be reliably “averaged

out” when there are enough independent noisy observations of the signal value. This observation is also

corroborated by the findings reported in the following related studies [1]–[3], [5]–[8].

2The problem will persist even for identical block vector–quantization (VQ) with identical binning (hashing) operations.
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The results of this work are also aligned with the information–theoretic, total network rate versus

MSE scaling results for the CEO problem which was first introduced in [9] and thereafter studied

extensively in the information theory literature (see [10], [11] and references therein). However, it

should be noted that information–theoretic rate–distortion studies of this and related distributed field

reconstruction (multiterminal source coding) problems typically consider stationary ergodic stochastic

fields with complete knowledge of the field and observation–noise statistics, block–VQ and binning

operations, and time and space–averaged (as opposed to worst–case) expected distortion criteria. In VQ,

sensors are allowed to collect long blocks of real–valued field samples (of infinite resolution) from

multiple field snapshots before a discrete, finite bit–rate VQ operation. The fields are often assumed to

be spatially constant and independent and identically distributed (iid) across time (frequently Gaussian)

and the observation noise is often assumed to be additive with a known distribution (frequently Gaussian)

as in the CEO problem. It should also be noted that the MSE scaling results for the CEO problem in [10]

are with respect to the total network rate where the number ofagents (or sensors) has already been sent

to infinity while maintaining the total network rate a finite value. Recent information–theoretic results

for stationary fields under zero observation noise have beendeveloped in [12], [13]. There is also a large

body of work on centralized oversampled A–D conversion, e.g., see [14] and references therein. Our

work does not explicitly address physical–layer network data transport issues. In particular, we do not

consider joint source–channel coding strategies (howeversee remark before Section IV-A). For certain

types of joint source–channel coding aspects of this and related problems, we refer the reader to the

following references [15]–[20]. Networking issues such assensor scheduling, quality of service, and

energy efficiency may be found in [21] and references therein.

The rest of this paper is organized as follows. The main problem description with all the associated

technical modeling assumptions is presented in Section II.The main technical results of this paper are then

crisply summarized and their implications are discussed inSection III. Section IV describes the proposed

constructive distributed coding and field reconstruction scheme and the analysis of MSE performance

which leads to the technical results of Section III. For completeness, in Section IV-A we also briefly

discuss sensor deployment issues but this is not the focus ofthis work. In Section V, we discuss the close

connections between the work in [2], [3], and the present work, and establish the fundamental statistical

and performance equivalence of the core techniques in thesestudies. We also discuss how the scenario

of arbitrary unbounded noise and threshold distributions can be accommodated when the statistics are

known. We conclude in Section VI by summarizing the main findings of this work. The proofs of two

main results are presented in the appendices.
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Fig. 1. Block diagram of a distributed field reconstruction sensor–network using randomized 1–bit SQ with block–

coding. Sensori quantizes its noisy observations,Yi1, . . . , YiT , to the binary valuesBi1, . . . , BiT . The sensor then generates

the messageMi ∈ {1, . . . , 2rT } based on these quantized values. These messages{Mi} are then relayed to the fusion center

where the field estimatesbSt are produced.

II. D ISTRIBUTED FIELD RECONSTRUCTIONSENSOR–NETWORK (DFRS) SETUP

A. Field Model

We consider a sequence ofT discrete–time snapshots of a spatio–temporal field.3 Each snapshot is

modeled as a continuous4 bounded function,

st : G → R : ∀x ∈ G, ∀t ∈ {1, . . . , T}, |st(x)| ≤ a < +∞,

whereG ⊆ R
d is a known geographical region of interest ind–dimensional real space anda is a known

bound on the maximum field dynamic range. Although the results of this paper hold for anyG which

is bounded and is the closure of its nonempty interior, for simplicity and clarity of exposition, we will

assumeG = [0, 1]d, thed–dimensional unit–hypercube, in the sequel. Distances aremeasured with respect

to a norm5 ‖ · ‖, which for this work will be assumed to be the Euclidean2–norm. Since the fields are

continuous functions on the compact setG, they are in fact uniformly continuous onG [22].

3If the spatio–temporal field is temporally bandlimited thenthe field values at intermediate time points can be interpolated

from the estimates at discrete time snapshots if the temporal sampling rate is (strictly) higher than the temporal Nyquist rate

of the field. The associated MSE will be no larger than the maximum MSE of the estimates across the discrete–time snapshots

times a proportionality constant.

4More generally, our results can be extended to arbitrary, amplitude–bounded, measurable functions. For such functions the

pointwise MSE bounds given in Section III-A still hold. The estimates at the points of continuity will have MSE tending to0

as the network size scales. However, the points of discontinuity may have a finite, but non–zero MSE floor.

5For asymptotic results in which distance−→ 0, any norm onRd would suffice since all norms on any finite–dimensional

Banach space are equivalent [22, Theorem 23.6, p. 177].
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Results on the fidelity of the field reconstruction will be described in terms of the local and global

moduli of continuity associated with the field:

Definition 2.1: (Local modulus of continuity)The local modulus of continuityωt : [0,∞)×G → [0,∞)

of the functionst(x) at the pointx ∈ G is defined as

ωt(δ, x) , sup
{x′∈G:‖x−x′‖≤δ}

|st(x)− st(x
′)|.

Note that for allx ∈ G, ωt(δ, x) is a nondecreasing function ofδ and that it−→ 0 as δ −→ 0 since

st(x) is continuous at each pointx in G.

Definition 2.2: (Global modulus of continuity)The global modulus of continuitỹωt : [0,∞) → [0,∞)

of the functionst(x) is defined as

ω̃t(δ) , sup
x∈G

ωt(δ, x).

Again note thatω̃t(δ) is a nondecreasing function ofδ and that it−→ 0 as δ −→ 0 since st(x) is

uniformly continuous overG.

The global and local moduli of continuity of a spatial field respectively reflect the degree of global and

local spatial smoothness of the field with smaller values, for a fixed value ofδ, corresponding to greater

smoothness. For example, for a spatially constant field, that is, for all x ∈ G, st(x) = st (a constant),

we haveω̃t(δ) = 0 for all δ ≥ 0. For d = 1 and fields with a uniformly bounded derivative, that is, for

all x ∈ G, supx∈G |d(st(x))/dx| = ∆ < +∞, ω̃t(δ) ≤ ∆ · δ. More generally, for a Lipschitz–γ spatial

function (see [1])st(x), we havẽωt(δ) ∝ δγ . Closed–form analytical expressions of moduli of continuity

may not be available for arbitrary fields but bounds often are. Sometimes bounds that are tight in the

limit as δ −→ 0 are also available. From Definitions 2.1, 2.2, and the boundedness of the field dynamic

range, it also follows that for allδ ≥ 0, for all x ∈ G, and for allt ∈ {1, . . . , T}, we have

0 ≤ ωt(δ, x) ≤ ω̃t(δ) ≤ 2a < +∞.

