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New Algorithms for Designing Unimodular
Sequences With Good Correlation Properties

Petre Stoica, Fellow, IEEE, Hao He, Student Member, IEEE, and Jian Li, Fellow, IEEE

Abstract—Unimodular (i.e., constant modulus) sequences with
good autocorrelation properties are useful in several areas, in-
cluding communications and radar. The integrated sidelobe level
(ISL) of the correlation function is often used to express the good-
ness of the correlation properties of a given sequence. In this paper,
we present several cyclic algorithms for the local minimization
of ISL-related metrics. These cyclic algorithms can be initialized
with a good existing sequence such as a Golomb sequence, a Frank
sequence, or even a (pseudo)random sequence. To illustrate the
performance of the proposed algorithms, we present a number of
examples, including the design of sequences that have virtually
zero autocorrelation sidelobes in a specified lag interval and of
long sequences that could hardly be handled by means of other
algorithms previously suggested in the literature.

Index Terms—Autocorrelation, cyclic algorithms, integrated
sidelobe level, merit factor, unimodular sequences, waveform
design.

1. INTRODUCTION AND PROBLEM FORMULATION

ET {z,}_, denote the unimodular sequence to be de-
signed. Without introducing any restriction, we can as-
sume that

|z, =1, n=1,...,N. )

To keep this paper as concise as possible, we will limit the dis-
cussion to general unimodular sequences, but we note here that
finite-alphabet unimodular sequences, such as m-ary phase-shift
keying sequences, can also be dealt with in our framework—see,
however, the remark following (10).

Let

N
re= Y maah_ =15, k=0,... . N-1 (2
n=k+1
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be the correlation function of {JTn}fj:l, where (-)* denotes the

complex conjugate for scalars and the conjugate transpose for
vectors and matrices, and let

N-1
ISL =" |re|? 3)
k=1

be the integrated sidelobe level (ISL) metric. The main focus
of this paper is on algorithms for minimizing the ISL metric
or ISL-related metrics over the set of unimodular sequences.
Note that the minimization of the ISL metric is equivalent to
the maximization of the merit factor (MF) defined as follows:

|7”0|2 N2
MF = . 4
N-1 ) 2ISL “)
> Ikl
k=—(N—1)
k40

Unimodular sequences with large MF values are desired in
many applications, including wireless communications and
range compression radar and sonar. In these applications, an
emitted (probing or training) sequence with a large MF reduces
the risk that the received sequence of interest is drawn in
correlated multipath or clutter interferences. Additionally, the
limitations of the sequence generation hardware (including the
analog-to-digital conversion parts) lead to the requirement that
the emitted sequence be unimodular.

Owing to the significant theoretical and practical interest in
the design of unimodular sequences with good correlation prop-
erties (in particular, with large MF values), it should come as no
surprise that the literature on this topic is extensive; see [1]-[21]
and the many references therein.

Because the ISL metric may be highly multimodal (i.e., it
may have multiple local minima), stochastic optimization algo-
rithms have been suggested for its minimization. However, the
computational burden of these algorithms becomes prohibitive
as N increases: such algorithms are hardly effective on the cur-
rently available computing machines for N ~ 103 or larger.
Optimization algorithms for locally minimizing the ISL metric
have also been proposed. These algorithms can be used to pro-
vide quick solutions to the problem of reducing the ISL value
of a given reasonably good sequence. They can also be used
as local minimization blocks of a stochastic global optimiza-
tion algorithm. However, most of the existing local minimiza-
tion algorithms for the ISL metric are descent gradient methods
whose convergence problems as well as computational burdens
increase significantly as IV increases.

In this paper, we introduce several cyclic algorithms (CAs)
for the local minimization of ISL-related metrics. The first algo-
rithm is an extension of the CA in [21] (see also [19] and [20]),
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which we call CA-pruned (CAP). CAP deals with a weighted
ISL (WISL) metric of the form

N-1
WISL = > wyry|?
k=1
wy >0, k=1,...,N—1 (5)

corresponding to a particular set of weights {wk}f::_ll (see
Section II for details). Such weighted ISL metrics are important
in applications where we want to reduce, as much as possible,
the interference due to a known multipath or a known clutter
discrete. CAP requires the singular value decomposition (SVD)
of a matrix of dimension on the order of IV, so it might be diffi-
cult to run on a PC for values of N much larger than N ~ 10°.
With this problem of CAP in mind, we introduce a new CA
called CAN (CA-new) that can be used for the local minimiza-
tion of the unweighted ISL metric [i.e., (5) with w; = 1]. CAN
is based on fast Fourier transform (FFT) operations and can be
used virtually for any practically relevant values of N up to
N ~ 10° or even larger. We also modify CAN so that it can
tackle arbitrary weights, i.e., {wk}i\:ll in (5) can be chosen as
any nonnegative real numbers. The resulting algorithm, which
is called WeCAN (weighted CAN), requires N times more
computations than CAN and can be run on a PC for N up to
N ~ 10%,

