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Abstract

The rapid developing area of compressed sensing suggests thparse vector lying in an arbitrary high
dimensional space can be accurately recovered from onlyadl set of non-adaptive linear measurements. Under
appropriate conditions on the measurement matrix, theeeinfiormation about the original sparse vector is captured
in the measurements, and can be recovered using efficigmigralal methods. The vector model has been extended
both theoretically and practically to a finite set of sparsetors sharing a common non-zero location set. In this
paper, we treat a broader framework in which the goal is towvexca possibly infinite set of jointly sparse vectors.
Extending existing recovery methods to this model is difficuwe to the infinite structure of the sparse vector set.
Instead, we prove that the entire infinite set of sparse veci@n recovered by solving a single, reduced-size finite-
dimensional problem, corresponding to recovery of a findedf sparse vectors. We then show that the problem
can be further reduced to the basic recovery of a single spastor by randomly combining the measurement
vectors. Our approach results in exact recovery of both tadlé and uncountable sets as it does not rely on
discretization or heuristic techniques. To efficientlyaeer the single sparse vector produced by the last reduction
step, we suggest an empirical boosting strategy that ingsrtve recovery ability of any given sub-optimal method
for recovering a sparse vector. Numerical experiments adawm data demonstrate that when applied to infinite
sets our strategy outperforms discretization technignegrms of both run time and empirical recovery rate. In
the finite model, our boosting algorithm is characterizedfdst run time and superior recovery rate than known

popular methods.

Index Terms

Basis pursuit, compressed sensing, multiple measurengetdrs (MMV), orthogonal matching pursuit (OMP),

sparse representation.

. INTRODUCTION

Many signals of interest often have sparse representatinraning that the signal is well approximated by

only a few large coefficients in a specific basis. The tradélostrategy to capitalize on the sparsity profile is to
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first acquire the signal in a high-dimensional space, and titdize a compression method in order to capture
the dominant part of the signal in the appropriate basis.ilfanfiormats like MP3 (for audio signals) and JPEG
(for images) implement this approach. The research are@mpressed sensing (CS) challenges this strategy by
suggesting that a compact representation can be acquiectiyi

The fundamentals of CS were founded in the works of Donoh@fiy Candegt. al.[2]. In the basic model,
referred to as a single measurement vector (SMV), the sigraatliscrete vectax of high dimension. The sensing
process yields a measurement vegiothat is formed by inner products with a set of sensing vectohe key
observation is thay can be relatively short and still contain the entire infotima aboutx as long as is sparsely
represented in some basis, or simply wheitself contains only a few non-zero entries. An importargljpem in
this context is whether the vectarproducingy is unique [3]. Another well studied issue is the practicalonery
of x from the compressed daga which is known to be NP-hard in general. Many sub-optimathods have been
proposed for this problem [1],[2],[4],[5], which achieveh&h recovery rate when tested on randomly generated
sparse vectors.

The SMV model has been extended to a finite set of jointly spaestors having their non-zeros occurring
in a common location set. The sensing vectors are appliecath ef the sparse vectors resulting in multiple
measurement vectors (MMV). This model is well suited forlpeons in Magnetoencephalography, which is a
modality for imaging the brain [6],[7],[8]. It is also founih array processing [6],[9], nonparametric spectrum
analysis of time series [10] and equalization of sparse conication channels [11],[12]. The issue of uniqueness
in the MMV problem was addressed in [13],[14], together waitiensions of SMV recovery techniques to MMV.

In this paper, we start from a broader model which consistanoinfinite set of jointly sparse vectors, termed
infinite measurement vecto(§MV). The set may be countable or uncountable (for exampleen described
over a continuous interval). The IMV model is broader than Wind naturally arises in recovery problems
involving analog signals, such as our earlier work on migdtird signals [15]. As we explain further in the paper,
the recovery of the entire infinite set of sparse vectors iV IModels is highly complicated. A straightforward
recovery approach in this context is to consider only a figitbset of vectors using discretization. However, this
strategy cannot guarantee perfect recovery. Instead, veede reduced finite-dimensional problem from which
the common non-zero location set can be inferred exactlis paradigm relies on the observation that once the
non-zero locations are identified, the original recoverghtgm translates into a simple linear inversion with a
closed form solution.

Our first main contribution is a theoretical result showihgttfor every given IMV problem there is an explicit
MMV counterpart with the same non-zero location set. Thidurdion to finite dimensions is achieved without
any discretization or heuristic techniques and thus allawgrinciple an exact recovery of the entire set of
sparse vectors. Other papers that treated problems ingplafinite vector sets used discretization techniques to
approximate the solution [16] or alternatively assumed raheulying discrete finite-dimensional signal model [17].

In contrast, our approach is exact as neither the IMV modetim® solution is discretized. Once the IMV problem
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Fig. 1: The entire flow of the paper consists of: (I) a deterstin reduction from IMV to MMV, (II) a random
reduction from MMV to SMV and (lll) a boosting stage. The ReMRBlgorithm is a formal description of the
last two steps.

is reduced to an MMV problem, results developed in that cdntan be applied.

