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Optimal Node Density for Detection in
Energy-Constrained Random Networks
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Abstract—The problem of optimal node density maximizing the
Neyman-Pearson detection error exponent subject to a constraint
on average (per node) energy consumption is analyzed. The spa-
tial correlation among the sensor measurements is incorporated
through a Gauss-Markov random field (GMRF) model with Eu-
clidean nearest-neighbor dependency graph. A constant density
deployment of sensors under the uniform or Poisson distribution
is assumed. It is shown that the optimal node density crucially
depends on the ratio between the measurement variances under
the two hypotheses and displays a threshold behavior. Below the
threshold value of the variance ratio, the optimal node density
tends to infinity under any feasible average energy constraint. On
the other hand, when the variance ratio is above the threshold, the
optimal node density is the minimum value at which it is feasible
to process and deliver the likelihood ratio (sufficient statistic) of
the sensor measurements to the fusion center. In this regime of
the variance ratio, an upper bound on the optimal node density
based on a proposed 2-approximation fusion scheme and a lower
bound based on the minimum spanning tree are established.
Under an alternative formulation where the energy consumption
per unit area is constrained, the optimal node density is shown to
be strictly finite for all values of the variance ratio and bounds on
this optimal node density are provided.

Index Terms—Distributed detection, error exponent, Gauss-
Markov random fields (GMRF), routing, sensor networks.

I. INTRODUCTION

W E consider the problem of distributed detection with a
network of sensors that take measurements from one

of the two unknown simple hypotheses, and . Under the
alternative hypothesis , sensors observe a Gauss-Markov
random field (GMRF), and, hence, have statistically corre-
lated samples, which in practice indicates the presence of a
phenomenon of interest. Under the null hypothesis , on
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the other hand, the sensors observe statistically independent
measurements. Sensors deliver their measurement data to a
fusion center where a test is made to determine the underlying
hypothesis. We impose a constraint on the energy consumption
of the fusion process, consisting of multihop routing with
in-network processing. Such a fusion process can result in con-
siderable energy savings and is in contrast to classical routing,
where no processing occurs at any intermediate nodes between
the source and the destination.

Classical distributed detection often makes the so-called con-
ditional i.i.d. assumption in which observations at different sen-
sors are statistically independent and identically distributed con-
ditioned on each hypothesis. Such an assumption effectively
decouples detection performance from energy constraints: the
number of sensor measurements used for data fusion (along with
optimal sensor quantization and fusion rules) determines the de-
tection performance whereas the energy consumed in data fu-
sion is determined by the locations of the sensors involved. Typ-
ically, one prefers to collect data from sensors near the fusion
center, which implies that sensors should be densely deployed.

On the other hand, when sensor measurements are corre-
lated, the locations of the sensors affect not only the energy
consumption but also the correlation structure of the measure-
ments. Densely deployed sensors tend to have highly correlated
measurements, which may either be beneficial or detrimental
to detection efficiency.

In this paper, we consider the optimization of sensor den-
sity of a multihop sensor network in the context of energy-con-
strained distributed detection. For large sensor networks, it is
unrealistic to optimize individual sensor locations. It is then nat-
ural to consider random deployment of sensors where the sensor
density becomes the key design parameter. Optimizing sensor
density is not only important for sensor deployment but also
gives a simple decentralized sensor transmission strategy by de-
ciding to transmit under independent coin flips.

To characterize the detection performance, we consider the
Neyman-Pearson (NP) error exponent . Our objective is to
find an optimal node density that maximizes the detection
error exponent , under a constraint on the average (per
node) energy consumption , when the number of nodes
goes to infinity.

(1)

We address the following questions: does an optimal node
density exist? And if so, what is its value? Is it one of the ex-
tremes, viz., zero or infinity? This is an important question, since
if the optimal node density is either zero or infinity, then we can
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simply place the nodes in as small or large an observation area
as possible.

II. RELATED WORK

In many realistic scenarios, sensor measurements are corre-
lated, and our framework takes this into account. In general,
spatial signals are acausal in contrast to temporal signals. In
the literature, the two are usually distinguished by referring to
acausal signals as random fields and to causal signals as random
processes. Various assumptions on spatial correlation have been
made in the literature. Joint-Gaussian distributions and distance-
based correlation function have been widely assumed due to
their simplicity [4]–[7]. Alternatively, diffusion-based models
[8] and joint-entropy based models [9] have also been employed.
All these models can be incorporated under the Markov random
fields (MRF) framework. Markov random fields, also known
as conditional autoregressions, were introduced by Besag [10],
[11]. The use of the MRF model for spatial data in sensor net-
works is relatively new ( e.g., [12]), although it is widely used
in image processing [13] and geo-statistics [14].

Detection of a GMRF is related to the detection of a Gauss-
Markov random process (GMRP), which is a classical problem
[15]. There is an extensive literature on the large-deviations ap-
proach to the analysis of detection of GMRP, e.g., [16] and [17].
However, GMRP is not easily applicable to random placement
of nodes in planar and higher dimensional spaces. Hence, we
employ the model of a GMRF for randomly placed sensors on
the Euclidean plane.

