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Abstract

In this paper, we develop algorithms for distributed coragioh of averages of the node data over networks with
bandwidth/power constraints or large volumes of data.rDisted averaging algorithms fail to achieve consensus
when deterministic uniform quantization is adopted. Weppse a distributed algorithm in which the nodes utilize
probabilistically quantized informatiom.e., dithered quantization, to communicate with each othee algorithm
we develop is a dynamical system that generates sequerttesiag a consensus at one of the quantization values
almost surely. In addition, we show that the expected vafube consensus is equal to the average of the original
sensor data. We derive an upper bound on the mean squareperformance of the probabilistically quantized
distributed averaging (PQDA). Moreover, we show that theveogence of the PQDA is monotonic by studying the
evolution of the minimum-length interval containing thedeovalues. We reveal that the length of this interval is a
monotonically non—increasing function with limit zero. Vléso demonstrate that all the node values, in the worst
case, converge to the final two quantization bins at the sateeas standard unquantized consensus. Finally, we

report the results of simulations conducted to evaluatéo#tevior and the effectiveness of the proposed algorithm

in various scenarios.
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. INTRODUCTION

Ad hoc networks of autonomous sensors and actuators aaetattr solutions for a broad range of applications.
Such networks find use in civilian and military applicatipigcluding target tracking and surveillance for robot
navigation, source localization, weather forecastingdica monitoring and imaging. In general, the networks
envisioned for many of these applications involve large bera of possibly randomly distributed inexpensive
sensors, with limited sensing, processing and commupicgbwer on board. In many of the applications, limitations
in bandwidth, sensor battery power and computing resouptase tight constraints in the rate and form of
information that can be exchanged [3]-[5]. Other applaaisuch as camera networks and distributed tracking
demand communication of large volumes of data. When the pamng bandwidth constraints, or large volume data
sets are considered, communication with unquantized sagiampractical.

Distributed average consensus — the task of ensuring thao@és in a network are aware of the average of a set
of network-wide measurements — is a fundamental problendiha network applications, including distributed
agreement and synchronization problems [6], distributegrdination of mobile autonomous agents [7], [8], and
distributed data fusion in sensor networks [3], [9], [1@]isl also a central topic for load balancing (with divisible
tasks) in parallel computers [11], [12]. Our previous wodslillustrated how distributed average consensus can be
used for two distributed signal processing tasks: sourcaliltation [13], and data compression [14]. Decentralized
data compression, in particular, requires the computatibmany consensus values in parallel (one for each
compression coefficient). By appropriately quantizingheacefficient, multiple coefficients can be transmitted in
a single packet, leading to a significantly more efficientlgnmentation.

Distributed averaging algorithms are extremely attractor applications in wirelessly networked systems because
nodes only exchange information and maintain state for fh@hediate neighbors. Consequently, there is no need
to establish or maintain complicated routing structurdsoAthere is no single bottleneck link (as in a tree) where
the result of in-network computation can be compromisedost br jammed by an adversary. Finally, consensus
algorithms have the attractive property that, at termamtthe computed value is available throughout the network,
so a network user can query any node and immediately receigsponse, rather than waiting for the query and
response to propagate to and from a fusion center.

In both wireless sensor and peer—to—peer networks, thénéeigst in simple protocols for computing aggregate
statistics [15]—-[18]. In this paper we focus on a particudkss of iterative algorithms for average consensus. Each
node updates its state with a weighted sum of values fromhbeigng nodesi.e.,

wit+1) = Waai(t) + > Wija;(t) @
JEN;

fori=1,2,...,N andt =0, 1,.... HereW;; is a weight associated with the edfye;j} and N is the total number



of nodes. These weights are algorithm parameters [3], [@ithErmore N; denotes the set of nodes that have a
direct (bidirectional) communication link with node The state at each node in the iteration consists of a single
real number, which overwrites the previous value. The #lgor parameterdV are time—independerite., do not
depend ont. Under easily-verified conditions oW it is easy to show that the valug(t¢) at each node converges
to 1/N SN z;(0) asymptotically ag — oc.

Xiao, Boyd and Kim extended the distributed consensus #lgorto admit noisy communication links where
each node updates its local variable with a weighted avesbige neighbors values, and each new value is corrupted
by an additive noise with zero mean [19]:

wit+1) = Waai(t) + > Wija;(t) + wi(t) )
JEN:
wherew;(t) is the additive zero—mean noise with fixed variance. Theye @osl solve the problem of designing
weights W; ; that lead to optimal steady-state behavior, based on themgé®n that the noise terms;(t) are

independent.

A. Related Work

While there exists a substantial body of work on average esiss protocols with infinite precision and noise—
free peer—to—peer communications, little research has deee introducing distortions in the message exchange.
Recently, Yildiz and Scaglione, in [20], explored the impa€ quantization noise through modification of the
consensus algorithm proposed by Xiao, Boyd and Kim [19].yThete that the noise component in (2) can be
considered as the quantization noise and they develop arithlg for predicting neighbors’ unquantized values in
order to correct errors introduced by quantization [20in@ation studies for smalV indicate that if the increasing
correlation among the node states is taken into accounvgati@nce of the quantization noise diminishes and nodes
converge to a consensus.

Kashyapet al. examine the effects of quantization in consensus algostfrom a different point of view [21].
They require that the network average= 1/N Zf\ilxz(t), be preserved at every iteration. To do this using
guantized transmissions, nodes must carefully accountdond-off errors. Suppose we have a network/ of
nodes and lef\ denote the “quantization resolution” or distance betweemduantization lattice points. If is not
a multiple of NA, then it is not possible for the network to reach a strict emssis i(e., lim; . max; ; |;(t) —
xj(t)] = 0) while also preserving the network average,since nodes only ever exchange units/of Instead,
Kashyapet. al define the notion of a “quantized consensus” to be such that @) take on one of two neighboring
quantization values while preserving the network average; z;(t) € {kA,(k + 1)A} for all ¢ and somek,

and )", z;(T) = Nz. They show that, under reasonable conditions, their atgoriwill converge to a quantized



consensus. However, the quantized consensus is clearly stoict consensusg., all nodes do not have the same
value. Even when the algorithm has converged, as many ashleafiodes in the network may have different values.
If nodes are strategizing and/or performing actions basatiese valuese(g, flight formation), then differing values
may lead to inconsistent behavior.

