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Quantization of Prior Probabilities
for Hypothesis Testing

Kush R. Varshney and Lav R. Varshney

Abstract

Bayesian hypothesis testing is investigated when the piobabilities of the hypotheses, taken as a random
vector, are quantized. Nearest neighbor and centroid tiondiare derived using mean Bayes risk error as a distortion
measure for quantization. A high-resolution approxinmatio the distortion-rate function is also obtained. Human
decision making in segregated populations is studied asguBayesian hypothesis testing with quantized priors.
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. INTRODUCTION

ONSIDER a hypothesis testing scenario in which an objeat iset observed to determine which one/df

states{ho,...,hr—1}, it is in. The object has prior probability,,, of being in state,,, i.e. p,, = Pr[H =
hom], and prior probability vectop = [po -~ par_1]”, with =} p,, = 1, which is known to the decision
maker. M -ary hypothesis testing with known prior probabilitieslsdbr the Bayesian formulation to the problem,
for which the optimal decision rule minimizes Bayes risk.[2]

Now consider the situation when there is a population of@bjesach with its own prior probability vector drawn
from the distributionfp(p) supported on théM — 1)-dimensional probability simplex. If the prior probabylit
vector of each object were known perfectly to the decisiokendefore observation and hypothesis testing, then
the scenario would be no different than that of standard Biapehypothesis testing. However, we consider the case
in which the decision maker is constrained and can only watk at mostK different prior probability vectors.
Such a constraint is motivated by scenarios where the decisiaker has finite memory or limited information
processing resources. Hence, when there are moreRhahjects in the population, the decision maker must first
map the true prior probability vector of the object being eved to one of thek available vectors and then
proceed to perform the optimal Bayesian hypothesis testtitrg that vector as the prior probabilities of the object.

Although not the only such constrained scenario, one examphat of human decision making. One particular
setting is a referee deciding whether a player has committéalil using his or her noisy observation as well as
prior experience. Players commit fouls at different raszame players are dirtier or more aggressive than others.
It is this rate which is the prior probability for the ‘foul numitted’ state. Hence, over the population of players,
there is a distribution of prior probabilities. If the reder tunes the prior probability to the particular player on
whose action the decision is to be made, decision-makinfpipeance is improved.

Human decision makers, however, are limited in their infation processing capacity and can only carry around
seven, plus or minus two, categories without getting cady8]. Consequently, the referee is limited and categsrize
players into a small number of dirtiness levels, with assied representative prior probabilities, exactly the aden
described above.

In this paper, the design of the mapping from prior probabilectors in the population to one &f representative
probability vectors is approached as a quantization probMean Bayes risk error (MBRE) is defined as a fidelity
criterion for the quantization of p(p) and conditions are derived for a minimum MBRE quantizer. 8@xamples
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of MBRE-optimal quantizers are given along with their penfi@ance in the low-rate quantization regime. Distortion-
rate functions are given for the high-rate quantizatiorimeg Certain human decision-making tasks, as mentioned
above, may be modeled by quantized prior hypothesis tesdtiregto certain suboptimalities in human information
processing. Human decision making is analyzed in detailsgregated populations, revealing a mathematical
model of social discrimination.

Previous work that combines detection and quantizatiokdaat the quantization of observed data, not prior
probabilities, and also only approximates the Bayes risiction instead of working with it directly, e.g. [4]-[6]
and references cited in [6]. In such work, there is a commatitin constraint between the sensor and the decision
maker, but the decision maker has unconstrained processipability. Our work deals with the opposite case,
where there is no communication constraint between theosaarsd the decision maker, however the decision
maker is constrained.

A brief look at imperfect priors appears in [7, Sec. 2.E], bptimal quantization is not considered. In [8], [9],
it is shown that small deviations from the true prior yieldahdeviations in the Bayes risk. We are not aware of
any previous work that has looked at quantization, clusggror categorization of prior probabilities.

In the remainder of the paper, we focus on binary hypothesisnig, \/ = 2. Section’ 1l defines the Bayes risk
error distortion and gives some of its properties. Sec¢tibdiscusses low-rate quantization and Secfioh IV discsisse
high-rate quantization. Some examples with a Gaussian uraagnt model are given in Sectibn V. Sectiod VI
considers the implications on human decision making anti@g¥lllprovides a summary and directions for future
work.

