arxXiv:0709.1563v1 [nlin.CG] 11 Sep 2007

Blind Multi-Band Signal Reconstruction:

Compressed Sensing for Analog Signals

Moshe Mishali and Yonina C. EldarMember, IEEE

Abstract

We address the problem of reconstructing a multi-band siffoen its sub-Nyquist point-wise samples. To
date, all reconstruction methods proposed for this classgofals assumed knowledge of the band locations. In this
paper, we develop a non-linear blind perfect reconstractitheme for multi-band signals which does not require
the band locations. Our approach assumes an existing bluld-coset sampling method. The sparse structure
of multi-band signals in the continuous frequency domainised to replace the continuous reconstruction with
a single finite dimensional problem without the need for diszation. The resulting problem can be formulated
within the framework of compressed sensing, and thus carmbed efficiently using known tractable algorithms
from this emerging area. We also develop a theoretical Idveemd on the average sampling rate required for
blind signal reconstruction, which is twice the minimaleaif known-spectrum recovery. Our method ensures
perfect reconstruction for a wide class of signals samplédeaminimal rate. Numerical experiments are presented

demonstrating blind sampling and reconstruction with mali sampling rate.

Index Terms

Kruskal-rank, Landau-Nyquist rate, multiband, multipleasurement vectors (MMV), nonuniform periodic

sampling, orthogonal matching pursuit (OMP), signal reprgation, sparsity.

. INTRODUCTION

The well known Whittaker, Kotelhikov, and Shannon (WKSkdnem links analog signals with a discrete
representation, allowing the transfer of the signal prscesto a digital framework. The theorem states that a
real-valued signal bandlimited t8 Hertz can be perfectly reconstructed from its uniform saspi the sampling
rate is at leas2B samples per second. This minimal rate is called the Nyqaist of the signal.

Multi-band signals are bandlimited signals that possesdattianal structure in the frequency domain. The
spectral support of a multi-band signal is restricted teesacontinuous intervals. Each of these intervals is dalle
a band and it is assumed that no information resides outs&lbands. The design of sampling and reconstruction

systems for these signals involves three major conside®tiOne is the sampling rate. The other is the set of
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multi-band signals that the system can perfectly recoaostithe last one is blindness, namely a design that does
not assume knowledge of the band locations. Blindness issaatiée property as signals with different band
locations are processed in the same way. Landau [1] dewepeinimal sampling rate for an arbitrary sampling
method that allows perfect reconstruction. For multi-baighals, the Landau rate is the sum of the band widths,
which is below the corresponding Nyquist rate.

Uniform sampling of a real bandpass signal with a total wiotl2B Hertz on both sides of the spectrum was
studied in [2]. It was shown that only special cases of basslg&gnals can be perfectly reconstructed from their
uniform samples at the minimal rate ®B samples/sec. Kohlenberg [3] suggested periodic non-utmigampling
with an average sampling rate @B. He also provided a reconstruction scheme that recoversbangpass
signal exactly. Lin and Vaidyanathan [4] extended his warkrtulti-band signals. Their method ensures perfect
reconstruction from periodic non uniform sampling with aretage sampling rate equal to the Landau rate. Both
of these works lack the blindness property as the informagibout the band locations is used in the design of
both the sampling and the reconstruction stages.

Herley and Wong [5] and Venkataramani and Bresler [8] suggea blind multi-coset sampling strategy that
is called universal in [8]. The authors of [8] also develomedetailed reconstruction scheme for this sampling
strategy, which is not blind as its design requires inforamatabout the spectral support of the signal. Blind
multi-coset sampling renders the reconstruction applicé a wide set of multi-band signals but not to all of
them.

Although spectrum-blind reconstruction was mentionedvo tonference papers in 1996 [6],[7], a full spectrum-
blind reconstruction scheme was not developed in theserpalp@ppears that spectrum-blind reconstruction has
not been handled since then.

We begin by developing a lower bound on the minimal samplatge required for blind perfect reconstruction
with arbitrary sampling and reconstruction. As we show thwedr bound is twice the Landau rate and no more
than the Nyquist rate. This result is based on recent workuaf &nd Do [20] on sampling signals from a union
of subspaces.

The heart of this paper is the development of a spectrunttbiTtonstruction (SBR) scheme for multi-band
signals. We assume a blind multi-coset sampling satisfyfrggminimal rate requirement. Theoretical tools are
developed in order to transform the continuous nature ofrdm®nstruction problem into a finite dimensional
problem without any discretization. We then prove that thleitson can be obtained by finding the unique sparsest
solution matrix from Multiple-Measurement-Vectors (MMVJhis set of operations is grouped under a block we
nameContinuous to Finitg§ CTF). This block is the cornerstone of two SBR algorithmsdeeelop to reconstruct
the signal. One is entitled SBR4 and enables perfect recmisin using only one instance of the CTF block
but requires twice the minimal sampling rate. The other ferred to as SBR2 and allows for sampling at the
minimal rate, but involves a bi-section process and sewesa$ of the CTF block. Other differences between the

algorithms are also discussed. Both SBR4 and SBR2 can dmsilyplemented in DSP processors or in software



environments.