B. Sensor Placement

We assume that we have a dense, noncooperative network ofN sensors distributed uniformly over

a hypercube partitioning ofG = [0, 1]d. The spaceG = [0, 1]d is uniformly partitioned intoL = ld

(wherel is an integer) disjoint, hypercube supercells of side–length (1/l). Each supercell is then further

uniformly partitioned intoM = md (wherem is an integer) hypercube subcells of side–length(1/(lm)),

giving a total of LM subcells. In our distributed field coding and reconstruction scheme, described

in Section IV, the field estimate for each snapshot is constant over each supercell and is formed by
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Fig. 2. Example uniform sensor deployment and cell hierarchy over[0, 1]2 (d = 2). Here,N = 864 sensors are deployed

overL = 42 supercells of side–length(1/4) andM = 32 subcells per supercell of side–length(1/(3 ·4)), resulting in6 sensors

per subcell.

averaging the measurements from a partial set of the sensorsdetermined by the subcells. This field

reconstruction scheme requires knowledge of the sensor locations only up to supercell (not subcell)

membership. Therefore, it has some natural robustness against sensor location uncertainty or error. The

significance of the super and subcells will become clear in the sequel (Sections III and IV).

We assume that the sensor deployment mechanism is able to uniformly distribute the sensors over the

subcells. We define this uniform sensor deployment condition with:

Definition 2.3: (Uniform sensor deployment)We say that a sensor deployment method is uniform if

exactlyn , (N/(LM)) sensors are located in each subcell.

Definition 2.3 describes ideal sensor deployment conditions and can be achieved by locating the sensors

over a uniform grid. However, precise control of sensor locations may not be possible in practice.

Since we are not primarily concerned about the details of deployment, we defer discussion of such

issues to Section IV-A, where we introduce a stochastic deployment model in order to capture the

uncertainty of realistic deployment mechanisms. In Section IV-A, we show that this deployment method

satisfies a relaxed version of Definition 2.3, the asymptoticnearly uniform deployment condition given

by Definition 4.1, which does not significantly change the estimator performance.

For clarity of presentation, we will assume that the deployment scheme being used satisfies the uniform

sensor deployment condition given in Definition 2.3. We alsoassume that each sensor is aware of which

subcell it is in. Figure 2 illustrates the cell hierarchy andan example sensor deployment for thed = 2

dimensional case.
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C. Sensor Observation and Coding Models

1) Sensor Observation Noise:The sensor observations are corrupted by bounded, zero–mean additive

noise which is independent across sensors, but can be arbitrarily correlated across field snapshots6.

Let Zit denote the noise affecting the observation of thetth snapshot by theith sensor, and define

the Z , {Zit}N,T
i=1,t=1 (the collection of all of the noise random variables) andZi , {Zit}Tt=1 (the

collection of all of the noise random variables for a given sensori). The noiseZ has an unknown joint

cumulative distribution function (cdf)FZ(z) that can be arbitrary within the zero–mean, boundedness

and independence constraints already stated. The maximum dynamic range of the noiseb ∈ [0,+∞) is

known. The noisy observation of field snapshott ∈ {1, . . . , T} made by sensori ∈ {1, . . . , N} is given

by

Yit = st(xi) + Zit,

wherexi is the location of theith sensor andZ ∼ cdf FZ(z). We useF to denote the set of all joint

cdfs that are factorizable intoN zero–mean joint cdfs onRT with support within [−b,+b]T , that is,

FZ(z) =
∏N

i=1 FZi
(zi) whereFZi

(zi) is a zero–mean joint cdf (corresponding to the noise random

variables for sensori) with support within [−b,+b]T . Note thatF captures the feasible set of joint

noise cdfs for the bounded–amplitude, zero–mean, and independence assumptions. Also note that|Yit| ≤
|st(xi)|+ |Zit| ≤ c , (a+ b).

2) Randomized1–bit SQ with Block Coding:Due to severe precision and reliability limitations, each

sensori ∈ {1, . . . , N}, has access to only to a vector of unreliable binary quantized samplesBi ,

(Bi1, . . . , BiT ) for processing and coding and not direct access to the real–valued noisy observations

Yi1, . . . , YiT . The quantized binary sampleBit is generated from the corresponding noisy observationYit

through a randomized mappingQit : [−c, c] → {0, 1}: for eachi ∈ {1, . . . , N} and eacht ∈ {1, . . . , T},

Bit = Qit(Yit),

where we assume that the mappingsQit are independent across sensorsi, but can be arbitrarily correlated

across snapshotst. We denote the conditional marginal statistics of the quantized samples bypBit|Yit
(y) ,

P(Bit = 1|Yit = y). We are specifically interested in cases wherepBit|Yit
(y) is an affine function ofy

since it allows estimates of the fields to be made from theBit’s without knowledge of the noise distribution

(see Appendix I). Specifically we consider the conditional distribution

pBit|Yit
(y) =

(
y + c

2c

)
.

6The measurement snapshot timers of all the participating sensors are assumed to be synchronized.
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This conditional distribution can be achieved by a quantization method which is based on comparing

the noisy observation with a random uniformly distributed threshold given by

Bit = QTh
it (Yit) , 1(Yit > Rit), (2.1)

where theRit’s areUnif[−c, c] random thresholds which are independent across sensorsi, but arbitrarily

correlated across snapshotst, and1(·) denotes the indicator function:

1(Yit > Rit) =




1 if Yit > Rit,

0 otherwise.

This uniform random–threshold1–bit SQ model partially accounts for some practical scenarios that

include (i) comparators with a floating threshold voltage, (ii) substantial variation of preset comparator

thresholds accompanying the mass–manufacture of low–precision sensors, (iii) significant environmental

fluctuations that affect the precision of the comparator hardware, or generally (iv) unreliable comparators

with considerable sensing noise and jitter. An alternativejustification is that the random thresholds are

intentionally inserted as a random dither. Scenario (i) canbe accommodated by independence across

snapshots, scenario (ii) can be accommodated by complete correlation (fixed) across snapshots, and

scenarios (iii) and (iv) can be accommodated by arbitrary correlation across snapshots.

Fig. 3. Quantizer hardware example.The sensing model described by theQTh
it (·) function in (2.1) can be implemented by

a comparator with a uniformly distributed threshold. Thesethresholds are independent across sensors, but arbitrarily correlated

across snapshots, allowing many scenarios to be accommodated.