To further improve the recovery performance both in termsmpéed and recovery rate, we develop another
theoretical result allowing to identify the non-zero ldoas of a given MMV model from a sparse vector of a
specific SMV system. As opposed to the IMV reduction, ourtega here is to construct a random SMV problem
that merges the set of sparse vectors using random coefficie prove that this reduction preserves the crucial
information of the non-zero location set with probabilitgeo

Our final contribution treats the practical aspect of usirggil-optimal technique to find the sparse vector of an
SMV problem. While examining popular SMV recovery techréguwe observed that the recovery ability depends
on the exact non-zero values and not only on their locatiBased on this observation we argue that it is beneficial
to draw several realizations of the merged measuremenoydnt using different random combinations, until a
sparse vector is identified. These iterations are refemedstthe boost step of our method, since, empirically,
each iteration improves the overall recovery rate of the-zeno location set. We formulate a generic algorithm,
referred to as ReMBo, for the Reduction of MMV and BoostingeTReMBo algorithm vyields different recovery
technigues for MMV based on the embedded SMV technique.

The results presented in this paper provide a complete flawdsn the recovery problem of different models.
Fig. 1 depicts the entire flow which can be initiated from aegiMMV system or an arbitrary MMV problem.
Numerical experiments demonstrate the performance aagardf methods derived from the ReMBo algorithm
over familiar MMV techniques in terms of empirical recoveage and run time. In addition, we present a simulation
emphasizing the advantage of the IMV reduction over a digeton technique.

The outline of the paper is as follows. The IMV model is intwodd in Section Il, where we also discuss
conditions for a unique solution. The deterministic regucimethod of IMV to MMV and the random reduction
of MMV to SMV are developed in Sections Il and |V respectixerhe description of the ReMBo algorithm

follows in Section V. Numerical experiments are providedSiection VI.

Il. INFINITE-MEASUREMENTVECTORSMODEL

Let A be a givenm x n matrix with m < n and consider the parametric linear system:

y(A) = Ax(\), €A, Q)
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whereA is some known set. Our goal is to recover the unknown vectox&e) = {x(A\)} ea Which is referred

to as the solution set, from the measurementsy$at = {y ()} ca. The cardinality of the parameter sétis
arbitrary including both finite (single or multiple elemgisets and infinite sets (countable or uncountable). For
example A can be the index of a discrete set, or alternatively a vagialokr a continuous interval.

Clearly, the recovery problem is not well defined unlessdhsra unique solution set(A) for eachy(A).
However, the system of (1) does not posses a unique solutiggemeral, since for every, (1) contains less
equations than unknowns. Specifically, eagh\) is a vector of lengthm, while the corresponding(\) is of
lengthn > m. Therefore, in order to guarantee a unique solution an iaddit prior onx(A) must be associated
with (1). Throughout this paper, we assume the joint spagitor, which constrains eack()\) to have only a
few non-zero entries and in addition requires that all thetars inx(A) share a common non-zero location set.
The system of (1) is termed IMV wheA is infinite and the joint sparsity prior is assumed. In theustgthis

prior is formally described and is used to derive a sufficeoridition for the uniqueness of the IMV solution set.

A. SMV Model

We start by describing notation and a uniqueness resulhfspecial case of a single element &etn which
(1) is abbreviated ag = Ax. This corresponds to the well studied SMV model.
A vectorx is called K-sparse if it contains no more thdt non-zero entries. For a given vectorthe support

function

I(x) = {k|xy # 0}, (2)

describes the locations of the non-zero entries wherstands for thekth entry of x. Thus, aK-sparse vector
x conforms with a support sizd (x)| < K. A sufficient condition for the uniqueness offé-sparse solution in
this setting can be stated in terms of the Kruskal-rank of &iravhich was first used in the seminal work of
Kruskal [18]:

Definition 1: The Kruskal-rank ofA, denoteds(A), is the maximal numbey such that every set af columns
of A is linearly independent.

Theorem 1:If the vectorx is a K-sparse solution of = Ax ando(A) > 2K, thenx is the uniqueK -sparse
solution of the system.
Theorem 1 and its proof are given in [3],[14] with a slightl§ferent notation ofSpark(A) instead of the Kruskal-

rank.



TABLE |: Sparsity Models and Priors

Model | A Cardinality | Linear System| K-sparsity prior
SMV 1 y = Ax H(X)| <K
MMV d Y = AX I(X)| < K
IMV Infinite y(A) = Ax(A) | [I(x(A))| < K

B. Uniqueness in IMV Models

The joint sparsity prior becomes relevant wh&rcontains more than a single element. By abuse of notation,

we define the support function of a vector set as the union thesupport of each vector. Specifically,

I(x(A)) = |J I(x() 3

AEA

={1 <k <n|xg(Ao) #0, for somely € A}.

For brevity, a jointly sparse solution s&tA) with |I(x(A))| < K is also calledK-sparse. AK-sparse vector
setx(A) implies two properties: (I) Eaclk()\) is a K-sparse vector, and (Il) the non-zero entriesx¢f) are
confined to a fixed location set of size no more tHanThe system of (1) is called MMV in the literature when
the joint sparsity prior holds over a finite set of sparse wexcf13],[14]. Similarly, we refer to the system of (1)
as IMV whenA is an infinite set anc(A) is jointly sparse. Table | summarizes the models derivechf(d) for
different cardinalities of the set. The abbreviations used for the linear systems of MMV and IM¥ clear from
the context. Evidently, the joint sparsity prior is whattaiguishes MMV and IMV models from being a set of
independent SMV systems.