II. CAP
Let

I 0

X=|zn 1 (6)
0 INJd 2N-1)xN
and observe that
T0 7‘1( “ee T}k\r—l
X*X=| ™ To . (7)
. c. N TI
TN-1 e T1 To NxN

Because X*X = NT for a sequence with good autocorrelation
properties, we can think of designing {xn}i\f:l by minimizing
the following criterion:

[X*X — NT||? (8)

over the set of unimodular sequences; hereafter, || - || denotes
the Frobenius matrix norm. However, the above criterion is a
quartic function of {x,, } thatis relatively difficult to tackle. With
this fact in mind, [21] (see also [19] and [20]) has suggested
replacing (8) with the following simpler criterion (which is a
quadratic function of the unknowns):

X - VNQJ? )
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where Q is a (2N —1)x N semiunitary matrix (i.e., Q*Q = I).
The design problem associated with (9) can be stated as follows:

min IX - VNQ|?
{Zrn}ivzl;Q
subjectto Q*Q =1
|z,|=1, n=1,...,N. (10)

Note that the problems of minimizing (8) and, respectively, (9)
are not equivalent (these two problems may well have different
solutions {x,,}), yet they are “almost equivalent” in the sense
that if the criterion in (9) takes on a small value, then so does
(8), and vice versa. More specifically, it is clear that (8) is equal
to zero if and only if (9) is equal to zero. Consequently, by con-
tinuity arguments, if the global minimum value of (8) is “suffi-
ciently small,” then the sequences minimizing (8) and, respec-
tively, (9) can be expected to be close to one another. Put dif-
ferently, in such a case the sequence minimizing (8) leads to a
small value of (9), and vice versa. However, as already men-
tioned, the two sequences that minimize (8) and, respectively,
(9) will in general be different from one another. Furthermore,
the local minima of the two criteria will in general be different;
in particular, they can occur at sequences that are not the same
for (8) and for (9). A more quantitative mathematical analysis of
the global and local minima of the two criteria, as well as of the
way in which they relate to each other, appears to be a difficult
task that falls beyond the scope of this paper.

Remark: As already pointed out in Section I, the case of fi-
nite-alphabet sequences can also be dealt with in our frame-
work. However, the performance of the resulting algorithms
might not be as satisfactory as that corresponding to the gen-
eral unimodular case. One possible explanation of this fact is
related to the above discussion on (8) and (9): when we add
more constraints on {z,, }, such as a finite alphabet requirement,
the minimum value of the criterion in (8) may increase quite a
bit, and therefore the “almost equivalence” between (8) and (9)
may cease to hold true. Another explanation might be that the
number of local minima of the ISL (or WISL) metric tends to in-
crease as more constraints are imposed on {z,, } (with the binary
case being the most constrained one). Consequently, it becomes
more difficult to find a sequence {xz,} such that the criterion
in (8) or (9) takes on a small value when a finite-alphabet con-
straint is enforced. u

In contrast to (8), the derivation of a CA for (10) is relatively
straightforward ([19]-[21]). However, this is not to say that the
derivation of a CA for the criterion in (8) is infeasible. In fact,
such a CA can be derived, as we show in the forthcoming paper
[22] that deals with vector sequence design. The problem with
such an algorithm for (8) is that, due to the more complicated
form of the criterion, it is often much slower than a CA for the
“almost equivalent” criterion in (10).

We will not discuss explicitly a CA for (10) because it
considers all correlation lags {r}~ ', which is somewhat
infrequently required in applications and therefore results in
an unnecessary increase of the computational burden. Indeed,
in many cases, the maximum difference between the arrival
times of the sequence of interest and of the interferences is
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(much) smaller than the duration of the emitted sequence (see,
e.g., [16], [17], [21], and [23]). Consequently, in such cases,
the interest lies in making {|r|}5_; small, for some P < N,
instead of trying to make all correlation sidelobes {|r |}
small; here the value of P is selected based on a priori knowl-
edge about the application at hand (for instance, in wireless
communications, it is usually known that significant channel
tap coefficients can occur up to a certain maximum delay, and
so we can choose P as the said delay). More generally, we may
have a priori information that not even all {|r|}+—', but only
some of them, need to be made small. In such a case, instead of
considering the “all-lag” X in (6), we consider the following
“pruned” matrix:

