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Quantization of Prior Probabilities
for Hypothesis Testing

Kush R. Varshney and Lav R. Varshney

Abstract

Bayesian hypothesis testing is investigated when the priorprobabilities of the hypotheses, taken as a random
vector, are quantized. Nearest neighbor and centroid conditions are derived using mean Bayes risk error as a distortion
measure for quantization. A high-resolution approximation to the distortion-rate function is also obtained. Human
decision making in segregated populations is studied assuming Bayesian hypothesis testing with quantized priors.
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I. INTRODUCTION

CONSIDER a hypothesis testing scenario in which an object is to be observed to determine which one ofM

states,{h0, . . . , hM−1}, it is in. The object has prior probabilitypm of being in statehm, i.e. pm = Pr[H =

hm], and prior probability vectorp =
[

p0 · · · pM−1

]T
, with

∑M−1
m=0 pm = 1, which is known to the decision

maker.M -ary hypothesis testing with known prior probabilities calls for the Bayesian formulation to the problem,
for which the optimal decision rule minimizes Bayes risk [2].

Now consider the situation when there is a population of objects, each with its own prior probability vector drawn
from the distributionfP (p) supported on the(M − 1)-dimensional probability simplex. If the prior probability
vector of each object were known perfectly to the decision maker before observation and hypothesis testing, then
the scenario would be no different than that of standard Bayesian hypothesis testing. However, we consider the case
in which the decision maker is constrained and can only work with at mostK different prior probability vectors.
Such a constraint is motivated by scenarios where the decision maker has finite memory or limited information
processing resources. Hence, when there are more thanK objects in the population, the decision maker must first
map the true prior probability vector of the object being observed to one of theK available vectors and then
proceed to perform the optimal Bayesian hypothesis test, treating that vector as the prior probabilities of the object.

Although not the only such constrained scenario, one example is that of human decision making. One particular
setting is a referee deciding whether a player has committeda foul using his or her noisy observation as well as
prior experience. Players commit fouls at different rates;some players are dirtier or more aggressive than others.
It is this rate which is the prior probability for the ‘foul committed’ state. Hence, over the population of players,
there is a distribution of prior probabilities. If the referee tunes the prior probability to the particular player on
whose action the decision is to be made, decision-making performance is improved.

Human decision makers, however, are limited in their information processing capacity and can only carry around
seven, plus or minus two, categories without getting confused [3]. Consequently, the referee is limited and categorizes
players into a small number of dirtiness levels, with associated representative prior probabilities, exactly the scenario
described above.

In this paper, the design of the mapping from prior probability vectors in the population to one ofK representative
probability vectors is approached as a quantization problem. Mean Bayes risk error (MBRE) is defined as a fidelity
criterion for the quantization offP (p) and conditions are derived for a minimum MBRE quantizer. Some examples
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of MBRE-optimal quantizers are given along with their performance in the low-rate quantization regime. Distortion-
rate functions are given for the high-rate quantization regime. Certain human decision-making tasks, as mentioned
above, may be modeled by quantized prior hypothesis testingdue to certain suboptimalities in human information
processing. Human decision making is analyzed in detail forsegregated populations, revealing a mathematical
model of social discrimination.

Previous work that combines detection and quantization looks at the quantization of observed data, not prior
probabilities, and also only approximates the Bayes risk function instead of working with it directly, e.g. [4]–[6]
and references cited in [6]. In such work, there is a communication constraint between the sensor and the decision
maker, but the decision maker has unconstrained processingcapability. Our work deals with the opposite case,
where there is no communication constraint between the sensor and the decision maker, however the decision
maker is constrained.

A brief look at imperfect priors appears in [7, Sec. 2.E], butoptimal quantization is not considered. In [8], [9],
it is shown that small deviations from the true prior yield small deviations in the Bayes risk. We are not aware of
any previous work that has looked at quantization, clustering, or categorization of prior probabilities.

In the remainder of the paper, we focus on binary hypothesis testing,M = 2. Section II defines the Bayes risk
error distortion and gives some of its properties. Section III discusses low-rate quantization and Section IV discusses
high-rate quantization. Some examples with a Gaussian measurement model are given in Section V. Section VI
considers the implications on human decision making and Section VII provides a summary and directions for future
work.

II. BAYES RISK ERROR

In the binary Bayesian hypothesis testing problem for a given object, there are two hypothesesh0 andh1 with
prior probabilitiesp0 = Pr[H = h0] and p1 = Pr[H = h1] = 1 − p0, a noisy observationY , and likelihoods
fY |H(y|h0) and fY |H(y|h1). Note that we consider a one-shot measurementY , rather than a set of independent,
noisy measurements. A function̂h(y) is designed that uniquely maps every possibley to eitherh0 or h1 in such a
way that the function is optimal with respect to Bayes riskJ = E[c(Hi,Hj)], an expectation over the non-negative
cost functionc(hi, hj). This gives the following specification for̂h(y):

ĥ(·) = argmin
f(·)

E[c(H, f(Y ))], (1)

where the expectation is over bothH andY . It may be shown that the optimal decision ruleĥ(y) is the likelihood
ratio test:

fY |H(y|h1)

fY |H(y|h0)

ĥ(y)=h1

⋚
ĥ(y)=h0

p0(c10 − c00)

(1− p0)(c01 − c11)
, (2)

wherecij = c(hi, hj).
There are two types of errors, with the following probabilities:

pI
E = Pr[ĥ(Y ) = h1|H = h0],

pII
E = Pr[ĥ(Y ) = h0|H = h1].