Each sensori utilizes a block encoder to “compress” its vector ofT quantized samplesBi to a message

Mi ∈ {1, 2, . . . , 2rT } before transmitting to the fusion center. The block encoderand message for sensor

i are given by

fi : {0, 1}T → {1, 2, . . . , 2rT }, Mi = fi(Bi1, . . . , BiT ),

wherer is the coding rate in bits per sensor per snapshot. Forr ≥ 1 compression is trivial sinceBi can

assume no more than2T distinct values which can be indexed usingT bits.
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D. Transmission and Field Reconstruction

In this work, a data fusion center is any point of data aggregation and/or processing in the sensor

network and can be real or virtual. For instance, sensors canbe dynamically organized into clusters with

different sensors assuming the role of a fusion center at different times [23]. To conform with the existing

base of digital communication architectures, our problem setup abstracts the underlying transmission

network of sensors effectively as a network of bit pipes. These bit pipes are capable of reliably delivering

theseN messages (the payloads) and the network addresses of the message origination nodes (the headers)

to the fusion center. This enables the fusion center to correctly associate the spatial location information

with the corresponding sensor field–measurement information for reliable field reconstruction. In practice,

sensor data can be moved to the fusion center through a variety of physical–layer transport mechanisms,

example, a stationary base–station with directional antenna arrays, a mobile data collector, and passive

sensor querying mechanisms involving, for instance, laser–beams and modulating mirrors [24].

Separating the distributed field reconstruction problem into efficient data acquisition and efficient data

transport parts through a finite–rate reliable bit–pipe abstraction may be suboptimal [25, p. 449], [15],

[16]. For instance, in some scenarios multihop communication is not needed and the characteristics of

the field, the communication channel, and the distortion–metric are “matched” to one another. In such

a scenario, uncoded “analog” transmission can offer huge performance gains if the synchronization of

sensor transmissions can be orchestrated at the physical layer to achieve beamforming gains and the

network channel state information is available to the transmitting sensors [15]. Certain aspects of this

analog transmission can be incorporated within our field reconstruction framework and is briefly discussed

in the remark just before Section IV-A.

For our reconstruction scheme, described in Section IV, thefusion center only needs to be able to

spatially localize the origin of each message to within the supercell resolution. This can be achieved by

having each sensor append alog(LM) bits long label to its message. This results in a total sensor–location

rate–overhead ofrohd = (N/T ) log(LM) bits per snapshot on the network information transport costs.

This overhead will be negligible ifT ≫ N log(LM). If the underlying sequence of fields are spatially

constant, then, the sensor location information is not needed at the fusion center (see Corollary 3.1 and

Section IV).

The fusion center forms the estimates of theT fields based on the sensor messages using the recon-

struction functions

gt : G× {1, 2, . . . , 2rT }N → [−a, a], ∀t ∈ {1, . . . , T}.
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The estimate of fieldt at pointx ∈ G is denoted by

Ŝt(x) = gt(x,M1, . . . ,MN ).

Definition 2.4: (Rate–r DFRS)A rate–r DFRS based on randomized1–bit SQ with block coding is

defined by the set of rate–r encoder functions{fi(·)}Ni=1 and the set of reconstruction functions{gt(·)}Tt=1.

Figure 1 depicts a rate–r DFRS using randomized1–bit SQ with block coding.

1) Performance Criterion:

Definition 2.5: (Pointwise MSE)The pointwise MSE of the estimate of fieldt at locationx ∈ G, for

a given rate–r DFRS and a specific noise joint cdfFZ(z) ∈ F , is given by

Dt(x;FZ) = E[(Ŝt(x)− st(x))
2].

Since we are interested in schemes that will work forany noise cdf inF , we consider the worst–case

Dt(x;FZ) over all possibleFZ ∈ F . We also consider the maximization over all fields and all locations

in G since we want to reconstruct every point of every field with high fidelity.

Definition 2.6: (Worst–case MSE)The worst–case MSED is given by

D = max
t∈{1,...,T}

sup
x∈G

sup
FZ∈F

Dt(x;FZ).

Our objective is to understand the scaling behavior of MSE with N , T , and r. The next section

summarizes our partial results in this direction.

III. M AIN RESULTS

A. Achievable MSE Performance

Our first result gives an upper bound on the MSE achievable through a constructive DFRS based on

randomized1–bit SQ with block coding for rater = 1/M , whereM is the number of subcells per

supercell. The actual scheme will be described in Section IV. The MSE analysis appears within the proof

of the theorem detailed in Appendix I. This achievable MSE upper bound can be made to decrease to

zero as sensor–density goes to infinity (see (3.1)) without knowledge of the local or global smoothness

properties of the sequence of fields. Furthermore, this scheme is universal in the sense that it does not

assume knowledge ofFZ(z) beyond membership toF .

Theorem 3.1: (Achievable MSE performance: Randomized1–bit SQ andr = 1/M ) There exists a

rate–r = 1/M DFRS based on randomized1–bit SQ with block coding (e.g., the scheme of Section IV)

11



such that for allx ∈ G, t ∈ {1, . . . , T}, andFZ(z) ∈ F ,

Dt(x;FZ) ≤ ω2
t

(√
d

d
√
L
, x

)
+

(
LMc2

N

)

≤ ω̃2
t

(√
d

d
√
L

)
+

(
LMc2

N

)
.

Proof: See Section IV and Appendix I.

Note that Theorem 3.1 holds for arbitrary fields. The modulusof continuity terms in the local (first) and

global (second) upper bounds of Theorem 3.1 are due to the bias of the field estimates and the
(
LMc2

N

)

term is due to the variance of the field estimates (see (4.2) inSection IV). From Theorem 3.1 and the

properties of moduli of continuity (see Section II-A), it follows that for the coding and reconstruction

scheme of Section IV, asN −→ ∞, the estimatêSt(x) uniformly converges, in a mean square sense, to

st(x) for all x ∈ G, provided that

(i)

(
N

L

)
−→ ∞, and (ii) L −→ ∞. (3.1)

It also follows that the worst–case MSE scaling behavior (see Definition 2.6) is bounded by

D ≤ max
t∈{1,...,T}

{
ω̃2
t

(√
d

d
√
L

)
+

(
LMc2

N

)}
(3.2)

and thatD −→ 0 asN andL scale as in (3.1).