We are interested in routing spatially correlated data for op-
timal detection and hence, there can be data fusion en route to
the fusion center. Such in-network processing algorithms for
computing certain aggregate functions are dealt in the surveys
[18], [19]. These data-aggregation schemes, however, are appli-
cable for optimal detection, only for conditionally independent
data. An overview of routing in wireless networks can be found
in [20]. The literature considering the tradeoff between detec-
tion performance and routing energy consumption is less exten-
sive. In [21]–[23], energy-efficient detection is considered under
various formulations. However, they all assume that the mea-
surements are conditionally independent. Detection of one-di-
mensional GMRP is considered in [24] and [25]. A specific link
cost for detection, based on the Chernoff information, is pro-
posed in [24]. In [25], a energy-density constraint is imposed,
i.e., energy per unit distance is fixed, and a finite sensor density
is shown to be optimal. But these works assume a one-dimen-
sional model, not applicable when the nodes are on a plane. In
[26], nonparametric target detection is studied; binary decisions
are fused locally by a majority rule before transmission to a fu-
sion center. However, no guarantee is provided on the energy
savings obtained. In [27], a decision-theoretic approach to local
inference of a Markov random field with single-bit communica-
tion is considered and the network topology is predefined by a
directed acyclic graph.

In [28]–[30], we consider minimum-energy fusion and en-
ergy-detection tradeoff for general Markov-random field depen-
dencies and arbitrary node placements. We show a Steiner tree
construction for the optimal scheme and a preliminary version
of this work focusing on nearest-neighbor dependency appears

in [3]. In contrast, an alternative formulation is considered in
this paper with random point sets, which enables us to explic-
itly characterize scaling laws, as the number of nodes goes to
infinity, for both the detection performance and the average en-
ergy consumption for data fusion, and derive optimal node den-
sity using these results. An abbreviated version of some results
of this paper appears in [1]. In this paper, we provide additional
results on lower and upper bounds for the optimal density under
per-node energy constraint. We also consider an alternative for-
mulation where the energy consumption per unit area is instead
constrained.

III. OVERVIEW OF RESULTS AND APPROACH

Given a per-node energy budget for data fusion, we aim to
find the sensor density that optimizes the detection performance.
Assuming that all the nodes have the same measurement vari-
ance under each hypothesis , we define the variance ratio
as

(2)

The main results demonstrate the presence of a threshold
effect on the variance ratio . As shown in Fig. 2, when is
below a threshold , the optimal density is unbounded, and
thus it is optimal to concentrate sensors near the fusion center.
Moreover, this result is independent of the energy constraint im-
plying that imposing an energy constraint does not degrade de-
tection performance. On the other hand, when is above the
threshold and no energy constraint is imposed, the optimal
density tends to zero [Fig. 2(a)], which in practice, implies that it
is optimal to disperse sensors in the largest possible area. In this
regime of , imposing an energy constraint leads to a strictly
finite optimal density and we provide bounds on this optimal
value [Fig. 2(b)].

We give a closed-form expression for the threshold on the
variance ratio which decides the behavior of the optimal den-
sity. The threshold is independent of the energy constraint.
Moreover, somewhat surprisingly, it depends on the correlation
structure only through the limiting correlation of two sensors as
their separation distance vanishes.

We also investigate the use of an energy density constraint
where the total energy consumption in a given area is con-
strained instead of the average energy at each node. We show
that an optimal node density under this formulation exists, and
is strictly finite for all values of the variance ratio . This is
in sharp contrast to the threshold behavior under a per-node
energy constraint. We prove analytical bounds for the optimal
density when the variance ratio .

A brief comment on the approach adopted is in order. Our
approach relies on the characterization of detection error ex-
ponent and energy consumption for data fusion when the sen-
sors are randomly deployed with constant density. Note that in
general, both the error exponent and the energy consumption
are indeed governed by the entire correlation structure. But we
prove that for a Markov random field model these quantities
are only dependent on the “local” correlation behavior. The key
technique is the law of large numbers (LLN) for functionals on
random graphs, recently obtained by Yukich and Penrose [31].
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In essence, the LLN states that the limit of a global functional on
a random graph tends to a “local” effect around the origin under
some conditions. Using the LLN, we have derived a closed-form
expression for the detection error exponent in [2].

In this paper, we use the LLN to derive scaling laws for en-
ergy consumption involved in data fusion for detection. Finding
the optimal fusion scheme with minimum energy consumption
is intractable. We have shown that this is equivalent to a Steiner
tree, and, hence, is NP-hard for any arbitrary node placement
[28], [29]. Here, we analyze data fusion of a Markov random
field (DFMRF), a 2-approximate fusion scheme, i.e., with
energy consumption no more than twice that of the optimal
scheme. This analysis is significant on its own because the
DFMRF fusion scheme is implementable in practice and results
in significant savings in energy consumption. In this paper,
we strengthen the approximation guarantee of the DFMRF
scheme for random node placement from 2 to a constant that
depends on the channel path-loss exponent using the LLN. In
the process, we also prove that the DFMRF fusion scheme has a
constant asymptotic average energy consumption, in contrast to
the classical approach of sending all the raw data to the fusion
center on shortest paths, which has an almost linear scaling,
as depicted in Fig. 5. Finally, we employ this scaling result as
a vehicle to provide bounds on the optimal node density when
the variance ratio is above threshold , as seen in Fig. 2(b).