Bayes risk may be expressed in terms of those error probabilities as:

J = (c10 − c00)p0p
I
E + (c01 − c11)(1− p0)p

II
E + c00p0 + c11(1− p0). (3)

It is often of interest to assign no cost to correct decisions, i.e. c00 = c11 = 0, which we assume in the remainder
of this paper. In this case, the Bayes risk simplifies to:

J(p0) = c10p0p
I
E(p0) + c01(1− p0)p

II
E(p0). (4)

In (4), the dependence of the Bayes risk and error probabilities onp0 has been explicitly noted. The error probabilities
depend onp0 throughĥ(·), given in (2). The functionJ(p0) is zero at the pointsp0 = 0 andp0 = 1 and is positive-
valued, strictly concave, and continuous in the interval(0, 1) [2], [10], [11].
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In the case when the true prior probability isp0, but ĥ(y) is designed according to (2) using some other value
a substituted forp0, there is mismatch, and the mismatched Bayes risk is:

J̃(p0, a) = c10p0p
I
E(a) + c01(1− p0)p

II
E(a). (5)

J̃(p0, a) is a linear function ofp0 with slope(c10pI
E(a)− c01p

II
E(a)) and interceptc01pII

E(a). Note thatJ̃(p0, a) is
tangent toJ(p0) at a and thatJ̃(p0, p0) = J(p0).

Definition 1: Let Bayes risk errord(p0, a) be the difference between the mismatched Bayes risk function J̃(p0, a)
and the Bayes risk functionJ(p0):

d(p0, a) = J̃(p0, a)− J(p0)

= c10p0p
I
E(a) + c01(1− p0)p

II
E(a)− c10p0p

I
E(p0)− c01(1− p0)p

II
E(p0). (6)

We now give properties ofd(p0, a) as a function ofp0 and as a function ofa.
Theorem 1:The Bayes risk errord(p0, a) is non-negative and only equal to zero whenp0 = a. As a function

of p0 ∈ (0, 1), it is continuous and strictly convex for alla.
Proof: SinceJ(p0) is a continuous and strictly concave function, and linesJ̃(p0, a) are tangent toJ(p0),

J̃(p0, a) ≥ J(p0) for all p0 and a, with equality whenp0 = a. Consequently,d(p0, a) is non-negative and only
equal to zero whenp0 = a. Moreover,d(p0, a) is continuous and strictly convex inp0 ∈ (0, 1) for all a because it
is the difference of a continuous linear function and a continuous strictly concave function.

Theorem 2:For any deterministic likelihood ratio testĥ(·), as a function ofa ∈ (0, 1) for all p0, the Bayes risk
error d(p0, a) has exactly one stationary point, which is a minimum.

Proof: Consider the parameterized curve(pI
E , p

II
E) traced out asa is varied; this is a flipped version of the

receiver operating characteristic (ROC). The flipped ROC isa strictly convex function for deterministic likelihood
ratio tests. At its endpoints, it takes values(pI

E = 0, pII
E = 1) whena = 1 and (pI

E = 1, pII
E = 0) whena = 0 [2],

and therefore has average slope−1. By the mean value theorem and strict convexity, there exists a unique point
on the flipped ROC at whichdp

II
E

dpI
E

= −1. To the left of that point:−∞ <
dpII

E

dpI
E

< −1, and to the right of that point:

−1 <
dpII

E

dpI
E

< 0.

For deterministic likelihood ratio tests,β dpI
E(a)
da < 0 andγ dpII

E(a)
da > 0 for all a ∈ (0, 1) and positive constantsβ

andγ [2]. Therefore, if γdp
II
E

βdpI
E

< −1, i.e. γdpII
E

da
da

βdpI
E

< −1, thenγ dpII
E

da > −β
dpI

E

da andβ dpI
E

da + γ
dpII

E

da > 0. In the same

manner, if γdp
II
E

βdpI
E

> −1, thenβ dpI
E

da + γ
dpII

E

da < 0.

Combining the above, we find that the functionβpI
E(a) + γpII

E(a) has exactly one stationary point in(0, 1),
which occurs when the slope of the flipped ROC is−β

γ . Denote this stationary point asas. For 0 < a < as,

−1 <
dpII

E

dpI
E

< 0 and the slope ofβpI
E(a) + γpII

E(a) is negative; foras < a < 1, −∞ <
dpII

E

dpI
E

< −1 and the slope of

βpI
E(a) + γpII

E(a) is positive. Therefore,as is a minimum.
As a function ofa, the Bayes risk error is of the formβpI

E(a) + γpII
E(a) + C. Hence, it also has exactly one

stationary pointas, which is a minimum.
As seen in Section III, the above properties ofd(p0, a) are useful to establish that the Lloyd-Max conditions are

not only necessary, but also sufficient for quantizer local optimality.
The third derivative ofd(p0, a) with respect top0 is:

− c10p0
d3pI

E(p0)
dp3

0
− 3c10

d2pI
E(p0)
dp2

0
− c01(1− p0)

d3pII
E(p0)
dp3

0
+ 3c01

d2pII
E(p0)
dp2

0
, (7)

when the constituent derivatives exist. As seen in Section IV, when the third derivative exists and is continuous,
d(p0, a) is locally quadratic, which is useful to develop high-rate quantization theory for Bayes risk error fidelity
[12].