The first property of the joint sparsity prior implies thatA) > 2K is sufficient to guarantee the uniqueness
of a K-sparse solution set(A), since we can consider the SMV problenmi\) = Ax(\) for each\ separately.
Exploiting the joint sparsity, we expect that a valueodfA) less than2 K would suffice to ensure uniqueness.
Extending uniqueness results regarding MMV [13],[14] k&al the following proposition:

Proposition 1: If x(A) is a K-sparse solution set for (1), and
o(A) = 2K — (dim(span(y(A))) — 1), (4)

thenx(A) is the uniquek -sparse solution set of (1).

The notationspan(y(A)) is used for the subspace of minimal dimension containingtitee vector sey(A). Note

thatspan(y(A)) is guaranteed to have finite dimension siy¢e) has finite length. For jointly sparse solution sets,

Proposition 1 indeed claims that the required Kruskal-rahlA can be generally lower tha2’ of Theorem 1.
Proof: The solution setx(A) is K-sparse which implies thadim(span(x(A))) < K. It follows from

the linear system of (1) that the dimension of the subspaee(y(A)) cannot be higher thaspan(x(A)), i.e.
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r = dim{span(y(A))} < K. From (4) we get that(A) > K. Consequently, for eagh(\) = 0 the corresponding
unique K-sparse vector i(\) = 0, as the null space oA cannot contain othek'-sparse vectors. Therefore,
without loss of generality we can prove the claim for a measwent se/(A) with » > 1 which does not contain
zero vectors.

Forr > 1 there exists a finite set = {);}7_, C A such that the vector sgt(A) is linearly independent. Since
A is a finite sety(A) = Ax(A) is an MMV system. According to [13],[14], the correspondsjution setk(A)
is unique under the condition (4). Sing¢A) does not contain zero vectors, every vegtoA) belongs to some
subset ofr linearly independent vectors. The argument above impliesuniqueness of the corresponding subset
of x(A), and consequently the uniqueness of the entire solution set |

Note that (1) can be viewed as a sampling process, wkéfke is the signal,A the sampling operator and
y(A) is the generated set of samples. In this context, the degiginleasampling operator requires to determine
the number of rows iMA such that the samples match a unique signal. However, (4)otdoe used for this task
since the value oflim(span(y(A))) is not known a-priori. In other words, if a matrixX needs to be designed
such that uniqueness is guaranteed to evérgparse solution set, including those withm{span(y(A))} = 1,
then the condition (4) is reduced tqA) < 2K of Theorem 1.

In the remainder of the paper, we assume that a unique solofigl) is guaranteed by either Theorem 1 or
Proposition 1. In the next sections, we develop the mainrimritons of our work which address the recovery of

the uniqueK-sparse solution set(A).

[1l. DIMENSION REDUCTION FORINFINITE A
A. Optimization Viewpoint

Before discussing the IMV model we review the optimizatioewpoint for the SMV and MMV problems.
If x is the uniqueK -sparse solution of the SMV problegn= Ax, then it is also the unique sparsest solution.

Therefore, recovery ok can be formulated as an optimization problem [1]:
X = argmin ||x||s, S.t.y = Ax, (5)
X

where the pseudo-norfg counts the number of non-zero entriesinin our notation the objective can be replaced
by |1(x)|. Since (5) is known to be NP-hard [1],[2], several altewegihave been proposed in the literature. Donoho
[1] and Candést. al. [2] rigorously analyze the basis pursuit technique whicbsuthel; norm instead of the,

in (5) resulting in a tractable convex program. Various dgsetechniques to approximate the sparsest solution have
also been studied thoroughly [4],[5],[6]. Empirically] #hese methods show a high recovery rate of the unique

sparsest solution when tested on random data. Analogdusigs shown that the combinatorial problem

X = arg m}én [I(X)| s.t. Y = AX, (6)
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recovers the uniqué&’-sparse solution matrix of an MMV system [14]. This optintiaa problem is also NP-hard
and can be tackled with similar efficient sub-optimal teclueis [13],[14].
Extending the optimization viewpoint to the IMV model leatdsthe equivalent problem:
X(A) = arg min [ (x(A))] @)

s.t. y(A) = Ax(N), VA € A.

Note that in (7) there are infinitely many unknowsg&\), and infinitely many equations. In contrast to the finite
formulation of both (5) and (6), a program of the type (7) wasamalyzed in the optimization literature. The most
relevant programming structures are semi-infinite prognarg [19] and generalized semi-infinite programming
[20]. However, these formulations allow only for infinitergiraints while the optimization variable is finite. This
inherent intricacy of (7) remains even if the objective iaxed by known strategies. To overcome this difficulty,
we suggest to transform (7) into one of the forms known in itexdture. Specifically, we show that the joint
sparsity prior allows to convert (7) into a problem of thenfio(6), in which both the variable and the constraint
set are finite.

A straightforward approach to reduce (7) to a finite-dimenal problem is to choose a finite gritlc A, and
then solve only fok(A). This yields an MMV system corresponding to the optimizagwoblem (6). In turn, this
program can be relaxed by any of the known CS techniques. aksfiep is to approximate(A) by interpolating
the partial solution sex(A). However, a discretization approach typically results ina@proximationx(A) that
is different from the unique solutioR(A). Moreover,x(A) typically does not satisfy (1) between the grid points,
that is for A ¢ A. This drawback of discretization happens even if a brutefanethod is used to optimally
find the solution se&(A) on the gridA. Furthermore, the density of the grid directly impacts tlenplexity
of discretization techniques. For these reasons, we avsatddization and instead propose an exact method that
transforms the infinite structure of (7) into a single MMV ®m without loosing any information. A numerical

experiment illustrating the difference between our exaethod and discretization is provided in Section VI-C.