Of note is that both related works discussed above utiliaedard deterministic uniform quantization schemes to
guantize the data. In contrast to [20], where quantizatmieenterms are modeled as independent zero-mean random
variables, we explicitly introduce randomization in ouragtization procedure.e., “dithering”. Careful analysis of
this randomization allows us to provide concrete theoaktiates of convergence in addition to empirical results.
Moreover, the algorithm proposed in this paper convergea &irict consensus, as opposed to the approximate
“quantized consensus” achieved in [21]. In addition to pmgvthat our algorithm converges, we show that the
network average is preserved in expectation, and we clesizetthe limiting mean squared error between the

consensus value and the network average.

B. Summary of Contributions

Constraints on sensor cost, bandwidth, and energy budgetelithat information transmitted between nodes has
to be quantized in practice [3], [4]. In this paper, we prapasimple distributed and iterative scheme to compute the
average at each sensor node utilizing only quantized irdion communication. Standard, deterministic uniform
guantization does not lead to the desired result. Althohghstandard distributed averaging algorithm converges to
a fixed point when deterministic uniform quantization is disié fails to converge to a consensus as illustrated in
Fig. 1(a). Instead, we adopt the probabilistic quantizafidQ) scheme described in [4]. PQ has been shown to be
very effective for estimation with quantized data since tloése introduced by PQ is zero-mean [4]. This makes
PQ suitable for average—based algorithms. As shown in@ettithe PQ algorithm is a form dithered quantization
method. Dithering has been widely recognized as a methoeérnder the quantization noise independent of the
guantized data, reducing some artifacts created by dettioi quantization and there is a vast literature on the
topic, see [22] and reference therein.

In the scheme considered here, each node exchanges qdasttre information with its neighbors in a simple
and bidirectional manner. This scheme does not involveinguiessages in the network; instead, it diffuses
information across network by updating each node’s dath witweighted average of its neighbors’ quantized
ones. We do not burden the nodes with extensive computatisriswe provide theoretical resulis., we show
here that the distributed average computation utilizingppbilistic consensus indeed achieves a consensus almost
surely (Fig. 1), and the consensus is one of the quantizdiaris. Furthermore, the expected value of the achieved

consensus is equal to the desired value, the average of the initial analog node measurements. Vdegale an
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Fig. 1. Individual node trajectorie$.€., x;(t), Vi) taken by the distributed average consensus using (a:jndeistic uniform quantization
and (b:) probabilistic quantization. The number of node¥ is- 50, the nodes’ initial average #(0) = 0.85, and the quantization resolution
is set toA = 0.1. The consensus value, in this case, is 0.8.

upper bound on the mean square error performance of thelplisheally quantized distributed averaging (PQDA)
algorithm.

We also investigate the evolution with time of the intervatopied by the node values. Specifically, we show that
the size of this interval is a monotonically non—increadumgction, with limit zero. These results indicate that the
convergence of the PQDA algorithm is monotonic in the sehaethe global trend of the node values is towards the
consensus. Moreover, we show here that all the node valuéiseiworst case, arrive in the final two quantization
bins at the same rate as standard unquantized consensusteOisrthat there is always a non—zero probability
of achieving consensus when all the node values are in thketfimabins. Finally, we present simulation results

evaluating the proposed algorithm in varying scenarios eimalving the effectiveness of the PQDA algorithm.

C. Paper Organization

The remainder of this paper is organized as follows. Sedfiaeviews the graph theoretical concepts, intro-
duces the distributed average consensus problem alongthétiprobabilistic quantization scheme, and, reveals
the connections between probabilistic quantization anideding theory. The proposed algorithm, along with its
properties, is detailed in Section Ill. Section IV presemsults regarding the convergence characteristics of the
proposed PQDA algorithm. Numerical examples evaluatirgpérformance of the proposed algorithm in varying
scenarios are provided in Section V. Some extensions of thpoged algorithm along with additional practical

considerations are detailed in Section VI. Finally, we dode with Section VII.



Il. PRELIMINARIES

In the following, the distributed average consensus prokikeformulated utilizing the probabilistic quantization
concept. We first review some basic concepts from graph yheewet then formulate the consensus problem in which
the nodes communicate with quantized data. Finally, weigeoa brief review of probabilistic quantization and

reveal the connections between probabilistic quantinagiod dithering theory.

A. Review of Graph Theoretical Concepts

Let G = (V,€) be a graph consisting of a set of verticés,and a set of edgeg,. Let N = |V| denote the
number of vertices, where | denotes the cardinality. We denote an edge between veitmed; as an unordered
pair (i,7) € £. The presence of an edge between two vertices indicateshiiyaican establish bidirectional noise—
free communication with each other. We assume that trasgnis are always successful and that the topology is
fixed. We assume connected network topologies and the ctivibepattern of the graph is given by th& x N

adjacency matrixA = [A;;], where

1 if(i,j)eé&
Ay = (4, 7) . @)
0 otherwise

Moreover, we denote the neighborhood of the nody N; = {j € V :i # j, (i,j) € £}. Also, the degree of the
node: is given bydeg, = ||

B. Distributed Average Consensus

We consider a set of nodes of a network (vertices of the gragith with an initial real valued scalgre [-U, U],
wherei = 1,2,...,N. Let 1 denote the vector of ones. Our goal is to develop a distribiterative algorithm
that computes the valug = (N)~'1Ty at every node in the network, while using quantized comnatito. We
hence aim to design a system such that the states at all nodesrge to a consensus and the expectation of the
consensus achieved, in the limit, is the average of thealrstiates.

The average of node measurements is a sufficient statigtimémy problems of interest. The following two

remarks briefly discusses two examples.

Remark 1. When the observations follow = 6 + n; where: = 1,2,..., N and# is the scalar to be estimated,
and the noises{n; : i = 1,2,..., N}, are independent and identically distributed (i.i.d.) @emean Gaussian with
variancecs?, the maximum-likelihood estimate is given by the averége,(N)—llTy with the associated mean

square errora?/N.