III. L OW-RATE QUANTIZATION

The conditions necessary for the optimality of a quantizer for fP0
(p0) under Bayes risk error distortion are now

derived. AK-point quantizer partitions the interval[0, 1] into K regionsR1, R2, R3, . . . ,RK . For each of these
quantization regionsRk, there is a representation pointak to which elements are mapped. For regular quantizers,
the regions are subintervalsR1 = [0, b1], R2 = (b1, b2], R3 = (b2, b3], . . . ,RK = (bK−1, 1] and the representation
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p0

J
(p

0
)

ak ak+1bk

Fig. 1. The intersection of the lines̃J(p0, ak), tangent toJ(p0) at ak, and J̃(p0, ak+1), tangent toJ(p0) at ak+1, is the optimal interval
boundary.

pointsak are inRk.1 A quantizer can be viewed as a nonlinear functionvK(·) such thatvK(p0) = ak for p0 ∈ Rk.
For a givenK, we would like to find the quantizer that minimizes the MBRE:

D = E[d(P0, vK(P0))] =

∫

d(p0, vK(p0))fP0
(p0)dp0. (8)

There is no closed-form solution, but an optimal quantizer must satisfy the nearest neighbor condition, the centroid
condition, and the zero probability of boundary condition [13]. The nearest neighbor and centroid conditions are
developed for MBRE in the following subsections. WhenfP0

(p0) is absolutely continuous, the zero probability of
boundary condition is always satisfied.

A. Nearest Neighbor Condition

With the representation points{ak} fixed, an expression for the interval boundaries{bk} is derived. Given any
p0 ∈ [ak, ak+1], if J̃(p0, ak) < J̃(p0, ak+1) then Bayes risk error is minimized ifp0 is represented byak, and
if J̃(p0, ak) > J̃(p0, ak+1) then Bayes risk error is minimized ifp0 is represented byak+1. The boundary point
bk ∈ [ak, ak+1] is the abscissa of the point at which the linesJ̃(p0, ak) and J̃(p0, ak+1) intersect. The idea is
illustrated graphically in Fig. 1.

By manipulating the slopes and intercepts ofJ̃(p0, ak) and J̃(p0, ak+1), the point of intersection is found to be:

bk =
c01
(

pII
E(ak+1)− pII

E(ak)
)

c01
(

pII
E(ak+1)− pII

E(ak)
)

− c10
(

pI
E(ak+1)− pI

E(ak)
) . (9)

B. Centroid Condition

With the quantization regions fixed, the MBRE is to be minimized over the{ak}. Here, the MBRE is expressed
as the sum of integrals over quantization regions:

D =
K
∑

k=1

∫

Rk

(

J̃(p0, ak)− J(p0)
)

fP0
(p0)dp0. (10)

Because the regions are fixed, the minimization may be performed for each interval separately.
Let us defineI I

k =
∫

Rk
p0fP0

(p0)dp0 andI II
k =

∫

Rk
(1− p0)fP0

(p0)dp0, which are conditional means. Then:

ak = argmin
a

{

c10I
I
kp

I
E(a) + c01I

II
k p

II
E(a)

}

. (11)

SinceβpI
E(a) + γpII

E(a) has exactly one stationary point, which is a minimum (cf. Theorem 2), equation (11) is
uniquely minimized by setting its derivative equal to zero.Thus,ak is the solution to:

c10I
I
k

dpI
E(a)
da

∣

∣

∣

ak

+ c01I
II
k

dpII
E(a)
da

∣

∣

∣

ak

= 0. (12)

1Due to the strict convexity ofd(p0, a) in p0 for all a shown in Theorem 1, quantizers that satisfy the necessary conditions for MBRE
optimality are regular, see [13, Lemma 6.2.1]. Therefore, only regular quantizers are considered.
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Commonly, differentiation of the two error probabilities is tractable; they are themselves integrals of the likelihood
functions and the differentiation is with respect to some function of the limits of integration.

C. Lloyd-Max Algorithm

Alternating between the nearest neighbor and centroid conditions, the iterative Lloyd-Max algorithm can be
applied to find minimum MBRE quantizers [13]. The algorithm is widely used because of its simplicity, effectiveness,
and convergence properties [14].

In [15], it is shown that the conditions necessary for optimality of the quantizer are also sufficient conditions
for local optimality2 if the following hold. The first condition is thatfP0

(p0) must be positive and continuous in
(0, 1). The second condition is that

∫ 1
0 d(p0, a)fP0

(p0)dp0 must be finite for alla. The first and second conditions
are met by common distributions such as the beta distribution [16].