B. Paradigm

In order to solve (7) exactly we split the problem into two garbblems. One is aimed at finding the support
setS = I(x(A)). The other reconstructs(A) from the datay(A) and the knowledge of. The reason for this
separation is that onc& is known the linear relation of (1) can be inverted exactly.sEe this, letAs denote
the matrix containing the subset of the columnsAofwhose indices belong t§. Since the solution set(A) is
K-sparse we have that| < K. In addition, from Proposition 1g(A) > K. ThereforeAg consists of linearly
independent columns implying that

(As)'As =1, (8)
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where(-)" is the Moore-Penrose pseudo-inverse operation. Exgli¢itls)" = (AgAs)_1 Al whereA denotes

the conjugate transpose @éfs. Using S the system of (1) can be written as
y(A) = Asx®(A), A€ A, ©)

where the superscript®()\) is the vector that consists of the entriesxdf\) in the locationsS. Multiplying (9)
by (Ag)" from both sides gives
x°(A) = (As)Ty(V), reAn. (10)

In addition, it follows from the definition of the support sEtx(A)) that
xi(A\) =0, Vi¢S \eA. (11)

Therefore (10)-(11) allow for exact recovery ®fA) once the finite sef is correctly recovered.

C. Method

The essential part of our method is the first sub-problemré@iversS from the measurement sgtA). Our key
observation is that every collection of vectors spanniregygbbspacepan(y(A)) contains sufficient information
to recoverS exactly, as incorporated in the following theorem:

Theorem 2:Suppose (1) has a uniqué-sparse solution set(A) with S = I(x(A)) and that the matrid.,,, .,
satisfies (4). LetV be a matrix ofm rows such that the column span ¥f is equal tospan(y(A)). Then, the
linear system

V =AU (12)

has a uniquek-sparse solutioJ and I(U) = S.
Proof: Let r = dim(span(y(A))) and construct ann x r matrix Y by taking some set of linearly
independent vectors from(A). Similarly, construct the matriXX of sizen x r by taking the corresponding

vectors fromx(A). The proof is based on observing the linear system
Y = AX. (13)

We first prove thaiX is the uniqueK -sparse solution matrix of (13) and thAtX) = S. Based on this result, the
matrix U is constructed, proving the theorem.

It is easy to see that(X) C S, since the columns dX are a subset at(A). This means thaX is a K-sparse
solution set of (13). MoreoveiX is also the uniquek’-sparse solution of (13) according to Proposition 1. To
conclude the claim oiX it remains to prove that € S implies k € I(X) as the opposite direction was already
proved. Ifk € S, then for some\g € A the kth entry of the vectox()g) is non-zero. Now, ifx(\g) is one of
the columns ofX, then the claim follows trivially. Therefore, assume thd#,) is not a column ofX. We next

exploit the following lemma:
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Lemma 1 ([15]): For every two matrices\, P, if |I(P)| < o(A) thenrank(P) = rank(AP).

Clearly, Lemma 1 ensures thatnk(X) = r. In addition it follows from the same lemma théiin {span(x(A))} =
r. Thus,x()\g) must be a (non-trivial) linear combination of the columnsXof Since thekth entry ofx(\g) is
non-zero, it implies that at least one columnXfhas a non-zero value in ifsh entry, which meang € I(X).

Summarizing the first step of the proof, we have that evelinearly independent columns gf(A) form an
MMV model (13) having a uniqués-sparse solution matriX, such that/(X) = S. As the column span of
V is equal to the column span &f we have thatank(V) = r. SinceV andY have the same rank, ary
also has full column rank, we get th&t = YR for a unique matrixR of r linearly independent rows. This
immediately implies thall = XR . is a solution matrix for (12). Moreovel] is K-sparse, as each of its columns
is a linear combination of the columns &. Proposition 1 implies the uniqueness Gf among theK-sparse
solution matrices of (12).

It remains to prove that(U) = I(X). To simplify notation, we writeX’ for theith row of X. Now, U’ = X'R,
for everyl < i < n. Thus, if X’ is a zero row, then so iB*. However, for a non-zero roX‘, the corresponding
row U’ cannot be zero since the rows Bf are linearly independent. |

The advantage of Theorem 2 is that it allows to avoid the it&istructure of (7) and to concentrate on finding
the finite setS by solving the single MMV system of (12). The additional regment of Theorem 2 is to construct
a matrix V having a column span equal $pan(y(A)) (i.e. the columns oV are a frame fospan(y(A))). The
following proposition suggests a procedure for creatingadrix V with this property.

Proposition 2: If the integral

Q= y(N)y™ (A)dA, (14)
AEA

exists, then every matri% satisfyingQ = VV has a column span equal ¢pan(y(A)).

The existence of the integral in (14) translates into a fiaeitergy requirement. Specifically, for countalAlehe
integral exists if the sequendg(\;)}7°, is energy bounded in th& sense for every < k < m. For uncountable
A, yr(\) can be viewed as a function of which is required to be integrable and of bounded energy énlth
sense for every < k& < m. Note that the matriXQ of (14) is positive semi-definite and thus a decomposition
Q = VV always exists. In particular, the columns ¥fcan be chosen as the eigenvector&omultiplied by
the square-root of the corresponding eigenvalues.

Proof: For finite A the claim follows immediately from the fact that every twotni@es M, N with MM =
NN have the same column space. Therefore, it remains to extesgroperty to infiniteA.