Il. BAYES RISK ERROR

In the binary Bayesian hypothesis testing problem for armgvject, there are two hypotheses and h; with
prior probabilitiespg = Pr[H = hy] andp; = Pr[H = hy] = 1 — po, @ noisy observatiory’, and likelihoods
fy i (ylho) and fy z(y|h1). Note that we consider a one-shot measuremgntather than a set of independent,
noisy measurements. A functid}(y) is designed that uniquely maps every possipte eitherhy or h; in such a
way that the function is optimal with respect to Bayes sk E|c(H;, H;)|, an expectation over the non-negative
cost functionc(h;, hj). This gives the following specification far(y):

h(-) = argrjlg(il)flE[C(H,f(Y))]> 1)

where the expectation is over bath andY . It may be shown that the optimal decision rIZtI@/) is the likelihood
ratio test:

Fri(lha) "YER T po(ero — coo)

Fritolio) ;> (= po)(eor — )’ ?
viHWYI0) 5 0)(Co1 — c11
Wherecij = C(hi, h])
There are two types of errors, with the following probalmkt

Pl = Pr[h(Y) = h|H = ho],

Pl = Pr[A(Y) = ho|H = hq].
Bayes risk may be expressed in terms of those error probabils:

J = (c10 — c00)pops + (co1 — c11)(1 — po)PE + coopo + c11(1 — po). )

It is often of interest to assign no cost to correct decisidrscyy = ¢11 = 0, which we assume in the remainder
of this paper. In this case, the Bayes risk simplifies to:

J(po) = c10pop's(po) + co1(1 — po)pi(po).- (4)

In (), the dependence of the Bayes risk and error probiasilitnp, has been explicitly noted. The error probabilities
depend orp, throughh(-), given in [2). The function/(py) is zero at the pointgy = 0 andpy, = 1 and is positive-
valued, strictly concave, and continuous in the inteféall) [2], [10], [11].



In the case when the true prior probabilityzig, butﬁ(y) is designed according t@1(2) using some other value
a substituted formg, there is mismatch, and the mismatched Bayes risk is:

J(po, a) = cropops(a) + co1(1 — po)pl(a). (5)

J(po,a) is a linear function ofyy with slope(ciopl;(a) — corpl(a)) and interceptg; pli,(a). Note thatJ (p, a) is
tangent to.J (pg) at a and thatJ(po, po) = J(po).

Definition 1: Let Bayes risk errot(po, a) be the difference between the mismatched Bayes risk fundtipy, a)
and the Bayes risk functiod (po):

d(po,a) = J(po,a) — J(po)
= c1opop(a) + co1 (1 — po)p(a) — c10popl(po) — co1 (1 — po)pl (Po)- (6)

We now give properties of(pg, a) as a function ofpy and as a function of.
Theorem 1:The Bayes risk errod(pg, a) is non-negative and only equal to zero whgn= a. As a function
of po € (0,1), it is continuous and strictly convex for ail

Proof: Since .J(po) is a continuous and strictly concave function, and linégy, a) are tangent to/(po),
J(po,a) > J(po) for all py anda, with equality whenp, = a. Consequentlyd(po,a) is non-negative and only
equal to zero whepy = a. Moreover,d(pg, a) is continuous and strictly convex iy € (0, 1) for all a because it
is the difference of a continuous linear function and a cardus strictly concave function. |

Theorem 2:For any deterministic likelihood ratio te(-), as a function of: € (0, 1) for all py, the Bayes risk
error d(pg, a) has exactly one stationary point, which is a minimum.

Proof: Consider the parameterized curié,, p;) traced out as: is varied; this is a flipped version of the
receiver operating characteristic (ROC). The fllpped RO@& sirictly convex function for deterministic likelihood
ratio tests. At its endpoints, it takes valugd, = 0, p, = 1) whena =1 and (p'; = 1,p!, = 0) whena = 0 [2],
and therefore has average slopé By the mean value theorem and strlct convexity, there gxstinique point
on the fllpped ROC at Wh,ch = —1. To the left of that point—co < pE e < —1, and to the right of that point:

-1 < £ <.
For determlnlstlc likelihood ratio testﬁdp'f(“ <0 andy (f 9 > 0 forall a € (0,1) and positive constants

and~ [2]. Therefore, |fg§p.’f < -1, ie. VZ’;E Bgal —1, thenfyd”E > Bd”E andﬁdp’f +’yd§%f > 0. In the same
manner, |ng”.’9 > —1, thenﬁd”E dpE < 0.

Combining the above, we find that the functiop';(a) + vp'L(a) has exactly one stationary point {0, 1),
which occurs when the slope of the flipped ROC—|§ Denote this stationary pomt ag. For0 < a < ag,

-1< pE < 0 and the slope oBp';(a) + vp'(a) is negatlve, fora, < a <1, —o00 < E e < —1 and the slope of
Bp'z(a) + vp'L(a) is positive. Thereforeg, is a minimum.

As a function ofa, the Bayes risk error is of the formip;(a) + vp'L(a) + C. Hence, it also has exactly one
stationary pointz,, which is a minimum. |

As seen in SectionlIl, the above propertiesdgby, a) are useful to establish that the Lloyd-Max conditions are
not only necessary, but also sufficient for quantizer logainoality.