Our paper is organized as follows. The system model is
explained in Section IV. The detection problem is specified in
Section V and minimum energy routing in Section VI. Asymp-
totic analysis of routing energy and detection performance
is provided in Section VII. Results on optimal density are in
Section VIII and numerical analysis in Section VIII-D. The
energy-density formulation is dealt in Section IX. Section X
concludes the paper.

IV. SYSTEM MODEL

An undirected graph is a tuple where is the
vertex set and is the edge set. Let

be the random variable denoting the Euclidean edge-length
of . The neighborhood function of a node is the set of
all other nodes having an edge with it. For a directed graph, we
denote the edges by , where the
direction of the edge is from to .

For the matrix , denotes the element in
the th row and th column and its determinant. For two sets

and , let .

A. GMRF

A GMRF, in addition to being a Gaussian random field, sat-
isfies special conditional independence properties. A simple ex-
ample is the first-order autoregressive process, where the con-
ditional independence of the observations is based on causality.
However, a spatial random field has a far richer set of condi-
tional independencies, requiring a more general definition [32,
p. 21].

Definition 1 (GMRF): Given a point set ,
is a GMRF with an (undirected) depen-

dency graph if is a Gaussian random field, and

, and are conditionally independent given obser-
vations at all other nodes if and are not neighbors

(3)

where denotes conditional independence and
.

B. Network and Energy Model

We assume that the energy consumed by a node can be rep-
resented by the sum of a constant processing energy
and the transmission energy1[33]. For details, see [3]. The en-
ergy required for the transmission of a real number from to
is denoted by . We assume that

(4)

where is a constant, is the internode distance, and
is the channel path-loss exponent. Further, we assume that the

processing energy at every node is constant and independent
of the number of transmissions from the node. Hence, it can
be ignored in the optimization framework for average per-node
energy.

The set of transmissions within a node set can be repre-
sented as a digraph . Note that this transmission di-
graph is different from the dependency graph of the signal
field. Let denote the total transmission energy given by

(5)

where is the Euclidean edge length. We require that
, the unit-disk graph, defined as the set of edges be-

tween any two nodes within an unit Euclidean distance of each
other. We further require to deliver the log-likelihood ratio
(LLR) to the fusion center to ensure optimal detection, which is
explained in detail in Section V.

V. HYPOTHESIS-TESTING PROBLEM

Let be a set of nodes on the plane and let
be the random vector of observation samples

(6)

The hypothesis-testing problem is

(7)

where the covariance matrix of a GMRF depends on the
configuration of nodes in . See Fig. 1(b) and (c).

The optimal decision-rule under the Neyman-Pearson formu-
lation is a threshold test based on the LLR. Let be
the conditional PDF of the observations given the point set
under hypothesis , for , 1. Then, the LLR is given by

(8)

1We ignore the energy consumed at the receiver.
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Fig. 1. Detection problem and random node deployment.

Fig. 2. Optimal node density versus ratio of variances underH andH . See
Theorem 4. For a given energy constraint, � � � = � � � , forK > K .

In order to conduct optimal detection at the fusion center,
it suffices to deliver the LLR to the fusion center and raw
data is not needed. Such data fusion schemes are outlined in
Section VI.

A. Covariance Matrix of GMRF

We make an additional assumption on the structure of the co-
variance matrix of the GMRF under viz., that the nodes
have the same measurement variance for any node configuration

, i.e.

(9)

We denote the ratio between the variances under the alternative
and the null hypothesis at each node by

We also assume that under , the amount of correlation be-
tween the neighbors2 , of the dependency graph is specified
by an arbitrary function , which has the Euclidean edge length

as its argument. From (9), we have

(10)

The correlation function is required to satisfy some regularity
conditions. We assume that

(11)

and that is a monotonically decreasing convex function of the
edge length. This is a reasonable assumption, since the amount
of correlation usually decays as nodes become farther apart.
Moreover, partial correlation or arises due to
signal imperfections. Note that this has the same effect on cor-
relation as imposing an exclusion region on how near two nodes
can be placed. Some examples of the correlation functions, sat-
isfying our assumptions, are

Note that we do not assume the presence of additive Gaussian
measurement noise in the signal model, as considered in the
literature before. This is because with the additive noise, the
resulting GMRF no longer has a sparse dependency graph. As
an alternative formulation, we model imperfect measurements
by assuming partially correlated nodes.

