
A SEQUENTIAL MONTE CARLO METHOD FOR MOTIF DISCOVERY

Kuo-ching Liang, Xiaodong Wang, DimitrisAnastassiou†

Department of Electrical Engineering, Columbia University
500 West 120th Street, New York, NY 10027, USA

phone: + (002) 1-212-854-0609,
email:{kcliang,wangx,anastas}@ee.columbia.edu

†also with Columbia University Center for Computational Biology and Bioinformatics (C2B2)

ABSTRACT

We propose a sequential Monte Carlo (SMC)-based motif discov-
ery algorithm that can efficiently detect motifs in datasets contain-
ing a large number of sequences. The statistical distribution of the
motifs and the positions of the motifs within the sequences are esti-
mated by the SMC algorithm. The proposed SMC motif discovery
technique can locate motifs under a number of scenarios, including
the single-block model, two-block model with unknown gap length,
motifs of unknown lengths, motifs with unknown abundance, and
sequences with multiple unique motifs. The accuracy of the SMC
motif discovery algorithm is shown to be superior to that of the ex-
isting methods based on MCMC or EM algorithms. Furthermore,
it is shown that the proposed method can be used to improve the
results of existing motif discovery algorithms by using their results
as the priors for the SMC algorithm.

1. INTRODUCTION

Efforts by various genomic projects have steadily expanded the pool
of sequenced DNA data. By seeking out similarities exhibited in
these sequences, we can discover conserved sequence regions, or
motifs, and further our knowledge on the functions and evolutions
of these sequences. An important approach to motif discovery is
the matrix-based approach where a position weight matrix (PWM)
of size4×w is used to describe the statistical distribution of the
four possible nucleotides at every position in a motif of lengthw.
The PWM is estimated in the various matrix-based algorithms and
is used to estimate the most likely location of the motif within each
sequence. In [1],MEME, an algorithm based on EM, is introduced
with support for finding unknown number of motifs and unknown
number of occurrences in the sequences. Based on [2],AlignACE
is proposed using the Gibbs sampler, a Markov chain Monte Carlo
(MCMC) algorithm, to estimate the PWM and the locations of the
motifs in the sequences. Moreover in [3], the Gibbs sampler-based
BioProspectoris proposed to treat the two-block motif model and
palindromic patterns.

Using the MCMC-based algorithms, the sequences are batch-
processed to estimate the PWM and the positions of the motifs.
These algorithms become inefficient for datasets with large num-
ber of sequences. With the ever increasing amount of sequenced
genomic data for various organisms, an algorithm that is better
equipped to deal with large datasets is necessary. With this goal in
mind, we propose a hidden Markov model (HMM) for the matrix-
based approach to motif discovery, and proceed to estimate the
PWM and the locations of the motifs using a sequential Monte Carlo
(SMC) algorithm. The algorithm we propose can handle single-
block model, two-block model with unknown gap length, motifs of
unknown length, motifs with unknown abundance, and sequences
with multiple unique motifs. We show that the SMC-based algo-
rithm can provide comparable performance in real data, and supe-
rior performance in synthesized data to the MCMC and EM-based
algorithms. Furthermore, the SMC algorithm can also be used as a
second-pass algorithm, taking the MCMC or EM-based results as
inputs, and further improve those estimates.

2. SYSTEM MODEL

Let ST = {s1,s2, · · · ,sT}, with st = [st,1, · · · ,st,L], be the set of
DNA sequences of lengthL where we wish to find a common mo-
tif. Let us assume that a motif of lengthw is present in each
one of the sequences. A single block motif model is shown in
Figure 1(a). The distribution of the motif is described by the
4×w position weight matrixΘ = [θ1,θ2, · · · ,θw], where the vector
θ j = [θ j,1, · · · ,θ j,4]T , j = 1, · · · ,w, is the probability distribution of
the nucleotides{A,C,G,T} at the j-th position of the motif. The re-
maining non-motif nucleotides are assumed to be drawn i.i.d. from
the non-motif distribution vectorθ0 = [θ0,1, · · · ,θ0,4]T .

