
4990 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 56, NO. 10, OCTOBER 2008

Cross-Entropy-Based Sign-Selection Algorithms for
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Abstract—Sign-selection uses a set of subcarrier signs to reduce the
peak-to-average power ratio (PAR) of orthogonal-frequency-division mul-
tiplexing (OFDM). However, the computational complexity (worst-case) is
exponential in , the number of subcarriers. Suboptimal sign-selection
algorithms, achieving different tradeoffs between the PAR reduction and
complexity, have thus been developed. For example, the derandomization
method achieves high PAR reduction of (log ) with relatively high
complexity of ( ). On the other hand, selective mapping (SLM) and
partial transmit sequences (PTS) sacrifice the achievable PAR reduction
for lower complexity. In this paper, we develop two new cross-entropy
(CE)-based sign-selection algorithms. Our algorithms simultaneously
updates the probabilities of the signs of all subcarriers. As shown in
Section II-D, the first algorithm obtains a PAR lower than the above
methods with a complexity level of ( ). However, if the number of
iterations is fixed, this algorithm obtains the same PAR reduction as deran-
domization, but with ( log ) complexity. Practical PAR reduction
algorithms require that the extra cost of PAR reduction must be small.
Therefore, we propose the second algorithm, which adaptively adjusts
the probability of “elite” samples, and stops whenever a PAR threshold
is reached. Our second algorithm achieves up to 95% complexity savings
over the first (with only a 0.4-dB PAR reduction loss). The simulations
confirm the complexity advantages of the proposed algorithms compared
to SLM and derandomization.

Index Terms—Cross-entropy (CE) method, importance sampling,
orthogonal-frequency-division multiplexing (OFDM), peak-to-average
power ratio (PAR) reduction.

I. INTRODUCTION

Since orthogonal-frequency-division multiplexing (OFDM) suffers
from the high peak-to-average power ratio (PAR) [1], many PAR-re-
duction techniques have been developed ([2] and references therein).
Of these, probabilistic PAR reduction techniques are especially suitable
when the number of subcarriers is large (� 64) [3], [4]. The sign-se-
lection method [5], [6] is a probabilistic technique and the basic idea
is to use a set of subcarrier signs to reduce the PAR. This gives a max-
imum of 2N (N is the number of subcarriers) potential OFDM symbols
for a given input. Clearly, the complexity of finding the optimal set of
signs is exponential in N . Existing sign-selection algorithms can be
divided into two groups: 1) algorithms with low-complexity, e.g., se-
lected mapping (SLM) and partial transmit sequences (PTS) [3], [4],
which, however, only obtain moderate PAR reductions; and 2) algo-
rithms with large PAR reduction, e.g., the derandomization method [6],
which limit the PAR growth toO(logN), but have relatively high com-
plexity of O(N2).

The cross-entropy (CE) method is an iterative procedure for combi-
natorial optimization [7]. Each iteration involves generating a random
sample according to a probability distribution and then updating the
parameters of the probability distribution in order to produce better
samples in the next iteration. In [8], we developed a CE-based sign-se-
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lection algorithm for PAR reduction. In this paper, we further develop
two CE based PAR reduction algorithms. Large PAR reduction is ob-
tained with lower complexity by simultaneously modifying the proba-
bilities of the signs of all subcarriers via the CE method. In contrast, the
derandomization method modifies the signs one by one. With a fixed
number of samples, our algorithms obtain the same PAR reduction with
an O(N logN) complexity. Practical PAR reduction algorithms re-
quire that the extra cost of PAR reduction must be small. By adaptively
adjusting the probability of “elite” samples, and stopping whenever a
PAR threshold is reached, our second algorithm achieves up to 95%
complexity savings over the first (with only a 0.4-dB PAR reduction
loss). The simulations show that, for the same level of PAR reduction,
our algorithms have lower complexity than the SLM and derandom-
ization methods. To the best of our knowledge, our work is this first
application of the CE method to PAR reduction.

This correspondence is organized as follows. Section II describes the
general sign-selection method and develops two CE-based PAR reduc-
tion algorithms. The simulation results are provided in Section III com-
paring the new algorithms, the SLM and derandomization methods.
The correspondence concludes in Section IV.