Our proposed reconstruction approach is applicable to adoectass of multi-band signals. This class is the blind
version of the set of signals considered in [8]. In particulge characterize a subs#t of this class by the maximal
number of bands and the width of the widest band. We then sloswtt choose the parameters of the multi-coset
stage so that perfect reconstruction is possible for evignyatin M. This parameter selection is also valid for
known-spectrum reconstruction with half the sampling .ritee setM represents a natural characterization of
multi-band signals based on their intrinsic parameterschvizire usually known in advance. We prove that the
SBR4 algorithm ensures perfect reconstruction for all @lignn M. The SBR2 approach works for almost all
signals inM but may fail in some very special cases (which typically wit occur). As our strategy is applicable
also for signals that do not lie inM, we present a nice feature of a success recovery indicafiaus, if a signal
cannot be recovered this indication prevents further @siog of invalid data.

The CTF block requires finding a sparsest solution matrixciviis an NP-hard problem [12]. Several sub-optimal
efficient methods have been developed for this problem irctéimepressed sensing (CS) literature [15],[16]. In our
algorithms, any of these techniques can be used. Numerigarienents on random constructions of multi-band
signals show that both SBR4 and SBR2 maintain a satisfaewagt recovery rate when the average sampling
rate approaches their theoretical minimum rate requiréraad sub-optimal implementations of the CTF block
are used. Moreover, the average runtime is shown to be fasigbnfor practical usage.

Our work differs from other main stream CS papers in two atspethe first is that we aim to recover a
continuous signal, while the classical problem addressdtéd CS literature is the recovery of discrete and finite
vectors. An adaptation of CS results to continuous signals also considered in a set of conferences papers (see
[21],[22] and the references therein). However, these gagdiel not address the case of multi-band signals. In
[22] an underlying discrete model was assumed so that thealsig a linear combination of a finite number of
known functions. Here, there is no discrete model as theatsgare treated in a continuous framework without any
discretization. The second aspect is that we assume a deiinsampling stage and our theorems and results
do not involve any probability model. In contrast, the conmapproach in compressive sensing assumes random
sampling operators and typical results are valid with sonobability less than 1 [13],[19],[21],[22].

The paper is organized as follows. In Secfidn Il we formulaie reconstruction problem. The minimal density
theorem for blind reconstruction is stated and proved iniGedIll A brief overview of multi-coset sampling is
presented in Sectidn ]V. We develop our main theoreticallte®n spectrum-blind reconstruction and present the
CTF block in Sectiofi V. Based on these results, in Se¢tignwél,design and compare the SBR4 and the SBR2

algorithms. Numerical experiments are described in Se{b



[I. PRELIMINARIES AND PROBLEM FORMULATION
A. Notation

Common notation, as summarized in Tafle |, is used througtie paper. Exceptions to this notation are

indicated in the text.

TABLE |
NOTATION
x(t) continuous time signal with finite energy
X(f) Fourier transform ofc(¢) (that is assumed to exist)
a[n] bounded energy sequence
z* conjugate of the complex number
(v) vector
(v); or (v)(@) | ith entry of @)
W)(f) vector that depends on a continuous paramgter
(A) matrix
(A)ix ikth entry of (A)
(AT, (A7 | transpose and the conjugate-transpose/f (
(A)=0 (A) is an Hermitian positive semi-definite (PSD) matrix
A)f the Moore-Penrose pseudo-inverse 4f (
S finite or countable set
S; ith element ofS
|S] cardinality of a finite setS
T infinite non-countable set
XT) the Lebesgue measure pfC R

In addition, the following abbreviations are used. Thenorm of a vector §) is defined as
lw)lp =" 1wy, p=o0.

The default value fop is 2, so that|(v)|| denotes thé, norm of (v). The standard., norm is used for continuous
signals. Theith column of (4) is written as_@);, theith row is ((4)7); written as a column vector.

Indicator sets for vectors and matrices are defined respécts

I((v)) = {k| @)(k) # 0}, I((A)) = {k] (D)) # (0)}.

The set/((v)) contains the indices of non-zero values in the vectgr The set/((A)) contains the indices of
the non-identical zero rows ofA().
Finally, (A)s is the matrix that contains the columns of)(with indices belonging to the s&t. The matrix

(A)g is referred to as thécolumns) restrictiorof (A) to S. Formally,

((A)s)i = ((A))s,, 1<i<IS]



Similarly, (A)° is referred to as theows restrictionof (A) to S.

B. Multi-band signals

In this work our prime focus is on the s@# of all complex-valued multi-band signals bandlimited fo=
[0,1/T] with no more thanN bands where each of the band widths is upper bounded big. [ depicts a
typical spectral support far(t) € M.
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Fig. 1. Typical spectrum support af(t) € M.

The Nyquist rate corresponding to amyt) € M is 1/T. The Fourier transform of a multi-band signal has
support on a finite union of disjoint intervals iA. Each interval is called a band and is uniquely represenyed b
its edgeda;, b;]. Without loss of generality it is assumed that the bands ateowerlapping.

Although our interest is mainly in signals(t) € M, our results are applicable to a broader class of signals,
as explained in the relevant sections. In addition, theltesif the paper are easily adopted to real-valued signals
supported on—1/27T,+1/2T]. The required modifications are explained in Apperidix A anel lsased on the
equations derived in Sectign TVFA.

C. Problem formulation

We wish to perfectly reconstruett) € M from its point-wise samples under two constraints. Oneirgdbless,
so that the information about the band locations is not uskilevacquiring the samples and neither can it be
used in the reconstruction process. The other is that thelganrate required to guarantee perfect reconstruction
should be minimal.

This problem is solved if either of its constraints is remmbv@Vithout the rate constraint, the WKS theorem
allows perfect blind-reconstruction for every signét) bandlimited toF from its uniform samples at the Nyquist
rate z(t = n/T). Alternatively, if the exact number of bands and their |gmad are known, then the method of
[4] allows perfect reconstruction for every multi-band &g at the minimal sampling rate provided by Landau’s
theorem [1].