B. Nearest-Neighbor Graph

Typically, spatial interactions are based on proximity, where
the choice of edges is determined by the local point configura-
tion according to some specified rule [34]. With a regular lat-
tice structure (e.g., in image processing, Ising model), a fixed
set of neighbors can be specified in a straightforward manner
[35]. However, the situation is more complicated for arbitrarily
placed nodes. In this paper, we assume the dependency graph

to be the nearest-neighbor graph (NNG), which is the sim-
plest proximity graph. The nearest-neighbor function of a node

, is defined as

(12)

where is the Euclidean distance. The nearest-neighbor
(undirected) graph is formally given by

(13)

C. Expression for LLR

We incorporate (9)–(10) on the covariance matrix in the the-
orem below to obtain the LLR in (8) for detection.

2Given the correlation coefficients between the neighbors of the dependency
graph, the other coefficients of the correlation matrix can be inferred for acyclic
dependency graphs.
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Theorem 1 (LLR): Under (9)–(10), the log-likelihood ratio
in (8) for the hypothesis-testing problem in (7), given point set

, is shown in (14) at the bottom of the page,
where is the Euclidean edge length of .

Theorem 1 gives a closed-form expression for the log-like-
lihood ratio, in terms of the edges of the nearest-neighbor de-
pendency graph of the GMRF. Note in (14), the cross terms are
only between the neighbors of the dependency graph, which is
exploited to yield explicit data-fusion scheme [3], summarized
in Section VI. Note that (14) contains two kinds of terms. The
edge potentials, denoted by , that depend on a pair
of observations, are given by

(15)

and the node potentials , depending on a single observa-
tion, are given by

(16)

Hence, the LLR can be written in a compact form

(17)

VI. MINIMUM ENERGY ROUTING

The aim of optimal minimum energy data fusion for detection
is to ensure the delivery of the LLR, given by (17), to the desig-
nated fusion center while minimizing the total energy consump-
tion. First consider the special case when the measurements are
independent conditioned under either hypothesis. In this case,
the LLR in (17) is just the sum of the node potentials and all the
edge potentials are zero. The minimum-energy routing in this
case is given by the directed minimum spanning tree (DMST),
with the directions toward the fusion center. See Fig. 3(a). The
sum function can be calculated hierarchically along the DMST,
starting at the leaves and ending at the fusion center. This spe-
cial case of independent measurements in fact, turns out to be a
lower bound for energy consumption of any data fusion scheme.

Lemma 1 (Lower Bound for ): The minimum energy con-
sumption for a data fusion scheme that delivers the LLR in

Fig. 3. Routing schemes for detection under different correlation models.

(17) to the fusion center is at least the total energy consumption
along the minimum spanning tree, i.e.

(18)

The lower bound is achieved iff. the sensor data are independent,
conditioned on either hypotheses.

Hence, the presence of correlation increases routing costs
since the log-likelihood ratio in (17) is more complicated. In
[28], we show that incorporating correlation makes minimum
energy routing a NP-hard problem and, hence, we have to focus
on approximation algorithms. We employ a 2-approximation
routing algorithm called the DFMRF, proposed in [3], and we
restate its approximation guarantee here.

Lemma 2 (Approx. Ratio for DFMRF): DFMRF is a 2-ap-
proximation algorithm for any arbitrary node placement.

(19)

Hence, for any arbitrary node placement, the energy con-
sumption of the DFMRF scheme is at most twice that of the
optimal fusion scheme. Since we consider random point sets
here, the approximation ratio can be improved by analyzing
the asymptotic energy consumption and we undertake it in
Section VII.

The DFMRF scheme proceeds in two stages. In the first stage,
sensor measurements are transmitted along the edges of the
NNG. This ensures that the edge potentials in (17) are computed
at various nodes (called the aggregators). In the next stage, the
computed values are summed up along the edges of the pruned
minimum spanning tree (MST), where pruning refers to the re-
moval of leaves. Details about the DFMRF scheme can be found
in [3]. A schematic of the DFMRF scheme is shown in Fig. 3(b).

(14)
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Fig. 4. Pictorial representation of LLN for graph functionals of uniform or
Poisson point sets.

From (4), the total energy consumption of the DFMRF scheme
can be expressed as

(20)

where represents the leaves of the MST.

VII. ASYMPTOTIC ANALYSIS

It is intractable to analytically evaluate energy consumption
or detection performance for an arbitrary node set. Therefore,
we assume that the nodes are placed randomly, according to a
point process defined on expanding regions, formally defined
below. The number of nodes goes to infinity, with fixed node
density [Fig. 1(a)].

Definition 2 (Poisson and Binomial Processes): Let
denote a sequence of squares or circles of area , centered
at the origin, for any . A binomial point process on ,
denoted by , consists of points distributed i.i.d. uniformly
on . A homogeneous Poisson process of intensity on ,
denoted by , satisfies the following properties:

1) for any set with area , the number of points in
is Poisson distributed with mean ,

2) for any and with area , conditioned
on number of points in , the point process on is a
binomial process.