Remark 2. Suppose node measuremefys: i = 1,2,..., N} are i.i.d. conditioned on some hypotheéls, with

j € {0,1}, wherePr{Hy} = a. Let, z; £ log{A(y;)}, whereA(y;) = Pr{y;|H:1}/Pr{y:|Ho}. Then, the optimal



decision is to perform the following detection rug=1 /(1 — a) wherez = (N)~117z

C. Probabilistic Quantization and Dithering

In the following, we present a brief review of the quantiaatischeme adopted in this paper. Suppose that
the scalar value:;; € R is bounded to a finite intervg-U, U]. Furthermore, suppose that we wish to obtain a
quantized messagg with length bits, wherel is application dependent. We therefore hdve- 2! quantization
points given by the set = {7, 79,...,7.} wherer; = —U andr; = U. The points are uniformly spaced such
that A = 7;,1 — 7; for j € {1,2,...,L — 1}. It follows that A = 2U/(2! — 1). Now supposer; € [r;,7;4+1) and

L

let ¢; = Q(z;) whereQ(-) denotes the PQ operation. Thepis quantized in a probabilistic manner:

Pr{gi =71} =r and Pr{gi=m} =1—r 4)

wherer = (x;—7;)/A. Of note is that when the variable to quantize is exactly egua quantization centroid, there
is zero probability of choosing another centroid. The fwilog lemma, adopted from [4], discusses two important

properties of PQ.

Lemma 1. [4] Supposez; € |1, 7;4+1) and letg; be ani-bit quantization ofz; € [-U,U]. The message; is an

unbiased representation af, i.e.,

E{¢;} = i, and E{(¢; — z;)*} <

U? A?
= )

(2" —1)?
As noted in the following lemma, a careful observation shéwat probabilistic quantization is equivalent to a

“dithered quantization” method.

Lemma 2. Supposer; € [rj,7;+1) and letg; = O(z;). Probabilistic quantization is equivalent to the followin
dithered quantization scheme:

q; = min |7; — (2; + u)| (6)
J

wherew is a uniform random variable with support dp-A/2, A/2].

Proof: Without loss of generality, suppose; — z;| < |rj41 — «;|. Moreover, suppose we are utilizing a

deterministic uniform quantizer. Then,

Pr{qi:Tj}:Pr{Tj—%§$i+U§Tj—%} (7)
:Pr{ugTj—F%—w,} (8)
_ T T 9

A



Note that the last line is equivalent 10— r, so the proof is complete. |
Thus, before we perform any quantization, we add uniforrdoamvariable. with support defined of-A /2, A /2]
and we formz), = u + z;. Now, performing standard deterministic uniform quarttaa, i.e., letting ¢; =
min; |7; — 24|, yields quantized valuesg;’s that are statistically identical to the ones of the pralitir quantization.
Thus, probabilistic quantization is a form of dithering wé@ne, before performing standard deterministic uniform
guantization, adds a uniform random variable with suppguiadto the quantization bin size. This is a substractively
dithered system [22]. It has been shown by Schuchman thasuhbstractive dithering process utilizing uniform
random variable with support da-A /2, A /2] yields error signal values that are statistically indememdrom each

other and the input [23].

1. DISTRIBUTED AVERAGE CONSENSUS WITHPROBABILISTICALLY QUANTIZED COMMUNICATION

In the following, we propose a quantized distributed averagnsensus algorithm and incorporate PQ into
the consensus framework for networks. Furthermore, weyaeahe effect of PQ on the consensus algorithm.
Specifically, we present theorems revealing the limitingnsemsus, expectation and mean square error of the
proposed PQDA algorithm.

At t = 0 (after all sensors have taken the measurement), each niiddizies its state as;(0) = y;, i.e,

x(0) = y wherex(0) denotes the initial states at the nodes. It then quantigestate to generatg(0) = Q(z;(0)).
At each following step, each node updates its state with ealitombination of its own quantized state and the

guantized states at its neighbors

zi(t+1) = Wiiqi(t) + Z Wijq;(t) (10)
JEN;

fori=1,2,...,N, whereg;(t) = Q(x;(t)), andt denotes the time step. Alstl/;; is the weight onz;(¢) at node

i. Moreover, settingV;; = 0 whenever®;; = 0, the distributed iterative process reduces to the follgwigcursion
x(t+1) =Wq(t) (12)

whereq(t) denotes the quantized state vector, followed by
q(t+1) = Q(x(t +1)). (12)

The PQDA algorithm hence refers to the iterative algorithefirced by (11) and (12). In the sequel, we assume
that W, the weight matrix, is symmetric, non-negative and sassie conditions required for asymptotic average

consensus without quantization [19]:

W1=1,1"W =17 and,p(W -J) <1, (13)



where p(U) denotes the spectral radius of a matfik (i.e., the largest eigenvalue dJ in absolute value), and

J £ (N)~'117T, whereJx projectsx onto the N—-dimensional “diagonal” subspacee(, the set of vectors iR

corresponding to a strict consensus). Weight matricesfgaiy the required convergence conditions are easy to

find if the underlying graph is connected and non-biparétg, Maximum—degree and Metropolis weights [19].
The following theorem considers the convergence of the ghibistically quantized distributed average compu-

tation.

Theorem 1. The probabilistically quantized distributed iterativeogess achieves a consensus, almost surely,

Pr { lim x(t) = cl} =1 (14)

t—o0o
wherec € 7.

Proof: Without loss of generality, we focus on integer quantizatio the range[l, m|. Define M as the
discrete Markov chain with initial statg(0) and transition matrix defined by the combination of the deteistic
transformationx(t + 1) = Wq(¢) and the probabilistic quantizey(t + 1) ~ Pr{q(t + 1)|x(t + 1)}.

Let Sy be the set of quantization points that can be representdeifotmql for some integer, and denote by
Sk the set of quantization points with Manhattan distakceom S,. Moreover, letC(q) be the open hypercube
centered aty and defined asq; —1,q1 +1) x (2 —1,q2 +1) x ... X (qv — 1,qn + 1). Heregq; denotes the—th

coefficient ofq. Note that any point ir€(q) has a non-zero probability of being quantizedqgtolet

Ay = | Cla). (15)

qESk
The consensus operator has the important property Wai — 1(Wq)| < |q — p(q)| for |g — u(q)| > 0, where
u(-) denotes the projection of its argument onto thesector. MoreovercW1 = c1. The latter property implies
thatq € Sy is an absorbing state, sin@(x(t+ 1)) = Q(Wq(t)) = Q(q(t)) = q(t). The former property implies
that there are no other absorbing states, siger 1) cannot equa(t) (it must be closer to th@—vector). This
implies, from the properties of the quantiz@r that there is a non-zero probability thaft + 1) # q(t).
In order to prove thatM is an absorbing Markov chain, it remains to show that it issgme to reach an

absorbing state from any other state. We prove this by imoluctlemonstrating first that
Pr{q(t+1) € Solq(t) € S1} >0 (16)

and subsequently that

k—1
Priq(t+1) € | Sila(t) € S} > 0. (17)
=0
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Define the open s&v;, as