In this paper, we first develop the minimal sampling rate inegufor blind reconstruction. We then use a multi-
coset sampling strategy to acquire the samples at an aveaaggling rate satisfying the minimal requirement. The
design of this sampling method does not require knowledgi@fband locations. We provide a spectrum-blind

reconstruction scheme for this sampling strategy in theafof two different algorithms, named SBR4 and SBR2. It
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is shown that if the sampling rate is twice the minimal ratentlalgorithm SBR4 guarantees perfect reconstruction
for everyz(t) € M. The SBR2 algorithm requires the minimal sampling rate amatrantees perfect reconstruction
for most signals inM. However, some special signals fram, discussed in Sectidn V[iB, cannot be perfectly
reconstructed by this approach. Excluding these specs®ds;caur proposed method satisfies both constraints of

the problem formulation.

[11. MINIMAL SAMPLING RATE

We begin by quoting Landau’s theorem for the minimal santpliate of an arbitrary sampling method that
allows known-spectrum perfect reconstruction. It is theswvpd that blind perfect-reconstruction requires a miriima

sampling rate that is twice the Landau rate.
A. Known spectrum support
Consider the space of bandlimited functions restricted km@wvn support/ C F:
Br = {x(t) € L*(R) | supp X(f) € T}. @

The

setR is calleda sampling sefor By if z(t) can be perfectly reconstructed in a stable way from the sexguef

A classical sampling scheme takes the values(of on a known countable set of locatiofs= {r, }°>

—00"

samplescg[n] = z(t = r,). The stability constraint requires the existence of carista > 0 and 5 < oo such
that:
allz —y|* < ller — yrl* < Blz —yl*, Va.y € Br. (2)

Landau [1] proved that if? is a sampling set fo37 then it must have a densi®~(R) > \(T), where

D™ (R) = lim inf —]Rﬂ v,y +7]]

r—oo yeR r

®3)

is the lower Beurling density, andl(7) is the Lebesgue measure Bt The numerator in[{3) counts the number
of points from R in every interval of widthr of the real axll This result is usually interpreted as a minimal

averagesampling rate requirement f@&;, andA(7) is called the Landau rate.

B. Unknown spectrum support

Consider the sel(, of signals bandlimited toF with bandwidth occupation no more than< Q2 < 1, so that

Asupp X(f)) < 7, Valt) € Ao

1The numerator is not necessarily finite but as the samplingssmuntable the infimum takes on a finite value.
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The Nyquist rate fotNg is 1/7. Note that\, is not a subspace so that the Landau theorem is not valid here.
Nevertheless, it is intuitive to argue that the minimal shngprate for A, cannot be below)/T as this value is
the Landau rate had the spectrum support been known.

A blind sampling setR for A, is a sampling set whose design does not assume knowledgeppfX (f).

Similarly to (2) the stability ofR requires the existence of > 0 and 5 < oo such that:
alle =yl < e = yrl* < Blle —yl?, Va,y € Na. 4)

Theorem 1 (Minimal sampling rate)-et R be a blind sampling set fok,. Then,

D™ (R) 2min{¥,%}. (5)
Proof: The set\|, is of the form
No = Br, (6)
Ter
where
P=A{T|TCF, NT)<Q/T}. (7

Clearly, N is a non-countable union of subspaces. Sampling signaldi¢han a union of subspaces has been

recently treated in [20]. For every,§ € I define the subspaces
Byo=DBy+Bs={x+y|zeB,,yc By} (8)

SinceR is a sampling set foNg, (4) holds for some constants > 0, 3 < co. It was proved in [20, Proposition
2] that [4) is valid if and only if

allz =yl < lzg —yrl* < Blle —ylI®>, Va,y € By 9)

holds for everyy, 6 € I'. In particular,R is a sampling set for everg, o with v,6 € I'.
Observe that the spad®, 4 is of the form [1) with7 = ~ U 6. Applying Landau’s density theorem for each
~v,0 € T results in

D™ (R) > A(~yU#), Vv,0cT. (10)
Choosing
Q 1-Q 1
/7_|:07T:|7 0_|:T>T:|7
we have that fof2 < 0.5,
20
D™(R) 2 My U6) = A(7) + A(6) = = (11)

If ©>0.5thenyufd=F and
(12)
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Combining [(11) and (12) completes the proof. [ |

In [20], the authors consider minimal sampling requireraeiot a union of shift-invariant subspaces, with a
particular structure of sampling functions. Specificathey view the samples as inner products with sampling
functions of the form{«y, (t —m) }1<k< Kk mez, Which includes multi-coset sampling. Theorem 1 extendsrésult
to an arbitrary point-wise sampling operator. In particulis valid for non periodic sampling sets that are not
covered by [20].

An immediate corollary of Theorel 1 is that§f > 0.5 then uniform sampling at the Nyquist rate with an
ideal low pass filter satisfies the requirements of our prablermulation. Namely, both the sampling and the
reconstruction do not use the information about the bandtioas, and the sampling rate is minimal according to
Theoren L. AsM is contained in the space of bandlimited signals, this @halso provides perfect reconstruction
for every z(t) € M. Therefore, in the sequel we assume that 0.5 so that the minimal sampling rate of
Theoren(1l is exactly twice the Landau rate.

It is easy to see thatt C N, for Q = NBT. Therefore, for known spectral support, the Landau rat®y' 3.
Despite the fact thaM is a true subset oWy g, the proof of Theorerl1 can be adopted to show that a minimal
density of2N B is required so that stable perfect reconstruction is ptessiy signals fromM.