Such a random node placement allows us to employ the LLN
for graph functionals, briefly described here.

A. LLN for Graph Functionals

The LLN for functionals on graphs enables us to evaluate the
error exponent and applies to graphs which are random in the
sense that the vertex set is a marked random point set. LLN on
graphs is based on the so-called objective method. Steele [37]
coined this term for a philosophy whereby, loosely speaking,
one describes the limiting behavior of functionals on finite point
sets of binomial process in terms of related functionals defined
on infinite Poisson point sets. Penrose and Yukich [31], [34],
[38] introduced a concept of stabilizing functionals and use the

objective method to establish a strong law of large numbers for
graph functionals [31, p. 287]. The result is illustrated in Fig. 4,
where the limit of empirical average of the edge functionals of
a stabilizing graph is the expectation over the sum of only the
edge functionals of the origin, with the points drawn from an
infinite Poisson process. Hence, the LLN states that the limit is
a localized effect around the origin. The LLN is valid for stabi-
lizing graphs, where the local behavior of the graph in a bounded
region is unaffected by points beyond a finite (but random) dis-
tance from that region. The NNG is one such stabilizing graph
with translation and scale-invariance [34, Lemma 6.1] and we
focus on NNG dependency in this paper.

B. Average Energy for DFMRF

We now analyze the average energy consumption for the
DFMRF scheme. The average energy for DFMRF under the
binomial or Poisson process can be quantified using the LLN
for graph functionals [31].

Theorem 2 (Optimal Average Energy): The asymptotic av-
erage energy consumption for the DFMRF scheme and for fu-
sion along the minimum spanning tree (MST) are given by

(21)

(22)

where and are constants, independent of , and
is the channel path-loss coefficient in (4). Hence, the optimal
average energy consumption for data fusion satisfies the
bounds

(23)

This implies that the approximation ratio of the DFMRF under
random node placement is improved to .

Proof: The limit in (22) is proven in [38]. To evaluate the
limit in (21), we use the expression in (20). We note that the
power-weighted edges of the NNG, MST, and the leaves of MST
are all stabilizing graph functionals [38]. Therefore, the LLN for
graph functionals holds and we have (21). For approximation
ratio, we have

The constants and are the same for both the bi-
nomial and the Poisson process, and are evaluated through sim-
ulations. For a 500-node network, we obtained ,

, and . Similarly, for the lower
bound , which is based on the MST, analysis and simula-
tion results are available in [39].

In Fig. 5, we plot simulation results comparing the average
energy consumption of the DFMRF scheme and the lower
bound , based on the average energy consumption for fu-
sion along the MST. We also plot the energy consumption for
the classical approach using shortest paths to route all the raw
data and we see that it does not have a constant-factor scaling. In
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Fig. 5. Average per-node energy consumption for DFMRF scheme and
shortest-path routing for nearest-neighbor dependency and uniform distribu-
tion. 500 simulation runs. Path-loss coefficient � = 2, C , � = 1. See (4) and
(23).

fact, as the number of nodes grows the average energy consump-
tion for shortest-path routing grows almost linearly. Hence, col-
lecting all the raw data from a large network with energy con-
strained nodes is not feasible and our fusion scheme DFMRF is
applicable in such scenarios.

C. Detection Error Exponent

In this section, we characterize the detection error exponent
for the hypothesis testing problem in (7). Under the Neyman-
Pearson criterion, for a fixed Type-I error bound, the exponent
of the Type-II error is independent of the type-I error bound [17],
and is given by

(24)

In the following theorem, we restate the closed form for the error
exponent, derived3 in [2], in terms of the variables and functions
defined here.

(25)

(26)

(27)

(28)

where is the correlation function. Let denote the Rayleigh
random variable with variance and let be the area of
the union of two unit- radii circles with centers unit distance
apart, given by

(29)

Theorem 3 (Expression for ): For a GMRF on NNG with
correlation function , with the nodes drawn from the binomial

3The expression given in [2] is in a different form, but reduces to (30).

or the Poisson process with node density and region area ,
the error exponent for Neyman-Pearson detection is

(30)

where is the expectation over the random variable .
Proof: An intermediate expression for derived in [2] is

given by

(31)

We then employ the special law of large numbers for graph func-
tionals [31] to obtain (30). Details can be found in [2].

Note that in (30), the expectation term captures the correlation
structure of the GMRF and the remaining terms represent the
detection error exponent for two i.i.d. Gaussian processes with
variance ratio , i.e.

(32)

where the error exponent when the measurements are
conditionally i.i.d., and is given by

(33)

Hence, the effect of correlation on the error exponent is quanti-
fied in a compact form. It can be easily verified that the expec-
tation term is zero, when (no correlation). It
is easy to see that is independent of the node density

. Hence, the issue of optimal node density for error exponent
arises only in the presence of correlation. Moreover, intuitively,
as we vary node density , the edge lengths in the resulting NNG
scale by the factor , on an average. Hence, we see that this
factor appears in the expectation term in (32).