The third derivative ofi(po, a) with respect topy is:

2,0
- ClopoM — 3610% co1(1 — Po)M + 3co1 pE(pO), (7

when the constituent derivatives exist. As seen in Se¢ifnnhen the third derivative exists and is continuous,
d(po, a) is locally quadratic, which is useful to develop high-rateagtization theory for Bayes risk error fidelity
[12].

[1l. L ow-RATE QUANTIZATION

The conditions necessary for the optimality of a quantiperff, (pp) under Bayes risk error distortion are now
derived. A K-point quantizer partitions the intervél, 1] into K regionsR;, Rq, Rs, ..., Ri. For each of these
qguantization region®, there is a representation poimt to which elements are mapped. For regular quantizers,
the regions are subinterva®; = [0, b1], R2 = (b1, b2], Rs = (b2, bs], ..., Rk = (bx—1, 1] and the representation



Fig. 1. The intersection of the Iineé(po,ak), tangent toJ(po) at a, and j(p(),ak+1), tangent toJ(po) at ax+1, is the optimal interval
boundary.

pointsay, are ian@ A quantizer can be viewed as a nonlinear functigq(-) such thawx (pg) = ay for pg € Ry.
For a givenK, we would like to find the quantizer that minimizes the MBRE:

D = Eld(Po, vk (P))] = /d(po7vK(po))fPo(po)dpo- 8)

There is no closed-form solution, but an optimal quantizesthsatisfy the nearest neighbor condition, the centroid
condition, and the zero probability of boundary conditid3]] The nearest neighbor and centroid conditions are
developed for MBRE in the following subsections. Whag (po) is absolutely continuous, the zero probability of
boundary condition is always satisfied.

A. Nearest Neighbor Condition

With the representation points:; } fixed, an expression for the interval boundar{és} is derived. Given any
po € [an, apr1], it J(po,ar) < J(po,ars+1) then Bayes risk error is minimized jf, is represented by, and
if J(po,ak) > J(po,akﬂ) then Bayes risk error is minimized jf is represented by ;. The boundary point
bi € [ak,ary1] is the abscissa of the point at which the Ilné@o,ak) and J(po,akﬂ) intersect. The idea is
illustrated graphically in Fig.11.

By manipulating the slopes and interceptsigpy, a;) and.J(pg, ax+1), the point of intersection is found to be:

Co1 (pljlg(akﬂ) - p'}'«;(ak))

= cor (P (ars1) — phar)) — cro (Pg(ars1) — plplar))’

©)

B. Centroid Condition

With the quantization regions fixed, the MBRE is to be miniedover the{as}. Here, the MBRE is expressed
as the sum of integrals over quantization regions:

D= Z (J Po, ak) — (p0)> [, (po)dpo. (10)

Because the regions are fixed, the minimization may be pwddrfor each interval separately.
Let us definel}, = [ pofp,(po)dpo and I} = [, (1—po)fp,(po)dpo, which are conditional means. Then:

ay = argmain {clolllcplE( ) + cor I pli(a )} (11)

SinceBp';(a) + vp'l(a) has exactly one stationary point, which is a minimum (cf. drieen[2), equatior(11) is
uniquely minimized by setting its derivative equal to zefbwus, a;, is the solution to:

| dply(a Il dpl(a
ClOIk gé )‘a + COllk 5(1( )
k

= 0. (12)

ag

"Due to the strict convexity ofl(po, a) in po for all @ shown in Theorenl]1, quantizers that satisfy the necessangitoms for MBRE
optimality are regular, see [13, Lemma 6.2.1]. Therefordy eegular quantizers are considered.



Commonly, differentiation of the two error probabilitiestractable; they are themselves integrals of the likelihoo
functions and the differentiation is with respect to somection of the limits of integration.

C. Lloyd-Max Algorithm

Alternating between the nearest neighbor and centroid itond, the iterative Lloyd-Max algorithm can be
applied to find minimum MBRE quantizers [13]. The algorithewiidely used because of its simplicity, effectiveness,
and convergence properties [14].

In [15], it is shown that the conditions necessary for optitpeof the quantizer are also sufficient conditions
for local optlmahtﬁ if the following hold. The first condition is thafp, (py) must be positive and continuous in
(0,1). The second condition is th@fg1 d(po,a) fp,(po)dpo must be finite for alla. The first and second conditions
are met by common distributions such as the beta distribJti6].

The third condition is that the distortion functiatip,, a) must satisfy some properties. It must be zero only for
po = a, continuous inpy for all a, and convex ina; the first two of these hold as discussed in Theokém 1. The
third, convexity ina, does not hold for Bayes risk error in general, but the coityef d(pg,a) in a is only used
by [15] to show that a unique minimum exists. As shown in TeedR,d(pg, a) has a unique stationary point that
is a minimum. Therefore, the analysis of [15] applies to Bayiek error distortion. Thus, ifp, (p) satisfies the
first and second conditions, then the algorithm is guaranteeconverge to a local optimum. The algorithm may
be run many times with different initializations to find thilgal optimum.