We point out that both Landau’s and Theorem 1 state a lowenddut do not provide a method to achieve
the bounds. The rest of the paper is devoted to developinganséruction method that approaches the minimal

sampling rate of Theorefd 1.

IV. UNIVERSAL SAMPLING

This section reviews multi-coset sampling which is used um development. We also briefly explain the

fundamentals of known-spectrum reconstruction as derivg8].

A. Multi-coset sampling

Uniform sampling ofz(t) at the Nyquist rate results in sample§& = nT') that contain all the information
aboutz(t). Multi-coset sampling is a selection of certain samplesftbis grid. The uniform grid is divided into
blocks of L consecutive samples. A constant 6ebf lengthp describes the indices @f samples that are kept in

each block while the rest are zeroed out. The(et {c;}"_, is referred to as the sampling pattern where
0<c<e<..<c¢<L-1 (23)

Define theith sampling sequence far<i < p as
z(t=nT) n=mL+ ¢;, for somem € Z
xci [TL] =

0 otherwise. (24)

The sampling stage is implemented pwniform sampling sequences with periog( LT, where theith sampling

sequence is shifted by, T from the origin. Therefore, a multi-coset system is unigueharacterized by the



parameterd,, p and the sampling patter@.

Direct calculations show that [8]

L—1
. 1 2 T
J2mfry _ = i -
X, (e ) IT TE:O exp <] T czr> X (f + LT> , (15)
1
erj:(): [0>LT>>1§ZSZ%

where X, (e/27/T) is the discrete-time Fourier transform (DTFT)f [n]. Thus, the goal is to choose parameters
L,p,C such thatX (f) can be recovered froni_(IL5).

For our purposes it is convenient to exprdsg (15) in a matnimfas

W)(f) = A)@)(f), Vf e Fo, (16)

where_/)(f) is a vector of lengtty whoseith element isX,., (e/27/T), and the vector)(f) containsL unknowns

for eachf .
Lx)i(f)=X<f+%>, 0<i<L-1, feF. (17)

The matrix_(A) depends on the parametdisp and the setC but not onz(¢) and is defined by

1 2
(U = g oo (577 k). (1)
Dealing with real-valued multi-band signals requires danpodifications to[(16). These adjustments are detailed
in Appendix[A.
The Beurling lower density (i.e. the average sampling rafed multi-coset sampling set is
1 p
Tae LT (19)

which is lower than the Nyquist rate for< L. However, an average sampling rate above the Landau rat is n

sufficient for known-spectrum reconstruction. Additiocahditions are needed as explained in the next section.

B. Known-spectrum reconstruction and universality

The presentation of the reconstruction is simplified usi®parsity notation. A vectow| is called K-sparse
if the number of non-zero values in)(is no greater tharkk. Using the/, pseudo-norm the sparsity ob)(is
expressed af(v)|lo < K. We use the following definition of the Kruskal-rank of a niatl4]:

Definition 1: The Kruskal-rank of 4), denoted as((A)), is the maximal numbeg such that every set of
columns of (A) is linearly independent.

Observe that for every € F, the system of[(16) has less equations than unknowns. Theredoprior on
(z)(f) must be used to allow for recovery. In [8] it is assumed thatitiformation about the band locations is

available in the reconstruction stage. This informatioppdies the sefl ((x)(f)) for every f € Fy. Without any
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additional prior the following condition is necessary fardwn-spectrum perfect reconstruction

(x)(f) is p-sparse,  Vf € Fo. (20)

Using the Kruskal-rank of4) a sufficient condition is formulated as

(z)(f)is o((A))-sparse, Vf € Fy. (21)

The known-spectrum reconstruction of [8] basically res¢rithe columns of 4) to I((z)(f)) and inverts the
resulting matrix in order to recoveg|(f).

A sampling patterrC' that yields a fully Kruskal-rank4) is called universal and correspondsd{A)) = p.
Therefore, the set of signals that are consistent With (21he broadest possible if a universal sampling pattern
is used. As we show later, choosifig< B—lT, p > N and a universal patter@ makes|[(21) valid for every signal
x(t) € M.

Finding a universal patter@’, namely one that results in a fully Kruskal-rank)( is a combinatorial process.
Several specific constructions of sampling patterns trepesved to be universal are given in [8],[10]. In particular
choosingL to be prime renders every pattern universal [10].

To summarize, choosing a universal pattern allows recovtany z(t) satisfying [20) when the band locations

are known in the reconstruction. We next consider blind aigacovery using universal sampling patterns.

V. SPECTRUM-BLIND RECONSTRUCTION

In this section we develop the theory needed for SBR. Thesédtseare then used in the next section to construct
two efficient algorithms for blind signal reconstruction.

The theoretical results are devoted in the following sté¥sfirst note that when considering blind-reconstruction,
we cannot use the prior of [8]. In Sectibn -A we present aedéht prior that does not assume the information
about the band locations. Using this prior we develop a sefftccondition for blind perfect reconstruction which
is very similar to [21l). Furthermore, we prove that undetaiarconditions onZ, p, C, perfect reconstruction is
possible for every signal itM. We then present the basic SBR paradigm in Se¢fiod V-B. Thie nesult of the
paper is transforming the continuous systeniof (16) into igefitimensional problem without using discretization.

In Section’\V-C we develop two propositions for this purpceed present the CTF block.