Vk:{x:|x—,u(x)|<k‘\/N—1/\/N}. (18)

To commence, observe thet c Ay. The distancéq — iu(q)| = VN — 1/V/N for q € S;. Hence, ifq(t) € Sy,
x(t+1) =Wq(t) € V1 € Ap andPr{q(t + 1) € Sp} > 0. Similarly, the set

k-1
Vi C U A; (19)

=0
is contained in the union of the firét hypercubesA;, i = 0,1,...,k — 1. The maximum distancgy — x(q)| for
any pointq € S, is kv/N — 1/v/N. This implies that

k—1
x(t+1) = Wq(t) € Vp € | 4. (20)
=0

There is thus someé < k£ and someq € S; such thatPr{O(x(t + 1)) = q} > 0. This argument implies that
for any starting statey(0) such thatq(0) € S; for somek, there exists a sequence of transitions with non-zero
probability whose application results in absorption. [ |

The theorem reveals that the probabilistically quantizistriduted process indeed achieves a strict consensus at
one of the quantization values. It is of interest to note thatstationary points of the PQDA algorithm are in the
form of ¢c1 wherec € 7. We, hence, construct an absorbing Markov chain where tBerhimg states are given
by the stationarity points and show that for any startingesttnere exists a sequence of transitions with non—zero
probability whose application results in absorption. Tokofving theorem discusses the expectation of the limiting

random vectorj.e., the expected value of(t) ast tends to infinity.

Theorem 2. The expectation of the limiting random vector is given by

E{ lim x(t)} = (N)~'117x(0). (21)

t—o00

Proof: Note that||x(t)|| < v/NU, for t > 0, and,{z;(t) : i = 1,2,..., N} is bounded for alt. Moreover,
from Theorem 1, we know that the random vector sequariteconverges in the limiti.e., lim;_., x(t) = ¢1 for

somec € 1. Thus, by the Lebesgue dominated convergence theoremvi24have

IE{ lim x(t)} = lim E{x(t)}. (22)

t—oo

In the following, we derivdim,_,., E{x(¢)} and utilize the above relationship to arrive at the desiesllt.

In terms of quantization noise(t), we can writeq(t) = x(¢) + v(t). The distributed iterative process reduces
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to the following recursiorx(t + 1) = Wx(t) + Wv(t). Repeatedly utilizing the state recursion gives
t—1 '
x(t) = W'x(0) + > W' v (j). (23)
§=0

Taking the statistical expectation of(t) as¢ — oo and noting that the only random variables argj) for
j=0,1,...,t—1, yields

t—1

lim Efx(t)} = lim W'x(0) + ) W' VE{v(j)} (24)
j=0
= Jim W'x(0) (25)

sinceE{v(j)} = 0 for j = 0,1,...,t — 1; a corollary of Lemma 1. Furthermore, noting tHah; ... W! =
(N)~'117T gives
lim E{x(t)} = (N)"1117x(0). (26)

t—o00

Recalling (22) gives the desired result. [ |

This result indicates that the expectation of the limitiagpdom vector is indeed equal to the initial analog node
measurements’ average. Furthermore, this theorem, ceahbifth the previous one, indicates that the consensus
value,c, is a discrete random variable with support definedrbynd whose expectation is equal to the average of
the initial states.

After establishing that the consensus value is a randonabariwith the desired expectation in the limit, the
next natural quantity of interest is the limiting mean sauakerror,i.e., the limiting average squared distance of the
consensus random variable from the desired initial statesrage value. The following theorem, thus, considers

the expectation of the error norm of probabilistically gtied consensus a@sand N tend to infinity.

Theorem 3. Let us definex(0) £ Jx(0). The expectation of the error norm of the probabilisticatjyantized

distributed average consensus is asymptotically bounged b

A 1
. . -1 _— <=
Jim tim (VR)TE(lla) - %O} < 51—y =g (27)
wherep(-) denotes the spectral radius of its argument.
Proof: See Appendix A. [ |

The proof exploits averaging characteristics Wf, properties of norm operators, and uses a Law of Large
Numbers argument to bound the error contributed by quditizaoise.
Note that the upper bound decreases with decreasing spedits of(W —J), where a smaller (largep W —J)

can be, in a loose manner, interpreted as better (worsejdgivey ability” of the weight matrix. Furthermore, as
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expected, the upper bound on the error norm increases watteasing quantization resolutione(, increasingA).

IV. CONVERGENCECHARACTERISTICS OFPROBABILISTICALLY QUANTIZED DISTRIBUTED AVERAGE

CONSENSUS

The convergence characteristics of the PQDA are essentidufther understanding of the algorithm. In the
following, we consider the evolution of the intervals ocmgp by the quantized and unquantized state values.
Interestingly, we reveal that the length of the smallestrivdl containing all of the quantized state valués.,(
the range of the quantized state values) is non—increasitigaMimit of zero as the time step tends to infinity.
Moreover, we show that size of the minimum length intervathwoundaries constrained to the quantization points,
that contains all of the unquantized node state valuess @bn—increasing. This also has limit zero as the time
step tends to infinity.

Let us denote the smallest and largest order statistics pivaotoru ¢ RV as u(y) £ min;{u;} and U(N) =

max;{u;}, respectively. Furthermore, lé{x(¢)] denote the interval of the node state values at timee. the

interval in which{z;(t) : i =1,2,..., N} values lie,

I[x(t)] = [2(1)(t), z (v (t)] (28)

andI[g(t)] denote the domain of the quantized node state values atttiire,

[q(t)] £ [qa) (@), qov) (B)]- (29)
Moreover, let
TL(t) £ m]ax{Tj cxi(t) > 75, Vi) (30)
and
v (t) = IIljiIl{Tj xi(t) < 7y, Vi} (31)

along withI[7(t)] £ [r1(t), 7 (1)].
The following theorem discusses the evolution of the irdkof the quantized node state values, and the minimum

range quantization bin that encloses the node state valhegsheorem reveals that both intervals are non—expanding.