Let r = dim(span(y(A))) and define a matriXxY,,x, as in the proof of Theorem 2. The columns ¥f are

linearly independent and thdg' is well defined. Define the vector sd{\) = YT(y()\)),\ € A, where each

d()\) is a vector of lengthr. By construction, the integral

/ d\)d?(Nad) = YTQ(YHH = DD (15)
AEA
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Find a frame for y(A) Reconstruct the set S = I(x(A))

v _ - s
Q= feayyWian]| @=vve ‘ ! | Solve MMV V = AU for S=I10) | —
iPIoposition 2 Theorem 2

| | sparsest solution matrix U

Fig. 2: The fundamental stages for the recovery of the noo-leeation setS using only one finite-dimensional
problem.

exists. The last equality in (15) is due to the positive sdgfiniteness of the integrand. Substituting into (14) we
have thatVV# = (YD)(YD)" which implies that the column spans %f and (YD) are the same. Since the
column span ofY equals tasspan(y(A)), d(A) contains the columns of the identity matrix of size r, and thus

D is invertible. In turn, this implies thatpan(Y) = span(YD). [ |

The computation of the matriQ depends on the underlying application. In [15] we considéhés approach
for the reconstruction of an analog multi-band signal frooinpwise samples. This class of signals are sparsely
represented in the frequency domain as their Fourier toamsfs restricted to several disjoint intervals. Imposing
a blind constraint, namely that both sampling and reconstm are carried out without knowledge of the band
locations, yields an IMV system that depends on a contindi@ggiency parameter. As described in [15], in this
applicationQ can be computed by evaluating correlations between the Isggequences in the time domain.
The existence of the integral in (14) corresponds to theche@gjuirement that the point-wise sampling process
produces bounded energy sampling sequences.

Fig. 2 summarizes the reduction steps that follow from Thaof and Proposition 2. The flow of Fig. 2 was
first presented and proved in our earlier work [15]. The warsive provide here has several improvements over
the preliminary one of [15]. First, the flow is now divided dantwo independent logical stages and the purpose of
each step is highlighted. Second, each stage has a staml@loof as opposed to the technique used in [15] to
prove the entire scheme at once. Mathematically, this st¢iparallows us to remove the restriction imposed in
[15] on V to have only orthogonal columns. Moreover, each block caneptaced by another set of operations
having an equivalent functionality. In particular, the qautation of the matriXxQ of Proposition 2 can be avoided

if other methods are employed for the construction of a fr&néor span(y(A)).

IV. DIMENSION REDUCTION FORFINITE A
A. Objective

We now address the finite case of an MMV system
Y = AX, (16)

with A anm x n rectangular matrix as before. Following the convention abl€ I, Y is anm x d matrix, and

the dimensions oX aren x d. We assume that a uniqu&-sparse solution matriX with no more thank’
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non-identical zero rows exists. The unique solutdncan be found by the optimization problem (6), which has
known relaxations to tractable techniques. Our goal in $eistion is to rely on ideas developed in the context
of the IMV model in order to reduce the dimension of the optiation variable of (6) before performing any
relaxation. Note that the MMV system (16) is arbitrary and tesults developed in the sequel do not assume a
preceding stage of reduction from IMV.

Applying the same paradigm of the infinite scenario, we aintettover the support st = I(X). This set
contains the crucial information in the sense that ofige recovered the solution is obtained by (10)-(11), namely
by inverting the relevant columns ok. An immediate corollary of Theorem 2 is that' ¥ does not have full
column rank, then (16) can be reduced by taking an apprepe@ltimn subset oY . However, we wish to improve
on this trivial result. Specifically, we intend to find the papt setS from a single SMV optimization of the form
(5). Such a reduction method is beneficial as the dimensibtiseounknown variable in (5) i& while in (6) it

is nd.

B. Method

Our approach is to randomly merge the columngyointo a single vectoy. We then show that the sétcan
be extracted from the random SMy = Ax. In order to derive this result rigorously we rely on the daling
definition from probability and measure theory [21],[22]:

Definition 2: A probability distribution? is calledabsolutely continuoui every event of measure zero occurs
with probability zero.

A distribution is absolutely continuous if and only if it cdre represented as an integral over an integrable
density function [21],[22]. For example, Gaussian and anmif distributions have an explicit density function that
is integrable and thus both are absolutely continuous. &gy, discrete and other singular distributions are not
absolutely continuous. The following theorem exploitsthioperty to reduce (6) into (5):

Theorem 3:Let X be the uniquek-sparse solution matrix of (16) with(A) > 2K. In addition, leta be a
random vector of lengtld with an absolutely continuous distribution and define thedoan vectorsy = Ya and

% = Xa. Then, for the random SMV systesn= Ax we have:

1) For every realization o, the vectorx is the uniqueK-sparse solution of the SMV.
2) I1(x) = I(X) with probability one.
Proof: For every realization of, the vectorx is a linear combination of the jointlys-sparse columns of
X, and thusx is K-sparse. It is easy to see thatsatisfies the SMV system and that Theorem 1 implies its
uniqueness among thE-sparse vectors.

DenoteS = I(X) and observe that the previous argument implies fli&) C S for every realization of.