A. Conditions for blind perfect reconstruction

Recall that for every' € F, the system of_(16) is undetermined since there are fewertiegsahan unknowns.
The prior assumed in this paper is that for evérg F, the vector £)(f) is sparse but in contrast to [8] the location
of the non-zero values is unknown. Clearly, in this casé {@@}ill necessary for blind perfect reconstruction. The

following theorem from the CS literature is used to providsudficient condition.
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Theorem 2:Suppose %) is a solution of §) = (A)(z). If ||[(Z)]o < o((A))/2 then ) is the unique sparsest

solution of the system.

Theorem[2 and its proof are given in [11], [15] with a slightifferent notation ofSpark(A) instead of the

Kruskal-rank of_(). Note that the condition of the theorem is not necessary esethre examples that the

sparsest solutionz( of (y) = (A)(z) is unique while_£) > o((A4))/2.

Using Theoreni 12, it is evident that perfect reconstructopassible for every signal satisfying

a((A))
2

(z)(f)is -sparse V[ € Fy. (22)

As before, choosing a universal pattern makes the set oilsighat conform with[(22) the widest possible. Note
that a factor of two distinguishes between the sufficientdatns of [21) and of[(22), and results from the fact
that here we do not know the locations of the non-zero valngs)i(f).

Note that [[(2PR) provides a condition under which perfect nstaiction is possible, however, it is still unclear
how to find the original signal. Although the problem is simnito that described in the CS literature, here finding
the unique sparse vector must be solved for each VvAluethe continuous intervaF,, which clearly cannot be
implemented.

In practice, conditions(21) an@(22) are hard to verify sitisey require knowledge af(t) and depend on
the parameters of the multi-coset sampling. We therefoegeprto develop conditions on the clagd which
characterizes multi-band signals based on their intripsaperties: the number of bands and their widths. It is
more likely to know the values aV and B in advance than to know if the signals to be sampled safishy ¢2
(22). The following theorem describes how to choose thematersL,p andC so that the sufficient conditions
for perfect reconstruction hold true for everyt) € M, namely it is a unique solution of (IL6). The theorem
is valid for both known and blind reconstruction with a slighifference resulting from the factor of two in the
sufficient conditions.

Theorem 3 (Uniqueness)et z(t) € M be a multi-band signal. If:

1) The value ofL is limited by

L (23)

1
< Bk
- BT
2) p > N for known reconstruction op > 2N for blind,

3) C is a universal pattern,

then, for everyf € 7y, the vector £)(f) is the unique solution of (16).
Proof: If L is limited by (23) then for theéth band7; = [a;, b;] we have

MT)<B<

Therefore,f € 7; implies
k
I+ T ¢ Ti, Vk # 0.
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According to [17) for everyf € Fy the vector £)(f) takes the values oK (f) on a set ofL points spaced by
1/LT. Consequently, the number of non-zero valuestif{{) is no greater than the number of the bands, namely
(z)(f) is N-sparse.

SinceC' is a universal patterny((A)) = p. This implies that conditiong (21) and (22) are satisfied. [ |

Note that the condition on the value pfimplies the minimal sampling rate requirement. To see #ubstitute

(23) into [19):

1 P
= — >pB. 24
Tav [T_p (24)

As pointed out in the end of Sectign II}B, if the signals amown to lie in M then the Landau rate &/ B,
which is implied byp > N. Theoren{lL requires an average sampling rate/éf3, which can be guaranteed if
p>2N.

B. Reconstruction paradigm

The goal of our reconstruction scheme is to recover the kigfta from the set of sequences, [n], 1 <i < p.
Equivalently, the aim is to reconstruct)( f) of (16) for everyf € F, from the input datay)(f).

A straight forward approach is to find the sparsest solutiofif{) on a dense grid of € F,. However, this
discretization strategy cannot guarantee perfect reagigin. In contrast, our approach is exact and does not
require discretization.

Our reconstruction paradigm is targeted at finding the dityeset which depends an(¢) and is defined as
s={J 1) (25)
feFo

The SBR algorithms we develop in Sectlod VI are aimed at redoyg the setS. With the knowledge of perfect

reconstruction of £)(f) is possible for everyf € F, by noting that[(16) can be written as

W)(f) = A)s @) (/). (26)
If the diversity set ofx(¢) satisfies
S| < o((A)), (27)
then
((A)s)'(A)s =1, (28)

where () is of sizep x |S|. Multiplying both sides of[(26) by((A)s)' results in:
@) (N=(W))' W), ¥feF. (29)

From [25),
@)i(f) =0, VfeFo, 1¢S5 (30)
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Thus, onceS is known, and as long ak (27) holds, perfect reconstruct@onbe obtained by (29)-(B0).

As we shall see later ol _(R7) is implied by the condition reegito transform the problem into a finite
dimensional one. Furthermore, the following propositibnws that forz(¢) € M, (21) is implied by the parameter
selection of Theorerml 3.

Proposition 1: If L is limited by [23) thenS| < 2N. If in additionp > 2N and C is universal then for every
z(t) € M, the setS satisfies[(27).

Proof: The bands are continuous intervals upper bounde# dyrom [17) it follows that)( f) is constructed
by dividing F into L equal intervals of length /LT. Therefore if L is limited by [23) then each band can
either be fully contained in one of these intervals or it candplit between two consecutive intervals. Since
the number of bands is no more thahit follows that |S| < 2/N. With the additional conditions we have that
o((A)) =p=2N = |[S]. m

As we described, our general strategy is to determine therglty setS and then recover(t) via (29)-[30). In
the non-blind setting$ is known, and therefore if it satisfiels {27) then the same topgmcan be used to recover
x(t). However, note that when the band locations are known, we msaya value op that is smaller thare N
since the sampling rate can be reduced. Therefbré, (27) mahald. Nonetheless, it is shown in [8], that the
frequency axis can be divided into intervals such that tipigreach can be used over each frequency interval.