II. CE METHOD FOR PAR REDUCTION

A. PAR Definitions

OFDM maps a block of inputs bits to a set of N possibly com-
plex symbols Xk chosen from an M -ary signal constellation QM ,
e.g., pulse amplitude modulation (PAM), phase shift keying (PSK), or
quadrature amplitude modulation (QAM). The set ofN symbols is con-
verted to time-domain samples via an Inverse discrete Fourier trans-
form (IDFT). For an input OFDM block X = [X0; . . . ; XN�1], the
discrete-time baseband equivalent signal x(n) can thus be expressed
as

x(n) =
1p
N

N�1

k=0

Xke
j2�nk=JN

; n = 0; 1; . . . ; N � 1 (1)

where J represents the oversampling factor, which must be J � 4 for
sufficient accuracy [9], [10]. In this paper, we choose J = 4 for our
simulations. The PAR is the ratio

PAR(X)
max jx(n)j2
E jx(n)j2 : (2)

B. Sign-Selection Method

A sign sequence c = [c0; . . . ; cN�1] is pointwise multiplied with
the input OFDM block X to give X̂ = [X0c0; . . . ; XN�1cN�1]: The
time-domain OFDM signal of X is

x̂(n; c) =
1p
N

N�1

k=0

ckXke
j2�nk=JN

: (3)

Note that the average power of x̂(n; c) is the same as that of x(n) for
all c—i.e., the signs do not alter the average power. Since the signs
are to be chosen to minimize the PAR, the resulting combinatorial op-
timization problem is

mincL(c)

subject to: c 2 f1;�1gN (4)

where L(c) = maxn jx̂(n; c)j2 is the real-valued cost function, and
f1;�1gN is the set of N -dimensional binary vectors. Note that de-
pending on a specific implementation, some of the signs may be fixed,
say, only Ns � N variables signs are used.
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Fig. 1. The 91-point hexagonal constellation.

The optimal solution of (4), say, c� may be transmitted to the re-
ceiver as side information for correctly decoding the transmit symbols.
On the other hand, several techniques do, in fact, avoid side informa-
tion [4], [5]. In this paper, we uses the hexagonal constellation to elimi-
nate side information [11]. Fig. 1 illustrates an example of the 91-point
hexagonal (91-Hex) constellation. The 64 points marked by � and
are used to carry six information bits. Thus, the 91-Hex constellation
has the same throughput and the same minimum Euclidian distance as
the square 64QAM constellation. The signs of 27 outer points can
be modified (between and �) to minimize the PAR. Therefore, no
side information is required at the receiver. Here, the mean of Ns is
�Ns = 27.

To reduce the complexity of (4), suboptimal solutions are commonly
used. For example, the SLM method randomly generates K sign se-
quences fc1; . . . ; cKg[3]. For a given OFDM block, a sign sequence
ci leading to the lowest PAR is selected from C as a suboptimal solu-
tion. This algorithm is fast whenK is small. However, it does not reach
highly accurate solutions because K is chosen to reduce complexity.

The derandomization method iteratively optimizes each sign by min-
imizing the probability that the PAR is larger than a threshold [6]. When
all signs of the N subcarriers are allow to change, it limits the PAR to
O(logN) withO(N2) complexity. Note that, to obtain the same level
of PAR reduction, SLM requires prohibitively high complexity.

One may find a better approximation c� by using the CE technique.
The basic idea is to estimate a discrete probability distribution that will
generate a solution close to c�.

C. The CE Sign-Selection (CESS) Algorithms for PAR Reduction

Without loss of generality, we consider the case that Ns = N . Let
c = 1�2d, i.e., we generate the sign sequence c 2 f+1;�1gN from a
binary vector d 2 f0; 1gN . Let L(d) = maxn jx̂(n; 1� 2d)j2. Each
iteration of the CE method for the optimal solution c� of (4) involves
two phases [7]:

1) randomly generating a set of samples d1; . . . ;dn with respect to
a probability distribution f(d;p), wherep is a probability param-
eter vector;

2) update p using L(d1); . . . ; L(dn) so that f(d;p) generates
“better” samples in the next iteration.

Each element ofd is modeled an independent Bernoulli random vari-
able with the probability distribution P (dk = 1) = 1�P (dk = 0) =
pk , k = 0; . . . ; N � 1. The probability distribution is

f(d;p) =

N�1

k=0

p
d

k (1� pk)
1�d

: (5)

The CE method optimizes p = [p0; p1; . . . ; pN�1], which will gen-
erate a nearly optimal solution d� that leads to low PAR.

However, d� occurs with a very small probability. Estimating this
probability using the Monte Carlo method requires a large number
of samples of d. Instead, the CE method estimates a relatively large
probability Pr[L(d) � 
], where 
 is a relatively large threshold.
Fewer samples are required to estimate this probability. The probability
vector p is updated so that most samples generated by f(d;p) satisfy
L(d) � 
. The likelihood of d� among these samples is increased.
By iteratively letting 
 ! 0, f(d;p) converges to an optimum pdf
f(d;p�) that generates d� with a minimum number of samples, and

 converges to L(d�). In each iteration, p� can be analytically found
by solving [7]

1

n

n

i=1

IfL(d )�
gr ln f(di;p) = 0 (6)

where Ifx�
g = 1 when x � 
 and is 0 otherwise, and di are gener-
ated using f(d;p).