Implications: These results allow us to make the per sensor per snapshot bitrate r, worst–case MSE

D, and sensor message ID overheads (given by(N/T ) log(LM) bits) simultaneously smaller than any

arbitrarily small desired valuesr∗,D∗, ǫ > 0, respectively. First, we can choose a sufficiently large number

of subcells per supercellM∗ such that the rater = 1/M∗ < r∗. Then we can choose a sufficiently large

number of sensorsN∗ and number of supercellsL∗ such that the bound onD given by (3.2) is made

less thanD∗. Note that bothN∗ and M∗ can be further increased while keeping the ratioM∗/N∗

fixed without changing the bound onD. This corresponds to increasing the total number of sensorsN ,

decreasing the per sensor rater = 1/M , but keeping the total network per snapshot rateNr = N/M

and distortionD fixed. Finally, we can look at a sufficiently large number of snapshotsT ∗ such that

network message overheads(N∗/T ∗) log(L∗M∗) < ǫ.

In the constructive coding and field reconstruction scheme of Section IV, the field estimates are

piecewise constant over the supercells. The estimate in each supercell is formed from onlyn = (N/(LM))

of theMn = (N/L) quantized observed values coming from the sensors located in that supercell. Since

only (1/M) of the total available quantized observed values for each snapshot are used, the transmission

rate of (1/M) is achievable by indexing only the necessary values (see Section IV for details). As the
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number of supercellsL increases, the piecewise constant estimate becomes finer and the bias is decreased.

Also, as the number of sensors per supercell is increased, more observations are used thus decreasing

the variance of the estimate.

Since the variance termLMc2

N in the upper bound of Theorem 3.1 can decrease no faster thanO(1/N),

the decay of the global MSE upper bound, in the proposed constructive scheme, can be no faster than

O(1/N). However, the decay rate ofLMc2

N is hindered by the fact thatL simultaneously needs to approach

infinity for the bias termω̃2
t

( √
d

d
√
L

)
to decay to0. When ω̃t(·) is not identically zero, a bias–variance

tradeoff exists and the appropriate relative growth rate for L with N that minimizes the decay rate of

the global MSE upper bound of Theorem 3.1 is determined by thefollowing condition

ω̃2
t

(√
d

d
√
L

)
= Θ

(
L

N

)
.

For certain classes of signals for which the global modulus of continuity has a closed form, the optimum

growth rate can be explicitly determined. For instance, ifd = 1 and ω̃t(δ) = ∆ · δ (Lipschitz–1 fields),

Lopt(N) = Θ(N1/3) for which MSE = O(N−2/3).

Corollary 3.1: (Achievable MSE performance: Randomized1–bit SQ,r = 1/M , and constant fields)

If for all x ∈ G and all t ∈ {1, . . . , T}, we havest(x) = st, or equivalently, for allδ ≥ 0 and all

t ∈ {1, . . . , T}, ω̃t(δ) = 0, then the result given by (3.2) reduces to

D ≤
(
Mc2

N

)
,

where we can setL = 1 to minimize the bound.

Only L = 1 supercell is needed for an accurate piecewise constant reconstruction of a constant field.

Furthermore, all snapshot–estimates given by the scheme from Section IV are unbiased in this case. Also,

the spatial locations of sensors are irrelevant: the MSE behavior is governed purely by the number of

sensorsN regardless of how they are distributed over the subcells. TheN sensors must still be uniformly

assigned to one ofM groups (for the purpose of transmission coordination to achieve the compression

factor of 1/M ), however these groups need not have any geographical significance.

The MSE results given by Theorem 3.1 show that the field snapshot estimates converge uniformly in

MSE and upper bound the MSE decay rate. Every point of every estimate, in fact, converges almost

surely to the true value. We also state a central limit theorem (CLT) result regarding the estimation error.

Theorem 3.2: (Almost–sure convergence of field estimates)There exists a rate–r = 1/M DFRS based

on randomized1–bit SQ with block coding (described in Section IV) such thatfor all x ∈ G, t ∈
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{1, . . . , T}, andFZ(z) ∈ F ,

Ŝt(x)
a.s.−−→ st(x),

asN andL scale as given in (3.1).

Proof: See Section IV and Appendix II.

Corollary 3.2: (Central limit theorem for estimation errors)For the rater = 1/M DFRS of Section IV,

the normalized error at pointx ∈ G for the estimate of field snapshott ∈ {1, . . . , T}, given by

Ŝt(x)− st(x)√
var[Ŝt(x)− st(x)]

,

is asymptotically zero–mean, unit–variance, normal asN andL scale as given in (3.1), for anyFZ(z) ∈ F .

Proof: The proof is similar to and follows directly from the proof ofTheorem 2.4 in [2].

B. Order–Optimal Minimax MSE for Constant Fields

The minimax reconstruction MSE over the class of constant fields is given by

inf
{gt}t=T

t=1

sup
FZ∈F ,st∈S

D,

where the infimum is taken over all possible estimators and the supremum is taken over all noise

distributions and fields from the class of constant fields which is denoted byS. The achievable MSE result

given by Corollary 3.1 establishes an upper bound on the minimax reconstruction MSE. Theorem 3.3

lower bounds the minimax reconstruction MSE for any rater DFRS that produces unbiased estimates

for the case of spatially constant fields.

Theorem 3.3: (Lower bound on MSE: Unbiased estimators for constant fields)For a sequence of

spatially constant fields and any DFRS which produces unbiased field estimates, there exists a joint cdf

FZ ∈ F such that for noise distributed according toFZ the MSE is lower bounded by

E[(Ŝt − st)
2] ≥

(
Ct

N

)
, for all t ∈ {1, . . . , T},

whereCt is finite, non–zero, and does not depend onN . Therefore,

inf
{gt}t=T

t=1

sup
FZ∈F ,st∈S

D ≥ max
t∈{1,...,T}

(
Ct

N

)
.

Proof: Since{st} → {Yit} → {Bit} → {Mi} forms a Markov chain, the estimates based on the

sensor messages{M1, . . . ,MN} cannot have a lower MSE than estimates based on the noisy observations

{Yit}. LetFZ ∈ F be any well–behaved, non–trivial, joint cdf such that theZit are iid and the conditional

probabilities ofYit given the fields satisfy the regularity conditions necessary for the Cramér–Rao bound
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[26] to be applied. By the Cramér–Rao bound, the MSE of each field estimate based on{Yit} is lower

bounded byCt

N whereCt is finite, non–zero, and depends onFZ, but does not depend onN . Note that

the bound also applies to general randomized1–bit SQ functionsQit(·) including those based on uniform

random thresholdsQTh
it (·) (see (2.1)).

Combining the results of Corollary 3.1 and Theorem 3.3 establishes that the order–optimal minimax

MSE for spatially constant fields isΘ(1/N) and that the scheme of Section IV achieves this order optimal

performance.