Theorem 4. For somet > 0, suppose thag;(t) € I[q(t)], and,z;(t) € I|x(¢)], fori =1,2,..., N. By construction
Ix ()] € I (t)]. (32)

Then, fork > 1, the followings hold:
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(i) The interval of the quantized state vector is hon—expandiag

lq(t + k)] € I[q(2)]- (33)

(i) The minimum length interval with boundaries defined by gaatibn points that encloses the state vector
values is non—expandinge.,

I[x(t+ k)] CI[r(t + k)] CI[7(¢t)]. (34)

Proof: Consider (i) first. Suppose thaf(t) € I[q(¢)], for i = 1,2,..., N, and recall that the state recursion
follows asx(t+1) = Wq(t). Let w* denote the row vector formed as theh row of the weight matrixW. Now,

we can write the node specific update equation as
zit+1) = wiq(t). (35)

Note thatz;(t + 1) is a linear combination of quantized local node values ﬂz;]d_> 0forj=1,2...,N, where
w} denotes thg—th entry ofw’. Moreover,w'1 = 1, sinceW1 = 1. Thus,z;(t + 1) is a convex combination of
the quantized node state values and its own quantized 3ta¢enode state value;(¢ + 1) is then in the convex
hull of quantized state valugg;(¢) : i = 1,2,..., N}. The convex hull of the quantized state values at time

given byI[q(¢)], indicating that

z;(t + 1) € I[q(t)] (36)
fori=1,2,..., N, and subsequently,
Ix(t +1)] < Iq(t)]- 37)
Hence, we see that
gy (t+1) = Qzi(t +1)) < quvy(t) (38)
for some: € {1,2,...,N} and
quy(t+1) = Qx;(t + 1)) > qqy(t) (39)

for somej € {1,2,..., N} andj # i. It follows that

Ia(t +1)] S T[q(?)]. (40)

Repeatedly utilizing the above steps completes the proof.

Now consider (ii). Suppose that;(t) € I[x(¢)] for i = 1,2,..., N. Then, by construction[x(¢)] C I[7(t)].
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Furthermore, since

7L(t) < qa)(?) (41)
and
v (t) > qy(t) (42)
it follows that
ai(t) = Qz;(1)) € I[a(t)] € I[r(¢)] (43)

fori =1,2,..., N. The convex combination property, similar to the previoase; indicates that;(t+1) € I[q(t)]

for i =1,2,..., N, and subsequently[x(t + 1)] C I[q(¢)]. Moreover, sincel[q(t)] C I[~(t)], it follows that
I[x(t+1)] CI[7(t)]. (44)
Finally combining all the results indicating that
Ix(t+1)] CIq(t + D] S I[r(t + 1] S I[7(¢)] (45)

and repeatedly utilizing the above steps completes thef.proo |
The proof of this theorem indicates that each iteration deed a convex combination of the previous set of
guantized node state values, and uses of the propertiemeéxdunctions to arrive at the stated results.
Let us definerq(t) as the Lebesgue measure of the domain of the quantized stetier at time step, i.e., the
range ofq(t) € RY,
rq(t) £ qovy(t) — gy (t) (46)

whererq(t) € {0,A,...,(L — 1)A}. Similar to the quantized state vector case, we defirfe) = 7 (t) — 71.(t)
as the length of the interva[r(¢)].
The following corollary (the proof of which is omitted sin@eollows directly from Theorem 1 and Theorem 4),

compiled from Theorem 1 and Theorem 4, discusses propetiggerest ofrq(t) andr.(t).

Corollary 1. The functionsq(t) and r,(t), with initial conditionsrq(0) > 0 and r,(0) > 0, tend to zero as
tends to infinityj.e.,

lim rq(t) =0 47)

t—o0

and

tlim r.(t) = 0. (48)
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Moreover,rq(t) and r-(t) are monotonically non—increasing functions.

The presented theorem and corollary indicate that the egamee of the PQDA is monotonic in the sense that
the global trend of both the quantized and unquantized ntate salues is towards the consensus and that the
minimum-length intervals containing all values do not exghaand in fact, converge to zero-length monotonically.
The following theorem investigates the rate of convergeoitthe PQDA to a state where there is a first time

non—zero probability of converging to the consensus (dllemare contained within two quantization bins).

Theorem 5. Let rq(t) = qn)(t) — qa)(t) and rx(t) = z(ny(t) — x(1)(t) denote the range of the quantized and

unquantized node state values at time stewith the initial valuesr(0) andr«(0), respectively. Then,

Efra(t)} < 1/ St (W — yr(0) + 28 (49)

wherep(-) denotes the spectral radius of its argument.

Proof: See Appendix B. |

In the appendix, we compile an upper and lower bound on tlgesaand smallest order statistics of the quantized
node state vector using results from [25]. Then, the taskaesl to deriving a bound on the convergence rate of the
normed difference of any rowand; with time, and combining this bound with the bounds on thesoitatistics
gives the desired result.

Theorem 5 reveals that the PQDA converges to the final two Witts the same rate as standard consensus.
Theorem 5 also relates the convergence of the quantized stadke values range to the range of initial node
measurements.

After all the node state values are in the final two bins, theralways a non-zero probability to immediately
converge to consensus. Note that, in the absence of knogvleidthe norm of the initial node states or the initial

state range, the bound given above reduces to

E{rq(t)} < 2\/¥pt(W—J)U+2A (50)

where we used the facts thatax;{z;(0)} < U andmin;{z;(0)} > —U.

To understand the convergence of the PQDA algorithm aftethalquantized states converged to the final two
bins, first, let us discuss the behavior of the PQDA algorithrthe final bin,i.e., max;{¢;(t)} — min;{q;(t)} = A.
Supposer;(t) € [1;,7j4+1], for somej. In this case, all the nodes state values need to be quartizgdor 7.1
to achieve a consensus at time stepience, the effect of the weight matrix on the convergente sagnificantly
decreases and the convergence rate is mainly dominatedebgrdbabilistic quantization. Moreover, we hence

believe that the time interval, where all the node stateeslre inr; and; + 2A, is a transition period between
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the dominating effect of the weight matrixe. the spectral radius oW — J, and the dominating effect of
probabilistic quantization. Obtaining analytical exmmiess of convergence rate for these transition and final bin
regions appears to be a challenging task. Although our suresearch efforts focus on this challenge, we assess

the convergence performance of the PQDA algorithm withresite simulations in the following section.

V. NUMERICAL EXAMPLES

This section details numerical examples evaluating théopaance of the distributed average computation using
probabilistic quantization. Throughout the simulations wiilized the Metropolis weight matrix defined for a graph

G = (V,€) [3]. The Metropolis weights on a graph are defined as follows:

(1 + max{deg,;,deg;})~", i#j, and (i,j) €&
Wi; = 1— ZkeM Wi, i=j . (52)

0, otherwise

This method of choosing weights is adapted from the Metispalgorithm in the literature of Markov chain
Monte Carlo [3], [19]. The Metropolis weights are very simpb compute and are well suited for distributed
implementation. In particular, each node only needs to ktimwdegrees of its neighbors to determine the weights
on its adjacent edges. Furthermore, the nodes do not needl@bgl knowledge of the communication graph or
even the total number of nodes.