Further conditions oml(pg,a) and fp,(py) are given in [15] for there to be a unique locally optimal cfizer,

i.e. the global optimum. If these further conditions forauné local optimality hold, then the algorithm is guaranteed
to find the globally minimum MBRE quantizer.

In many practical situations, the distributigiy, (po) is not available, but data drawn from it is available. The
optimal design of quantizers from data is NP-hard [17], [18bwever, the Lloyd-Max algorithm and its close
cousin K-means can be used on data with the Bayes risk error fideligrion. In fact, as the size of the dataset
increases, the sequence of quantizers designed from dagarges to the quantizer designed frgim, (po) [19],
[20]. (Conditions on the distortion function given in [20fae=pt convexity ina are met by the Bayes risk error,
but in a similar way to the sufficiency of the Lloyd-Max condits, the unique minimum property of the Bayes
risk error is enough.)

D. Monotonic Convergence ik

Let D*(K Zk 1fR* (po,aj)fr,(po)dpo denote the MBRE for an optimak’-point quantizer. We show
that D*(K) monotomcally converges as increases. The MBRE-optimd -point quantizer is the solution to the
following problem:

minimize Z/ d(po, ar)fr,(po)dpo

such that by =0
b =1
b1 <ag, k=1,..., K
ap, <bg, k=1,..., K. (13)

Let us add the additional constraibt_; = 1 to (I3), forcingax = 1 and degeneracy of th&" quantization
region. The optimization problem for th&-point quantizer[(13) with the additional constraint is irgient to the
optimization problem for theK —1)-point quantizer. Thus, theés{—1)-point design problem and th€-point design
problem have the same objective function, but thé—(1)-point problem has an additional constraint. Therefore,
D*(K —1) > D*(K).

Sinced(po, vk (po)) > 0, D = E[d(Py, vk (Fp))] > 0. Since the sequende*(K) is nonincreasing and bounded
from below, it converges. Mean Bayes risk error cannot gatsevavhen more quantization levels are employed.

2By local optimality, it is meant that théa,} and {b;} minimize the objective functior[18) among feasible repnéstion and boundary
points near them.



In typical settings, as in Sectidnl V, performance alwaysroups with an increase in the number of quantization
levels.

IV. HIGH-RATE QUANTIZATION

Let us apply high-rate quantization theory [14] to the stwdyminimum MBRE quantization. The distortion
function for the MBRE criterion has a positive second deameain py (due to strict convexity) and for many
families of likelihood functions, it has a continuous thidérivative, seel{7). Thus, it is locally quadratic in the
sense of Liet al. [12] and in a manner similar to many perceptual, non-difieeedistortion functions, the high-rate
guantization theory is well-developed.

At high rate, i.e.K large, if we let:
d?ply (po) dplz(po) 1

d2 1 d 1
B(po) = —iciopo o — 1= — 2¢o1(1 — po) pd’j,%po) + co1 p(’f;ffo)7 (14)

thend(po, ax) is approximated by the following second order Taylor expams

d(po, ar) = B(po)|, —q, (P0— ar)*, po € Ry, (15)

Assuming thatfp, (-) is sufficiently smooth and substitutinig {15) into the ohjexf (13), the MBRE is approxi-
mated by:

K
D~ fPU(ak)B(ak)/ (po — ax)* dpo. (16)
k=1 Re

The MBRE is greater than and approximately equal to thevigtig lower bound, derived in [12] by relationships
involving normalized moments of inertia of intervaky, and by Holder's inequality:

1
Dy = L, /0 B(po) fr (o)A (po)2dpo, (17)

where the optimal quantizer point density is:

(B(po) fr,(po))"/*
A . 18
(o) = I (B(po) fr, (o))" dpo (19

Integrating a quantizer point density over an interval dgethe fraction of the{a;} that are in that interval.
Substituting [(IB) into[(17) yields:

Dy = 1= | B(po) fr, (po) 13- (19)

V. EXAMPLES
As an example, let us consider the following scalar signal me@asurement model:
Y=5,+W, me{0,1}, (20)

wheresy = 0 ands; = p (a known, deterministic quantity), ariél’ is a zero-mean, Gaussian random variable with
variances?. The likelihoods are:

Sy Wlho) = N (y;0,0%) = 0—127re‘y2/2”27
Py (lh) = N(y; p,0%) = —Jo—e™ W"/27, (21)

The two error probabilities are:

.
Phipo) = Q (4 — 2 (CngfE;O))) : (22)

where:



Finding the centroid condition, the derivatives of the epoobabilities are:

2
dp', (po) o 1 1 _1 %-’-lln chii
%ak——ﬁ%me (g im( k>)>, (23)
2
dp (po) o 1 1 _1 %—iln _ c10i2
‘?T“Oak_ ﬁ%mﬁ 2<2 " (“1(1 k>)) (24)

By substituting these derivatives info {12) and simplifyithe following expression is obtained for the represémat
points:

I
= ) 25
G (@5)
For high-rate analysis, the second derivatives of the grobabilities are needed. They are:

d?pls(p)) 1 o 1 — 5257 (W7 207 In( R0 T _ 20° c10Po

N T (T ( wt5) =3+ — 3 ()] (26)
and: )

Eplo(po) _ 1 I G Crreeen 207 Lobo

B T (= ( (=53)) 1+ 4p0 — 25 (525) | (27)

By inspection, we note that the third derivatives are camirs. Substituting the first derivativds (2B8)4(24) and
second derivatives$ (26)-(27) intb (14), an expressionB@p,) can be obtained.

Examples with different distributiongp, (py) are presented below. All of the examples use scalar signitis w
additive Gaussian noisg,= 1, o = 1 (20). As a point of reference, a comparison is made to quenstidesigned
under mean absolute error (MAE) [21], ié(po,a) = |po — a|, an objective that does not account for hypothesis
testingE

In the high-rate comparisons, the optimal point densityM#E [23]:

£ (po)*/?
fol fpo (o) 2dpo

is substituted into the high-rate distortion approximatfor the MBRE criterion[(1]7). Takind? = log,(K), there
is a constant gap between the rates using the MBRE point tgegnsil the MAE point density for all distortion
values. This difference is:

A(po) =

1 £, (po) B(po)l|1/3
R Dr)— R Dr)=-1 .
mere(Dr) — Rvae(Dr) 08 (HfPo(po)Huz fol B(po)dp0>

2
The closer the ratio inside the logarithm is to one, the c¢ldse MBRE- and MAE-optimal quantizers.

A. Uniformly DistributedP,

We first look at the setting in which all prior probabilitieseaequally likely. The MBRE of the MBRE-optimal
quantizer and a quantizer designed to minimize MAE with eespo fp, (po) are plotted in Figll2. (The optimal
MAE quantizer for the uniform distribution is the uniform aptizer.) The plot shows MBRE as a function &f,
the solid line with circle markers is the MBRE-optimal quaat and the dotted line with asterisk markers is the
MAE-optimal quantizer.D;, the high-rate approximation to the distortion-rate fimets plotted in Fig[B.

The performance of both quantizers is similar, but the MB&EmMal quantizer always performs better or equally.
For K = 1,2, the two quantizers are identical, as seen in Big. 4a-b. Tdte ;m Fig.[4 showJ(po, vk (po)) as solid
and dotted lines for the MBRE- and MAE-optimal quantizeispextively; the markers are the representation points.
The gray line isJ(py), the Bayes risk with unquantized prior probabilities. For= 3, 4, the representation points
for the MBRE-optimal quantizer are closer g = % than the uniform quantizer. This is because the area under
the point density function\(py) shown in Fig[5 is concentrated in the center. Each increrokiif is associated

3As shown by Kassam [21], minimizing the MAE criterion alsanimizes the absolute distance between the cumulativetaitin function
of the source and the induced cumulative distribution fiomcof the quantized output. Since the induced distribuffom quantization is used
as the population prior distribution for hypothesis tegtirequiring this induced distribution to be close to thestruinquantized distribution
is reasonable. If distance between probability distriimgiis to be minimized according to the Kullback-Leiblercdisination between
the true and induced distributions (which is defined in teohékelihood ratios), an application of Pinsker’s inegtalshows that a small
absolute difference is requisite [22]. Although a reastmabiterion, MAE is suboptimal for hypothesis testing meniance as seen in the
examples.



Fig. 2. MBRE for uniformly distributedP, and Bayes costsio = cp1 = 1 plotted on a logarithmic scale as a function of the number
of quantization levelds; the solid line with circle markers is the MBRE-optimal qtiaer and the dotted line with asterisk markers is the
MAE-optimal uniform quantizer.
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Fig. 3. High-rate approximation of distortion-rate fuletiD;, for uniformly distributedP, and Bayes costgio = co1 = 1; the solid line
is the MBRE-optimal quantizer and the dotted line is the Me&Eimal uniform quantizer.
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Fig. 4. Quantizers for uniformly distributeél, and Bayes costg8ip = co1 = 1. j(powx(po)) is plotted for (K =1, (b) K = 2,
(¢) K = 3, and (d) K = 4; the markers, circle and asterisk for the MBRE-optimal andBvbptimal quantizers respectively, are the
representation point§as }. The gray line is the unquantized Bayes rifipo).