IV. PROPOSEDCONSTRUCTIVE DISTRIBUTED CODING AND FIELD RECONSTRUCTIONSCHEME

In this section we present the proposed DFRS scheme that was alluded to in Section III. In this scheme,

sensors create the quantized binary samples{Bit} from their observations{Yit} through comparisons with

the random thresholds{Rit}, as described in (2.1) of Section II-C.2. The field estimatesare piecewise

constant over the supercells, where the estimate formed in each supercell is a function of only(N/(LM))

of the (N/L) quantized observed values coming from the sensors located in that supercell. This allows

fractional transmission rates ofr = 1/M through a simple time–sharing based compression method. Note

that there can be uncertainty in the sensor locations, within a degree given by the size of a supercell, at

the fusion center, since it is only necessary for the fusion center to know which supercell each sensor is

located in.

Each sensori, instead of transmitting all of itsT bits (the vector of its binary quantized observations

Bi = (Bi1, . . . , BiT )), transmits onlyrT = T/M of them and the remaining observations are dropped. Or

alternatively, the sensor may sleep and not record the remaining measurements. The two–level hierarchy of

supercells and subcells described in Section II-B is used inorder to properly determine which bits sensors

should drop or keep. Within each supercell, each sensori from subcellk ∈ {1, . . . ,M} communicates

only everyM th bit (offset byk), that is{Bi,k+Ml}l=(T/M)−1
l=0 . TheserT bits can be uniquely represented

by the messageMi ∈ {1, . . . , 2rT } and losslessly communicated to the fusion center. Thus for snapshot

t ∈ {1, . . . , T}, only the bits from senors in the[((t − 1) modM) + 1]th subcell of each supercell are

communicated to the fusion center. The set of all sensor indices corresponding to then = (N/(LM))

sensors belonging to the[((t − 1) modM) + 1]th subcell of supercellj will be denoted byI(j, t). In

other words, this set of indices corresponds to all those sensors which are located in supercellj and are

responsible for recording and encoding a bit in thet-th snapshot.

For notational simplicity, the reconstruction function̂St(x) = gt(x,M1, . . . ,MN ) will be described
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directly in terms of the available binary quantized observationsBit
7 and not the encoded messages{Mi}

which are information equivalent. The reconstruction function Ŝt(x) is piecewise constant and is described

as follows. The fieldst(x) is reconstructed as a constant over each supercellj. The constant estimate is

given by

Ŝtj , 2c


 1

n

∑

i∈I(j,t)
Bit


− c, (4.1)

which is the simple average (shifted and scaled into[−c,+c]) of the available quantized binary obser-

vations of snapshott from sensors located in supercellj. The overall piecewise–constant estimate for

st(x) can be then described as

Ŝt(x) = gt(x,M1, . . . ,MN )

,

L∑

j=1

Ŝtj1(x ∈ Xj), (4.2)

whereXj ⊆ [0, 1]d is the set of points within thejth hypercube supercell and1(x ∈ Xj) given by

1(x ∈ Xj) =




1 if x ∈ Xj,

0 otherwise,

is the indicator function of the setXj. Other more sophisticated reconstruction algorithms are possible.

For instance, instead of the simple average used in (4.1), one may use a weighted average with convex

weights, and for the overall reconstruction in (4.2), one may use a piecewise–linear or other higher–order

interpolation algorithms such as those based on cubic B–splines (see [2]). The resulting MSE will be

of the same order. We use the former (simple average, piecewise–constant) reconstruction because its

description and analysis is more compact. Appendix I provesthat the MSE of this constructive coding

and reconstruction scheme is upper bounded by the result described in Theorem 3.1.

Remark: As discussed at the beginning of Section II-D, physical–layer network data transport issues

are not the focus of this work. However, if synchronized analog beamforming from the sensors within

each subcell to the fusion center can be achieved, then the summation in the reconstruction given by

equation (4.1) can be realized directly in the analog physical layer, by “adding signals in the air”, using

a simple binary pulse amplitude modulation signaling scheme at each sensor. The additional estimation

error variance due to the receiver amplifier noise at the fusion center will decrease as1/n by scaling the

sampled received waveform by1/n as in (4.1). This will lead to corresponding achievable power versus

distortion tradeoffs (as opposed to bits versus MSE or sensors versus MSE) which can be quantified.

7The set of binary quantized observations for snapshott which are available at the fusion center is given by{Bit}{i∈∪L
j=1

I(j,t)}
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A. Sensor Deployment Considerations

The conditions given by Definition 2.3 correspond to exactly(N/(LM)) sensors uniformly falling

into each subcell with probability one for allN , L, andM (ignoring integer affects). In the regime

of perfect sensor placement control (or when placement error is negligible compared to the width of

the cells), this condition is trivially realized by locating the sensors on a uniform grid. However, such

precise sensor placement control might not be achievable inpractice. In order to address this issue we

introduce a stochastic sensor deployment model, one that captures an extreme case of (uncontrollable)

sensor placement uncertainty where each sensor is deployedaccording to a uniform distribution over

[0, 1]d. We also relax the uniform sensor placement to an asymptoticnearly uniform sensor deployment

given by Definition 4.1.

Definition 4.1: (Asymptotic nearly uniform sensor deployment) We say that a sensor deployment

method is asymptotically nearly uniform with parameters(γ, ǫ,N∗) if at leastγn , γ(N/(LM)) are

located in each subcell with probability at least1 − ǫ for all N > N∗, whereγ ∈ (0, 1] represents the

inverse of the “over–provisioning” factor for the number ofsensors needed to be deployed.

This relaxation does not significantly impact our results since we are interested in the asymptotic results

(asL andN scale as in (3.1)) where theγ andǫ parameters of Definition 4.1 can be made negligible. Our

stochastic deployment scheme satisfies this asymptotic nearly uniform condition given in Definition 4.1,

and also almost surely satisfies the uniform deployment condition given by Definition 2.3 forN −→ ∞.

Consider the scenario whereN sensors are deployed iid and uniformly overG = [0, 1]d. The corre-

sponding indices of the subcells (the totalLM subcells can be indexed by an integer from1 to LM )

that theN sensors fall is denoted by the random sequenceJ = (J1, . . . , JN ). Here,Ji ∼ iid U , where

U , (1/(LM), . . . , 1/(LM)) is the uniform probability mass function overLM discrete values. We

examine theN–type (empirical distribution)P (N)
J

of J in order to examine the level of uniformity in

the sensor deployment. An empirical distribution equal toU corresponds to the uniform deployment

condition of Definition 2.3 being met. Since the indices are also distributed iid according toU , by the

strong law of large numbers, the empirical distribution converges almost surely toU asN −→ ∞, and

thus almost surely the sensors will be deployed uniformly over the subcells according to Definition 2.3

asN −→ ∞.