X = XT (11)

of dimension (N + P — 1) x @, where @ < P < N and X is
a truncated version of the X in (6)

i X1 0
X = 1 (12)
TN
L 0 IN I (N+P-1)xP

and where the P x @ matrix T is made from @ selected columns
of the P x P identity matrix, for example

1 0 07
0 10
T = (13)
1 0
L0 0 1 po

The above () columns correspond to the ) correlations of in-
terest chosen from 7g,71,...,7p_1. With the above notation,
the design problem of interest is obtained by modifying (10) as
follows:

X — VNU|]?
U'U=1

|xn| =1,

min
{zn }ff:l U

s.t.

n=1,...,N (14)

where U is an (N + P — 1) x @ semiunitary matrix.
Remark: Equation (14) is “almost equivalent” to minimizing
|X*X — NI||>. When Q = P, we have

To 1 p_1
L r T
X*X = 1 0 (15)
. . *
1
Tp—1 - Tl 7o

PxP

which shows that in this case, CAP implicitly assumes the
weight of w, = 2(P — k) forry (k = 1,...,P — 1) in the
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WISL metric in (5), and zero weights for the other correlation
lags. When Q < P, X*X is no longer a Toeplitz matrix and
a general expression for wy, does not exist anymore. Roughly
speaking, the number of times that 7, (together with 7} ) appears
in the matrix X*X determines the corresponding weight wy,.
Regarding the minimization problem in (14), we note the fol-
lowing facts. For given X, let
X* =U,XU; (16)
denote the SVD of X* (here Uy isa Q x Q unitary matrix, Ug
isan (N + P — 1) x @ semiunitary matrix, and X isa Q x Q
diagonal matrix). Then the solution U of (14), for fixed X, is
given by (see [19] or the references there and in [20])
U =U,U;. (17)
Next note that, for given U, the minimization of (14) with re-
spect to {J;n}i\;l also has a simple closed-form solution. To see
this, let 2 denote an arbitrary element of the sequence { xn}i\;l.
Then it follows from (14) that the generic form of the minimiza-
tion problem with respect to the elements of {xn}gzl is

Q
minz |z — pr|? (18)
* k=1

where { 1 }29:1 are the elements of the matrix v/ N'U whose po-
sitions are the same as the positions of x in X. (As an example,
let us assume that ) = P and therefore that X = X. Then, for
T = x,, the corresponding sequence {y}5_, is given by the
(n — 1+ 1,4)th elements of vV NU, fori = 1,..., P.) Because
|z| = 1, the criterion in (18) can be rewritten as

Q
x>y NZ]
k=1
Q
Z HE

k=1
Q

- cos larg(a:) — arg (Z ,uk>] . (19)
k=1

Hence the minimizer x of the criterion in (18) is given by

Q
cmc g (Yom).
k=1

The CAP for the cyclic minimization of the criterion in (14)
follows from the above discussion as a natural corollary.

CAP

e Step 0) Set the matrix X to an initial value (e.g.,
{,}_, can be set to {eﬂ“e"}szl, where {6,,})_,
are independent random variables uniformly distributed
in [0,27] or {arn};V:l can be initialized by a good
existing sequence such as a Golomb sequence [12]).

e Step 1) Compute the semiunitary matrix U that mini-
mizes (14) for {xn}i\;l fixed at its most recent value
[see (16) and (17)].

Q
Z |z — pr|? = const — 2Re
k=1

=const — 2

(20)
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 Step 2) Compute the sequence {xn} _, that minimizes
(14), under the constraint |z,,| = 1, for U fixed at its
most recent value [see (20)].

* Iteration: repeat Steps 1) and 2) until some stop crite-
rion is satisfied, e.g., [|[x(® — x(*D || < ¢, where x(¥ is
the sequence obtained at the «th iteration and ¢ is a pre-
defined threshold (see the remark in Section V-C for a
brief discussion about how to choose the value of ¢).

The SVD of the Q x (N + P — 1) matrix X* in (16) is rel-
atively computationally intensive for large values of N and Q.
As arough rule of thumb, on a regular PC, the use of CAP may
be limited to values of N ~ 10% depending on how many cor-
relation lags are considered. In the next section, we introduce
a new CA (CAN = CA-new) for the local minimization of the
unweighted ISL metric that does not have such a limitation: in-
deed, CAN can be used with values of N ~ 108 or even larger
if so desired.