Fig. 5. Optimal MBRE point density for uniformly distributeP’;, and Bayes costgio = co1 = 1.

Fig. 6. MBRE for uniformly distributed?, and Bayes costs;o = 1, co1 = 4 plotted on a logarithmic scale as a function of the number
of quantization levelds; the solid line with circle markers is the MBRE-optimal qtiaar and the dotted line with asterisk markers is the
MAE-optimal uniform quantizer.

with a large reduction in Bayes risk. There is a very largdgrarance improvement fronk’ = 1 to K = 2.

In Fig.[6, Fig.[T, Fig[B, and Fid.] 9, similar plots to those &bare given for the case when the Bayes cogfs
andcg; are unequal. The unequal costs skew the Bayes risk functidrcansequently the representation point
locations and point density function. The difference infpenance between the MBRE-optimal and MAE-optimal
guantizers is greater in this example because the MAEFrtnitecannot incorporate the Bayes costs, which factor
into MBRE calculation.

2 3
R (bits)

Fig. 7. High-rate approximation of distortion-rate furctiD;, for uniformly distributedP, and Bayes costeip = 1, co1 = 4; the solid
line is the MBRE-optimal quantizer and the dotted line is Bh&E-optimal uniform quantizer.
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Fig. 8. Quantizers for uniformly distribute®, and Bayes costg;p = 1, co1r = 4. J(po, vk (po)) is plotted for (a)K = 1, (b) K = 2,
(c) K = 3, and (d) K = 4; the markers, circle and asterisk for the MBRE-optimal andBvbptimal quantizers respectively, are the
representation point§as }. The gray line is the unquantized Bayes rifipo).

Fig. 9. Optimal MBRE point density for uniformly distribideP, and Bayes costgio = 1, co1 = 4.

B. Beta DistributedP,

Now, we look at a non-uniform distribution fd¥,, in particular the Betdy 2) distribution. The probability density
function is shown in Fig._10. The MBRE of the MBRE-optimal aM@d\E-optimal quantizers are in Fi§. 111. Here,
there are also large improvements in performance with are@se inK. The high-rate approximation to the
distortion-rate function for this example is given in Hi@. 1

The representation poin{s,, } are most densely distributed whexé,), plotted in Fig[ 1B, has mass. In particular,
more representation points are in the right half of the dontilaan in the left, as seen in Fig.]14.

Fig. 10. The probability density functiofip, (po) for the Betag, 2) distribution.
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Fig. 11. MBRE for Betaq, 2) distributed P, and Bayes costsio = co1 = 1 plotted on a logarithmic scale as a function of the number
of quantization levelss; the solid line with circle markers is the MBRE-optimal gtiaar and the dotted line with asterisk markers is the
MAE-optimal uniform quantizer.
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Fig. 12. High-rate approximation of distortion-rate fuoct D, for Beta, 2) distributed P, and Bayes costsio = co1 = 1; the solid
line is the MBRE-optimal quantizer and the dotted line is BW&E-optimal uniform quantizer.

VI. IMPLICATIONS ON HUMAN DECISION MAKING

In the previous sections, we formulated the minimum MBREgzation problem and discussed how to find
the optimal MBRE quantizer. Having established the mathiealdfoundations of hypothesis testing with quantized
priors, we may explore the implications of such resourcestrained decision making on human affairs.

Let us consider the particular setting for human decisiokingamentioned in Sectiod I: a referee determining
whether a player has committed a foul or not using both hisesrrnoisy observation and prior experience. The
fraction of plays in which a player commits a foul is that &g prior probability forh,. Over the population
of players, there is a distribution of prior probabilitieslso as mentioned in Sectidh I, human decision makers

N

1.5

0.5

Po

Fig. 13. Optimal MBRE point density for Beta(2) distributed P, and Bayes costgio = co1 = 1.
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Fig. 14. Quantizers for Beta(2) distributed P, and Bayes costgyy = 1, co1 = 4. J(po, vk (po)) is plotted for (@)K = 1, (b) K = 2,
(c) K = 3, and (d) K = 4; the markers, circle and asterisk for the MBRE-optimal andBvbptimal quantizers respectively, are the
representation point§as }. The gray line is the unquantized Bayes rifipo).

categorize into a small number of categories due to linoitegtiin information processing capacity [3]. Decisions by
humans may be modeled via quantization of the distributibprimr probabilities and the use of the quantization
level centroid of the category in which a player falls as thermpprobability when performing hypothesis testing
on that player’s action.