The partial derivative of (5) is given by

@ ln f(d;p)

@pk
=

dk

pk
�

1� dk

1� pk
(7)

where dk is the kth element of d. Substituting (7) into (6), the optimal
pk can be found as [7]

p
�
k =

n

i=1

IfL(d )�
gdik

n

i=1

IfL(d )�
g

(8)

for a given 
, where dik is the kth element of di.
Our sign-selection algorithm can thus be summarized as follows [8].

Algorithm 1 (CESS):

1) Let p0 � 1, pk = 0:5, k = 1; . . . ; N � 1. Let � = 0:1. Define
ns = d�ne, where dae represents the smallest integer that is
greater than or equal to a.

2) Generate n samples of di with respect to p, and calculate their
PAR (i.e., L(di)).

3) Sort these samples in ascending order according to L(di).
Denote the obtained PAR value sequence as [L0; . . .Ln�1].

4) Find 
 as 
 = Ln , and update p using (8).
5) If 0 < pk < 1 for some k, go to Step 2 and repeat this procedure

using the updated pk . Otherwise.
6) Output the optimal sign sequence as1 c� = 1� 2p.

The optimization will converge to pk = 0 or 1 for all k. Alterna-
tively, we may also stop the optimization after K iterations, and select
the sample with lowest PAR for transmission.

Now, we propose a modified CESS algorithm with threshold
(MCESST). This algorithm stops the optimization when the PAR of
an OFDM signal is reduced to within the amplifier’s linear range.
Based on the full adaptive CE method (FACE) [7], MCESST uses

1If all are either 1 or 0, p can only generate one sample d = p.
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“elite” samples to adaptively adjust �. That is, instead of using �, we
define the number of “elite” samples, ne. After generating n samples
d1; . . . ;dn, and sorting the corresponding L(di) in ascending order
(denoting as L1; . . . ; Ln), a threshold 
 can be found such that

 = Ln . Then

� = P (L(d) � 
) � �̂ (9)

where �̂ = ne=n. Based on the central limit theory, �̂ is a Gaussian
random variable with mean �. Its variance decreases to 0 when n goes
to1. We can also rewrite (9) as P (L(d) � 
̂) � ne=n, where 
̂ is an
estimation of 
. It is a random variable with mean 
, and its variance
decreases to 0 when n goes to 1.

The modified CESS algorithm starts with a relatively small number
nmin. Let the input back off (IBO) threshold be A. Our algorithm can
be summarized as follows.

Algorithm 2 (Modified CESS With Threshold):

1) Initialize A, ne, nmin, nmax, ninc. Let n = nmin.
2) Let p0 � 1, and initialize pk = 0:5, k = 0; . . . ; N � 1.
3) Generate n samples di with respect to p, and calculate their

PAR (i.e., L(di)). Whenever a dk leads to PAR � A, output
c� = 1� 2dk and stop the algorithm. Otherwise.

4) Sort these samples in ascending order according to L(di).
Denote the obtained PAR value sequence as [L0; . . .LN�1].

5) Find 
 as 
 = Ln , and update p using (8).
6) If p 2 f0; 1gN , output c� = 1 � 2p and stop the algorithm.

Otherwise.
7) If n < nmax, let n = n + ninc, then, go to Step 3.

We further exploit the idea of Tabu search [12] to lower the com-
plexity. At the last several iterations where most pk are 1 or 0, the n
samples contain many duplicated samples. Therefore, when a sample is
generated, it may be with previously generated samples. If it has been
previously generated, its PAR needs not be computed again. Note that
a list containing the samples of d and their PAR is also required in (8).
We utilize this list for comparisons. Simulation results show that about
15% inverse fast Fourier transforms (IFFTs) can be saved.

D. Convergency and Complexity Discussion

1) Convergency of Our Algorithms: The CE convergence is proved
in [13]. A basic assumption of the convergence is that the neighbor-
hood of the optimum solution is also nearly optimum. Our optimization
problem satisfies this assumption. The neighborhood in our case is de-
fined in terms of the Hamming distance. The PAR difference between
the optimal sign sequence c� and another sign sequence c1 within
Hamming distance D from c� can be bounded as

max
n
jx̂(n; c�)j

2
�max

n
jx̂(n; c1)j

2 �
8

N

D

i=1

jXk j

2

where ki denote the position that c1 differs from c�. Consequently,
when N is large, a small D always leads to near-optimal solutions.