1 L

L1

a.

b.

i i+w +g i+w +w +g-1

i i+w-1

Motif

Block 2Block 1

i+w
i+w1 -1 1 1 2

Figure 1: Position weight matrix models. (a) A model for a single-
block motif with motif lengthw. (b) A two-block motif of lengths
w1 andw2, and gap lengthg.

We implement an HMM to increment our observation by one
full sequence at each step, and the state of the corresponding step
is the location of the first nucleotide of the motif in the sequence.
Since the lastw−1 nucleotides in a sequence are not valid locations
for the beginning of a motif with lengthw, at stept, t = 1, · · · ,T, the
state, denoted asxt , takes value from the setX = {1,2, · · · ,Lm},
whereLm = L−w+1.

Denoteat,i as a sequence motif fragment of lengthw from st
beginning from positioni, and denoteac

t,i as the remaining frag-
ment from st with at,i removed. Let us further define a vector
n(a) = [n1,n2,n3,n4] whereni , i = 1, · · · ,4, denotes the number of
different nucleotides in the sequence fragmenta. Given the vectors
θ = [θ1, · · · ,θ4] andn = [n1, · · · ,n4], we define

θn ,
4

∏
j=1

θn j

j . (1)

Since the non-motif nucleotides are assumed to be i.i.d. with
the probability of each nucleotide given byθ0, and the motif nu-
cleotides are independent with the probability of thej-th nucleotide
given by θ j , the distribution of the observed sequencest condi-
tioned on the state at timet and the PWM is then given as follows:

p(st | xt = i,Θ) = θ
n(ac

t,i)
0

w

∏
k=1

θn(at,i(k))
k , B (st ; i,Θ) , (2)
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whereat,i(k) is thek-th element of the sequence fragmentat,i , and
n(at,i(k)) is a 1× 4 vector of zeros except at the position corre-
sponding to the nucleotideat,i(k), where it is a one. Furthermore,
rearranging the order of the sequences in the dataset does not change
the statistical properties of the motif, and the location of the mo-
tif in sequencest does not affect the location of the motif in se-
quencest+1. Therefore, we will assume the transition probability
p(xt+1 = j|xt = i) = 1/Lm.

2.1 Inference Problem

From the discussion above, we formulate our problem as one of
filtering an HMM with unknown parameters:

xt ∼ MC

(
1

Lm
11×Lm,

1
Lm

1Lm×Lm

)
, (3)

(st | xt) ∼ B (st ;xt ,Θ) , (4)

whereMC (π,A) denotes a discrete-time Markov chain with ini-
tial probability distributionπ and state transition probability matrix
A, 1n×m denotes ann×m matrix of ones; andB (st ;xt ,Θ) is the
probability distribution given by (2).

Let us denote the state realizations up to timeT as xT ,
[x1,x2, · · · ,xT ] and similarly the sequences up to timeT asST ,
[s1,s2, · · · ,sT ]. The unknown parameter of the HMM isΘ, i.e.,
the position weight matrix. Given the sequencesST we wish to
estimate the state realizationsxT , which are the starting locations
of the motif in each sequence, and the position weight matrixΘ,
which describes the statistics of the motif. In the next section, we
derive the SMC algorithm to solve this inference problem.

3. SMC MOTIF DISCOVERY ALGORITHM

In this section, we derive an SMC motif discovery algorithm for the
case where each sequence in the dataset contains exactly one in-
stance of the same motif. In Section 4 we will extend this algorithm
to additional models.