Therefore, a referee will do a better job with more categorather than fewer. A police officer confronting
an individual with whom he or she has prior experience willkema better decision if he or she has the mental
categories ‘probably violent,” ‘possibly violent or noolént,” and ‘probably nonviolent,” versus just ‘violenthd
‘nonviolent.” Similarly, a doctor will have a smaller prdhility of error when interpreting a blood test if he or she
knows the prior probability of the test turning out positfe@ many categorizations of patients rather than just
one for the entire population at large. Additional exampmlesld be given for a variety of decision-making tasks.
Implications of this sort are not surprising. However, whare additional component is added to the decision-
making scenario, some fairly interesting implicationsariNext, we look at the case when the quantization of two
distinct populations is done separately.

We discuss mathematically unavoidable consequences otiged prior hypothesis testing when quantizing the
prior probability for a minority population and the priorgirability for a majority population separately, while tagi
identical prior probability distributions of the two pogtions fp, (po). Although majority and minority populations
can be defined along any socially observable dimension, asgfender or age [24], for ease of exposition we use
race, and more specifically use ‘white’ and ‘black’ to dentite two populations. Although there is some debate
in the social cognition literature [25], it is thought thatce and gender categorization is essentially automatic,
particularly when a human actor lacks the motivation, timecognitive capacity to think deeply.

We can extend the definition of MBRE to two populations as:

D® = 2 BT (P, vic,, (Po)] + 5 BT (Po, v, (Po))] = BT (Po)), (28)

wherew is the number of whites encounteréds the number of blacks encounteﬂa@(w is the number of points
in the quantizer for whites, anfl, is the number of points in the quantizer for blacks. In oraefind the optimal
allocation of the total quota of representation poikts = K,, + K3, we minimize D® for all K, — 1 possible
allocations and choose the best one; more sophisticatexditalgs developed for bit allocation to subbands in
transform coding may also be used [27].

Fryer and Jackson have previously suggested that it isrietedlocate more representation points to the majority
population than to the minority population [28]. With twopseate scalar quantizers, but a single size constraint,

“One might assume that andb are simply the number of whites and blacks in the general latipn, however these numbers should
actually be based on the social interaction pattern of tlésibem maker. Due to segregation in social interaction,esge[26] and references
therein, there is greater intra-population interacticantiinter-population interaction. The decision maker hasentiaining data from intra-
population interaction.
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optimizing D® over vk, (-) andvg, (-) yields the same result. Due to the monotonicity result in. 5&®] the
MBRE for members of the minority group is greater than thattf@ majority group.

Assuming white decision makers have> b and black decision makers hake- w, analysis of quantized prior
Bayesian hypothesis testing predicts that there shouldWrerace bias in decision making. This prediction is in
fact born out experimentally. A large body of literature acé recognition shows exactly the predicted own race
bias effect, observed colloquially as “they [other-racespas] all look alike.” In particular, both parts of the Baye
risk, pl; andp!, increase when trying to recognize members of the opposipelption [29]. Verification of own
race bias in face recognition is due to laboratory expertatem, however similar effects have also been observed
in natural experiments through econometric studies.

It has been found that the addition of police officers of a giv@ce is associated with an increase in the number
of arrests of suspects of a different race but has little thpa same-race arrests. The effect is more pronounced
for minor offenses where the prior probability presumablgyp a bigger role than the measurement [30]. There
are similar own-race bias effects in the decision by poliwesé¢arch a vehicle during a traffic stop [31], in the
decision of human resource professionals to not hire [32], ia the decision of National Basketball Association
(NBA) referees to call a foul [33]. The rate of searching, thte of not hiring, and the rate of foul calling are all
greater when the decision-maker is of a different race thandtiver, applicant, and player, respectively. A major
difficulty in interpreting these econometric studies, heere is that the ground truth is not known. Higher rates
may be explained by either greatéy or smallerp!..

Since ground truth is lacking in econometric studies, itas clear how to interpret a finding that white referees
call more fouls on black players and that black refereesmalle fouls on white players. This phenomenon cannot
simply be explained by a larger probability of decision erfidie Bayes risk must be teased apart into its constituent
parts and the Bayes costs must be examined in detalil.

The measurable quantity in an econometrics study is theapilily that a foul is called:

Pr[Hg = hi] = 1 —po + pope(vi (po)) — (1 — po)pls (vk (po))- (29)

Looking at the average performance of a white referee oveptipulations of black and white players, we compare
the expected foul rates on whites and blacks & K.,):

A=E [Pr[ﬁKb — hi] — Pr[Ak, = hi]] . (30)

If this discrimination quantityA is greater than zero, then the white referee is calling mousfon blacks. IfA
is less than zero, then the referee is calling more fouls oewhTheA expression may be written as:

A(cro, co1) = Elpopp(vk, (o)) — (1 — po)pis (vk, (po))]
— Elpops(vk, (po)) — (1 — po)PE(vk, (p0))].  (31)

The dependence ak on ¢;p andcy; is explicit on the left side of.(31) and is implicit in the ermprobabilities on
the right side. The value ok also depends on the unquantized prior distributfen(py), the measurement model,
and the quantizer.