Let the set C = fci : ci = 1 � 2di; L(di) � 
g which contains
ns “good” sign sequence samples that lead to small PAR. Intuitively,
our algorithms count the number of 1’s that appear in C to estimate
how the signs will be in neighborhood of the optimal solution and use
this information to update p. If most good samples have a positive sign
at the kth position, most probably, the neighborhood of the optimal
solution will have a positive sign at this position, and pk is then updated
to close to 0. In this way, most of the samples generated in the next
iteration have a small Hamming distance to C. A local optimum that has

a PAR no larger than those of C is thus ensured. On the other hand, even
a pk is close to 0, there is still a chance to generate some samples having
a negative sign at the kth position. The samples may also have small
PAR, which gives the possibility to escape from the local optimum and
converge towards the global optimum.

2) Complexity of Our Algorithms for Finding a Near-Optimal Solu-
tion: We first analyze the complexity of our algorithms. Note that, to
find a near optimal solution, no threshold should be used in Algorithm
2. in terms of the number of samples required to find a near optimal
solution.

In the (i � 1)th iteration, our algorithms estimate the probability
� = Pr[L(d) � 
] and optimize p such that most probably L(d) � 

in the ith iteration. The accuracy of estimating � is determined by ne.
Therefore, we consider the complexity of finding a near optimal solu-
tion when ne is fixed. We assume that ne is large and � is small such
that the samples generated in each iteration describe p with negligible
error.

Also assume that the optimization leads to negligible error. Then,
in the ith iteration, no sample with L(d) > 
 would be generated. In
other words, the size of the search space at the ith iteration, denoted
as Si and2 S1 = 2N , is reduced to Si � �Si�1. If a near optimal
solution is found in the K th iteration, we have

Smin = SK = �K�1S1 = �K�12N

where Smin � 1 is the number of the near optimal solutions. Then

K =
log2 Smin �Ns

log2 �
+ 1:

The total number of samples generated in the optimization is nK .
Simulation results show that n must be proportional to N in order to
obtain the same PAR distribution for different N . Therefore, the total
samples required to find a near optimal solution is of the orderO(N2).
Exhaustive search may search 2N samples to find the optimal solution.
3 SLM and derandomization could not find a near optimal solution.

3) Complexity Comparison for Finding Suboptimal Solutions: We
may fix the number of samples or set up a threshold (as in Algorithm
2) to find suboptimal solutions with low complexity. Each sample
is calculated using FFT. Thus, the complexity of our algorithms for
finding suboptimal solutions is O(N logN) multiplications, which
is of the same order as SLM. However, simulations show that SLM
requires more samples (i.e., higher complexity) to obtain the same
PAR as CESS.

Derandomization iteratively calculates the signs as

ck = �sign

2JN

n=1

sinh �

k�1

r=1

cranr sinh(�ank)

�

N

r=k+1

cosh(�anr) (10)

where sign(x) is the sign of x, � is a constant, and fankg is the set of
the real and imaginary parts of Xke

j2�nk=JN , which are calculated
and stored before calculating ck . Computing fankg requires O(N2)
multiplications. The memory requirement for storing fankg is 2JN2

float-point real numbers. Computing cosh(�anr) requires O(N2)
multiplications and O(N2) hyperbolic functions. Thus, calculating

N
r=k+1 cosh(�anr) requires O(N3) multiplications and O(N3)

hyperbolic functions. The rest of (10) requires O(N2) multiplica-
tions and O(N2) hyperbolic functions. Therefore, the complexity of
derandomization is O(N3) multiplications and O(N3) hyperbolic

2The mean of is = (1 + � ) .
3It is easy to see that, to find a near optimal solution, the average number of

samples that exhaustive search needs to search is exponential in .
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Fig. 2. PAR reduction comparison of CESS, SLM, and the derandomization
method with = 128 and the 91-Hex constellation.

functions. Note that the complexity of hyperbolic functions is much
higher than that of multiplications.

By using more memory, we may calculate and store the results of
N

r=k+1 cosh(�anr) for all k before the optimization. Then, the total
memory requirement is 4JN2 float-point real numbers, but the com-
plexity is reduced to O(N2) multiplications and O(N2) hyperbolic
functions.

