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ABSTRACT 2. SYSTEM MODEL

We propose a sequential Monte Carlo (SMC)-based motif discoviet St = {s1,s2,---,s7}, With st = [s.1,---,5,L], be the set of
ery algorithm that can efficiently detect motifs in datasets containDNA sequences of length where we wish to find a common mo-
ing a large number of sequences. The statistical distribution of thef. Let us assume that a motif of length is present in each
motifs and the positions of the motifs within the sequences are estene of the sequences. A single block motif model is shown in
mated by the SMC algorithm. The proposed SMC motif discoveryFigure 1(a). The distribution of the motif is described by the
technique can locate motifs under a number of scenarios, including x w position weight matrix® = [61, 65, - - , 4], where the vector
the single-block model, two-block model with unknown gap length,g. — 61, 791.74]T7 j=1,---,w,is the probability distribution of

motifs of unknown lengths, motifs with unknown abundance, andpe nucleotide$A,C, G, T} at thej-th position of the motif. The re-

sequences with multiple unique motifs. The accuracy of the SMGy3ining non-motif nucleotides are assumed to be drawn i.i.d. from
motif discovery algorithm is shown to be superior to that of the eX-ha non-motif distribution vecto = [6o.1, -+ 6o4] -

isting methods based on MCMC or EM algorithms. Furthermore,
it is shown that the proposed method can be used to improve the

results of existing motif discovery algorithms by using their results Motif
as the priors for the SMC algorithm. a

1 i i+w-1 L

1. INTRODUCTION
Block 1 Block 2

Efforts by various genomic projects have steadily expanded the pook: RN e o o
of sequenced DNA data. By seeking out similarities exhibited in L1 L 1
these sequences, we can discover conserved sequence regions, or! i i, -1 g WG t

motifs, and further our knowledge on the functions and evolutions

of these sequences. An important approach to motif discovery i

the matrix-based approach where a position weight matrix (PWM

of size4 x w is used to describe the statistical distribution of the

four possible nucleotides at every position in a motif of length

The PWM is estimated in the various matrix-based algorithms and ) ) )

is used to estimate the most likely location of the motif within each ~ We implement an HMM to increment our observation by one

sequence. In [1]MEME, an algorithm based on EM, is introduced full sequence at each step, and the state of the corresponding step

with support for finding unknown number of motifs and unknown is the location of the first nucleotide of the motif in the sequence.

number of occurrences in the sequences. Based OmnahACE Since the Iaslv— 1 nucleot_lde_s in a sequence are not valid locations

is proposed using the Gibbs sampler, a Markov chain Monte Carlér the beginning of a motif with lengtw, at stegt,t =1,---, T, the

(MCMC) algorithm, to estimate the PWM and the locations of thesState, denoted ag, takes value from the set” = {1,2,---,Lm},

motifs in the sequences. Moreover in [3], the Gibbs sampler-base@hereLm =L —w+1.

BioProspectoris proposed to treat the two-block motif model and ~ Denotea; j as a sequence motif fragment of lengttfrom s;

palindromic patterns. beginning from positiori, and denoteaf; as the remaining frag-
Using the MCMC-based algorithms, the sequences are batciment froms; with a;j removed. Let us further define a vector

processed to estimate the PWM and the positions of the motifsa(a) = [n1,ny, N3, n4] wheren;,i = 1,--- 4, denotes the number of

These algorithms become inefficient for datasets with large numdifferent nucleotides in the sequence fragmenGiven the vectors

ber of sequences. With the ever increasing amount of sequencéd= [6y,---,604] andn = [ny,--- , N4}, we define

genomic data for various organisms, an algorithm that is better

equipped to deal with large datasets is necessary. With this goal in 4

mind, we propose a hidden Markov model (HMM) for the matrix- om 2 ﬂ o (1)

based approach to motif discovery, and proceed to estimate the =1 J

PWM and the locations of the motifs using a sequential Monte Carlo

(SMC) algorithm. The algorithm we propose can handle single-

igure 1: Position weight matrix models. (a) A model for a single-
lock motif with motif lengthw. (b) A two-block motif of lengths
w1 andw,, and gap lengthy.