If the prior distribution and measurement model are fixed tre MBRE-optimal quantizer used, we find that
the regions in the:p-co; plane where a white referee would call more fouls on blackswhere a white referee
would call more fouls on whites are half-planes. For the amif prior fp, (po), the dividing line between the two
regions is exactly; = cjo. For the Bet&,2) prior, the dividing line isco; = mci9, Wwherem > 1.

Using the division of thecjg-co; plane into two parts, we can now interpret the econometridirigps in the
NBA referee study [33] and related results [30]-[32]. TheABce bias observations can be generated from the
quantized prior hypothesis testing model only if the Bayisk error has costsy; > ¢o for a uniform prior or
costscy; > ¢y for a Betab,2) prior. The choice of Bayes costs witly; greater thanc;, implies that a referee
can tolerate more instances of calling fouls on plays thatat fouls rather than the opposite. This assignment of
costs has been called the precautionary principle in som&exts. Very simply, the precautionary principle states
“better safe than sorry.”

Taken together, the hypothesis testing with quantizedprimdel, the phenomenon of racial segregation [26], and
results from econometric studies [30]-[33] suggest thi#rees, police officers, and human resources professionals
all follow the precautionary principle.
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VIlI. CONCLUSION AND FUTURE WORK

We have looked at Bayesian hypothesis testing when therdistrébution of prior probabilities, but the decision
maker may only use a quantized version of the true prior goitibain designing a decision rule. Considering the
problem of finding the optimal quantizer for this purpose, have defined a new fidelity criterion based on the
Bayes risk function. For this criterion, MBRE, we have detgred the conditions that an optimal quantizer satisfies
and worked through a high-rate approximation to the distortA/-ary hypothesis testing witid/ > 2 requires
vector quantization rather than scalar quantization, eterining the Lloyd-Max conditions and high-rate theory
is no different conceptually due to the geometry of the Bayss function and mismatched Bayes risk function.
For the M-ary hypothesis testing case, a multivariate distribusanh as thel/-dimensional Dirichlet distribution
[16] is needed forfp(p). Previous, though significantly different, work on quaatian for hypothesis testing was
unable to directly minimize the Bayes risk, as was accorhptisin this work.

The mathematical theory of quantized prior hypothesidrtgdormulated here leads to a generative model of
discriminative behavior when combined with theories ofiglbb@ognition and empirical facts about social segregation
This biased decision making arises despite having iddrdis&ributions for different populations and despite no
malicious intent on the part of the decision maker. We alsoutised how the choice of Bayes costs affects detection
probabilities; in particular, the precautionary prineipéads to a higher detection probability for the oppositera
whereas a more optimistic view leads to a higher detectiabadrility for the own race. Such a phenomenon
of pessimistic or optimistic attitude fundamentally aherthe nature of discrimination seems not to have been
described before. Discrimination on the basis of race, gerahd other socially observable characteristics has been
a troublesome social problem, but appears to be a permart#actaof the automaticity of classification and the
finite human capacity for information processing.

There are many avenues along which to extend this work, sactiealing with decentralized detection and
classification (with possible implications on jury decissoand elections), which may become game theoretic;
consideration of additional noise before or after quatitraof the prior probabilities; or the development of
successively refinable quantizers (for decision makers ghasess a memory hierarchy). One can also consider
a restricted class of quantizers rather than consideringnap quantization. Such restriction may model further
cognitive constraints on human decision makers. In pdaicEryer and Jackson have suggested a heuristic algorithm
for quantizer design based on splitting groups [28], whila irediscovery of the tree-structured vector quantizer
(TSVQ) design algorithm given in [34, Fig. 20]. Beyond [34fhere has been much recent development in the
theory of TSVQ performance and recursive partitioning, alihinay prove useful.

For the quantizer withk' = 1, an alternative to the MBRE-optimal representation point:

aivre = aremgn { [ 7(p.a)fre(p)ip

is the min-max hypothesis testing representation point:
@pinmas = AT {ngx J(p. a>} ,

which is only equivalent in special cases. A distribution the prior probabilities is needed to specygre.
but not to specifya;,,.max ONE May consider extending the min-max ideaifo> 1. This would involve an
approach related te-entropy [35, Sec. 6.1.2] and finding a cover for the unit darpby K sets of the form
Ri. = {p|J(p,ar) < D}, where allp in R;, map toa;, and D is the same for aliRy.

The general theme of machine learning for the explicit paepaf hypothesis testing, within which this work falls,
is receiving increasing attention; framing the hypothdsging scenario discussed here in terms of probabilistic
graphical models of categorization, e.g. the latent Didgtlallocation model [36] and the hierarchical Dirichlet

process mixture model [37], may prove insightful as well.
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