3.1 SMC with Unknown Parameters

In our model (3)-(4), the parameterΘ is unknown and has to be
estimated in the SMC process. As we will show later, the para-
meterΘ is in a form which can be described by a sufficient sta-
tistic that is easily updated, i.e., the distribution can be given as
p(Θ|Tt) whereTt = Tt(xt ,St) = Tt(Tt−1,xt ,st) is some suffi-
cient statistic at timet that can be easily updated from the suffi-
cient statisticTt−1 at timet−1, and the current state and observa-
tion, xt andst . Suppose we have available at timet−1 a set ofK

properly weighted samples
{(

x
(k)
t−1,ω

(k)
t−1

)
,k = 1, · · · ,K

}
with re-

spect top(xt−1|St−1). The posterior distributionp(xt ,θ | St) can

be approximated by drawing(θ (k),x(k)
t ) from a proposal distrib-

ution q(Θ,xt |x(k)
t−1,St) = q1(Θ|x(k)

t−1,St) · q2(xt |x(k)
t−1,St ,θ). The

new weights can be updated by [4]

ω(k)
t ∝ ω(k)

t−1

p
(
Θ(k) |T(k)

t−1

)
p
(

x(k)
t | x(k)

t−1,Θ
(k)

)
p
(
st | x(k)

t ,Θ(k)
)

q1

(
Θ(k) | x(k)

t−1,St

)
q2

(
x(k)
t | x(k)

t−1,St ,Θ(k)
) . (5)

Hence a Monte Carlo approximation ofp(xt |St) can be obtained
by

p̂θ (xt | St) =
1

Ωt

K

∑
k=1

ω(k)
t I(xt −x

(k)
t ), (6)

where Ωt = ∑K
k=1 ω(k)

t and I(·) is the indicator function such
that I(x) = 1 for x = 0 and I(x) = 0 otherwise, and we

update the set of sufficient statistics
{
T

(k)
t ,k = 1, · · · ,K

}
=

{
Tt(Tt−1,x

(k)
t ,st),k = 1, · · · ,K

}
. Furthermore, the static parame-

tersθ can be estimated by Rao-Blackwellization [5],

E{θ | St}= Ext |St
{E{θ | St ,xt}} ≈ 1

Ωt

K

∑
k=1

ω(k)
t E

{
θ |T(k)

t

}
.

(7)
It turns out that the variance of the importance weights in-

creases over time which causes too many samples to have very small
weights and become ineffective samples, in which case, the SMC
algorithm becomes inefficient. Degeneracy of the samples can be
measured by the effective sample size which can be estimated by [6]

K̂e f f =

(
K

∑
k=1

(ω(k)
t )2

)−1

. (8)

It is suggested that when the effective sample size is too small,
e.g.,K̂e f f ≤ K

10, the following resampling steps can be performed to
rejuvenate the samples [7]:

• Draw K sample streams {x( j)
t , j = 1, · · · ,K} from

{x(k)
t ,k = 1, · · · ,K} with probabilities proportional to

{ω(k)
t ,k = 1, · · · ,K}.

• Assign equal weights to each stream,ω(k)
t = K−1.

3.2 The SMC Motif Discovery Algorithm

For the system states up to timet, xt = [x1, · · · ,xt ], and the cor-
responding sequencesSt = [s1, · · · ,st ], we will first present their
prior distributions and their conditional posterior distributions, and
then present the steps of the SMC motif discovery algorithm.

3.2.1 Prior Distributions:

Let us denoteθ j , [θ j1, · · · ,θ j4]T , j = 1, · · · ,w, as the j-th col-
umn of the position weight matrixΘ. It can be seen that for all
of the motifs in the datasetST , the nucleotide counts at each motif
location are drawn from multinomial distributions. Therefore, we
use a multivariate Dirichlet distribution as the prior forθ j to obtain
a conjugate pair. The Dirichlet distribution is defined as follows.
If u = [u1, · · · ,uN], ui ≥ 0, ∑N

i=1ui = 1, andu has a multivariate
Dirichlet distributionu∼D(γ1, · · · ,γN) with γi > 0, then,

p(u) =
Γ

(
∑N

i=1 γi
)

∏N
i=1 Γ(γi)

N

∏
i=1

uγi−1
i , (9)

whereΓ(·) is the Gamma function. The prior distribution for the
i-th column of the PWM is then given by

θi ∼D(ρi1, · · · ,ρi4), i = 1,2, · · · ,w. (10)

Let us defineρi , [ρi1, · · · ,ρi4]. Assuming independent priors, then
the prior distribution for the PWMΘ is the product Dirichlet distri-
bution