Since the non-motif nucleotides are assumed to be i.i.d. with

unknown length, motifs with unknown abundance, and sequencethe probability of each nucleotide given I8y, and the motif nu-

A . ) . tleotides are independent with the probability of jhé nucleotide
T e esghen by 6 the istulon of te abserved seauenzond-
rior performance in synthesized data to the MCMC and EM-base oned on the state at timeand the PWM is then given as follows:
algorithms. Furthermore, the SMC algorithm can also be used as a
second-pass algorithm, taking the MCMC or EM-based results as

. _ an(af) n(a,i(k) a ¥
inputs, and further improve those estimates. P(stx =1,0) =6 B =#Eil9), @
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whereat,i(.k) is thek-th element of the sequence fragme_agt, and Tt(Tt_l,xt(k>,st),k =1, ,K}. Furthermore, the static parame-

n(a,(k)) is alx 4 vector of zeros except at the position corre- 1159 can be estimated by Rao-Blackwellization [5]

sponding to the nucleotida j(k), where it is a one. Furthermore, '

rearranging the order of the sequences in the dataset does not change 1 K

the statistical properties of the motif, and the location of the mo- grg| g1 — E{Q|S ~ K fg)T®

tif in sequences; does not affect the location of the motif in se- {6184 x‘|s‘{ {61 St,xd}} Q; k;wt { | T }

quencest1. Therefore, we will assume the transition probability 7

P(%t1=]jx=1)=1/Lm It turns out that the variance of the importance weights in-
creases over time which causes too many samples to have very small

2.1 Inference Problem weights and become ineffective samples, in which case, the SMC

From the discussion above, we formulate our problem as one @90rithm becomes inefficient. Degeneracy of the samples can be
filtering an HMM with unknO\’Nn parameters: measured by the effective sample size which can be estimated by [6]

(1 1 — (& wo)
X ~ ME rmllem,rmleme , (3) Ketr=1{ > (@) . (8)

k=1
(stIx) ~ Z2(s;%,0), 4
It is suggested that when the effective sample size is too small,
where./Z%(, A) denotes a discrete-time Markov chain with ini- e.g.,Kefs < 1, the following resampling steps can be performed to
tial probability distributionsT and state transition probability matrix rejuvenate the samples [7]:
A, 1nxm denotes am x m matrix of ones; and? (st; %, ®) is the

probability distribution given by (2). . DfaI:N K sample streams {x{,j = 1,--,K} from
Let us denote the state realizations up to tifheas xt = {xt( ),k = 1,---,K} with probabilities proportional to
[X1,Xo,--- ,x7] and similarly the sequences up to tifieas St £ (¥ k=1, K}

[s1,82,-+-,sT]. The unknown parameter of the HMM B, i.e.,
the position weight matrix. Given the sequen@&s we wish to
estimate the state realizatiors, which are the starting locations T .
of the motif in each sequence, and the position weight marjx 32 The SMC Motif Discovery Algorithm

which describes the statistics of the motif. In the next section, wéFor the system states up to tirex; = [x1,---,%], and the cor-

e Assign equal weights to each streaﬁﬁ'f) =K1

derive the SMC algorithm to solve this inference problem. responding sequencés = [s1,--- ,st], we will first present their
prior distributions and their conditional posterior distributions, and
3. SMC MOTIF DISCOVERY ALGORITHM then present the steps of the SMC maotif discovery algorithm.