1. CAN

The derivation of CAN involves several steps, the first of
which consists of expressing the ISL metric in the frequency
domain. It is well known that, for any w € [0, 27]

2

N ‘ N-1 '
Z Tpe TN = Z rpe ik 2 d(w) (1)
n=1 k=—(N—1)

(see, e.g., [24]). Furthermore, it can be shown that the ISL metric
in (3) can be equivalently written as

2N
2
ISL_4NZ (wp) — N]

(22)
where {w),} are the following Fourier frequencies:
2m
= — =1,...,2N. 23
wp =P P=1 (23)

[Note that (22) is a Parseval-type equality.] To prove (22), let 6y,
denote the Kronecker delta

L,

and use the correlogram-based expression for ®(w) in (21) to
verify that

Y [@(w,) -

=2

p=1 [k=—(N-1)

- z_: (’I“k — N(Sk)(’l“]; —

>

k=—(N-1) k=—(N-1)

2N -
X [Z e_jwp(k_k)] A
p=1

fork=0
fork #0

(’I‘k — N5k)67jwpk

Né;)*

(24)
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Because, for |k — k| < 2N — 2

2N - - —j2n(k—k
S ekt _ mid (b © 2 1
p:l e_ 22_17\‘}( k)
= 2N5(k4}) (25)
we obtain from (24) the following equation:
=
2
4NZ wp — :5 Z |rk_N6k|2
k=—(N—1)
N-1
|ri|> = ISL (26)

k=

[N

which is (22). Using the periodogram-based expression for
®(w) [see (21)] in (22) shows that the problem of minimizing
the ISL is equivalent to the minimization of the following
frequency-domain metric:

oN [I v 2 2
Z Z Tpe | — N| . (27)
p=1 n=1

This equivalence result has an obvious intuitive interpretation:
minimizing the ISL makes the sequence behave like white noise,
and consequently its periodogram should be nearly constant in
frequency.

The next point to note is that the criterion in (27) is a quartic
function of {z,,}. However, using the same type of argument
as the one that led from (8) to (9), we can readily verify that the
minimization of (27) with respect to {,, } is “almost equivalent”
to the following simpler problem (whose criterion is a quadratic
function of {z,}):

2N | N y
P 17{% o IPZ:I ;x ne 39 _ \/Neir (28)
Let
a; _ [e—jwp e—jQpr] (29)
let A* be the following unitary 2N x 2N FFT matrix:
A* = 1 ail (30)
VaN | |
N
and let z be the sequence { xn} _, padded with N zeros
z =[x, zn 0 0]3 nw1- (31)

Then the criterion in (28) can be rewritten in the following more
compact form (to within a multiplicative constant):

A"z — | (32)

where

1

v = ﬁ[eﬁ/’l ej'l//'ZN]T'

(33)
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For given {x,,}, the minimization of (32) with respect to {1, }
is immediate: let

f=A%z (34)

denote the FFT of z; then
vy =arg(f,), p=1,...,2N. (35)

Similarly, for given v, let
g=Av (36)

denote the inverse FFT of v. Because ||A*z—v||*> = ||z—Av]||?,
it follows that the minimizing sequence {z,, } is given by
Ty = el ®8n) =1 . N. (37)
The CAN for the cyclic local minimization of the ISL-related
metric in (28) can now be summarized as follows.
CAN
e Step 0) Set the {xn}i\;l to some initial values (e.g.,
{zn }fj:l can be randomly generated or given by a good
existing sequence, as mentioned in the CAP algorithm
in Section II).
* Step 1) Compute the {1,
for {xn}f:r:l fixed at their most recent values [see (35)].
 Step 2) Compute the sequence {l’n}g:l that minimizes
the metric, under the constraint |x,,| = 1, for {¢, }]2)];’1
fixed at their most recent values [see (37)].
* Iteration: repeat Steps 1) and 2) until a prespecified stop
criterion is satisfied, e.g., ||[x(® — xU+D)|| < ¢, where
x(9 is the sequence obtained at the ith iteration and € is
a predefined threshold, such as 1073,

Owing to its simple (ID)FFT operations, CAN can be used for
very large values of N, such as N ~ 106,

In the next section, we present an extended version of CAN
that can deal with the WISL metric (with arbitrarily chosen
weights) as defined in (5). The extended algorithm is called
WeCAN (weighted CAN). The price paid for WeCAN’s ability
to deal with a general WISL metric is an increased computa-
tional burden compared to CAN. Specifically, as will be shown
in the next section, each iteration of WeCAN requires N com-
putations of 2N -point (I)FFTs; thus the number of flops re-
quired by WeCAN is roughly NV times larger than that of CAN.
Nonetheless, WeCAN can still be used for relatively large values
of N, suchas N ~ 10%.