Therefore, it remains to prove that the evé(&) = S occurs with probability one. Expressing this event in terms
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of the rows ofX gives

Prob{I(x) = S} = Prob{a ¢ N (X"), Vie S} (17)
=1- Prob{a c UN(X")},
€S

whereX' denotes theth row of X, and\ (X’) = {v|X'v = 0} is the null space of that row. Now, for every
i € S, the rowX" is not identically zero, and thus the dimension/\¢f(X’) is d — 1. In other words, for every
i € S, we have thatVV (XZ) has a zero measure in the underlying sample spaeg which can be eitheR? or
C9. The union in (17) is over the finite sétand thus has also a measure zero. The absolutely contirfuibe o
distribution ofa concludes the proof. |

The randomness od plays a main role in the reduction method suggested by Thed@eln fact, random
merging is a best choice in the sense that for every detestiddinear merging there are infinite counterexamples
in which the merging process would fail to preserve the supget.S. For example, a simple summation over the
columns of Y may fail if the non-zero values in a single row Xf sum to zero. In contrast, Theorem 3 ensures
that for every given MMV system and with probability one, tlemdom reduction yields an SMV with the same
non-zero location set.

The result of Theorem 3 resembles a result of [23], in whidah dalathors suggested merging the columns of
Y using an ordinary summation. The non-zero locations wege #stimated using a one step greedy algorithm
(OSGA). It was shown that if the entries & are random, drawn independently from a Gaussian distaibyti
then the setS can be recovered by OSGA with probability approaching onbag asd — oo, that is when the
number of columns in each of the matric¥s X is taken to infinity. In contrast, our method does not assume a
stochastic prior on the solution s&. Moreover, Theorem 3 holds with probability one for arbigrdinite and

fixed values ofd.

V. THE REMBO ALGORITHM

Theorem 3 paves the way to a new class of MMV techniques basedduction to an SMV. In this approach,
the measurement matri¥ is first transformed into a single vectgr by drawing a realization o4 from some
absolutely continuous distribution. Then, an SMV problefrthe type (5) is solved in order to find the support
setS. Finally, the recovery oK is carried out by inverting the matriA g as in (10)-(11).

Since (5) is NP-hard it is not solved explicitly in practidestead, many efficient sub-optimal techniques have
been proposed in the literature that are designed to beablacbut no longer guarantee a recovery of the unique
sparsest solution. Interestingly, we have discoveredrépgating the reduction process of the previous sectidm wit
different realizations o4& is advantageous due to the following empirical behaviohese sub-optimal techniques.
Consider twoK -sparse vectorg, x having the same non-zero locations but with different valienote byS an

SMV technique which is used to recoverx from the measurement vectosx, Ax respectively. Empirically, we
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observed thaSs may recover one of the vectogsx while failing to recover the other, even though their noneze
locations are the same. As far as we are aware, this beha@srmat studied thoroughly yet in the literature.
In fact, Monte-Carlo simulations that are typically conthetin the evaluation of CS techniques may imply a
converse conclusion. For example, Caneésal. [2] analyzed the basis pursuit method for SMV whanis a

row subset of the discrete time Fourier matrix. A footnotdhie simulation section points out that the observed
behavior seems to be independent of the exact distributiomhich the non-zero entries are drawn from. This
remark was also validated by other papers that conducteithsiexperiments. The conjecture that Monte-Carlo
simulations are insensitive to distribution of the nonezealues appears to be true. Nevertheless, it is beneficial
for a given SMV system to applg on both measurement vectafsx, Ax. Once the crucial information of the
non-zero locations is recovered, the final step of invertggleads to the correct solution of bo#h x.

The ReMBo algorithm, outlined in Algorithm 1, makes use & tleduction method and also capitalizes on the
empirical behavior discussed above. In steps 4-7, the MMafesy is reduced into an SMV and solved using a
given SMV techniqueS. These steps produce a sub-optimal soluttgrwhich is examined in step 8. ¥ is not
sparse enough or is not well aligned with the measuremdres, the reduction steps are repeated with another
draw of the random vectai. We term these additional iterations the boosting step efalgorithm. Theorem 3
ensures that each of the different SMV systems of step 6 hparaessolution that preserves the required support
set.S with probability one. The iterations improve the chancesecoverS by changing the non-zero values of
the sparse solutions. Note that if the number of iteratiorceed the pre-determined parametéaxiters, then
the algorithm is terminated. The content of theg variable indicates whethéX represents a valid solution. If
flag=false, then we may solve the MMV system by any other method.

In general, CS techniques can be clustered into two groulpssd of the first group search for the sparsest
feasible solution. The other group contains approximati@thods that fix the sparsity to a user-defined value and
determine a solution in this set that is best aligned withdat. For example, basis pursuit [24] belongs to the
first group, while matching pursuit [25] with a fixed numberitefations belongs to the second group. The ReMBo
algorithm can be tuned to prefer either feasibility or sppar@ccording to user preference by selecting appropriate
values for the parametels, c. However, it is recommended to avoid an approximation tegh of the second
group when constraining onli{ to a desired value. The reason is that such a method makesnbdéion of step
8 always true, and thus no boosting will occur.

We now compare the behavior of ReMBo with standard MMV teghas in terms of computational complexity
and recovery rate. Clearly, the complexity of SMV is loweeda the reduced number of unknowns. The reduction
method itself is no more than one matrix multiplication whio practice is a negligible portion of the overall
run time in typical CS techniques. Performance of differelgiorithms can also be evaluated by measuring the
empirical recovery rate in a set of random tests [1],[2]][13]. As we detail in the following section, for some
parameters choices a single reduction iteration achiemesvarall recovery rate that is higher than applying a

direct MMV technique. For other parameter selections, glsiiteration is not sufficient and boosting is required
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Algorithm 1 ReMBo (Reduce MMV and Boost)
Input: Y, A
Control Parameters. K, ¢, Maxlters, S, P
Output: X, S, flag
1. Setiter=1
2. Setflag=false
3: while (iter < Maxlters) and flag is false) do

4: draw a random vectas of lengthd according toP.