Therefore, once the sét is recovered there is no essential difference between kraowinblind reconstruction.

C. Formulation of a finite dimensional problem

The set of equations of (IL6) consists of an infinite numbeinafdr systems because of the continuous variable
f. Furthermore, the expression for the diversity Segiven in [23) involves a union over the same continuous
variable. The main result of this paper is ti$atan be recovered exactly using only one finite dimensioralpm.

In this section we develop the underlying theoretical rsstilat are used for this purpose.

Consider a givery” C Fy. Multiplying each side of[(16) by its conjugate transposehage

W)W (f) = @) NH@)T(HWT, vfeT. (31)

Integrating both sides over the continuous variaplgives

Q) = W)(Z)oM)™, (32)

with the p x p matrix
@=[_wnw = (33)

and theL x L matrix
@)= | @) NE@)"(F)df = 0. (34)

feT



14

Define the diversity set of the intervdl as

Sr={J I(@)(f)). (35)

feT

Now,

(Z)o)i = /f e

This means that(Z)o); = 0 if and only if (x);(f) = 0,Vf € T, which implies thatS+ = I((Z)o).
The next proposition is used to determine wheth&f,(can be found by a finite dimensional problem. The

proposition is stated for general matric&g)((A).
Proposition 2: Suppose®) > 0 of sizep xp and _(A) are given matrices. Let) be anyL x L matrix satisfying

@ = (D)), (362)
Z) =0, (36b)
1) < (). (360)
Then, rank((Z)) = rank((Q)). If, in addition,
1z < 24, (360)

then, (7) is the unique solution of (364)-(36d).
Proof: Let (7) satisfy [368){(36c). Defineg = rank((Q)), rz = rank((Z)). Since_¢) > 0 it can be
decomposed asZ() = (P)(P)" with (P) of size L x rz having orthogonal columns. From (36a),

@) = (AP (AP)H!. (37)

It can be easily be concluded tha(Z)) = I((P)), and thus|I((P))| < o((A)). The following lemma whose
proof is given in AppendiXB ensures that the matri¥)(P) of sizep x rz also has full column rank.

Lemma 1:For every two matrices4), (P), if |I((P))| < o((A)) thenrank((P)) = rank((A)(P)).

Since for every matrix /) it is true thatrank((M)) = rank((M)(M)), (32) impliesrz = rq.

For the second part of Propositibh 2 suppose t#3t (Z) both satisfy [36a).(36b].(36d). From the first part,

rank((Z)) = rank((Z)) = ro.

Following the earlier decompositions we write

(2)=@)P)", 1(2) =1(P)) (38)
©2)=@)P)", 1(2) =1(P)).
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In addition,

ey < 4 ey < 1) (@)
From (35).
(@ = (L))" = AP P, (40)
which implies that
W)~ P = 0. @)

for some unitary matrix ). It is easy to see thaf (B9) results [if((P)(R))| < o((A))/2. Therefore the matrix
(P) — (P)(R) has at most((A)) non-identical zero rows. Applying Lemnfia 1 {0[41) resultgi) = (P)(R).
Substituting this into[(38) we have that [ = (). [ |
The following proposition shows how to construct the matX) by finding the sparsest solution of a linear
system.
Proposition 3: Consider the setting of Propositigh 2 and assudig gatisfies[(36d). Let = rank((Q))) and
define a matrix {') of size p x r using the decomposition) = (V)(V)#, such that ') hasr orthogonal

columns. Then the linear system

V) =A)W) (42)

has a unique sparsest solution matiix){. Namely, (") = (A)(U)o and|I((U)p)| is minimal. Moreover, £) =
@)o)f'.
Proof: Substitute the decompositio®{ = (V)(V) into (36a) and letZ) = (P)(P)". The result is

(V) = (A)(P)(R) for some unitary R). Therefore, the linear system ¢f {42) has a solutitng(= (P)(R). It is
easy to see thak((U)) = I((P)) = I((2)), thus [36d) results inZ ((U)o)| < o((A))/2. Applying Theoreni R to
each of the columns ofi{), provides the uniqueness dff{o. It is trivial that (7) = (U)o(U){!. [ |

Using the same arguments as in the proof it is easy to conthadé ((Z)) = I((U)o), so thatS7 can be found
directly from the solution matrix{({)y. In particular, we develop th€ontinuous to Finite(CTF) block which
determines the diversity sét- of a given frequency interval”. Fig.[2 presents the CTF block that contains the
flow of transforming the continuous linear system [of] (16) ba interval 7 into the finite dimensional problem
of (42) and then to the recovery 6f-. The role of Propositions] 2 and 3 is also illustrated. The ®Idek is the
heart of the SBR scheme which we discuss next.

In the CS literature, the linear system bf|(42) is referrecasoan MMV system. Theoretical results regarding
the sparsest solution matrix of an MMV system are given irfl.[Einding the solution matrix{(), is known to
be NP-hard [12]. Several sub-optimal efficient algorithras finding U), are given in [16]. Some of them can

indicate a success recovery d@f Y,. We explain which class of algorithms has this property ictioa [VI-Al
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v(f) MMV problem

VieT Solve MMY Sy = I(Uy) St
T Q= [y(H)y"(fdf Q=vvH V =AU Brute-force or using T 0
— T CS algorithms

Indication
flag

Unigue solution

| Set of constraints (36) Proposition 3
Theoretical
Unique solution results
Proposition 2

Fig. 2. Continuous to finite block (CTF). This block deteresnthe diversity sef+ of a given interval7.