2N that minimize the metric

IV. WECAN

Similarly to the proof of (22) in Section III, we can derive the
following expression for the WISL metric (v, below is related
to the weight wy, in (5) as wg, = 77):

N-—1
WISL = Y v¢|rel? (38)
k=1
1 2N ~ 9
= W}; [@(wp) = 0] (39)

1419

where
. N N-1
P(wp) = Z Yerre rk
k=—(N-1)
27r
wp = 2N p=1,...,2N 40)

and where { yk}ﬁz—f are real-valued (with v = v_z). Note that
by choosing { 'yk}i\:_ll appropriately, we can weigh the correla-
tion lags in (38) in any desired way. Regarding ~yy, which does
not enter into (38), it will be chosen to ensure that the matrix

Y0 Y1 YN -1
1
Yo : . 7
YN-1 = M Yo

is positive semidefinite, which we denote by I' > 0. This can
be done in the following simple way: let I' be the matrix ~oI"
with all diagonal elements set to zero and let Ap;, denote the
minimum eigenvalue of I'; then T" > 0 if and only if v+ A >
0, a condition that can always be satisfied by selecting ~o.
Next we will derive a criterion that is “almost equ1va1ent

(39) and that depends quadratically on the unknowns {xn}n 1
similarly to what we have done in the previous sections. To do
so, we must apparently obtain a square root of tf)(wp) in (40)
that is linear in {xn}i\;l. Note the following discrete Fourier
transform pairs:

{re} — @) = X (w)]?
{rere} e ®(w) =T(w) * | X (w)|* (42)
where
N N-1
=) w7 T(w)= Y e P 43)
n=1 k=—(N-1)

and where x* is the convolution operator. Thus é(wp) can be
expressed as

1 T

n N-1

/ Z e —jk(wp— “/)Zze””/

= k=—(N—-1)

O(wp) = — ) | X ()| dy

N

* _Jni g,

XE xne’"Vdy
fi=1

N—-1

N N
= > > e
k=—(N-1)n=1n=1

K

X E eIV (R=ntR) oy & = dwrk
2T

—T

(44)
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It is easy to verify that

1 h Y (k—n+n

%/ew( + )d’élf _ 6k_(n_ﬁ). (45)

Thus

(I)(wp) = Z Z 'anﬁxnx%e_]wp(n_n)
n=1n=1

=X, (voI)x, (46)

where
X, = [x1e777  xae J2p zye I Ner]T 47)

and I is defined in (41). Therefore, the WISL metric in (39) can
be written as

9 2N

gl S
WISL = ﬁ [x:I'%, — N>,

p=1

(48)

This expression suggests that the following problem can be ex-
pected to be “almost equivalent” to the minimization of the
WISL metric:

2N
min > lICx, — a1
{In}iv:p{ap}igl p=1 ! Y
st [lay]|? = N,

] = 1,

..,2N,
(49)

where the N x N matrix C is a square root of T', i.e.,I' = CTC.
A cyclic algorithm for (49), which we will call WeCAN, can
be derived as follows. For given {xn}f:r:l, (49) decouples into

2N independent problems, each of which has the following
form:

. _ 2
o 1, — apl
st. )| =N (50)

where the N x 1 vector f, = C%, is given. Note that under the
constraint ||a,||? = N, we have

If, — @, ||* =const — 2Re {f*a, }

> const — 2||f,||||la,|| = const — 2N||f,||  (51)
where the equality is achieved if and only if
f
a, =VN_L (52)

1ol

This is therefore the solution to the minimization problem in
(49) for given {xn}fj:l. Note that the computation of {f, }2X,
can be done by means of the FFT. Indeed, let cg,, denote the
(k,n)th element of C and define

zr = [cr1m1 ceney 0 0]{2N><1) (53)
and
F=V2NA"-[z1 22 - -zZnanxw (54)

where the unitary 2N x 2N FFT matrix A* has been defined
in (30). Then it is not difficult to see that the transpose of the
vector f,, is given by the pth row of F.
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Merit Factor

T ——

T T T LI e e
o Frank JrsredinGrg it g Grosnfnbond bl
x Golomb| @ : : i
10% © CAN(F) |iviviis aiidic)
+ CAN(G) Jiriiiis MR

Fig. 1. The merit factors of the Golomb, Frank, CAN(G), and CAN(F) se-
quences of lengths from 32 up to 1002.