5 y=Ya

6: Solvey = Ax using SMV techniques. Denote the solutiork.
7. S=I&)

8 if (IS] < K) and (ly — Ak||> < ¢) then

9 flag=true

10: €lse

11: flag=flase

12:  end if

13:  ConstructX using S and (10)-(11)
14:  iter=iter+1

15: end while

16: return X, S, flag

to increase the recovery rate of a ReMBo technique beyoridotha standard MMV. The results indicate that

ReMBo based techniques are comparably fast even when bgastemployed.

VI. NUMERICAL EXPERIMENTS

In this section we begin by evaluating the reduction and tigsapproach for MMV systems. The behavior
of the ReMBo algorithm is demonstrated when the produced S#%olved using a sub-optimal method. Two
representative MMV techniques are derived from Algorithrantl compared with other popular MMV techniques.
We then present an experiment that demonstrates the beoktit® IMV reduction flow over a discretization

technique.

A. Evaluating ReMBo

We choosen = 20,n = 30,d = 5 for the dimensions of (16). The following steps are repe&@@ times for
each MMV technique:

1) A real-valued matrixA of size20 x 30 is constructed by drawing each of its entries independdriiyn a
Gaussian distribution with zero mean and variance one.

2) For each value of < K < 20 we construct a -sparse real-valued solution matd; of size30 x 5. The
non-zero values oK i are also drawn from a Gaussian distribution in the same waygribed before.

3) The MMV technique that is being tested is executed in otdeecover eaciX  from the measurement
dataAX . For ReMBo techniques? is an i.i.d. uniform distribution if—1,1]%.
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TABLE Il: Sub-Optimal Techniques

Model | Tag Formal Description Type
BP Basis Pursuit, (5) with objectivgx||;, see [1],[2]| Convex relaxation
SMV | OMP Orthogonal Matching Pursuit, see [13] Greedy
FOCUSS FOcal Underdetermined System Solver, see [6] Greedy
M-BP-¢; [14] | (6) with objective|| Ry, (X)|1 Convex relaxation
M-BP-/, [5] | (6) with objective|| R, (X)]1 Convex relaxation
M-OMP MMV version of OMP, see [13] Greedy
MMV | M-FOCUSS | MMV version of FOCUSS, see [13] Greedy
ReMBo-BP ReMBo with § =BP Convex relaxation
ReMBo-OMP | ReMBo with S =OMP Greedy

4) A correct solution is announced X  is recovered exactly up to machine precision.

The empirical recovery rate for each value Bf is calculated as the percentage of correct solutions. We als
collected run time data in order to qualitatively comparénseen the time complexity of the tested techniques.
Rigorous complexity analysis and comparison are beyondstope of this paper. Note that the selection of
real-valued matrices is not mandatory and the results & \allid for complex values. However, we stick to
the real-valued setting as it reproduces the setup of [ig],[In addition, the same empirical recovery rate is
noticed when the non-zero entries Xfi are drawn from a non-Gaussian distribution (e.g. uniforstritiution).
This behavior strengthens the conjecture that Monte-Carldysis is insensitive to the specific distribution of the
non-zero values.

To simplify the presentation of the results, Table Il lidie techniques that are used throughout the experiments.
Short labels are used to denote each of the techniques. Tatond?,, (X) stands for a vector of length such
that itsith entry is equal to thé, norm of theith row of X. In the sequel we denote thMaxiters parameter
of ReMBo based techniques in brackets, for example ReMB@BR default value ofMaxlters = rank(Y) is
used if the brackets are omitted. This selection represeniatuitive choice, since afteank(Y) iterations, step
5 of Algorithm 1 produces a vectgr that is linearly dependent in the realizations of the presitierations. This
intuition is discussed later in the results.

Note that there is a difference in deciding on a correct gmiutor SMV and MMV. In the latter, a solution is
considered correct only when all the vectors in the matrix reicovered successfully, while in SMV a recovery
of a single vector is required. Nevertheless, as both pnablamount to recovering the finite support set, we plot
the recovery rate curves of SMV and MMV techniques on the saoade. An alternative approach would be to
adjust the SMV recovery curve so that it represents the d\srecess rate when the SMV technique is applied to
each of the columns separately. Adjusting the results daugrto this approach will only intensify the improved

recovery rate of ReMBo based techniques.
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Fig. 3: Comparison of MMV techniques based on convex relarat The ReMBo techniques are in solid lines.
As expected, the recovery curves of ReMBo-BP[1] and BP dédé@c

B. Results

In Fig. 3 we compare between MMV techniques based on convaxaton of (6). For reference we also draw
the recovery rate of BP on a single measurement column. lees shat both M-BR() and M-BP{.,) suffer
from a decreased recovery rate with respect to BP. In cdntiees recovery rate of ReMBo-BP improves on BP
due to the boosting effect. In addition, as revealed from Fithe average run time of ReMBo-BP is also lower
than the run time of either M-BP{() and M-BP(,). Clearly, this simulation shows that besides the theaaktic
interest in the special convex relaxation of M-BPand M-BP+,, in this example these method do not offer
a practical benefit. Furthermore, the M-BP techniques regthie selection of a row norm besides the standard
selection of¢; norm for the final column vector. The reduction method alldasavoid this ambiguous selection
by first transforming to an SMV problem.