Θ∼
w

∏
i=1

D(ρi). (11)

3.2.2 Conditional Posterior Distributions:

The conditional posterior distribution of the PWMΘ can be given
as

p(Θ | St ,xt) ∝ p(st |Θ,xt ,St−1) p(Θ | xt−1,St−1)

∝
w

∏
j=1

θn(at,i( j))
j

w

∏
i=1

θ ρi(t−1)−1
i

∝ D
(
Θ;ρ1(t−1)+n(at,i(1)), · · · ,ρw(t−1)+n(at,i(w))

)
,(12)
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where we denoteρi(t) , [ρi1(t), · · · ,ρi4(t)], i = 1, · · · ,w, as the

parameters of the distribution ofΘ at time t, and θ ρk(t)−1
k ,

∏4
`=1 θ (ρk`(t)−1)

k` . The conditional posterior distribution of statext
can be given as

p(xt = i | St ,Θ) = p(xt = i | st ,Θ) ∝ B (st ; i,Θ) . (13)

3.2.3 Sequential Monte Carlo Estimator:

We now outline the SMC algorithm for motif discovery. At timet,

to draw random samples ofx(k)
t we use the optimal proposal distri-

bution

q2

(
xt = i | x(k)

t−1,St ,Θ
)

= p
(

xt = i | x(k)
t−1,St ,Θ

)
∼B (st ; i,Θ) .

(14)
To sampleΘ, we use the following proposal distribution

q1

(
Θ | x(k)

t−1,St

)

∝
Lm

∑
i=1

p(st | xt = i,Θ,xt−1,St−1) p(Θ | xt−1,St−1)

∝
Lm

∑
i=1

θ
n(ac

t,i)
0

w

∏
k=1

θ ρk(t−1)+n(at,i(k))−1
k

∝
Lm

∑
i=1

λi,tD
(
Θ;ρ1(t−1)+n(at,i(1)), · · · ,ρw(t−1)+n(at,i(w))

)
.(15)

where

λi,t , θ
n(ac

t,i)
0

w

∏̀
=1

ρ`(t−1)n(at,i(`)), (16)

with ρ`(t)n(at,i(`)) , ∏4
j=1 ρ` j (t)I(st,i+`−1− j). The weight update for-

mula (5) can be written as:

ωt ∝ ωt−1
∑Lm

i=1 λi,t

∏w
k=1 ∑4

j=1 ρk j(t−1)
. (17)

We are now ready to give the SMC motif discovery algorithm:
• For k = 1, · · · ,K

– SampleΘ(k) from the mixture Dirichlet distribution given
by (15).

– Samplex(k)
t from (14).

– Update the sufficient statisticsT(k)
t = Tt(T

(k)
t−1,x

(k)
t ,st)

from (12).
• Compute the new weights according to (17).

• ComputeK̂e f f according to (8). IfK̂e f f ≤ K
10 perform resam-

pling.

4. EXTENSIONS

In this section, we present modifications to the basic SMC motif
discovery algorithm to support different motif models.

4.1 Two-block Model

For the two-block model, as shown in Figure 1(b), we assume that
the motif is segmented into two blocks of known lengthsw1 and
w2, separated by a gap of lengthg ∈ [gmin,gmax]. The statistics
of the motif can be described by the4×w PWM Θ, where now
w = w1 + w2, and the firstw1 columns describe the statistics of
the first block, and the remainingw2 columns describe those of the
second.

In order for the SMC motif discovery algorithm to be able to
handle sequences with two-block motifs, we simply modify the
state space of the HMM. Instead of letting the statext be the location

of the first nucleotide of the motif, we let the state be the number
pairxt , (at ,gt) whereat ∈ {1, · · · ,Lm}, gt ∈ {gmin, · · · ,gmax}, and
at +gt +w1+w2−1≤ L. The proposal distributionsq1 andq2, and
the updates to the sufficient statistics and the weights are similar to
those introduced in Section 3.2 for the single-block motif model,
except that for the two-block model, afterw1 nucleotides, the in-
dex for the finalw2 nucleotides are advanced bygt to account for
the gap in the two-block model. We therefore have the following
modified sequence fragment

at,(i, j) , [st,i , · · · ,st,i+w1−1,st,i+ j+w1, · · · ,st,i+ j+w−1]. (18)

The samplesxt andΘ are drawn using (14) and (15) withat,i re-
placed byat,(i, j), andac

t,i by at,(i, j). The sufficient statistics and
weight updates also follow the basic SMC algorithm with similar
replacements byat,(i, j).