The third condition is that the distortion functiond(p0, a) must satisfy some properties. It must be zero only for
p0 = a, continuous inp0 for all a, and convex ina; the first two of these hold as discussed in Theorem 1. The
third, convexity ina, does not hold for Bayes risk error in general, but the convexity of d(p0, a) in a is only used
by [15] to show that a unique minimum exists. As shown in Theorem 2,d(p0, a) has a unique stationary point that
is a minimum. Therefore, the analysis of [15] applies to Bayes risk error distortion. Thus, iffP0

(p0) satisfies the
first and second conditions, then the algorithm is guaranteed to converge to a local optimum. The algorithm may
be run many times with different initializations to find the global optimum.

Further conditions ond(p0, a) andfP0
(p0) are given in [15] for there to be a unique locally optimal quantizer,

i.e. the global optimum. If these further conditions for unique local optimality hold, then the algorithm is guaranteed
to find the globally minimum MBRE quantizer.

In many practical situations, the distributionfP0
(p0) is not available, but data drawn from it is available. The

optimal design of quantizers from data is NP-hard [17], [18]. However, the Lloyd-Max algorithm and its close
cousinK-means can be used on data with the Bayes risk error fidelity criterion. In fact, as the size of the dataset
increases, the sequence of quantizers designed from data converges to the quantizer designed fromfP0

(p0) [19],
[20]. (Conditions on the distortion function given in [20] except convexity ina are met by the Bayes risk error,
but in a similar way to the sufficiency of the Lloyd-Max conditions, the unique minimum property of the Bayes
risk error is enough.)

D. Monotonic Convergence inK

Let D∗(K) =
∑K

k=1

∫

R∗

k

d(p0, a
∗
k)fP0

(p0)dp0 denote the MBRE for an optimalK-point quantizer. We show
thatD∗(K) monotonically converges asK increases. The MBRE-optimalK-point quantizer is the solution to the
following problem:

minimize
K
∑

k=1

∫ bk

bk−1

d(p0, ak)fP0
(p0)dp0

such that b0 = 0

bK = 1

bk−1 ≤ ak, k = 1, . . . ,K

ak ≤ bk, k = 1, . . . ,K. (13)

Let us add the additional constraintbK−1 = 1 to (13), forcingaK = 1 and degeneracy of theK th quantization
region. The optimization problem for theK-point quantizer (13) with the additional constraint is equivalent to the
optimization problem for the (K−1)-point quantizer. Thus, the (K−1)-point design problem and theK-point design
problem have the same objective function, but the (K−1)-point problem has an additional constraint. Therefore,
D∗(K − 1) ≥ D∗(K).

Sinced(p0, vK(p0)) ≥ 0, D = E[d(P0, vK(P0))] ≥ 0. Since the sequenceD∗(K) is nonincreasing and bounded
from below, it converges. Mean Bayes risk error cannot get worse when more quantization levels are employed.

2By local optimality, it is meant that the{ak} and{bk} minimize the objective function (8) among feasible representation and boundary
points near them.
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In typical settings, as in Section V, performance always improves with an increase in the number of quantization
levels.

IV. H IGH-RATE QUANTIZATION

Let us apply high-rate quantization theory [14] to the studyof minimum MBRE quantization. The distortion
function for the MBRE criterion has a positive second derivative in p0 (due to strict convexity) and for many
families of likelihood functions, it has a continuous thirdderivative, see (7). Thus, it is locally quadratic in the
sense of Liet al. [12] and in a manner similar to many perceptual, non-difference distortion functions, the high-rate
quantization theory is well-developed.

At high rate, i.e.K large, if we let:

B(p0) = −1
2c10p0

d2pI
E(p0)
dp2

0
− c10

dpI
E(p0)
dp0

− 1
2c01(1− p0)

d2pII
E(p0)
dp2

0
+ c01

dpII
E(p0)
dp0

, (14)

thend(p0, ak) is approximated by the following second order Taylor expansion:

d(p0, ak) ≈ B(p0)|p0=ak
(p0 − ak)

2
, p0 ∈ Rk. (15)

Assuming thatfP0
(·) is sufficiently smooth and substituting (15) into the objective of (13), the MBRE is approxi-

mated by:

D ≈
K
∑

k=1

fP0
(ak)B(ak)

∫

Rk

(p0 − ak)
2
dp0. (16)

The MBRE is greater than and approximately equal to the following lower bound, derived in [12] by relationships
involving normalized moments of inertia of intervalsRk and by Hölder’s inequality:

DL = 1
12K2

∫ 1

0
B(p0)fP0

(p0)λ(p0)
−2dp0, (17)

where the optimal quantizer point density is:

λ(p0) =
(B(p0)fP0

(p0))
1/3

∫ 1
0 (B(p0)fP0

(p0))
1/3

dp0
. (18)

Integrating a quantizer point density over an interval yields the fraction of the{ak} that are in that interval.
Substituting (18) into (17) yields:

DL = 1
12K2 ‖B(p0)fP0

(p0)‖1/3. (19)

V. EXAMPLES

As an example, let us consider the following scalar signal and measurement model:

Y = sm +W, m ∈ {0, 1}, (20)

wheres0 = 0 ands1 = µ (a known, deterministic quantity), andW is a zero-mean, Gaussian random variable with
varianceσ2. The likelihoods are:

fY |H(y|h0) = N (y; 0, σ2) = 1
σ
√
2π
e−y2/2σ2

,

fY |H(y|h1) = N (y;µ, σ2) = 1
σ
√
2π
e−(y−µ)2/2σ2

. (21)