In this section, we derive an SMC motif discovery algorithm for the3.2_1 Prior Distributions:
case where each sequence in the dataset contains exactly one in- R T )
stance of the same motif. In Section 4 we will extend this algorithm-€t us denoted; = [6j1,---,6j4]", j = 1,---,w, as thej-th col-

to additional models. umn of the position weight matri®. It can be seen that for all
of the motifs in the datas@&r, the nucleotide counts at each motif
3.1 SMC with Unknown Parameters location are drawn from multinomial distributions. Therefore, we

_ use a multivariate Dirichlet distribution as the prior @rto obtain
In our model (3)-(4), the paramet® is unknown and has to be 3 conjugate pair. The Dirichlet distribution is defined as follows.
estimated in the SMC process. As we will show later, the paras , — [Ug, -, Un], U >0, ziN:1ui — 1, andu has a multivariate

meter® is in a form which can be described by a sufficient sta-pjrich|et distributionu ~ 2 (i, - - , yy) with y > 0, then
tistic that is easily updated, i.e., the distribution can be given as T ' '
p(®|Tt) whereTt = Ti(xt,St) = Tt(Ti_1,%,st) is some suffi- r(sN N

cient statistic at time that can be easily updated from the suffi- p(u) = (321 %) it )
cient statisticT;_ at timet — 1, and the current state and observa- My () il:l b

tion, % ands;. Suppose we have available at titne 1 a set ofK

properly weighted sample%(xt@l,q(f)l) k=1,--- Kl withre-  wherel(-) is the Gamma function. The prior distribution for the

spect top(x;_1/St—1). The posterior distributiop(xt, 0| St) can I-th column of the PWM is then given by

be approximated by drawing®®,x") from a proposal distrib- 6~ 2, ), =12 W (10)
ution q(©, % x*;,St) = a(Ox("%), 1) - da (%, 1, 8). The
new weights can be updated by [4] Let us defingo; £ [pi1,--- , Pia]. Assuming independent priors, then

the prior distribution for the PWN® is the product Dirichlet distri-
K K| (k K bution
o9 e PO T D (1K, 0%) b 0) - o o »
_1 . ~ Pi)-
6 (0%, 8) @z (4 xy. 8.0 [17e

Hence a Monte Carlo approximation pfx;|St) can be obtained 322 Conditional Posterior Distributions:

by The conditional posterior distribution of the PW&l can be given
A 18w G as
Po(xt|St) =5~ > @ llxt—x), (6)

— ‘ Staxt) o p(St | @,Xt,Stfl) p(®| thl,St,]_)

p(®
— 5K ¥ i indi i 1 gn@i(i) [ gPt-1-1
where Oy = S ;" andI(-) is the indicator function such O ﬂ h rlei
that I(x) = 1 for x = 0 and I(x) = O otherwise, and we j=1 i=

update the set of sufficient statistic Tfk>,k:1,--~,K} = 0 2(0;p1(t—1)+n(ai(1)), -, pw(t—1)+n(ai(w)([2)
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where we denotg;(t) £ [piL(t), -, pia(t)],i = 1,---,w, as the of Fhe Erst nucleotide of the motif, we let the state be the number
parameters of the distribution @® at timet, and Gp"(t)*l & pairng = (a,g) wherea € {1,--- ,Lm}, &t € {Omin, - ;max}, and

4 gPu)-1) a +0t+wp+wp—1<L. The proposal distributiong andgy, and
M7—1 6k The conditional posterior distribution of state  the updates to the sufficient statistics and the weights are similar to

can be given as those introduced in Section 3.2 for the single-block motif model,
] ] ) except that for the two-block model, aftef nucleotides, the in-
P(x=1i]S;,®)=p(x=i|s,0)0 A (s;i,0). (13)  dex for the final, nucleotides are advanced byto account for
) ) the gap in the two-block model. We therefore have the following
3.2.3 Sequential Monte Carlo Estimator: modified sequence fragment
We now outline the SMC algorithm for motif discovery. At tirhe N
to draw random samples & we use the optimal proposal distri- ar (i j) = (St Sitw -1 Sijws R jw-]. (18)
bution

The samples; and ® are drawn using (14) and (15) with j re-
TN _ ok N . placed byay  j), andaf; by a; (; j). The sufficient statistics and
42 (Xt =1 xtfl’st’e) - p<xt =1l }(t*l’st’@) #(s61,0). weight updates also follow the basic SMC algorithm with similar
(14)  replacements b (i, j) -