Next we show that, for given {a,}2Y,, the minimization
problem in (49) with respect to {azn}gzl also has a closed-form
solution. Let ay, denote the kth element of @, and let aj; be
given by (29). Using this notation, the criterion in (49) can be
written as

2N N 2N )
Z [Cx, — a;n||2 = ZZ |a;zk - O‘pk|
p=1

k=1p=1

N
Y IATz, - Byl
k=1

I
M) =

12k — AB I (55)

El
Il
—

where

1

« k=1,...
\/W[ 1k :

asn k)T, ,N.  (56)

,Bk:

N

For a generic element of {z,,}, _,, denoted as z, (55) becomes

N
(Z uzuk) x] (57)
k=1

where 115, and v are given by the corresponding elements in
zy, and A B, respectively. Under the unimodular constraint, the
minimizer z of the criterion in (57) is given by

N
Z |pz — vg|? = const — 2Re
k=1

(58)

N
z=¢? ¢=arg (Z uZ%) :
k=1

This observation concludes the derivation of the main steps of
the WeCAN algorithm, whose summary is as follows.
WeCAN
« Step0) Setthe {x,,}"_, to some initial values and select
the desired weights {74 }2_,'; also choose 7o such that
the matrix I" in (41) is positive semidefinite.
« Step 1) Compute the {a,}>", that minimize the crite-

p=1
rion in (49) for {z,, }fj:l fixed at their most recent values
[see (52)].
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Fig. 2. Correlation levels of the Golomb and CAN sequences of lengths N = 102, 103, and 10* designed under the ISL metric. (a) The Golomb sequence
N = 102, (b) the CAN(G) sequence N = 102, (c) the Golomb sequence N = 102, (d) the CAN(G) sequence N = 103, (e) the Golomb sequence N = 104,

and (f) the CAN(G) sequence N = 10%.

 Step 2) Compute the sequence {wn}le that minimizes
the criterion in (49) for {a,}2Y, fixed at their most re-
cent values [see (58)].
¢ Iteration: repeat Steps 1) and 2) until a prespecified
stop criterion is satisfied (see the CAP algorithm in
Section II).
In the case of nonuniform weighting, we define the modified
merit factor (MMF) using the weighted ISL as follows:

N2

MMF = = .
2WISL 2255;11 wi|re|?

(59)

We have observed empirically that WeCAN increases the MMF
systematically when initialized by CAP, and vice versa. This
motivates us to use CAP to initialize WeCAN, then use WeCAN

to initialize CAP, and so on. The so-obtained combined iter-
ative method is called WeCAN+CAP. As will be shown in
Section V, when the maximum lag considered is smaller than
half of the sequence length, WeCAN, CAP, and their combina-
tion WeCAN+CAP can generate sequences that have virtually
an “infinite” MMF; the same is true even when the number
of lags considered is smaller than half of the sequence length,
provided the maximum lag under consideration is not too close
to N (see the next section for more details on this aspect).

V. NUMERICAL EXAMPLES

A. ISL Design

We compare the merit factors of the Golomb sequence ([12]),
of the Frank sequence ([15]), and of the CAN sequence initial-
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ized by one of these two types of sequences [denoted as CAN(G)
and CAN(F), respectively]. A Golomb sequence {g(n)}Y_; of
length NNV is defined as

g(n) = e @-D0N 1N (60)

where N can be any positive integer. Frank sequences are only
defined for lengths that are perfect squares. For N = M?, a
Frank sequence can be written as

f(nM +k+1) = 2™k/M k= 0,1,....,M—1. (61)

[Note that the above sequences can be easily computed for any
value of N of possible practical interest, with the only restriction
that N must be a perfect square in the case of (61).] We compute
the merit factors of the above four types of sequences [Golomb,
Frank, CAN(G) and CAN(F)] for the following lengths: N =
32.52,102, 152, 202, 302, 702, and 1002. The results are shown
in Fig. 1 using a log-log scale. For all sequence lengths we con-
sider, the CAN(G) and CAN(F) sequences give nearly the same
merit factors; both are much larger than the merit factors given
by the Golomb or Frank sequence. When N = 10%, the CAN(G)
sequence provides the largest merit factor of 1839.76, which is
more than ten times larger than that given by the Golomb se-
quence (which is 157.10). We also show the correlation levels
of the Golomb and CAN(G) sequences of lengths N = 102,
103, and 10% in Fig. 2. The correlation level is defined as

Tk

correlation level = 20 log;,
o

k=1,....,N—1. (62)

?

We note that the correlation sidelobes of the Golomb sequence
are comparatively large for k close to zero and N—1 (the same
is true for the Frank sequence), while the CAN(G) sequence
has relatively more uniform correlation sidelobes as & increases
from zero to N—1.