The two error probabilities are:

pI
E(p0) = Q

(

µ
2σ + σ

µ ln
(

c10p0

c01(1−p0)

))

,

pII
E(p0) = Q

(

µ
2σ − σ

µ ln
(

c10p0

c01(1−p0)

))

, (22)

where:

Q(α) = 1√
2π

∫ ∞

α
e−x2/2dx.
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Finding the centroid condition, the derivatives of the error probabilities are:

dpI
E(p0)
dp0

∣

∣

∣

ak

= − 1√
2π

σ
µ

1
ak(1−ak)

e
− 1

2

“

µ

2σ
+σ

µ
ln

“

c10ak
c01(1−ak)

””2

, (23)

dpII
E(p0)
dp0

∣

∣

∣

ak

= + 1√
2π

σ
µ

1
ak(1−ak)

e
− 1

2

“

µ

2σ
−σ

µ
ln

“

c10ak
c01(1−ak)

””2

. (24)

By substituting these derivatives into (12) and simplifying, the following expression is obtained for the representation
points:

ak =
I I
k

I I
k + I II

k

. (25)

For high-rate analysis, the second derivatives of the errorprobabilities are needed. They are:

d2pI
E(p0)
dp2

0
= − 1√

8π
σ
µ

1
p2
0(1−p0)2

e
− 1

8µ2σ2

“

µ2+2σ2 ln
“

c10p0
c01(1−p0)

””2
[

−3 + 4p0 −
2σ2

µ2 ln
(

c10p0

c01(1−p0)

)]

, (26)

and:
d2pII

E(p0)
dp2

0
= + 1√

8π
σ
µ

1
p2
0(1−p0)2

e
− 1

8µ2σ2

“

µ2−2σ2 ln
“

c10p0
c01(1−p0)

””2 [

−1 + 4p0 −
2σ2

µ2 ln
(

c10p0

c01(1−p0)

)]

. (27)

By inspection, we note that the third derivatives are continuous. Substituting the first derivatives (23)-(24) and
second derivatives (26)-(27) into (14), an expression forB(p0) can be obtained.

Examples with different distributionsfP0
(p0) are presented below. All of the examples use scalar signals with

additive Gaussian noise,µ = 1, σ = 1 (20). As a point of reference, a comparison is made to quantizers designed
under mean absolute error (MAE) [21], i.e.d(p0, a) = |p0 − a|, an objective that does not account for hypothesis
testing.3

In the high-rate comparisons, the optimal point density forMAE [23]:

λ(p0) =
fP0

(p0)
1/2

∫ 1
0 fP0

(p0)1/2dp0

is substituted into the high-rate distortion approximation for the MBRE criterion (17). TakingR = log2(K), there
is a constant gap between the rates using the MBRE point density and the MAE point density for all distortion
values. This difference is:

RMBRE(DL)−RMAE(DL) =
1

2
log2

(

‖fP0
(p0)B(p0)‖1/3

‖fP0
(p0)‖1/2

∫ 1
0 B(p0)dp0

)

.

The closer the ratio inside the logarithm is to one, the closer the MBRE- and MAE-optimal quantizers.

A. Uniformly DistributedP0

We first look at the setting in which all prior probabilities are equally likely. The MBRE of the MBRE-optimal
quantizer and a quantizer designed to minimize MAE with respect to fP0

(p0) are plotted in Fig. 2. (The optimal
MAE quantizer for the uniform distribution is the uniform quantizer.) The plot shows MBRE as a function ofK;
the solid line with circle markers is the MBRE-optimal quantizer and the dotted line with asterisk markers is the
MAE-optimal quantizer.DL, the high-rate approximation to the distortion-rate function is plotted in Fig. 3.

The performance of both quantizers is similar, but the MBRE-optimal quantizer always performs better or equally.
ForK = 1, 2, the two quantizers are identical, as seen in Fig. 4a-b. The plots in Fig. 4 showJ̃(p0, vK(p0)) as solid
and dotted lines for the MBRE- and MAE-optimal quantizers respectively; the markers are the representation points.
The gray line isJ(p0), the Bayes risk with unquantized prior probabilities. ForK = 3, 4, the representation points
for the MBRE-optimal quantizer are closer top0 = 1

2 than the uniform quantizer. This is because the area under
the point density functionλ(p0) shown in Fig. 5 is concentrated in the center. Each incrementof K is associated