Matching pursuit (including its variations) and FOCUSS éargh greedy methods that construct the Set
iteratively. These techniques are typically faster thasidbaursuit based methods as seen in Fig. 7. In addition,
extending the SMV version of these techniques into MMV is iadiate. As opposed to convex relaxation methods,
these approaches demonstrate an improved recovery rate avfzent sparsity prior is introduced. This behavior
is depicted in Fig. 4. A comparison of these methods with ReMé&hniques is shown in Fig. 5. It is seen that
ReMBo0-OMP outperforms M-OMP and M-FOCUSS over the rahge K < 13. Specifically, in the intermediate
rangel0 < K < 13 it reaches a recovery rate that is approximately 10% highan the maximal recovery rate
of the non-ReMBo techniques. In addition, the run time of ReMBo-OMP is not far from the direct greedy
approaches as seen from Fig. 7.

In order to emphasize the impact of iterations, Fig. 6 degiwe recovery rate of ReMBo-BP and ReMBo-OMP
for different values ofMaxlters. The recovery rate ak’ = 10 is of special interest as according to Theorem 3

o(A) > 2K is required to ensure that the random instances of SMV preserve thé.sgor example, a single

*According to [1],[2], a matrix with random entries has a fedilumn rank and a full Kruskal rank with an overwhelming pabliity. In
our setup the maximal value of(A) is m = 20. Empirically, it was also noticed thatnk(Y) = 5 in all generated measurements.
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Fig. 5: A comparison between popular MMV techniques and ReMBrived methods.

iteration of ReMBo0-BP achieves a recovery rate of 54%, wtile and five iterations improve the recovery rate
to 74% and 91% respectively. A higher number of iteratiorsults in a minor improvement conforming with
our intuitive default selection oflaxiters = rank(Y). However, the condition of{ < 10 is only sufficient and
empirical recovery is allowed to some extent even for> 10. This behavior is common to all the techniques
tested here as shown in Figs. 3-6. In this rang&of 10, repeating the reduction process for more thark(Y)
can be beneficial. For example, ReMBo-BP[20] yields a regovate of 56% forK = 14 instead of 25% when

allowing only MaxlIters=5.

C. IMV Reduction vs. Discretization

We now extend the previous setup in order to simulate an IM\dehdy lettingd = 10000. To discretize the
IMV system, g evenly spaced columns &f are chosen resulting in an MMV system whose sparsest soligio

searched, where < g < 200. Since the non-zero values are drawn randomly, intermolaif the missing columns
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is no useful in this setting. Instead, we consider an appration of the non-zero location sét by taking the
support of the solution matrix on the chosen grid. Finalhe entire solution set is recovered by (10)-(11). In
order to capitalize on the difference between the IMV reiducflow of Fig. 1 and this discretization technique,
we considerk -sparse solution matricé$ i such that each non-zero row &z has only a few non-zero entries
(e.g. up to 150 non-zero values). For a fair comparison, th@NP technique is used for the recoveryXf; in
both methods.

The empirical recovery rate for several valuegya$ shown in Fig. 8. It is evident that a discretization tecjuei
of this type requires a grid of = 200 to approach a reasonable recovery rate, which is still bét@wecovery
rate of the IMV flow. In order to explain the superior performa of the IMV flow we plot a typical structure of
a solution set in Fig. 9. It is clear that discretization maj &s it does not capture the entire information of the
solution set. In contrast, our approach preserves the sagesformation required for perfect reconstruction of
the solution set, namely the non-zero location set. Fumbeg, comparing the average run time of both approaches
reveals that IMV is even faster than discretization havirginailar recovery rate. Note that the density of the grid

influences the run time of discretization methods. In thergda above ofy = 200, discretization yields an MMV
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Fig. 9: A typical structure of the solution set and a grid sgte. The grid cannot be synchronized with the
non-zero locations. In this example, discretization tégphe would fail to reconstructs(\) whereas the IMV flow
guarantees an exact recovery of the supportSset

system with 200 columns. The IMV flow does not have this draskbas it follows from Lemma 1 that the matrix

V can be chosen such that it consists of no more thian 20 columns.

VIlI. CONCLUSIONS

The essence of the reduction theorems developed in thig [mpleat the recovery of an arbitrary number of
jointly sparse vectors amounts to solving a single sparstovef an SMV. This result applies to the finite case of
MMV and to the broader model of IMV which we introduced herbéelkey observation used in our developments
is that the non-zero location set is the crucial informationthe exact recovery of the entire solution set. We
prove that this set can be recovered from a low dimensionablpm rather than directly from the given high
dimensional system.

The explicit recovery problem of sparse vectors is a diffi@mdmbinatorial optimization program. Various
methods to approximate the sparse solution of a given pnodyave been previously proposed. However, to the

best of our knowledge, a direct simplification of the expla@mbinatorial formulation, in the way described here,
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was not studied so far. Furthermore, in a typical CS settirggsensing process involves randomness while the

reconstruction is deterministic. The reduction methodNMdV shows that randomness can also be beneficial in

the reconstruction stage. In addition, popular recovechn@&ues have a fixed performance in terms of run time

and recovery rate. In contrast, the ReMBo algorithm is timals it allows to trade the run time by the overall

recovery rate. The simulations conducted on several ReM8ioas demonstrate this ability and affirm that these

methods outperform other known techniques.
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