Also, a result from large deviations theory bounds the probability that the empirical distribution will

not be in aδ–neighborhood of the uniform distribution. This corresponds to the event where there exists

a subcell that has more thanN(1+δ)
LM or fewer thanN(1−δ)

LM sensors located within it. LetPN be the set of
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Fig. 4. The QTh
it (·) function in (2.1) and theQ(·) function of [3] suggest markedly different hardware implementations.

The former naturally suggests (a), where the binary quantized value is produced by a simple comparison to a random threshold

X. The latter suggests (b), where an arbitrarily–precise ADCcircuitry probabilistically selects an arbitrary bit of the observed

value. Interestingly, these two implementations produce statistically equivalent quantized outputsB given identical inputsY .

N–dimensional probability distributions,U δ , [(1− δ)/(LM), (1 + δ)/(LM)]N be theδ–neighborhood

around the uniform probability mass functionU , D(·‖·) denote the Kullback–Leibler distance [25], and

P ∗ = arg min
P∈PN\Uδ

D(P‖U)

denote the probability distribution not inU δ that is closest toU in Kullback–Leibler distance. It should

be noted thatD(P ∗‖U) > 0 for all δ > 0. Then by Sanov’s theorem [25, p. 292],

P(PN
J ∈ P

N \ U δ) ≤ (N + 1)LM2−ND(P ∗‖U)

= 2−N(D(P ∗‖U)−LM

N
log(N+1)). (4.3)

This inequality bounds the probability that not all subcells have at leastN(1−δ)
LM sensors within them. This

shows that as long as the number of sensors deployedN grows faster than the actual number of sensors

neededLM , then the near uniform deployment condition will be eventually met. Thus, this determines

how many total sensorsN∗ > LM need to be deployed in order to satisfy the asymptotic nearlyuniform

sampling condition of Definition 4.1 for a given desiredǫ and forγ = 1− δ.

V. D ISCUSSION OFRELATED ONE–BIT ESTIMATION PROBLEMS AND EXTENSIONS

This section discusses the connections between the methodsand results in [2], [3], and the present work.

It is shown that the apparently different randomized1–bit field estimation schemes in these studies are in

fact statistically and MSE performance equivalent. We alsoaddress how, in the scenario of known noise
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statistics, unbounded noise distributions and arbitrary threshold distributions can be accommodated. The

general framework of the present work integrates the desirable field sensing and reconstruction properties

and insights of the earlier studies and provides a unified view of the problem that simultaneously considers

unreliable binary quantization, unknown arbitrary noise distributions, multiple snapshots of a temporally

and spatially varying field, and communication rate issues.Since the work in both [2] and [3] deal with

the reconstruction of only a single snapshot (T = 1), we will drop the snapshot indicest in our discussion

to aid comparison.

A. One–Bit Randomized–Dithering

The problem setup of [2] may be viewed as the reconstruction of a single snapshot (T = 1) of

a bounded, one–dimensional field (d = 1) from noiseless samples (Zi = 0) at uniformly spaced

(deterministic) sampling locations (xi = i/N ). In [2] the noiseless observations are binary quantized using

random thresholdsRis that have a known general distribution which satisfies certain technical conditions

described in [2, Section II.A]. These technical conditionsinclude the uniform distribution (considered in

this paper) as a special case. An important conceptual difference is that in [2] the sensor quantization

noise is viewed as a randomized dither signal which is intentionally added to the observations and that

the dither cdf is known (it need not be uniform). The reconstruction explicitly exploits the knowledge of

the dither statistics. Specifically, the noiseless observation Yi, at sensori, and the corresponding quantized

binary sampleBi become

Yi = s(xi),

Bi = Q(Yi) , sgn(Yi +Xi),

whereXi is iid dithering noise with a known distributionpX(·) which satisfies certain technical assump-

tions as given in [2, Section II.A]. Note that taking the signof the sum of the observation and random

dither Xi is equivalent to comparing with the threshold−Xi. Thus the quantization functionQ(·) of

[2] is equivalent8 to a comparator with a random threshold that is distributed according topX(−x).

The quantization functionQTh
it (·) in (2.1) can be viewed as a special case of this wherepX(−x) is the

uniform distribution over[−c, c]. The constructive scheme of Section IV and the analysis of this work

shows thatQTh
it (·) can in fact be used even on noisy field observations with an additive noise ofunknown

distribution.

8The sign function maps to{−1,+1} whereas a threshold comparator maps to{0,1}. However, the replacement of the−1

symbol with the 0 symbol is unimportant from an estimation viewpoint.
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B. Parameter Estimation with One–Bit Messages

The parameter estimation problem in [3] corresponds to the special case of a spatially constant field

(s(xi) = s for all i where the indext is omitted sinceT = 1) which is addressed by Corollary 3.1. We

summarize below the key features of the randomized binary quantizer proposed in [3] and show that the

randomized1–bit SQ functionQ(·) of [3] is statistically and MSE performance–wise equivalent to the

uniform random threshold quantizerQTh
it (·) in (2.1). However, theQ(·) function of [3] implicitly requires

sensors of arbitrarily high precision, a property that is undesirable for sensor hardware implementations.

In [3], each sensori first shifts and scales it observationYi into interval [0, 1] creating the value

Ỹi ,
(
Yi+c
2c

)
. Next, each sensori generates an auxiliary random variableαi, which is iid across sensors

and is geometrically distributed over the set of all positive integers:P(αi = j) = 2−j for all j ∈
{1, 2, 3, . . . ,∞}. The final quantized binary sampleBi reported by sensori is given by theαth

i bit in the

binary expansion of̃Yi:

Bi = Q(Yi) , B(Ỹi, αi),

whereỸi =

∞∑

j=1

B(Ỹi, j)2
−j . (5.1)

Here,B(Ỹi, j) denotes thejth bit of Ỹi. For example, ifỸi = 0.375, then the first four bits of its binary

expansion are given byB(Ỹi, 1) = 0, B(Ỹi, 2) = 1, B(Ỹi, 3) = 1, andB(Ỹi, 4) = 0. If αi = 3, then

sensori reportsBi = 1. This method for generating binary sensor messages requires sensors to have

the operational ability to quantize an observed real number(the normalized values̃Yi) to an arbitrarily

high bit–resolution. Note that the binary valuesBi are iid across all sensors and that its expected value

is given by

E[Bi] = EeYi
[EBi

[Bi|Ỹi]]