The steps of the modified SMC algorithm for two-block model
is as follows
• For k = 1, · · · ,K

– SampleΘ(k) from (15) usingat,(i, j) andat,(i, j).

– Samplex(k)
t from (14) usingat,(i, j) andat,(i, j).

– Update the sufficient statisticsT(k)
t = Tt(T

(k)
t−1,x

(k)
t ,st)

from (12) usingat,(i, j) andat,(i, j).

• Compute the new weights according to (16) and (17) using
at,(i, j) andat,(i, j).

• ComputeK̂e f f according to (8). IfK̂e f f ≤ K
10 perform resam-

pling.

4.2 Motif of Unknown Length

In this extension we assume that the dataset contains a motif of un-
known lengthm∗ that falls in the window[mmin,mmax] and modify
the SMC algorithm to adaptively estimate the unknown length. The

basic idea is to associate with each samplek the quantitym(k)
t , at

time t, which is the length of the motif in samplek at timet. Corre-
sponding to this length, we have for samplek the PWMΘ(k) with

size4×m(k)
t , wherem(k)

t ∈ [mmin,mmax]. At t = 0, m(k)
0 is drawn

uniformly from the set{mmin,mmin +1, · · · ,mmax}. After updating
the weights using the equation that will be introduced shortly, the
resampling condition is checked. When resampling is performed,

the motif length samplesm(k)
t are replaced by the resampled values

m̂(k)
t , k = 1, · · · ,K. Thus adaptation to the optimum motif length is

achieved through resampling [8].
When comparing weights with different motif lengths, the

weight with the longer motif length is usually favored. Thus, it
is necessary to normalize the weights so that they can be compared

fairly. First we normalize the Dirichlet mixture coefficientλ (k)
i,t as

λ (k)
i,t ,

(
θ
n(ac

t,i)
0

)γ(k)
t

β (k)
t

m(k)
t

∏̀
=1

ρ(k)
` (t−1)

n(at,i(`))
, (19)

and the weight update formula as

ω(k)
t ∝ ω(k)

t−1

c(k)
t ∑L(k)

m
i=1 λ (k)

i,t

β (k)
t ∏m(k)

t
`=1 ∑4

j=1 ρ(k)
` j (t−1)

, (20)

where β (k)
t ,

(
∑4

j=1 ρ (mmin)
1 j (t−1)

)mmin

(
∑4

j=1 ρ (k)
1 j (t−1)

)m
(k)
t

, γ(k)
t = L

(mmin)
m

L(k)
m

, and c(k)
t ,

∑L
(k)
m

i=1 θ
n(ac

t,i )

0
(

∑L
(k)
m

i=1 θ
n(ac

t,i )

0

)γ(k)
t

.
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Thus the weights are normalized so that they are equivalent
to the weight for a minimum length motif so that the weights for
different motif lengths can be compared fairly. Note that the set

of weighted samples
{

(x(k)
t ,m(k)

t ,ω(k)
t ),k = 1, · · · ,K

}
is not prop-

erly weighted with respect to the same posterior distribution due
to the different motif lengths in the samples. However, the sub-
set of samples with the same sampled motif length,m, is properly
weighted with respect top(xt |St ,m). At each resampling, more and
more samples with the true motif length are resampled. Eventually,
most of the samples will become properly weighted with respect to
p(xt |St ,m= m∗).

We next summarize the SMC motif discovery algorithm for un-
known motif length.

• Initialization: Samplem( j)
0 uniformly from [mmin,mmax].

• Importance Sampling: Fort = 1,2, · · ·
– Fork = 1, · · · ,K

∗ Setm(k)
t = m(k)

t−1.