3As shown by Kassam [21], minimizing the MAE criterion also minimizes the absolute distance between the cumulative distribution function
of the source and the induced cumulative distribution function of the quantized output. Since the induced distributionfrom quantization is used
as the population prior distribution for hypothesis testing, requiring this induced distribution to be close to the true unquantized distribution
is reasonable. If distance between probability distributions is to be minimized according to the Kullback-Leibler discrimination between
the true and induced distributions (which is defined in termsof likelihood ratios), an application of Pinsker’s inequality shows that a small
absolute difference is requisite [22]. Although a reasonable criterion, MAE is suboptimal for hypothesis testing performance as seen in the
examples.
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Fig. 2. MBRE for uniformly distributedP0 and Bayes costsc10 = c01 = 1 plotted on a logarithmic scale as a function of the number
of quantization levelsK; the solid line with circle markers is the MBRE-optimal quantizer and the dotted line with asterisk markers is the
MAE-optimal uniform quantizer.
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Fig. 3. High-rate approximation of distortion-rate function DL for uniformly distributedP0 and Bayes costsc10 = c01 = 1; the solid line
is the MBRE-optimal quantizer and the dotted line is the MAE-optimal uniform quantizer.
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Fig. 4. Quantizers for uniformly distributedP0 and Bayes costsc10 = c01 = 1. J̃(p0, vK(p0)) is plotted for (a)K = 1, (b) K = 2,
(c) K = 3, and (d)K = 4; the markers, circle and asterisk for the MBRE-optimal and MAE-optimal quantizers respectively, are the
representation points{ak}. The gray line is the unquantized Bayes riskJ(p0).



9

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

p0

λ
(p

0
)

Fig. 5. Optimal MBRE point density for uniformly distributed P0 and Bayes costsc10 = c01 = 1.
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Fig. 6. MBRE for uniformly distributedP0 and Bayes costsc10 = 1, c01 = 4 plotted on a logarithmic scale as a function of the number
of quantization levelsK; the solid line with circle markers is the MBRE-optimal quantizer and the dotted line with asterisk markers is the
MAE-optimal uniform quantizer.

with a large reduction in Bayes risk. There is a very large performance improvement fromK = 1 to K = 2.

In Fig. 6, Fig. 7, Fig. 8, and Fig. 9, similar plots to those above are given for the case when the Bayes costsc10
and c01 are unequal. The unequal costs skew the Bayes risk function and consequently the representation point
locations and point density function. The difference in performance between the MBRE-optimal and MAE-optimal
quantizers is greater in this example because the MAE-criterion cannot incorporate the Bayes costs, which factor
into MBRE calculation.
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Fig. 7. High-rate approximation of distortion-rate function DL for uniformly distributedP0 and Bayes costsc10 = 1, c01 = 4; the solid
line is the MBRE-optimal quantizer and the dotted line is theMAE-optimal uniform quantizer.
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Fig. 8. Quantizers for uniformly distributedP0 and Bayes costsc10 = 1, c01 = 4. J̃(p0, vK(p0)) is plotted for (a)K = 1, (b) K = 2,
(c) K = 3, and (d)K = 4; the markers, circle and asterisk for the MBRE-optimal and MAE-optimal quantizers respectively, are the
representation points{ak}. The gray line is the unquantized Bayes riskJ(p0).
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Fig. 9. Optimal MBRE point density for uniformly distributed P0 and Bayes costsc10 = 1, c01 = 4.

B. Beta DistributedP0

Now, we look at a non-uniform distribution forP0, in particular the Beta(5, 2) distribution. The probability density
function is shown in Fig. 10. The MBRE of the MBRE-optimal andMAE-optimal quantizers are in Fig. 11. Here,
there are also large improvements in performance with an increase inK. The high-rate approximation to the
distortion-rate function for this example is given in Fig. 12.

The representation points{ak} are most densely distributed whereλ(p0), plotted in Fig. 13, has mass. In particular,
more representation points are in the right half of the domain than in the left, as seen in Fig. 14.
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Fig. 10. The probability density functionfP0(p0) for the Beta(5, 2) distribution.
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Fig. 11. MBRE for Beta(5, 2) distributedP0 and Bayes costsc10 = c01 = 1 plotted on a logarithmic scale as a function of the number
of quantization levelsK; the solid line with circle markers is the MBRE-optimal quantizer and the dotted line with asterisk markers is the
MAE-optimal uniform quantizer.
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Fig. 12. High-rate approximation of distortion-rate function DL for Beta(5, 2) distributedP0 and Bayes costsc10 = c01 = 1; the solid
line is the MBRE-optimal quantizer and the dotted line is theMAE-optimal uniform quantizer.

VI. I MPLICATIONS ON HUMAN DECISION MAKING

In the previous sections, we formulated the minimum MBRE quantization problem and discussed how to find
the optimal MBRE quantizer. Having established the mathematical foundations of hypothesis testing with quantized
priors, we may explore the implications of such resource-constrained decision making on human affairs.

Let us consider the particular setting for human decision making mentioned in Section I: a referee determining
whether a player has committed a foul or not using both his or her noisy observation and prior experience. The
fraction of plays in which a player commits a foul is that player’s prior probability forh1. Over the population
of players, there is a distribution of prior probabilities.Also as mentioned in Section I, human decision makers
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Fig. 13. Optimal MBRE point density for Beta(5, 2) distributedP0 and Bayes costsc10 = c01 = 1.
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Fig. 14. Quantizers for Beta(5, 2) distributedP0 and Bayes costsc10 = 1, c01 = 4. J̃(p0, vK(p0)) is plotted for (a)K = 1, (b) K = 2,
(c) K = 3, and (d)K = 4; the markers, circle and asterisk for the MBRE-optimal and MAE-optimal quantizers respectively, are the
representation points{ak}. The gray line is the unquantized Bayes riskJ(p0).

categorize into a small number of categories due to limitations in information processing capacity [3]. Decisions by
humans may be modeled via quantization of the distribution of prior probabilities and the use of the quantization
level centroid of the category in which a player falls as the prior probability when performing hypothesis testing
on that player’s action.