= EeYi




∞∑

j=1

B(Ỹi, j)2
−j




= EeYi
[Ỹi]

= E

[
Yi + c

2c

]
(5.2)

=
E[s+ Zi] + c

2c
=

(
s+ c

2c

)
. (5.3)

In sharp contrast to theQ(·) function described above, which requires sensors to have the operational

ability to resolve any arbitrary bit in the binary expansionof their normalized observations,QTh
it (·)
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requires only a noisy comparator. Despite the markedly different operational implementations ofQ(·) and

QTh
it (·) (see (5.1), (2.1), and Fig. 4 which depicts hardware implementations) they are in fact statistically

identical: the binary quantized valuesBi generated by the two schemes have the samepBit|Yit
(·) and

pB|s(·) functions wherepBit|Yit
(·) is the conditional expectation ofBi given Yi = yi andpB|s(·) is the

unconditional expectation ofBi parameterized by the underlying field values(xi) = s. These expectations

have been evaluated in (5.2), (5.3), (I.1) and (I.2), and we see that for both functions

E[Bi|Yi = yi] = pBit|Yit
(yi) =

(
yi + c

2c

)
, and

E[Bi] = pB|s(s(xi)) =

(
s(xi) + c

2c

)
.

This statistical equivalence allows the two quantization functionsQ(·) andQTh
it (·) to be interchanged

without affecting the estimation performance.

C. Extensions to Unbounded Noise and Arbitrary Thresholds with Known Distributions

In this work, we have made assumptions of zero–mean, amplitude–bounded, additive noise, which can

have an arbitrary, unknown distribution, and uniformly distributed quantization thresholds. The results of

this work can be extended to deal with noise that is not amplitude–bounded (i.e. Gaussian, Laplacian,

etc.) and for thresholds with arbitrary distributions, however certain technical conditions must be met and

the distributions for both the noise and the threshold must be known. A possible approach is to combine

the noise and threshold random variables into an overall random dither variableXit , Zit + Rit and

applying the method and results used in [2] (see Section V-A). The main MSE result of Theorem 3.1 will

still hold, however with new constants multiplying each term in the bound. The method is essentially

the same as in Section IV, however the value of the field estimate at every point is passed through a

non–linear function, instead of a simple scaling and shifting, given by

g(s) =




µ−1(s) |s| ≤ µ(a′)

0 otherwise

with µ(s) , 1 − 2PX(−s) wherePX(·) is the cdf of the dither random variableXit. The technical

requirement for this extension is thatPX(·) is absolutely continuous with a probability density function

pX(·) on (−∞,∞) which is continuous and positive over an open interval(−a′, a′) containing[−a, a].

This ensures thatPX(·) is strictly monotonically increasing over the signal dynamic range and thatµ−1(·)
exists (see [2]).
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If the sensor observation noise is unbounded (but the fieldst(x) is still bounded), has zero–mean, and

has anunknownprobability density function (pdf) whose tails decay to zero, it is still possible to make a

weak statement about the achievable MSE as the number of sensors go to infinity. With unbounded noise,

the sensor observations may exceed any finite dynamic range[−c, c] of the one–bit sensors. This leads to

the appearance of additional error bias terms (see equation(I.2) and (I.4) in Appendix I) which depend

on the unknown signal valuest(x) to be estimated and the dynamic range limitc. It can be shown that

these terms go to zero asc → ∞. Thus one can assert that for a sufficiently large dynamic range limit

c and a corresponding sufficiently large number of sensorsN(c), the MSE can be made smaller than

some desired tolerance. The actual scaling behavior will now also depend on the tail decay rate of the

unknown pdf of the observation noise.

VI. CONCLUDING REMARKS

The results of this work show that for the distributed field reconstruction problem, for every point of

continuity of every field snapshot, it is possible to drive the MSE to zero with increasing sensor density

while ensuring that the per–sensor bitrate and sensing–related network overhead rate simultaneously go

to zero. This can be achieved with noisy threshold (one–bit)comparators with the minimal knowledge

of signal and noise dynamic ranges provided that the noise samples are zero–mean, and independent

across sensors and the underlying field, and the sensor placement and sampling schedule satisfy a certain

uniformity property. The rate of decay of MSE with increasing sensor density is related to the the local and

global smoothness characteristics of the underlying fieldsand is order–optimal for the class of spatially

constant fields. This work has further clarified the utility of randomization for signal acquisition to combat

limited sensing precision and unknown noise statistics in adistributed sensor network context. This work

has also attempted to systematically account for sensor placement and hardware issues in addition to the

typical constraints encountered in related studies.
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APPENDIX I

PROOF OFTHEOREM 3.1

First, note that the expected value of the binary messageBit is given by

E[Bit] = E[1(Yit > Rit)]

= EYit
[ERit

[1(Yit > Rit)|Yit]]

= EYit
[P (Rit < Yit|Yit)]

(i)
= EYit

[
Yit + c

2c

]
(I.1)

=
E[st(xi) + Zit] + c

2c

(ii)
=

(
st(xi) + c

2c

)
, (I.2)

which is the value of the fieldst(·) at locationxi shifted and normalized to the interval[0, 1]. Note that

the key steps are step(i) where we used the fact thatRit is uniformly distributed over[−c, c] and step

(ii) where we used the fact thatZit has zero mean. It should be noted that the final result (I.2) holds

for anyFZ(z) ∈ F .

Using (I.2) we can bound the bias and the variance of the estimator Ŝt(x). The bound on the MSE

follows from the bounds on these values since, for any estimator of a non–random parameter, we have

MSE
(
Ŝt(x)

)
= bias2

(
Ŝt(x)

)
+ var

(
Ŝt(x)

)
. (I.3)

Let j ∈ {1, . . . , L} denote the index of the supercell thatx falls in. We bound the magnitude of bias
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of the estimatêSt(x) in the following way
∣∣∣bias

(
Ŝt(x)

)∣∣∣ =
∣∣∣E
[
Ŝt(x)− st(x)

]∣∣∣

=

∣∣∣∣∣E
[
2c

[
1

n

∑

i∈I(j,t)
Bit

]

−c− st(x)

]∣∣∣∣

=

∣∣∣∣∣2c
[
1

n

∑

i∈I(j,t)
E [Bit]

]

−c− st(x)

∣∣∣∣

(i)
=

∣∣∣∣∣2c
[
1

n

∑

i∈I(j,t)

(
st(xi) + c

2c

)]

−c− st(x)

∣∣∣∣

=

∣∣∣∣∣
1

n

∑

i∈I(j,t)
(st(xi)− st(x))

∣∣∣∣∣

≤ 1

n

∑

i∈I(j,t)
|st(xi)− st(x)|

(ii)