To sample®, we use the following proposal distribution The steps of the modified SMC algorithm for two-block model

is as follows
K
(o]} (@|X1(,>1,St> e Fork=1,--- K
L - Sample(--)<k> from (15) usingay  j) anday  j).
0 —ij 1S 1.8t
.;p(stm 1,0, x1-1,5-1) P(© | xt-1,81-1) - Samplext( Y from (14) usingay ; j) anda  j-
. Lm R w gPt-D+n(a (k)1 — Update the sufficient statistic®{¥ = t(Tt(ﬁ)l,xt(k),st)
21 0 |_| k from (12) usingay (; ;) anday g ).
2 X X

L, e Compute the new weights according to (16) and (17) using
O ZA@(&m(t—1>+n<at,i(1)>,~-~ Pult=1)+n(a;(wiRp) 20 A8,
i= . ComputeKeff according to (8). Iﬂ(eff < 10 perform resam-

lin
where ping-

c. w .
Aig 2 eé‘<31~'>J—| Pyt — 1)(@i0) (16) 42 Motif of Unknown Length

In this extension we assume that the dataset contains a motif of un-
known lengthm* that falls in the windowmmin, Mmax] and modify

the SMC algorithm to adaptively estimate the unknown length. The
basic idea is to associate with each sampthe quantitymt(k), at
timet, which is the length of the motif in sampkeat timet. Corre-

(17)  sponding to this length, we have for samglthe PWM® K with
size4 x m§k>, wheremt(k) € [Mmin, Mmax]. Att=0, mék) is drawn
uniformly from the se{ Mmin, Mmin+ 1, -+, Mmax}. After updating

the weights using the equation that will be introduced shortly, the
resampling condition is checked. When resampling is performed,

the motif length samplemgk) are replaced by the resampled values

with g (t)» (@i () é_n‘j‘zl pyj (1) &i+-271), The weight update for-
mula (5) can be written as:

Z:_:ml /\i,t
M1 31 Pxjlt = 1)

We are now ready to give the SMC motif discovery algorithm:
e Fork=1,--- K

— Sample®® from the mixture Dirichlet distribution given

wUw

by (15).
y (15) (K) rﬁfk>, k=1,---,K. Thus adaptation to the optimum motif length is
— Samplex ™ from (14). achieved through resampling [8].
— Update the sufficient statisticﬁ‘f ) — Tt(Tt( )1,)(t(k),st) .When. comparing Weig_hts with .different motif lengths, thg
from (12). weight with the longer motif length is usually favored. Thus, it

is necessary to normalize the weights so that they can be compared

e Compute the new weights according to (17) } ) ] L ) .
fairly. First we normalize the Dirichlet mixture coefﬂueﬁﬁ_t as

° ComputeK/e?f according to (8). |ﬂ<eff <10 perform resam-

pling.
3
0 a (g K ™ g n@i)

4. EXTENSIONS Ay 2 (90 ) A >J_Ill-’é lt-1) . (19
In this section, we present modifications to the basic SMC motif N
discovery algorithm to support different motif models. and the weight update formula as
4.1 Two-block Model [

- K — (K Ct Z| 1)‘

For the two-block model, as shown in Figure 1(b), we assume that o Doy " ) (20)
the motif is segmented into two blocks of known lengtts and Bt( )nézlzjzl p“-)(t -1)
w», separated by a gap of lengthe [gmin,Omax. The statistics
of the motif can be described by tdex w PWM ©, where now <24 p(r‘ﬂmin)<t71>)”}nm )
W = W +Wp, and the firstw; columns describe the statistics of where gl 2 A2 B o W = Ln 27 and o2
the first block, and the remaining columns describe those of the (21 e 1)) Lm
second.

In order for the SMC motif discovery algorithm to be able to z,'" e“(a‘I>

handle sequences with two-block motifs, we simply modify the ) niat W
state space of the HMM. Instead of letting the statee the location (2. 16 )
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Thus the weights are normalized so that they are equivalent — If motif is present in the previous pass, fo=1,--- /K
to the weight for a minimum length motif so that the weights for (k)
different motif lengths can be compared fairly. Note that the set * Sample(?k) from (15).
Samplex; ™ from (14).