∗ SampleΘ(k) from (15) usingm(k)
t as length of motif.

∗ Samplex(k)
t from (14) usingm(k)

t as length of motif.

∗ Update the sufficient statisticsT(k)
t = Tt(T

(k)
t−1,x

(k)
t ,st)

from (12) usingm(k)
t as length of motif.

– Compute the new weights according to (20).

– ComputeK̂e f f according to (8). IfK̂e f f ≤ K
10 perform re-

sampling.
• At T + 1, let d be the number of sequences having estimated

motif lengths that is different from the final converged motif
length. Fort = T + 1, · · · ,T + d, repeat the Importance Sam-
pling step for thed sequences to re-estimate motif location and
motif length.

4.3 Motif with Unknown Abundance

To perform motif discovery on datasets where the sequences can
contain any number of the motif, we can perform multiple passes
of the SMC algorithm on the dataset. Before the subsequent pass,
the motif fragment is removed from the sequences where they are
found, and the remaining sequence fragments are appended to form
a new sequence. By keeping indices on the locations in a sequence
where the fragments are joined, we can determine the remaining
possible locations for the starting point of a motif, and modify the
state space of (14) accordingly. Note that in this case, a threshold is
needed to determine the presence of a motif in the sequence. The al-
gorithm is terminated when all the sequences have been determined
not to contain any motifs. To determine whether the motif being
looked for in the current pass exists in any sequence, we use the
following threshold:

λthresh,
1

Lm

{
Lm

∑
i=1

[
θ
n(ac

t,i)
0

w

∏
m=1

max{ρm}+ ∑
j 6=i

θ
n(ac

t, j )
0

w

∏
m=1

ρn(at, j (m))
m

]}
.

(21)
This is simply the average ofλi,t over all possible starting positioni
for the starting location of the motif, assuming that a motif exists in
the sequence. The sequencet can be declared not to contain a motif
if ∑Lm

i=1 λi,t < αλthreshwhereα < 1.
The following gives the SMC algorithm for datasets with un-

known motif abundance and/or multiple unique motifs:
• If there are sequences remaining in the dataset, perform the fol-

lowing steps.
• Importance Sampling: Fort = 1,2, · · ·

– If motif determined to be present in previous pass, remove
motif and append fragments. Mark the location where the
fragments are appended. If motif determined not to be
present in the previous pass, remove sequence from dataset.
For the first pass, assume motif is present in the previous
pass.

– If motif is present in the previous pass, fork = 1, · · · ,K
∗ SampleΘ(k) from (15).

∗ Samplex(k)
t from (14).

∗ Computeλthreshaccording to (21).

∗ If ∑Lm
i=1 λi > αλthresh, declare motif to be present.

∗ If ∑Lm
i=1 λi > αλthresh, update the sufficient statistics

T
(k)
t = Tt(T

(k)
t−1,x

(k)
t ,st) according to (12).

– If ∑Lm
i=1 λi,t > αλthresh, compute the new weights according

to (17).
– ComputeK̂e f f according to (8). IfK̂e f f ≤ K

10 perform re-
sampling.

4.4 Using Results from Another Algorithm as Prior to SMC

While the SMC algorithm can be used as a stand-alone algorithm for
motif discovery, it can also be used as a second pass algorithm to
refine and improve the results of other motif discovery algorithms.
Note from (14)-(16), the starting location of a motif is drawn using a
PWM sample drawn from a mixture product Dirichlet distribution,
which depends on the parametersρi , i = 1, · · · ,w. From (12) we can
see that the Dirichlet parameters can be easily updated if we have
the sequences and the estimated starting locations of the motifs in
those sequences by some other motif discovery algorithms. When
initiating the SMC algorithm, we simply increment the Dirichlet
parameters according to (12) using the sequences and their corre-
sponding estimated starting locations as indexes.

5. EXPERIMENTAL RESULTS

We have implemented the proposed SMC motif discovery algo-
rithms and evaluated their performance on real and synthetic data.
The results are compared to that of existing motif discovery algo-
rithmsMEME andBioProspector.