≤ 1

n

∑

i∈I(j,t)
ωt (‖x− xi‖, x)

(iii)

≤ 1

n

∑

i∈I(j,t)
ωt

(√
d

d
√
L
, x

)

= ωt

(√
d

d
√
L
, x

)

(iv)

≤ ω̃t

(√
d

d
√
L

)
, (I.4)

where(i) follows from (I.2), (ii) and(iv) follow from Definitions 2.1 and 2.2, and(iii) follows because

the local modulus of continuity is a nondecreasing functionof its first argument for each fixed value of

its second argument and since any sensor in the supercell containing x is within distance
√
d

d
√
L

of x (the

length of the diagonal of a supercell).
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The variance of the estimate is bounded by

var[Ŝt(x)] = var


2c


 1

n

∑

i∈I(j,t)
Bit


− c




=

(
4c2

n2

) ∑

i∈I(j,t)
var[Bit] (I.5)

≤
(
4c2

n2

)(n
4

)
=

(
LMc2

N

)
, (I.6)

where we used standard properties of variance and the fact that {Bit} are independent to obtain (I.5),

and we used the fact the variance of a Bernoulli{0, 1} random variable is bounded by(1/4) and that

n = (N/(LM)) to obtain (I.6).

Combining these bounds for the bias and variance given in (I.4) and (I.6) of the estimator and using

the identity in (I.3), we get the desired bound on the MSE for all x ∈ G, t ∈ {1, . . . , T}, andFZ(z) ∈ F .

APPENDIX II

PROOF OFTHEOREM 3.2

First, we note that

Ŝt(x)
a.s.−−→ st(x) ≡

∣∣∣Ŝt(x)− st(x)
∣∣∣ a.s.−−→ 0. (II.1)

Thus, we proceed with the triangle equality to bound
∣∣∣Ŝt(x)− st(x)

∣∣∣ ≤
∣∣∣Ŝt(x)− E

[
Ŝt(x)

]∣∣∣

+
∣∣∣E
[
Ŝt(x)

]
− st(x)

∣∣∣ . (II.2)

In the proof of Theorem I given in Appendix I we have shown thatthe second term of (II.2), which is

the absolute value of the estimator bias, is bounded by (I.4)which shows that
∣∣∣E
[
Ŝt(x)

]
− st(x)

∣∣∣ −→ 0 (II.3)

asN andL scale as in (3.1).

Letting j denote the supercell thatx falls in, the first term of (II.2) can be rewritten as

∣∣∣Ŝt(x)− E

[
Ŝt(x)

]∣∣∣ =

∣∣∣∣∣∣
2c


 1

n

∑

i∈I(j,t)
Bit − E[Bit]



∣∣∣∣∣∣
.
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Recall that the cardinality ofI(j, t) is n = (N/(LM)). Since theBit random variables are independent

across sensors and their fourth central moments are uniformly bounded by 1 (since they are binary{0, 1}
random variables), the strong law of large numbers [27, pp. 206–207] can be applied to obtain

1

n

∑

i∈I(j,t)
Bit − E[Bit]

a.s.−−→ 0,

asN −→ ∞ (sincen = (N/(LM))) and thus the first term of (II.2)
∣∣∣Ŝt(x)− E

[
Ŝt(x)

]∣∣∣ a.s.−−→ 0. (II.4)

Combining (II.3) and (II.4) into (II.1) and (II.2) finishes the proof.

REFERENCES

[1] E. Masry and S. Cambanis, “Consistent estimation of continuous–time signals from nonlinear transformations of noisy

samples,”IEEE Trans. Info. Theory, vol. IT–27, pp. 84–96, Jan. 1981.

[2] E. Masry, “The reconstruction of analog signals from thesign of their noisy samples,”IEEE Trans. Info. Theory, vol.

IT–27, no. 6, pp. 735–745, Nov. 1981.

[3] Z. Q. Luo, “Universal decentralized estimation in a bandwidth constrained sensor network,”IEEE Trans. Info. Theory, vol.

IT–51, pp. 2210–2219, Jun. 2005.

[4] D. Marco, E. J. Duarte-Melo, M. Liu, and D. Neuhoff, “On the many–to–one transport capacity of a dense wireless

sensor network and the compressibility of its data,” inInformation Processing in Sensor Networks, Proceedings ofthe

Second International Workshop, Palo Alto, CA, USA, April 22-23, 2003, ser. Lecture Notes in Computer Science edited

by L. J. Guibas and F. Zhao, Springer, New York, 2003, Apr., pp. 1–16.
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[6] Z. Cvetković, I. Daubechies, and B. F. Logan, “Interpolation of Bandlimited functions from quantized Irregular Samples,”

Proc. Data Compression Conference, pp. 412–421, Apr. 2002.

[7] P. Ishwar, A. Kumar, and K. Ramchandran, “Distributed sampling for dense sensor networks: A “bit-conservation”

principle,” in Information Processing in Sensor Networks, Proceedings ofthe Second International Workshop, Palo Alto,

CA, USA, April 22-23, 2003, ser. Lecture Notes in Computer Science edited by L. J. Guibas and F. Zhao, Springer, New

York, 2003, pp. 17–31.

[8] A. Kumar, P. Ishwar, and K. Ramchandran, “On distributedsampling of smooth non-bandlimited fields,” inProc. Third

Inttl. Symposium Information Processing in Sensor Networks. New York, NY: ACM Press, 2004, pp. 89–98.

[9] T. Berger, Z. Zhang, and H. Viswanathan, “The CEO problem[multiterminal source coding],”IEEE Trans. Info. Theory,

vol. IT–42, pp. 887–902, May. 1996.

[10] H. Viswanathan and T. Berger, “The quadratic Gaussian CEO problem,”IEEE Trans. Info. Theory, vol. IT–43, pp. 1549–

1559, Sep. 1997.

[11] V. Prabhakaran, D. Tse, and K. Ramchandran, “Rate-region of the quadratic Gaussian CEO problem,” inProc. IEEE

International Symposium on Information Theory, Chicago, IL, Jun. 2004, p. 119.

26



[12] A. Kashyap, L. A. Lastras-Montano, C. Xia, and Z. Liu, “Distributed source coding in dense sensor networks,” inProc. Data

Compression Conference, Snowbird, UT, Mar. 2005, pp. 13–22.

[13] D. L. Neuhoff and S. S. Pradhan, “An upper bound to the rate of ideal distributed lossy source coding of densely sampled

data,” in Proc. IEEE International Conference on Acoustics, Speech and Signal Processing, Toulouse, France, May 2006,

pp. 1137–1140.
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