; GGy A T i _
of Welgr_]ted sample{(xt M, @) k=1, ’K} IS_ nqt er)p ComputeAipreshaccording to (21).
erly weighted with respect to the same posterior distribution due If sLm A declare motif to be present
to the different motif lengths in the samples. However, the sub- Zifl i > Othresh declare motitto be present.
set of samples with the same sampled motif lengthis properly If 3™ Ai > aAmresh Update the sufficient statistics
T = Tt(T@17xt(k)7St) according to (12).

*  *

*

*

weighted with respect tp(xt |St,m). At each resampling, more and
more samples with the true motif length are resampled. Eventually,

most of the samples will become properly weighted with respectto - If ziL;“ Ait > 0 Ahresh COMpute the new weights according
p(x|St,m= ). to (17,
We next summarize the SMC motif discovery algorithm for un- — ComputeKeyf according to (8). IfKert < 1£0 perform re-
known motif length. sampling.
e Initialization: Samplern(()” uniformly from [Mmin, Mmax]-
e Importance Sampling: Fdar=1,2, --- 4.4 Using Results from Another Algorithm as Prior to SMC
- Fork=1,--- K While the SMC algorithm can be used as a stand-alone algorithm for
« Setm® — m® motif discovery, it can also be used as a second pass algorithm to
m-=m_. refine and improve the results of other motif discovery algorithms.
« Sample®® from (15) usingn¥ as length of motif. Note from (14)-(16), the starting location of a motif is drawn using a

PWM sample drawn from a mixture product Dirichlet distribution,
which depends on the parametprd = 1,--- ,w. From (12) we can
x Update the sufficient statistiCEt(k) = Tt(Tt@l,xt(k),st) see that the Dirichlet parameters can be easily updated if we have
f 12 usinam® as lenath of motif the sequences and the estimated starting locations of the motifs in
rom (12) usingm ) asleng O_ motit. those sequences by some other motif discovery algorithms. When
— Compute the new weights according to (20). initiating the SMC algorithm, we simply increment the Dirichlet
— ComputeKesf according to (8). IKets < % perform re-  parameters according to (12) using the sequences and their corre-
sampling. sponding estimated starting locations as indexes.
e At T+1, letd be the number of sequences having estimated
motif lengths that is different from the final converged motif 5. EXPERIMENTAL RESULTS

length. Fort =T +1,---,T +d, repeat the Importance Sam- e have implemented the proposed SMC motif discovery algo-
pling step for thed sequences to re-estimate motif location andyithms and evaluated their performance on real and synthetic data.
motif length. The results are compared to that of existing motif discovery algo-
rithms MEME andBioProspector

* Sampleq(k) from (14) usingn(k> as length of motif.

4.3 Motif with Unknown Abundance

To perform motif discovery on datasets where the sequences canl Results for Real Data

contain any number of the motif, we can perform multiple passesve evaluate the performance of the SMC algorithm using the
of the SMC algorithm on the dataset. Before the subsequent pasgyclic-AMP receptor protein (CRP) frorischerichia coliwhich

the motif fragment is removed from the sequences where they aigontains 23 motifs in 18 sequences. The performance results of the
found, and the remaining sequence fragments are appended to fo®MC algorithm MEME, andBioProspectoon the CRP dataset are

a new sequence. By keeping indices on the locations in a sequeng@en in Tables 1 and 2.

where the fragments are joined, we can determine the remaining For the CRP dataset, we adaptively determined the optimum
possible locations for the starting point of a motif, and modify thelength using the extension to the SMC algorithm. BignACE
state space of (14) accordingly. Note that in this case, a threshold indBioProspectoy several runs using different motif lengths were
needed to determine the presence of a motif in the sequence. The performed. The results are shown in Table 1 for each algorithm.
gorithm is terminated when all the sequences have been determingdr the CRP dataset, we can see that the SMC algorithm outper-
not to contain any motifs. To determine whether the motif beingforms MEME, and has comparable accuracy to thaBmfProspec-
looked for in the current pass exists in any sequence, we use ther. Only BioProspectois estimated motif length matches that of

following threshold: the experimental result. However, the SMC found motifs with start-
1 (Ln w w ing locations that matc_h the experimental aBuioPrc_)spectorr_e-
A a1 [ n(af;) n(af;) n(a.j(m))] sults, whereas the motifs found BEME have starting locations
thresh= 1 {Z\ % nglmax{pm} + ]; % rrI;llpm that are different from those determined both experimentally and

1) by other algorithms.