VIII. OPTIMAL NODE DENSITY

Recall that our objective is to find an optimal node density
maximizing the detection error exponent under a constraint on
the average energy consumption of data fusion.

We have so far derived a closed-form expression for the error
exponent [short form for in (30)] and bounds
for optimal average energy consumption in (23). In this
section, we exploit these expressions to derive the optimal node
density.

Before proceeding to the actual derivations, it is useful to
consider a special case, viz., when both the hypotheses have
the same measurement variance and there
is no energy constraint . Since there is no correla-
tion under , the two hypotheses can be distinguished only by
the presence of correlation under . Correlation is maximized
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when all the nodes are clustered close to one another, since cor-
relation decays with distance. Hence, the optimal density should
be infinite. We prove that this is indeed true and also characterize
the optimal density for general and energy constraint . To
this end, we first characterize the set of feasible node densities
which can support data fusion under the given energy constraint

.

A. Feasible Node Density Set

In order to incorporate the energy constraint , we need to
find a feasible set of node densities for minimum energy
routing that satisfies the average energy constraint and de-
livers the LLR to the fusion center,

(34)

When the density goes to infinity, the optimal average energy
consumption for routing goes to zero

This is derived from the bounds on in (23). Hence, the energy
constraint is satisfied at infinite density or in other words,

for defined in (34). Hence, whenever is
nonempty, it is of the form

(35)

where is defined as the minimum node density under the en-
ergy constraint at which it is feasible to perform data fusion.
However, as discussed in Section VI, finding the minimum en-
ergy scheme is NP-hard. Hence, finding an expression for is
analytically intractable. We instead provide bounds on using
(23).

We first consider feasible node density for DFMRF scheme.
From (21), imposing the energy constraint translates to a con-
straint on under the DFMRF

(36)

Similarly, from (22), imposing the constraint for data fusion
along the edges of the MST leads

(37)
From the bounds on optimal average energy in (23), we have
bounds on the feasible set of node densities for the minimum
energy scheme

(38)

From the definition of in (35), we have

(39)

Hence, although we are unable to evaluate , we have bounds
that are easily evaluated.

B. Infinite Node Density

We first analyze the error exponent , when the node density
goes to infinity. This will provide insights for finding the op-

timal density. As , we have

where depends on only through , and

(40)

In the theorem below, we prove that the presence of correlation
can either improve or degrade the error exponent, depending
on the variance ratio . We establish a threshold on that
determines the transition.

Lemma 3 (Behavior at Infinite Density ): At
, the correlation term in (40) is positive, if the

variance ratio is below a threshold value ,

(41a)
(41b)

For a fixed , the threshold is

(42)

and .
Proof: From (40) and .

Hence, we obtain a somewhat surprising result that at infi-
nite node density, the effect of correlation on error exponent is
different based on the variance ratio and is determined by
a threshold on . For values of below the threshold ,
the presence of correlation improves the error exponent in (41a).
On other hand, above the threshold , the presence of correla-
tion degrades the error exponent in (41b). Moreover, at infinite
density since the internode distances go to zero, the correlation
function is given by , and, hence, the threshold in
(41) is only a function of .

Although the results in Lemma 3 are valid only at infinite
density, we can utilize them to compare with the other extreme
scenario when the density . In this case, the error ex-
ponent , i.e., the conditionally i.i.d. case. From
Lemma 3, we can conclude that below the threshold , it is
better to cluster the nodes close to one another rather
than place them as far as possible . On the other hand,
above the threshold, the opposite is true. Hence, the results for
infinite node density in Lemma 3 provide guidelines on the ef-
fect of correlation on the error exponent. In Section VIII-C, we
will generalize these results to prove that the optimal node den-
sity displays a threshold behavior.

C. Threshold Behavior of Optimal Density

In this section, we provide the results for optimal density.
From (35), we can rewrite density optimization in (1) as

(43)

where for the last equality, we use the fact that is in-
dependent of in (32).
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To analyze the behavior of the expectation term in (43), we
first focus on the function in (26) given by

(44)

Since and , we have . In the
lemma below, we provide results on the behavior of .

Lemma 4 (Behavior of ): The function in (44) with
satisfies

(45a)
(45b)

Proof: See Appendix A.
Hence, the function attains its maximum only at one

of the boundary points for . The particular boundary
point is determined by a threshold on , as seen in (45) and
also depends only on , the limiting correlation.

When the point sets are drawn from binomial or Poisson pro-
cesses, and are the edge-lengths of NNG, consider the edge
functional

From (30) and (31), we have

(46)

Hence, we can use the result on the maximum of function in
Lemma 4 to find the corresponding optimal density maximizing
the expectation term in (43). In the theorem below, we provide
such a result on the optimal density and show that its behavior
is determined only by the thresholds and on .