5.1 Results for Real Data

We evaluate the performance of the SMC algorithm using the
cyclic-AMP receptor protein (CRP) fromEscherichia coliwhich
contains 23 motifs in 18 sequences. The performance results of the
SMC algorithm,MEME, andBioProspectoron the CRP dataset are
given in Tables 1 and 2.

For the CRP dataset, we adaptively determined the optimum
length using the extension to the SMC algorithm. ForAlignACE
andBioProspector, several runs using different motif lengths were
performed. The results are shown in Table 1 for each algorithm.
For the CRP dataset, we can see that the SMC algorithm outper-
formsMEME, and has comparable accuracy to that ofBioProspec-
tor. Only BioProspector’s estimated motif length matches that of
the experimental result. However, the SMC found motifs with start-
ing locations that match the experimental andBioProspectorre-
sults, whereas the motifs found byMEME have starting locations
that are different from those determined both experimentally and
by other algorithms.

We next applied the extension proposed in Section 4.3 to the
CRP dataset. The results are shown in Table 1. In our experi-
ment, the SMC algorithm found the same ratio of true sites as that of
BioProspector. ForMEME, although more motifs were found than
by any other algorithm, the motifs found byMEME have different
starting locations, as discussed earlier.

As can be observed from the consensus sequence of the CRP
dataset, the CRP motif can also be seen as two blocks of conserved
motifs with a gap around 6 to 8 nucleotides long. We performed
motif discovery again on the CRP dataset, this time using the two-
block model. We chose as parametersw1 = w2 = 6, gmin = 6, and
gmax = 8 for both theBioProspectorand the modified SMC algo-
rithm as described in Section 4.1. As we can see in Table 2, both the
BioProspectorand SMC algorithm have similar performance, and
the results for both algorithms using the two-block model outper-
form the results for both algorithms using the single-block model.
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5.2 Results for Synthetic Data

We used the following rules to generate synthetic data for perfor-
mance comparisons. The dominant nucleotide at each position in
the motif is assigned probability of 70%, where as the remaining
nucleotides are assigned probability of 10%. Non-motif frequency
is assigned as 25% for each nucleotide. Each dataset used contains
50 sequences.

We compared the performance of basic SMC algorithm,
MEME, AlignACE, andBioProspectorusing synthesized datasets
at various motif lengths. The performance comparisons are given in
Figure 2. We can see that the SMC algorithm outperforms the other
three algorithm for all motif lengths tested. It is clear by looking
at (15), motifs with greater length will allow the SMC algorithm to
draw more samples with the correct starting location.

Employing the SMC algorithm described in Section 4.4, we can
improve upon the results of other algorithms by using the SMC al-
gorithm to perform a second pass through the dataset. In Table 3, the
results of first pass results from various algorithms are compared to
results after using the SMC algorithm as the second pass algorithm.
We can see that the second pass results improve over the first pass
results for each of the algorithms tested. Notice that the SMC first
pass results are also improved after the second pass.

6. CONCLUSIONS

The SMC algorithm proposed in this paper performs motif discov-
ery in sequences by jointly estimating the position weight matrix
that describes the statistical properties of the motif and the motif
location. The SMC algorithm provides a more accurate and effi-
cient solution to datasets with large amount of sequences, which is
crucial due to the increasing number of sequenced genomes and the
growing numbers of paralogous and orthologous sequences.
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Figure 2: Accuracy for synthetic motifs of various length.

Dataset/Algorithm SMC BioProspector MEME
CRP Estimated Length 21 22 20

Potential CRP Motif Found 14 13 18
CRP Accuracy 12/23 12/23 16/23

Table 1: Motif discovery results using CRP dataset.

Motif found Accuracy
SMC 18 16/23

BioProspector 17 16/23

Table 2: Two-block model accuracy comparison for CRP dataset.

Passes/Algorithm SMC BioProspector MEME
First Pass 91% 87% 86%

Second Pass 93% 93% 93%

Table 3: First pass accuracy for each algorithm and their second
pass results using SMC algorithm.
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