We simulate a network witv = 50 nodes randomly dispersed on the unit squére] x [0, 1], connecting two
nodes by an edge if the distance between them is less thamtimedtivity radiusj.e., d = \/W. Thus, a
link exists between any two nodes that are at a range lessitliiroughout this section, the initial states are drawn
i.i.d. from a uniform distribution as followingy = X(0) 4+ n, wheren is i.i.d. uniformly distributed with support in
the [-1, 1] interval. The initial states are then regularized such3hatx(0) = 0.85. The quantization resolution is
taken asA = 0.1. Plotted in Fig. 2 isyy) andq(; at every time step (corresponding to node trajectories given in
Fig. 1). The figure indicates that the proposed algorithnsdndeed achieve consensus as the interval in which the
quantized state vector converges to zero and is monotonimah—expanding, corroborating the theoretical results.
In this case, the consensuslisy;_., x(t) = (0.8)1, which is in agreement with the theoretical results indigat
that the consensus is at one of the quantization levels.

We next investigate the effect of the quantization resotutind the location of the initial state average on the
consensus standard deviation. Figure 3 plots the error mdrthe consensus for varying € [0.05,0.5] when
x(0) = 0.85 and for varyingx(0) € [0.5,1.5] when A = 0.25. Also plotted is the derived upper-bound on the
PQDA. Note that each data point in the plots is an ensembleaggeof 1000 trials. The variance, as expected,

tends to increase aA increases and exhibits a harmonic behavior as the locafidimecaverage changes. This is
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Fig. 2. The plotted are is the interval in which the quantigeate vector is. The number of nodesNs= 50, the nodes’ initial average is
%(0) = 0.85, and the quantization resolution is setAo= 0.1.
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Fig. 3. The error norm of the consensus with respect to (ajjtltization resolution,e.,, A € [0.05, 0.5] with X(0) = 0.85 and (b) the
initial state average witl = 0.25. The network parameter ar& = 50 andd = +/log(N)/N.

due to the effect induced by the distance of the average tguhetization levels.
Figure 4 shows the behavior of the average mean square 8&E)(per iteration defined as:

N

MSE(H) = = > (rilt) - X(0))? 52)

=1
for A € {0.05,0.1,0.15,0.2}. In other wordsMSE(t) is the average mean squared distance of the states abiterati
t from the initial mean. Each curve is an ensemble average 09 ¥3periments and the network parameters are:

N = 50, X(0) = 0.85 andd = /log(/N)/N. The plots suggest that smaller quantization bins yield allem
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Fig. 4. The average MSE of the probabilistically quantizestributed average consensus for varying quantizatiooluden where
A € {0.05,0.1,0.15,0.2}. The remaining network parameters afé:= 50, X(0) = 0.85 andd = /log(N)/N.

steady state MSE and that as quantization bin size incretmeaumber of iterations taken by PQDA to reach the
final quantization bin decreases. The quasi-convex shafieedISE curves are due to the fact that the algorithm,
after all the state values converge into a quantizationedngr;+,) for somei € {1,2,...,L — 1}, drifts to a
guantization value.

Considered next is the consensus value of the PQDA algarifigure 5 plots the histograms of the consensus
value for varying initial state averagee., X(0) € {0.80,0.825,...,1.00} for A = 0.2. The number of nodes in the
network isN = 50. Note that the consensus values shift as the initial averalye shifts from 0.80 to 1.00. This
is directly related to the fact that the consensus, in exgtiect, is equal to the average of initial states as provided
by the theoretical results.

We investigate the average convergence time of the distabaverage consensus using probabilistic quantization
for varying A € {0.05,0.1,0.2} against the number of nodes in the network, Fig. 6(a) andWe)also show the
average number of iterations taken to achieve the final @aatitn bin. Moreover, Fig. 6(c) and (d) plot the average
normalized distance to the closest absorbing state at thtetifite step when all the quantized node state values
are in the final quantization bin. The initial state averagesx(0) = 0.85 andX(0) = 0.90, and the connectivity
radius isd = /41log(N)/N. Each data point is an ensemble average of 10000 trials. tdatethe convergence
time increases with the number of nodes in the network. Thesuggest that the number of iterations taken by
the PQDA algorithm to converge to final quantization bin deses ag\ increases. This can be seen by noting
that the algorithm has to go through less “averaging” (mplitation with the weight matrix) before arriving at the
final bin. It is hence clear that the algorithm needs to runaf@maller number of iterations to arrive at a larger

final bin size.
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Fig. 5. Histograms of the consensus value achieved by theapilistically quantized consensus for varying initiztst average where
%(0) € {0.80,0.825,...,1.00} and A = 0.2. The number of nodes in the network s = 50.

On the other hand, as discussed in more detail below, thecesgprumber of iterations taken to achieve consensus
is dominated by the number of iterations taken to convergant@bsorbing state after all the node values are in
the final bin. The probabilistic quantization is the domineafiect in the final bin. The time taken to converge to
an absorbing state is heavily dependent on the distancat@lisorbing state at the first time step when all values
enter the final bin. This distance is affected by two fact®iisst, if more averaging operations occur prior to the
entry step, then there is more uniformity in the values, easing the distance. Second, if the initial data average
is close to a quantization value, then, on average, the ¢t will be closer to an absorbing state (note that
E{1Tq(t)} = 17x(0)). These observations explain the results of Fig. 6. Note ttreaconvergence time order for
x(0) = 0.85 andx(0) = 0.90 cases flip forA = 0.2 and A = 0.1. That is due to the fact that the average distance
to an absorbing when, at the first time step, all the node saduer the final bin is smaller f6g(0) = 0.85 when
A = 0.2 compared toA = 0.1, and is smaller fok(0) = 0.90 when A = 0.1 compared taA = 0.2. Moreover,
note thatA = 0.05 yields the smallest distance to an absorbing state for Imitilaliconditions. Although, it takes
more iterations to converge to final bin, in both cases, PQ@Arahm with A = 0.05 yields the smallest average
distance to an absorbing state when all the node values entbe final bin for the first time step, hence, the
smallest average number of iterations to achieve the censen

We consider next the effect of the connectivity radius on @lwerage number of iterations taken to achieve
the consensus. Figure 7 depicts the average number ofdtesab achieve the consensus for the cases where the
initial state average i€(0) = 0.85 andx(0) = 0.90. As expected, the average number of iterations taken teeehi
consensus decreases with increasing connectivity radius.is related to the fact that higher connectivity radius,

implies a lower second largest eigenvalue for the weightima¥loreover, as in the previous case, the convergence
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corresponding average distance to the closest absorlate &t the first time step when all the quantized node state=\ae in the final

quantization bin for (c:x(0) = 0.85 and (d:)x(0) =0

time is related to the distance of the initial state average guantization value for a given quantization resolution.