This is simply the average d ; over all possible starting position We next applied the extension proposed in Section 4.3 to the
for the starting location of the motif, assuming that a motif exists inCRP dataset. The results are shown in Table 1. In our experi-
the sequence. The sequencan be declared not to contain a motif ment, the SMC algorithm found the same ratio of true sites as that of
it sLn ) A h 1 BioProspector For MEME, although more motifs were found than

I Zi'l?ﬁeI?oﬁogvirggresav;si[]%as<Mé algorithm for datasets with un- by any other algorithm, the motifs found BYEME have different

K tif abund oy ltiol . tifs: starting locations, as discussed earlier.
nown motif abundance andjor muftiple uniqué mofs. As can be observed from the consensus sequence of the CRP

* Ifthere are sequences remaining in the dataset, perform the folataset, the CRP motif can also be seen as two blocks of conserved
lowing steps. ) motifs with a gap around 6 to 8 nucleotides long. We performed
e Importance Sampling: Far=1,2, - motif discovery again on the CRP dataset, this time using the two-
— If motif determined to be present in previous pass, removeblock model. We chose as parameteis= w, = 6, gmin = 6, and
motif and append fragments. Mark the location where thegmax = 8 for both theBioProspectorand the modified SMC algo-
fragments are appended. If motif determined not to berithm as described in Section 4.1. As we can see in Table 2, both the
present in the previous pass, remove sequence from datas@ioProspectorand SMC algorithm have similar performance, and
For the first pass, assume motif is present in the previoushe results for both algorithms using the two-block model outper-
pass. form the results for both algorithms using the single-block model.
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5.2 Results for Synthetic Data

We used the following rules to generate synthetic data for perfor-
mance comparisons. The dominant nucleotide at each position in
the motif is assigned probability of 70%, where as the remaining

nucleotides are assigned probability of 10%. Non-motif frequency smc

is assigned as 25% for each nucleotide. Each dataset used contains —#— BioProspector

50 sequences. 0.95| —6— AlignACE
We compared the performance of basic SMC algorithm, — O MEME

MEME, AlignACE and BioProspectorusing synthesized datasets 0.9

at various motif lengths. The performance comparisons are given in
Figure 2. We can see that the SMC algorithm outperforms the other 3 o.s5
three algorithm for all motif lengths tested. It is clear by looking
at (15), motifs with greater length will allow the SMC algorithm to
draw more samples with the correct starting location.

Employing the SMC algorithm described in Section 4.4, we can
improve upon the results of other algorithms by using the SMC al-
gorithm to perform a second pass through the dataset. In Table 3, the
results of first pass results from various algorithms are compared to
results after using the SMC algorithm as the second pass algorithm.

We can see that the second pass results improve over the first pass 065 18 19 2 ) 2

E

Accura

0.8

0.7

results for each of the algorithms tested. Notice that the SMC first Motif Length
pass results are also improved after the second pass.
6. CONCLUSIONS Figure 2: Accuracy for synthetic motifs of various length.
The SMC algorithm proposed in this paper performs motif discov-
ery in sequences by jointly estimating the position weight matrix
that describes the statistical properties of the motif and the motif
location. The SMC algorithm provides a more accurate and effi-
cient solution to datasets with large amount of sequences, which is
crucial due to the increasing number of sequenced genomes and the
growing numbers of paralogous and orthologous sequences. i ]
Dataset/Algorithm SMC | BioProspector] MEME
CRP Estimated Length 21 22 20
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