B. WISL Design—A First Example

Consider the design of a data sequence of length N = 100.
Suppose that we are interested in suppressing the correlations
T1,...,T95 and ryq, ..., r79. Three methods are used to design
the sequence. The first method is the original CA for (10), in
which all correlation levels from 7 to rgg9 are taken into ac-
count. The second method is the CAP for (14), which focuses

on rq,...,r95 and r7g,...,r79 and therefore uses P = 80,
@ = 36, and the following matrix T
I26 0
T=|" (63)
0

0 I 80x 36

where Ix denotes the K x K identity matrix. The third method
is the WeCAN algorithm for (48) and (49), with the following
weights used in the matrix I in (41):

{ 1, ke€[1,25]U]70,79]
Ve = 0.

k € [26,69] U [80,99]
[0 is chosen to ensure the positive semi-definiteness of I'; more
exactly, we choose vg = 12.05 following the discussion right
after (41).]

(64)
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Fig. 3. Correlation levels of the CA, CAP, and WeCAN sequences of length
N = 100. (a) The CA sequence, (b) the CAP sequence, and (c) the WeCAN
sequence designed under the WISL metric with weights in (65).

In this scenario, the MMF is as defined in (59) with

2 1, kel1,251U][70,79]
W =V, = .
0, k€[26,69]U][80,99]

All three methods mentioned above are initialized by a ran-
domly generated sequence [see Step 0) of the CAP algorithm
in Section II]. The correlation levels of the designed sequences
are shown in Fig. 3. The WeCAN sequence has correlation side-
lobes that are practically zero at the required lags and that are
much smaller than the sidelobes of the CA or CAP sequence and
those of the Golomb or CAN(G) sequence in the last subsection
[see Fig. 2(a) and (b)]. Table I presents the corresponding MMF
values. The MMF of the WeCAN sequence (which is practically
infinite) is significantly larger than the other MMF values in the
table.

(65)
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WeCAN+CAP, N=100
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Fig. 4. Correlation levels of the CAP and WeCAN+CAP sequences of length N = 100 designed under the WISL metric with weights in (66). (a) The CAP

sequence and (b) the WeCAN+CAP sequence.

TABLE 1
MMF VALUES FOR THE WEIGHTS IN (65) AND N = 100

Golomb
32.55

CAN@G) | CA
142.64 | 68.07

CAP
229.02

WeCAN
1.06 x 1021

MMF
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Fig. 5. Magnitude of the simulated channel impulse response h.

TABLE II
MMF VALUES FOR THE WEIGHTS IN (66) AND N = 100

CAN(G)
126.27

CAP
1.08 x 1023

WeCAN+CAP
2.37 x 1026

MMF

The matrix X*X employed by CAP in this example [where

X is given by (11)] is composed of 1, ..., 725 and 779, . .., 779
but also of 745, ...,769. Therefore, although not of direct in-
terest to us, 143, . - -, 7o are minimized as well [see Fig. 3(b)],

which increases the difficulty of the problem. If we consider
fewer correlation lags (e.g., r1,...,79 and r7q, ..., 79 only),
CAP is also able to provide practically zero correlation side-
lobes at the required lags. On the other hand, if more correlation
lags are taken into account, then correlation sidelobes of either
CAP or WeCAN become higher; the reason is that fewer and
fewer degrees of freedom of the sequence {xn}i:[:l can be used
to control |ry| as k increases beyond N/2 (in particular, note
that |[ry—1| = 1 cannot be decreased).

C. WISL Design—A Second Example

Consider, once again, the design of a data sequence of
length N = 100 but now with the aim of suppressing the
correlations 71, ...,739. We compare the CAP sequence and

the WeCAN+CAP sequence, both obtained using random ini-
tialization. The CAP sequence is generated using P = ) = 40
and thus X = X in (11). The WeCAN+CAP sequence is
generated as outlined at the end of Section IV. To construct the
matrix I' in (41), we define

(1, ke[1,39
=0, ke [40,99]

wy =78, k=1,...,99 (66)

and choose 7 such that T" > 0.

Fig. 4 shows the correlation levels of the so-obtained CAP
and WeCAN+CAP sequences, and Table II presents the corre-
sponding MMF values [the CAN(G) sequence is included in the
table for the sake of comparison]. Both sequences have practi-
cally zero correlation sidelobes from r; to rp_1, and the cor-
responding MMF can be considered to be infinity (the smallest
correlation level in Fig. 4 is around —320 dB, i.e., 10716, which
is the smallest number that can be properly handled in MATLAB
and can thus be considered as “zero”).