.90.

Of note is that0.85 is a quantization point forA = 0.05, and 0.90 is a quantization point for botl\ = 0.1

and A = 0.05. The combined results of the presented experiments irelitat the expected number of iterations

required to reach a consensus depends on the followingré&acto

(1) Quantization resolution;
(2) Initial node measurements;

(3) Number of nodes in the network; and
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Fig. 7. Average number of iterations taken by the probafth#ly quantized distribute average computation forc {0.05,0.1,0.2} with
(a:) x(0) = 0.85 and (b:)x(0) = 0.90. The number of nodes in the network 3 = 50. Connectivity radius factor is defined as the
modulating constant, in the expression for the connectivity radids= k+/log(N)/N.

(4) Connectivity radius.

Note that (1), (3) and (4) are system design choices, afldzyeenergy budgets and bandwidth constraints, but (2)
is data-dependent. This implies that the quantizationluéisa, given the bandwidth and power constraints of the
application, should be chosen to minimize the expected @stacase) convergence time over the range of possible

initial averages.

VI. FURTHER CONSIDERATIONS

The analysis presented in this paper makes two main sinmgifgssumptions: 1) the network topology does
not change over time, and 2) communication between neigidparodes is always successful. The simplifying
assumptions essentially allow us to focus on the case wihersveight matrix, W, does not change with time.
However, time-varying topologies and unreliable commatians are important practical issues which have been
addressed for un-quantized consensus algorithms ésge[3], [26], [27]). Since W has the same support as
the adjacency matrix of the underlying communication grapfen the topology changes with time, the averaging
weights must also vary. Likewise, an unsuccessful trarsonsbetween two nodes is equivalent to the link between
those nodes vanishing for one iteration. In either case,amenow think of W (¢) as random process. Typical results
for this scenario roughly state that average consensudl iscstomplished when the weight matrix varies with time,
so long as the expected weight matfiiW (¢)], is connected. This condition ensures that there is alwayszero
probability that information will diffuse throughout thestwork. We expect that the same techniques employed

in [3], [26], [27] can be used to show convergence of our ayereonsensus with probabilistic quantization with
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time-varyingW.

In this paper we also restricted ourselves to the scenar@yewthe quantization step siZeremains fixed over all
time. Recall that when the algorithm has converged to a conse allg;(¢) are at the same quantization point, so
la(t) —Jq(t)|| = 0. Letting D(¢) £ ||q(t) — Jq(t)|| denote Euclidean distance to convergence, we know that when
the algorithm is far from converging.€., D(¢) large), quantization errors have less of an effect on coerere of
the algorithm. This is because the averaging effect®oére multiplicative and thus have a stronger influence when
D(t) is large, whereas the quantization error is bounded by ataohhich only depends oA and not onD(t).
When D(t) is of the same order as the quantization noise variance tigation essentially wipes away the effects
of averaging and hampers the time to convergence. A natutahgion of the algorithm proposed in this paper
involves shrinking the quantization step size, over time,e.g, setting A™" = A°l4/2 once D(t) is established
to be below the threshold where quantization effects owfiwaveraging. We expect that this modification should
improve the rate at whiclv(¢) tends to zero without affecting statistical propertieshaf limiting consensus values
(i.e,, unbiased w.r.t. t&(0), and no increase in the limiting variance). Solidifyingsttprocedure is a topic of

current investigation.

VIl. CONCLUDING REMARKS

We have described probabilistically quantized distridud@eraging (PQDA), a framework for distributed com-
putation of averages of the node data over networks with Wwatll/power constraints or large volumes of data.
The proposed method unites the distributed average comsegorithm and probabilistic quantization, which is
a form of “dithered quantization”. The proposed PQDA algori achieves a consensus, and the consensus is a
discrete random variable whose support is the quantizatidumes and expectation is equal to the average of the
initial states. We have derived an upper bound on the meaarsarror performance of the PQDA algorithm.
Our analysis demonstrates that the minimum-length interfwith boundaries constrained to quantization points)
containing the quantized and unquantized state valuesarexpanding. Moreover, the lengths of these intervals
are non-increasing functions with limit zero, indicatirigat convergence is monotonic. In addition, we have shown
that, all the node state values, in the worst case, arriviedrfibal two quantization bins at the same rate as standard,
unquantized consensus algorithms. Finally, we have peavitumerical examples illustrating the effectiveness of

the proposed algorithm and highlighting the factors thatdot the convergence rate.
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APPENDIX A

PROOF OFTHEOREM 3—ERRORNORM OF PROBABILISTICALLY QUANTIZED DISTRIBUTED AVERAGE

CONSENSUS
Consider the following set of equalities
[la(t) = Ix(0)[] = [1x(£) + v(t) = Ix(0)]] (53)
= [[W'x(0) + ti Wy (j) = Ix(0) + v(t)]] (54)
. t—1
= [|(W = J)'x(0) + ;]Wt—jv@) +v(t)]| (55)

where we use the facts thaW' —J) = (W — J)t, for ¢t > 1, andJ! = J, for ¢t > 1. Now the eigendecomposition

of W yields

N
W = Z /\kuku;F (56)
k=1

whereu, denotes the eigenvector associated with the eigenvalueSigendecomposition further indicates that
Wi = Z/\k uuy. (57)

SinceW1 =1 and1™W = 17, the eigenvector associated with the eigenvalue- 1 is given byu; = (v N)~'1.

Substituting this information into the error norm equatgives

t—1 N
la(t) = Ix(0)]] = [[(W = 3)'x(0) + > > " A upuf v(j) + v(t)]| (58)

7=0 k=1
t—1

= ||(W = 3)'x(0) + > %11T +)° A;‘jukug> v(j) +v(t)] (59)
R

= (W = 3)'x(0) + > ()1 + > > N upufv(h) + v(1)]]. (60)
j=0 7=0 k=2

Moreover, applying the Triangle inequality and using thetsathat|[v(j)1|| = [¥(j)|||11]| = [¥(4)|V/N and that
N .
> A waf = (W =) (61)
k=2

after multiplying both sides witliv/N)~! gives

(VN) ! lla(t) — Ix(0)]]
< (VN)THI(W - 3)f H+Z\V \+Z ) HIW = DIV + (VN) vl (62)
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We need to following lemma to continue with the proof.