Theorem 4 (Result on ): The optimal density in (43)
that maximizes the error exponent, under feasible average en-
ergy constraint , is given by

(47)

where the threshold is given by (42), and

(48)

where is defined in (35), and satisfies bounds in (39), and

(49)

where is the correlation function as the in-
ternode distance goes to zero. Also, when the energy constraint
is infinite , we have , and the result in (48) is
improved to

(50)

Proof: See Appendix B.
The above theorem states that when the variance ratio

is below the threshold , for any feasible energy constraint
, optimality is attained at infinite density. On the other hand,

above another threshold , the minimum feasible node

Fig. 6. Error exponent D versus ratio of variancesK for exponential correla-
tion function, node density � = 1. See (30) and (51).

density which supports data fusion under constraint at-
tains the optimal value.

In the special case, when there is infinite energy ,
we have . In this case, we prove
that optimal value is zero even in the gap region between the
two thresholds and . Numerical investigation suggests
that under any finite energy constraint, the optimal density is

even in the gap region between the two thresholds and
.
Also interestingly, the thresholds and depend on

correlation only through the limiting value .
This is because of the behavior of the function , elucidated
in Lemma 4. We also note that as , the thresholds

. Hence, when we approach full correlation as the
internode distance goes to zero, the optimal node density tends
towards infinity for all values of .

D. Numerical Analysis

In this section, we plot the error exponent and optimal node
density for a specific correlation function namely the exponen-
tial-correlation function,

(51)

Using Theorem 3 , we numerically evaluate through Monte
Carlo runs. In (30), the error exponent is an implicit function of
the correlation coefficient , through the correlation function .
We plot the effects of correlation coefficient and limiting cor-
relation on in Fig. 6.

In Fig. 6(a), we plot the error exponent at and ,
for different values of correlation coefficient . We notice that a
more correlated GMRF or the one with smaller , has a higher
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Fig. 7. Behavior of functions with exponential correlation g(R) =
M exp[�aR], M = 0:5, a = 1. Functions h and h are independent
of K . However, K affects their scaling in h. See (28).

exponent at low value of , whereas the situation is reversed
at high . Also, when the variance ratio is large enough,
appears to increase linearly with (in dB), and the correlation
coefficient and the limiting correlation appear to have little
effect, as expected from Theorem 3. In Fig. 6(b), we plot the
exponent at constant correlation coefficient for different
values of the limiting correlation . Also note, reduces
to the independent case. We notice a similar behavior as the
correlation coefficient in Fig. 6(a). A higher value of results
in a higher exponent at low , but not at high .

In Fig. 7, we fix the correlation coefficient in (51), and
plot the expectations of functions , and against . In
Fig. 7(a) and (b), the value of is below and above the threshold

. We observe that the behavior at is different in the
two plots. Note that the functions and are independent of

, but affects their scaling in .
In Fig. 8(a) and (b), we numerically evaluate the optimal

for different values of and variance ratio . It is
convenient to plot the results in terms of , since the optimal

is infinite when is below the threshold . We observe
the threshold behavior at , as predicted in Theorem 4: when

, we have and for , in Fig. 8(a) and (b),
optimality is mostly attained at the other extreme point . This
is consistent with Theorem 4.

E. Sensitivity Analysis

In Theorem 4, we proved the result on the optimal density .
In this section, we analyze the extent to which the error exponent

Fig. 8. [a,b] The optimal density � is decided by threshold K (M) on vari-
ance ratioK . � = 1. See Theorem 4. [c] The contribution from correlation to
error exponent versus variance ratio K at � =1 and M = 0:5. See (52).

is dependent on . This enables us to gauge the usefulness of
finding . To this end, we define

(52)

which is the fraction of contribution coming from correlation to
the error exponent in (32), and, hence, it is the part influenced
by . Note, and .

Lemma 5 (Sensitivity of to ): At , the fraction of
contribution from correlation to the error exponent
is maximum

(53)

Also, in the large- regime

(54)
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Hence, node density greatly influences detection performance
at . Intuitively, this is because at , the two hy-
potheses can only be distinguished through the presence of cor-
relation under . We also see that it decays to zero as .
Hence, the error exponent is insensitive to changes in density at
high . In Fig. 8(c), we plot as a function of .

IX. ENERGY-DENSITY CONSTRAINT

We now analyze the optimal node density under a different
formulation. Instead of having fixed number of nodes placed in
varying areas under a given constant node density, in this sec-
tion, we fix areas of deployment according to a constant node
density and then, let . This means that we now have
the flexibility of placing few powerful nodes or many cheaper
nodes in a given area. On the other hand, earlier we had the op-
tion of choosing the area of deployment for a fixed number of
nodes.

Under this formulation, the processing energy at each
node needs to be incorporated. We impose an energy density
constraint

(55)

where is the total (routing + processing) energy consumption
in area . Hence, we impose a constraint on the energy con-

sumption per unit area, instead of a constraint on the average
energy consumption per node, as in (1).