Therefore, a referee will do a better job with more categories rather than fewer. A police officer confronting
an individual with whom he or she has prior experience will make a better decision if he or she has the mental
categories ‘probably violent,’ ‘possibly violent or nonviolent,’ and ‘probably nonviolent,’ versus just ‘violent’ and
‘nonviolent.’ Similarly, a doctor will have a smaller probability of error when interpreting a blood test if he or she
knows the prior probability of the test turning out positivefor many categorizations of patients rather than just
one for the entire population at large. Additional examplescould be given for a variety of decision-making tasks.
Implications of this sort are not surprising. However, whenone additional component is added to the decision-
making scenario, some fairly interesting implications arise. Next, we look at the case when the quantization of two
distinct populations is done separately.

We discuss mathematically unavoidable consequences of quantized prior hypothesis testing when quantizing the
prior probability for a minority population and the prior probability for a majority population separately, while taking
identical prior probability distributions of the two populationsfP0

(p0). Although majority and minority populations
can be defined along any socially observable dimension, suchas gender or age [24], for ease of exposition we use
race, and more specifically use ‘white’ and ‘black’ to denotethe two populations. Although there is some debate
in the social cognition literature [25], it is thought that race and gender categorization is essentially automatic,
particularly when a human actor lacks the motivation, time,or cognitive capacity to think deeply.

We can extend the definition of MBRE to two populations as:

D(2) = w
w+bE[J̃(P0, vKw

(P0))] +
b

w+bE[J̃(P0, vKb
(P0))]− E[J(P0)], (28)

wherew is the number of whites encountered,b is the number of blacks encountered,4 Kw is the number of points
in the quantizer for whites, andKb is the number of points in the quantizer for blacks. In order to find the optimal
allocation of the total quota of representation pointsKt = Kw + Kb, we minimizeD(2) for all Kt − 1 possible
allocations and choose the best one; more sophisticated algorithms developed for bit allocation to subbands in
transform coding may also be used [27].

Fryer and Jackson have previously suggested that it is better to allocate more representation points to the majority
population than to the minority population [28]. With two separate scalar quantizers, but a single size constraint,

4One might assume thatw and b are simply the number of whites and blacks in the general population, however these numbers should
actually be based on the social interaction pattern of the decision maker. Due to segregation in social interaction, seee.g. [26] and references
therein, there is greater intra-population interaction than inter-population interaction. The decision maker has more training data from intra-
population interaction.
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optimizing D(2) over vKw
(·) andvKb

(·) yields the same result. Due to the monotonicity result in Sec. III-D, the
MBRE for members of the minority group is greater than that for the majority group.

Assuming white decision makers havew > b and black decision makers haveb > w, analysis of quantized prior
Bayesian hypothesis testing predicts that there should be own-race bias in decision making. This prediction is in
fact born out experimentally. A large body of literature in face recognition shows exactly the predicted own race
bias effect, observed colloquially as “they [other-race persons] all look alike.” In particular, both parts of the Bayes
risk, pI

E andpII
E increase when trying to recognize members of the opposite population [29]. Verification of own

race bias in face recognition is due to laboratory experimentation, however similar effects have also been observed
in natural experiments through econometric studies.

It has been found that the addition of police officers of a given race is associated with an increase in the number
of arrests of suspects of a different race but has little impact on same-race arrests. The effect is more pronounced
for minor offenses where the prior probability presumably plays a bigger role than the measurement [30]. There
are similar own-race bias effects in the decision by police to search a vehicle during a traffic stop [31], in the
decision of human resource professionals to not hire [32], and in the decision of National Basketball Association
(NBA) referees to call a foul [33]. The rate of searching, therate of not hiring, and the rate of foul calling are all
greater when the decision-maker is of a different race than the driver, applicant, and player, respectively. A major
difficulty in interpreting these econometric studies, however, is that the ground truth is not known. Higher rates
may be explained by either greaterpI

E or smallerpII
E.

Since ground truth is lacking in econometric studies, it is not clear how to interpret a finding that white referees
call more fouls on black players and that black referees callmore fouls on white players. This phenomenon cannot
simply be explained by a larger probability of decision error. The Bayes risk must be teased apart into its constituent
parts and the Bayes costs must be examined in detail.

The measurable quantity in an econometrics study is the probability that a foul is called:

Pr[ĤK = h1] = 1− p0 + p0p
I
E(vK(p0))− (1− p0)p

II
E(vK(p0)). (29)

Looking at the average performance of a white referee over the populations of black and white players, we compare
the expected foul rates on whites and blacks (Kb < Kw):

∆ = E
[

Pr[ĤKb
= h1]− Pr[ĤKw

= h1]
]

. (30)

If this discrimination quantity∆ is greater than zero, then the white referee is calling more fouls on blacks. If∆
is less than zero, then the referee is calling more fouls on whites. The∆ expression may be written as:

∆(c10, c01) = E[p0p
I
E(vKb

(p0))− (1− p0)p
II
E(vKb

(p0))]

− E[p0p
I
E(vKw

(p0))− (1− p0)p
II
E(vKw

(p0))]. (31)

The dependence of∆ on c10 andc01 is explicit on the left side of (31) and is implicit in the error probabilities on
the right side. The value of∆ also depends on the unquantized prior distributionfP0

(p0), the measurement model,
and the quantizer.