Lemma 3. The sum of quantization noise terms, at all time steps, ¢gasdn probability,i.e.,
Jim Pr{[v(j)| = e} =0 (63)

for e > 0 and all j. Thus,limy_. E{|V(j)|} = 0.

Proof: Recall thatE{v(j)} = 0 and

N
Var{v(j)} = Var{%;vi(j)} (64)
1N
== ZVar{vi(j)} (65)
i=1
1 . A2
< ; - (66)
1 A?
1A (67)

Now using Chebyshev’s Inequality, we obtain

Pr{fv()| > o < VA (69
2

Now, take the limit of N — oo, we see that the RHS of the above goes to zero for 2ll0. Thus, the probability
|v(j)| being greater than zero is equal to zero }or— oo and the implication ofimy_.. E{|¥v(j)|} = 0. [

The error norm equation, after taking the expectation amit las N — oo, since the limit of eactE{|v(j)|}
exists and equals zero (from Lemma 3), reduces to

lim (vVN)'E{||q(t) — Ix(0)||}

N—oo

< lim (VN)T'E{[[(W - J)f H}+Z ) E{II(W = D) v} + (VN)TE{ v )]}

N—oo

(70)

Furthermore, utilizing the Norm inequality gives

Jim (V) 'E{la) — IxO)II} < Jim o (W = 3)(VE)x(O0)]| + 3 oW — D) ELVG)I-

j=0
(71)

In the following, we derive an upper-bound &f||v(j)||} for j = 0,1,...,¢ to boundE{||q(t) — Jx(0)||}.



25

Consider the expectation of the quantization noise,

E{[lvi)Il} = E{« Zv } (72)

Note thatf(u) = \/u is a concave function. The concavity indicates that utiizdensen’s inequality gives

N N
E{« Dfm} <\ RO (73

Now using the upper-bound for the expectation of the quatitim noise variance termge. Lemma 1, indicates

that the expectation of the quantization noise norm is bedriay
N
A2 A
NI A% a
E{v()I < | D7 = VN (74)

i=1

Now, substituting this result into the error norm equatiafier some manipulations, gives

lim (V'N)"'E{[|a(t) - Ix(0)[[} < lim p'(W = J)(VN)"|x(O)]| + 5 ZWW J). ()

N—oo

Recall thatp(W — J) < 1, hence, applying the Geometric Series equailigy,

t ' B 1 _pt—i-l(W_J)
jZ::Op](W—J)— W) (76)

further yields

A 1 — (W 1)

. -1 _ < h t _ -1 =2
Jim (VR)TE(la(t) = IxO)l} < tim (W = DEN) O+ 5 g @)
Now, taking the limit ag tends to infinity yields
Al — YW - )
. . —1 _ < 1 . t _ —1 =
Jim Jim (V)E{a(t) = IxO)[I} < Jim Tim o' (W = DN xOl| + 5 gt (79)
Note that the limit of each term exists. Also consider théofeing:
tlim PH(W—=J)=0 (79)
sincep(W — J) < 1, and, subsequently,
_ ot _
lim 27 (W=J) _ ! . (80)

t—oo 1 —p(W —=1J) 1—p(W —1J)

Combining these findings and substituting them into (78)dgi¢he desired result.
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APPENDIX B

PROOF OFTHEOREM 5—CONVERGENCERATE To THE FINAL TwO BINS

Note thatrq(t) = max;{qg;(t)} — min;{g;(¢)}. In order to bound the expected range, we will upper and lower
bound the largest and smallest order statistics of the qeghinode state values at time stepTo prove the
proposed theorem, we make use of the following bounds fom&emum and minimum order statistics of (possibly

dependent)q; }¥., samples [25]:
E{max{gi}} < max{E{g;}} + E{max{g; — E{¢:}}} (81)

and

E{min{g;}} > min{E{g;}} + E{min{g; — E{gi}}} (82)

respectively. Using these bounds, in our setup, for theektrgrder statistics gives:
E{max{q;(t)}} < maxwix(0) + E{max{vi(t)}} (83)
< whx(0) + A (84)

where we definev! to bei—th row of the weight matrix taken to the poweandi* = i : wi.x(0) > wix(0) for

i =1,2,...,N and used the properties of probabilistic quantization ddfact that|v;(t)] < A almost surely.
Similarly, we have shown that
E{min{qi(t)}} = wlx(0) - A (85)
wherei, =i : w! x(0) < wix(0) fori=1,2,..., N, yielding
E{rg(t)} < (wi- — wi )x(0) +24. (86)

Utilizing the Cauchy-Schwartz inequality reduces the a&bexpression to:

E{rq(t)} < |lwi. —wi [[[[x(0) — Jx(0)[| + 2A. (87)
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Clearly, to upper bound{rq(t)}, we need to upper boundw!. — w! ||. Hence, we derive an upper bound for

|lwi —wi || for any (i1, i2) pair such that; # 4y, in the following:

Iwl, = wh | = flwl, = 17 = (wl, = 1) 89)
<@ flwl, — <17+ flwl, — 17 (89)
<O |W - 3]| + [W* - 3] (90)
= (W~ 3)]| + (W~ 3] (91)
<@ [|(W — D)1+ [(W — T 92)
= 2p" (W — J) (93)

where (a) follows from the Triangle inequality, (b) from tfect that the norm of any row of a matrix is smaller
that the norm of the matrix, (c) using the properties of thégivematrix, (d) by the Norm inequality, and (e) due

to the symmetric assumption on the weight matrix. Finalbpstituting (93) into (87) yields:
E{rg(t)} < 20" (W — 3)|[x(0) — Ix(0)[| + 2A. (94)

Moreover, using Thomson'’s sharp bound relating ordersiiedi and sample standard deviation (féreven, but a

very similar result exists for odd/) [28]:

2/}x(0) ~ Ix(O)]] < /2t (mlax{xi(O)} - miin{w,-(O)}> 2 [ Y e (0) (95)

one can relate the bound given on the quantized node statesvednge to the initial states’ randge,., the result

stated in the theorem.
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