The error exponent with respect to total energy is

(56)

The optimal density under the energy-density constraint is

(57)

subject to the energy-density constraint in (55).
Note that the error exponent with respect to the total en-

ergy can be expressed as

(58)

where is the error exponent with respect to number of nodes
and is the average energy per node, dealt in the previous
sections. Similarly, the energy density constraint simplifies to

(59)

since is the number of nodes and the approximation
consists of ignoring the integer requirement for the number
of nodes. We again define for this setup to be the set of the
feasible node densities under minimum energy routing

(60)

In the theorem below, we show the finiteness of . We note
that this result is on lines of the results in [25] for a one-dimen-
sional GMRP.

Theorem 5 (Finite ): The optimal density in (57) exists
whenever the set in (60) is nonempty and is additionally
finite if the per-node processing energy .

Proof: Note that a compact set possesses a finite extremum
point. To show that is a compact set, we first note that is a
closed set. To show the bounded property, note that

Hence, the constraint in (59) is violated as and, hence,
cannot be in . Hence, is closed and bounded, i.e., com-

pact. This implies that is finite.
In the above theorem, note that for the feasible set to be

nonempty, the constraint has to be sufficiently large. In other
words, we need a large enough energy density to support en-
ergy consumption involved in processing and routing of mea-
surements.

We observe that there is no threshold effect when there is a
energy-density constraint and the optimal node density is
always finite. This is in sharp contrast with the results in the
previous section, where under the per-node energy constraint,

can be unbounded depending on the regime of . This is
because here, the energy-density constraint limits the energy
consumption in a given area thereby making infinite density in-
feasible. This implies that cannot be unbounded. In the the-
orem below, we provide bounds for when the variance ratio

, based on the monotonicity of the error exponent in this
regime.

Theorem 6 (Optimal ): Let be the largest (positive
real) root of the equation

(61)

where and are the energy-scaling constants in (23).
If the per-node processing energy , the variance ratio

and the constraint is such that both and
exist then the optimal satisfies

(62)

Proof: On the lines of the arguments in the previous sec-
tion, it can be shown that is increasing in for . From
(23), is decreasing in . Hence, the exponent in (56)
is increasing in . From the energy-density constraint in (59)
and Theorem 5, the feasible set is bounded. From the bounds
on in (23), if the largest real roots of (61), for
exist, then the maximum value in is bounded by these roots.

Hence, in Theorem 6, we obtain bounds on the optimal den-
sity under energy-density formulation. We prove this by first
showing that the error exponent is increasing with when
the variance ratio , as seen in Fig. 9. This implies that
is the largest feasible density under constraint that supports
the energy consumption for data fusion. In the end, we provide
the bounds in (62) on this largest feasible density through the
bounds for average energy consumption in (23). Although
we analytically prove the bounds in (62) only when the variance
ratio , the behavior of the error exponent in Fig. 9
suggests that the bound in (62) may be valid for all values of .

X. CONCLUSION

The tradeoff between the energy consumption in data fusion
and the resulting detection performance at the fusion center is



ANANDKUMAR et al.: ENERGY CONSTRAINED RANDOM NETWORKS 5243

Fig. 9. The error exponentD with respect to the total energy. See (56). � = 2,
C = 1, C = 1=c (2), M = 0:6.

an important problem in the context of sensor networks. In this
paper, we incorporated correlation between the measurements
through the Gauss-Markov random field model. We character-
ized the density of node deployment that maximizes the detec-
tion error exponent subject to a constraint on the average en-
ergy consumption. The measurement variance is crucial in de-
termining whether the optimal node density is limited by the
fusion energy constraint and displays a threshold behavior. We
derived the threshold analytically and verified it with simula-
tions.

The results on the optimal density are possible due to ex-
ploitation of the Markovian structure, in deriving the error ex-
ponent and the fusion schemes. While acknowledging the limi-
tations of its validity, we have made an attempt to characterize
detection-energy tradeoffs for correlated measurements in two
(and higher) dimensional spaces, which to the best of our knowl-
edge, has not been dealt before.

Alternative formulations, not dealt in this paper, include se-
lection of nodes with “useful” data [30], and incorporating node
and link failures. We have also not considered the issue of quan-
tization of measurements, a difficult problem even for condition-
ally i.i.d. measurements and the recent works in [40], [41] have
considered it for tree and tandem network topologies. Another
issue not addressed is that of the latency involved for the deci-
sion to be made at the fusion center. Extension of this work to
incorporate more general dependencies among sensor measure-
ments is currently under investigation.

APPENDIX

Proof of Lemma 4: Since and , we
have .

Therefore, has only one critical point in . For ,
and for , , . There

are no critical points. For , the critical point is a
minimum. Hence, maximum is attained at one of the boundary
points . For , it is at and, hence

Similarly, for , we have

Proof of Theorem 4: From Lemma 4, when ,
attains the maximum of . Hence, we

have for

Letting on both sides, from (46)

Hence, the optimal density in this regime is given by

From Lemma 4, when , attains the max-
imum of . For the case of infinite energy ,

. Hence

For finite constraint and , is increasing
in . We have , where is the edge-length in
unit area and is independent of . Hence, is non-
increasing in and the limit is also nonin-
creasing in . Hence
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