A point worth mentioning here is that the CAP and
WeCAN+CAP algorithms are able to provide an “infinite”
MMF in this example if P < 50. The reason is that the number
of degrees of freedom in this example is N — 1 = 99 (there
are N —1 free phases as the initial phase does not matter) and
our goal is to match 2(P — 1) real numbers (i.e., the real and
imaginary parts of 71,...,rp_1). Consequently the matching
is possible in principle only when 2(P — 1) < N — 1, which
leads to P < (N + 1)/2. In the next subsection, P is fixed to
40 and N is varied from 100 to 500, in which case the CAP or
WeCAN+CAP algorithm consistently generates sequences that
have an “infinite” MMF.

Remark: The WeCAN algorithm is also able to provide an
“infinite” MMF in this example, although we do not show its
results here for brevity. Another fact worth pointing out is that
both CAP and WeCAN algorithms require a proper value of the
stop criterion parameter € (see Section II) to perform well. When
the number of considered correlation lags is less than (N+1)/2
and N is relatively small (such as N ~ 10?), a sufficiently small
¢ should be used (e.g., ¢ = 1013 in the examples in this and
the last subsection) to permit enough many iterations, which
drive the correlation sidelobes to zero, to be run; in other cases,
a “moderate” ¢ (depending on the application, such as 10~°)
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MSE of channel estimate (N = 200)
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Fig. 6. The MSE of the estimated h using two training sequences: the Golomb sequence and the CAP sequence. (a) The noise power o2 is fixed at 10~* and the
sequence length V is varied from 100 to 500. (b) N is fixed at 200 and o2 is varied from 10~° to one.

is preferable to prevent the program from running indefinitely
without suppressing the correlation sidelobes anymore. In con-
trast with this, WeCAN+CAP is quite insensitive to the choice
of € (e = 107 is appropriate for WeCAN+CAP in all cases that
we have tested) and it outperforms CAP in terms of MMF, es-
pecially for large values of V. ]

D. FIR Channel Estimation

Consider a channel with finite impulse response (FIR)
channel impulse response {h, ;;‘01 whose estimation is our
main goal (the number of channel taps P is assumed to be
known). Suppose we transmit a probing sequence {xn}i\;l and
obtain the received signal

P-1
yn:ZhI,xn,p—l—en, n=1,.... N+ P—-1 (67)
p=0
where {e,}FF~! is an independent identically distributed

complex Gaussian white noise sequence with zero mean and
variance 2. Equation (67) can be written in the following more
compact form:

y=Xh+e (68)
where X is as defined in (12) and
y=[n yntp1]’, h=lho iy
e=[e en+p-1]". (69)

Let X, denote the pth column of the matrix X. We use X,, as
a “matched filter” to determine h, from y, which leads to the
following estimate of h:
A 1 .
hy, = Y- (70)
Let the number of channel taps be P = 40. Fig. 5 shows
the magnitude of the simulated channel impulse response
{lhyp| 5:_01. We perform two experiments to compare the
Golomb sequence and the CAP sequence. In one experiment,
the noise power o2 is fixed at 10~% and the sequence length
N is varied from 100 to 500. In the other experiment, IV is
fixed at 200 and o2 is varied from 10~ to one. For each pair
(N, o?), 500 Monte Carlo trials are run (in which the noise

sequence e is varied) and the mean-squared error (MSE) of h
is recorded. Fig. 6 shows the MSE of h in the two situations.
Due to better autocorrelation properties, the CAP sequence
generates consistently smaller MSE than the Golomb sequence.
In particular, it is interesting to observe from Fig. 6(b) that as o2
decreases, the MSE of h corresponding to the CAP sequence
is decreasing linearly (and becomes zero as 2 goes to zero),
while the performance of the Golomb sequence is limited to
a certain level because of its nonzero correlation sidelobes,
which induce an estimation bias.

VI. CONCLUDING REMARKS

We have presented several cyclic algorithms—CAP, CAN,
WeCAN, and WeCAN+CAP—which can be used to design uni-
modular sequences that have good autocorrelation properties.
CAN can be used to design very long sequences (of length NV
up to 10°), a design problem that can hardly be handled by other
algorithms proposed in the previous literature. CAN deals with
the ISL metric, i.e., it considers all unweighted correlation lags
from 71 up to ry—1, whereas CAP, WeCAN, and WeCAN+CAP
aim to minimize weighted-ISL metrics. We have shown that, in
particular, the latter three algorithms can be used to design se-
quences that have virtually zero autocorrelation sidelobes in a
specified lag interval. CAP, WeCAN, and WeCAN+CAP can be
used to design sequences of lengths N ~ 102 or larger, de-
pending on how many lags are considered. A number of numer-
ical examples have been provided to demonstrate the good au-
tocorrelation properties of the unimodular sequences designed
using the proposed algorithms.
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