VI. SBR ALGORITHMS

The theoretical results developed in the previous sectiemaw used in order to construct the diversity Set
which enables the recovery eft) via (29)-(30).

We begin by defining a clasd of signals. The SBR4 algorithm is then presented and is préweguarantee
perfect reconstruction for signals id. We then show that in order to ensure thatt C A the sampling rate must
be at leasttN B, which is twice the minimal rate stated in TheorEm 1. To impren this result, we define a
classB of signals, and introduce a conceptual method to perfeettpmstruct this class. The SBR2 algorithm is
developed so that it ensures exact recovery for a subsBt e then prove that\ is contained in this subset
even for sampling at the minimal rate. However, the companiat complexity of SBR2 is higher than that of
SBR4. Since universal patterns lead to the largest.4edsid B, we assume throughout this section that universal

patterns are used, which resultsaf(A)) = p.

A. The SBR4 algorithm

Define the classdx of signals
Ax = {supp X(f) C F and |S| < K}, (43)

with S given by [25). LetT = Fy, and observe that a multi-coset system with> 2K ensures that all the
conditions of Propositioh]l2 are valid for everyt) € Ag. Thus, applying the CTF block ot = F; results in a
unique sparsest solutiod/{,, with S = I((U),). The reconstruction of the signal is then carried out[by {2d).
We note that[(27) is valid as it represents the cldgsthat containsAd for p > 2K.

Algorithm [T, named SBR4, follows the steps of the CTF blockFig. 2 to recover the diversity set from
W)(f), for anyz(t) € Ag. The algorithm also outputs an indication flag which we désclater on.

The SBR4 algorithm guarantees perfect reconstructiongofads in.4x from samples at twice the Landau rate,
which is also the lower bound stated in Theorlem 1. To see thiserve that(25) implies that everyt) € Ak

must satisfy

Asupp X (1)) < o (44)
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Algorithm 1 SBR4

Input: (y)(f), Assume: o((A)) =p

Output: the setS, flag

: SetT = Fy

Compute the matrix@) by (33)

Decompose®) = (V)(V) according to Proposition] 3

Solve the MMV system() = (A)(U) for the sparsest solutiori/(),
S =1I((U)o)

flag = {|S] < &}

return S, flag

Noahkowdhe

Although A is not a subspace, we usel(44) to say that the Landau ratéfas K /LT as it contains subspaces
whose widest support i&/LT. As we provedp > 2K ensures perfect reconstruction fdr. Substituting the
smallest possible valug= 2K into (19) results in an average sampling rate2&f/ LT

It is easy to see that flag is equal to 1 for every signallip. However, when a sub-optimal algorithm is used
to solve the MMV in stepl4 we cannot guarantee a correct soiui )o. Thus, flag=0 indicates that the particular
MMV method we used failed, and we may try a different MMV apgub.

Existing algorithms for MMV systems can be classified inta tgroups. The first group contains algorithms
that seek the sparsest solution matrx){, e.g. Basis Pursuit [17] or Matching Pursuit [18] with a teration
criterion based on the residual. The other contains methwatsapproximate a sparse solution according to user
specification, e.g. Matching Pursuit with a predeterminathber of iterations. Using a technique from the latter
group neutralizes the indication flag as the approximasoaways sparse. Therefore, this set of algorithms should
be avoided if an indication is desired.

An important advantage of algorithm SBR4 is that the maté) €an be computed in the time domain from
the known sequences.. [n], 1 < i < p. The computation involves a set of digital filters that do depend on
the signal and thus can be designed in advance. The exadsgetagiven in AppendikIC.

The drawback of the sed, is that typically we do not know the value &f. Moreover, even ifK is known,
then usually we do not know in advance whethét) ¢ Ax as.Ax does not characterize the signals according
to the number of bands and their widths. Therefore, we waké&ltb determine conditions that ensuké C A
Propositior 1L shows that far(t) € M the setS satisfies|S| < 2N if L < 1/BT. Thus, under this condition on
L we haveM C Asy, which in turn impliesp = 4N as a minimal value fop. Consequently, SBR4 guarantees
perfect reconstruction faM under the restrictiond, < 1/BT andp > 4N. However, the Landau rate fo¥1 is
N B, while p = 4N implies a minimal sampling rate afN B. Indeed, substituting = 4N and L < 1/BT into
(I9) we have

— 4NB. (45)

In contrast, it follows from Theorem] 3 that > 2N is sufficient for uniqueness of the solution. The reason for
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the factor of two in the sampling rate is that)(f) is N-sparse for each specifit; however, when combining
the frequencies, the maximal size 8fis 2N. The SBR2 algorithm, developed in the next section, capésalon

this difference to regain the factor of two in the samplingerand thus achieves the minimal rate, at the expense

of a more complicated reconstruction method.

B. The SBR2 algorithm

We now would like to reduce the sampling rate required fonalg of M to its minimum, i.e. twice the Landau
rate. To this end, we introduce a 98k for which SBR2 guarantees perfect reconstruction, and firene that
M C By if p>2N.

Consider a partition ofFy into M consecutive intervals defined by

- - - 1
0—d1<d2<"'<d}\/j+1—ﬁ.