A greedy algorithm is proposed in [14] based on derandomization,
with which the signs are iteratively calculated as

ck = arg min
c 2f+1;�1g

k

i=1

aici

p

p

;

where ai = [ani], n = 1; . . . ; 2JN and k = 2; . . . ; N , are vec-
tors each having 2JN items. It is proved that p(opt:) = log 2JN .
Calculating ai requires O(N2) multiplications. Calculating ck , k =
2 . . .N , requires 4JN(N � 1) power-p operations4. Therefore, the
complexity of this algorithm is O(N2). Its memory requirement is
2JN2 float-point real numbers (to store all ai). The Algorithm 3 in
[14] also has a complexity of O(N2) by noting that the cosh function
used in this algorithm is defined on length-(2JN) vectors.

In summary, the complexity of our algorithm is smaller than that
of SLM and derandomization5. In Section III, we compare the PAR
reduction of these algorithms by simulation.

III. NUMERICAL RESULTS

A. Performance Comparison of CESS, SLM and the
Derandomization Method

We now compare CESS with SLM and the derandomization method
[6], where N = 128 and the 91-Hex constellation is used. Fig. 2 plots
the PAR complementary cumulative distribution function (CCDF), also
called the clip probability, defined as F (�) = Pr[PAR(X) > �]. The
CESS algorithm is used with � = 0:1. At a 10�4 clip probability, CESS
with n = 30 obtains a 5.3- dB PAR reduction, which is 0.6 dB larger
than the derandomization method. The average number of samples gen-
erated by CESS in this case is 176. With the same complexity, the PAR

4The optimal is usually large. For example, 6 or 7 when =

128 and = 4.
5Derandomization and the greedy algorithm also require a large number of

additions, which may be a large burden in some implementations, e.g., using the
multiplier-accumulator (MAC) [15], where the complexity of multiplications is
comparable to additions.

Fig. 3. PAR reduction comparison of CESS and SLM for the same complexity
with the 91-Hex constellation.

TABLE I
SIMULATION PARAMETERS FOR MODIFIED CESS WITH THRESHOLD

reduction of SLM is 0.2 dB smaller than that of CESS at a 10�4 clip
probability, and is 0.4 dB smaller than that of CESS at a 10�1 clip
probability. By increasing the complexity, CESS with n = 60 obtains
a 5.8-dB PAR reduction, which is about 1.2 dB larger than the deran-
domization method.

We next compare the PAR reduction of CESS and SLM for the same
complexity. We consider two cases with N = 128 and N = 256,
respectively. We choose � = 0:1 for CESS with n = 10, 20, 30 and
40, respectively. For each case of n, we count the average number of
samples generated by CESS, and then use it as the number of candidates
for SLM. Fig. 3 illustrates this comparison. Note that, when � = 0:1
and n = 10, CESS is the same as SLM since in this case only one
sample leads to L(di) � 
 in each iteration of CESS. We see that,
with the same complexity, CESS leads to much smaller average PAR
than SLM.

B. Performance of the Modified CESS With Threshold

Now, we compare the modified CESS with threshold (MCESST) and
SLM for a 128-subcarrier OFDM system. 105 OFDM blocks are sim-
ulated. Since the PAR of a typical single-carrier signal using square-
root raised-cosine pulse shaping with a roll-off factor of 0.35 is about
6–7 dB [16], we compare MCESST and SLM with three thresholds
A = 6 , 6.5, and 7 dB (relative to the average power). When applying a
threshold to SLM, we select a large candidate set containing 104 sign
sequence samples, but stop the SLM optimization whenever a candi-
date that leads to a PAR below the threshold is found. The parameters
for MCESST are selected as in Table I so that the PARs of virtually all
input OFDM blocks are reduced to below A. We also include in this
table, out of the 105 simulated OFDM blocks, the numbers of “bad”
OFDM blocks (denoted as “bad blocks”) whose PARs are larger than
A after optimization, as well as the worst PAR.

With these settings, MCESST and SLM obtain the same PAR re-
duction for each threshold used. We thus compare their complexity in
terms of the average number of IFFTs. Table II shows the complexity
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TABLE II
AVERAGE NUMBER OF SAMPLES REQUIRED BY THE MODIFIED CESS

WITH THRESHOLD AND SLM

comparison. MCESST has less complexity than SLM for all threshold
settings.

IV. CONCLUSION

In this paper, we developed two cross-entropy sign-selection algo-
rithms for OFDM PAR reduction. Our algorithms simultaneously up-
dates the probabilities of the signs of all subcarriers. The first algo-
rithm obtains near optimal solutions with O(N2) complexity. If the
number of iterations is fixed, this algorithm obtains the same PAR
reduction as derandomization, but with O(N logN) complexity. By
adaptively adjusting the probability of “elite” samples, and by stopping
whenever a PAR threshold is reached, our second algorithm achieves
much lower complexity than the first. The simulations confirm the com-
plexity advantages of the proposed algorithms compared to SLM and
derandomization.
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