If the prior distribution and measurement model are fixed, and the MBRE-optimal quantizer used, we find that
the regions in thec10-c01 plane where a white referee would call more fouls on blacks and where a white referee
would call more fouls on whites are half-planes. For the uniform prior fP0

(p0), the dividing line between the two
regions is exactlyc01 = c10. For the Beta(5,2) prior, the dividing line isc01 = mc10, wherem > 1.

Using the division of thec10-c01 plane into two parts, we can now interpret the econometric findings in the
NBA referee study [33] and related results [30]–[32]. The NBA race bias observations can be generated from the
quantized prior hypothesis testing model only if the Bayes risk error has costsc01 > c10 for a uniform prior or
costsc01 ≫ c10 for a Beta(5,2) prior. The choice of Bayes costs withc01 greater thanc10 implies that a referee
can tolerate more instances of calling fouls on plays that are not fouls rather than the opposite. This assignment of
costs has been called the precautionary principle in some contexts. Very simply, the precautionary principle states
“better safe than sorry.”

Taken together, the hypothesis testing with quantized priors model, the phenomenon of racial segregation [26], and
results from econometric studies [30]–[33] suggest that referees, police officers, and human resources professionals
all follow the precautionary principle.
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VII. C ONCLUSION AND FUTURE WORK

We have looked at Bayesian hypothesis testing when there is adistribution of prior probabilities, but the decision
maker may only use a quantized version of the true prior probability in designing a decision rule. Considering the
problem of finding the optimal quantizer for this purpose, wehave defined a new fidelity criterion based on the
Bayes risk function. For this criterion, MBRE, we have determined the conditions that an optimal quantizer satisfies
and worked through a high-rate approximation to the distortion. M -ary hypothesis testing withM > 2 requires
vector quantization rather than scalar quantization, but determining the Lloyd-Max conditions and high-rate theory
is no different conceptually due to the geometry of the Bayesrisk function and mismatched Bayes risk function.
For theM -ary hypothesis testing case, a multivariate distributionsuch as theM -dimensional Dirichlet distribution
[16] is needed forfP (p). Previous, though significantly different, work on quantization for hypothesis testing was
unable to directly minimize the Bayes risk, as was accomplished in this work.

The mathematical theory of quantized prior hypothesis testing formulated here leads to a generative model of
discriminative behavior when combined with theories of social cognition and empirical facts about social segregation.
This biased decision making arises despite having identical distributions for different populations and despite no
malicious intent on the part of the decision maker. We also discussed how the choice of Bayes costs affects detection
probabilities; in particular, the precautionary principle leads to a higher detection probability for the opposite race,
whereas a more optimistic view leads to a higher detection probability for the own race. Such a phenomenon
of pessimistic or optimistic attitude fundamentally altering the nature of discrimination seems not to have been
described before. Discrimination on the basis of race, gender, and other socially observable characteristics has been
a troublesome social problem, but appears to be a permanent artifact of the automaticity of classification and the
finite human capacity for information processing.

There are many avenues along which to extend this work, such as dealing with decentralized detection and
classification (with possible implications on jury decisions and elections), which may become game theoretic;
consideration of additional noise before or after quantization of the prior probabilities; or the development of
successively refinable quantizers (for decision makers that possess a memory hierarchy). One can also consider
a restricted class of quantizers rather than considering optimal quantization. Such restriction may model further
cognitive constraints on human decision makers. In particular, Fryer and Jackson have suggested a heuristic algorithm
for quantizer design based on splitting groups [28], which is a rediscovery of the tree-structured vector quantizer
(TSVQ) design algorithm given in [34, Fig. 20]. Beyond [34],there has been much recent development in the
theory of TSVQ performance and recursive partitioning, which may prove useful.

For the quantizer withK = 1, an alternative to the MBRE-optimal representation point:

a
∗
MBRE = argmin

a

{
∫

J̃(p,a)fP (p)dp

}

is the min-max hypothesis testing representation point:

a
∗
min-max= argmin

a

{

max
p

J̃(p,a)

}

,

which is only equivalent in special cases. A distribution onthe prior probabilities is needed to specifya∗
MBRE,

but not to specifya∗
min-max. One may consider extending the min-max idea toK > 1. This would involve an

approach related toǫ-entropy [35, Sec. 6.1.2] and finding a cover for the unit simplex by K sets of the form
Rk = {p|J̃(p,ak) ≤ D}, where allp in Rk map toak andD is the same for allRk.

The general theme of machine learning for the explicit purpose of hypothesis testing, within which this work falls,
is receiving increasing attention; framing the hypothesistesting scenario discussed here in terms of probabilistic
graphical models of categorization, e.g. the latent Dirichlet allocation model [36] and the hierarchical Dirichlet
process mixture model [37], may prove insightful as well.
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