For a given partition seD = {d;} we define the set of signals
By p={supp X(f) C F and[S; s 4| < K, 1<i< M}

Clearly, if p > 2K then we can perfectly reconstruct everft) € B, 5 by applying the CTF block to each of

the intervals|d;, d;;1]. We now define the se8x as

Bx =Bk p, (46)

D
which is the union of3;; ;, over all choices of partition set® and integers\/. Note that neithei3x nor By, ;,
is a subspace. If we are able to find a partitibrsuch thatz(t) € By p, thenz(t) can be perfectly reconstructed
usingp > 2K. Since the Landau rate f@#x is K/LT, this approach requires the minimal samplinglfate

The following proposition shows that if the parameters dresen properly, themt C By. Thus,p > 2N and
a method to findD of x(t) is sufficient for perfect reconstruction aft) € M.

Proposition 4: If L, p,C are selected according to TheorEim 3 thehC By.

Proof: In the proof of Theoreri]3 we showed that under the conditidrte theorem, )(f) is N-sparse

for every f € Fy. The proof of the proposition then follows from the followitemma [8]:

Lemma 2:If z(t) is a multi-band signal withV bands sampled by a multi-coset system then there exists a
partition setD = {d;} with M = 2N + 1 intervals such thaf((z)(f)) is a constant set over the intenjd}, d; 1]
for 1 <i < M.
Lemmal2 implies thatSg, 4.,/ < N for everyl <i < M = 2N + 1 which means that(t) € By p. [

So far we showed thatt C By, however to recover(t) we need a method to finfh in practice; Lemma]2

2under the convention discussed fdi.
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only ensures its existence. Given the datg f), our strategy is aimed at finding any partition €etsuch that

Dl
S= U S (47)

i=0
is equal toS, and such thatS[di,diHH < K for everyl < ¢ < M. As long as[(2l7) holds, once we fin§l
the solution is exactly recovered via {28)430). To fiidwe apply the CTF block on each intenal, d;;1]. If

p > 2K, then the conditions of Propositih 2 are valid, a uniquetsah is guaranteed for each interval. Since for
p = 2K (21) is valid for A3k, our method guarantees perfect reconstruction of signalyin A,k . As always,
using a universal pattern makes the set of sigifalsn Asx the largest. Since the Landau rate 6% N Ask is
K/LT this approach allows for the minimal sampling rate whes 2K.

In order to find D we suggest a bi-section process &p. We initialize T = Fy and seekSy. If S does
not satisfy some condition explained below, then we halvénto 7; and 7; and determineS, and S7,. The
bi-section process is repeated several times until theitons are met, or until it reaches an interval width of no
more thane. The setS is then determined according 0 147).

We now describe the conditions for which a givénC F; is halved. The matrix£{), of (34) satisfies the
constraints[(38a)-(36b). Sincet) € Ak andp > 2K (36d) is also valid. However, the last constraint (36d)
of Proposition® is not guaranteed as it requires a strongedition |S7| < K = p/2. Note that this condition
is satisfied immediately ifD = D sincex(t) € Bx. We suggest to approximate the valig = |I((Z)o)| by
rank((®)), and solve the MMV system for the sparsest solution onlyifk((Q)) < p/2. This approximation is
motivated by the fact that for anyZ() = 0 it is true thatrank((Z)) < |I((Z))|. From Propositiofi]2 we have that
rank((Z)o) = rank((Q)) which results in

rank((Q)) < [1((2))]. (48)

However, only special multi-band signals result in strieequality in [48). Therefore, an interval that produces
rank((Q)) > p/2 is halved. Otherwise, we apply the CTF block for tfisassuming tha{{48) holds with equality.
As in SBR4 the flag indicates a correct solution fgit) € Bx N Asx. Therefore, if the flag is 0 we halvg.
These reconstruction steps are detailed in Algorifim 2,eth®BR2.
It is important to note that SVR2 is sub-optimal, since thalfioutput of the algorithn may not be equal to

S even forx(t) € Bx N Azx. One reason this can happen is if strict inequality hold&B) for some intervall .
In this scenario stef] 7 is executed even thoughy (does not satisfy[ (36d). For example, a signél) with two
equal width bands$a;, a; + W] and[ag, a2 + W] such that

o7l = Lzl =7 ()
andy + W € Fy. If z(t) also satisfies

X(f —a) = X(f —a2), Vfe[0,W], (50)
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Algorithm 2 SBR2
Input: 7, Initialize: 7 = Fy, Assume: o((A))
Output: a setS
Sif A(T) < e then
return S ={}
end if
Compute the matrix@) by (33)
if rank((Q)) < & then
Decompose@®) = (V)(V)#
Solve MMV system V') = (A)(U)
S=1(U)o)
else
S=A{}
end if
Lif (rank((Q)) > 2) or (|S| > 2) then
split 7 into two equal width intervalg, 7>
S = SBRAT)
S5 = SBRAT:)
S =80 ys5®
. end if
. return S

p

© X N aA®WDhR
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then it can be verified that' ((Z)y)| = 2 while rank((Z)y) = rank((Q)) = 1 on the intervalT = [v,~ + W].
This is of course a rare special case. Another reason is aldignwhich the algorithm reached the termination
step[l for some small enough interval. This scenario canéraffgwo or more points ofD reside in an interval
width of e. As an empty seb is returned for this interval, the final output may be misssimgne of the elements
of S. Clearly, the value ot influences the amount of cases of this type. We note that simceo not rely on

D = D the missing values are typically recovered from other irtls: Thus, both of these sources of error are
very uncommon.

The most common case in which SBR2 can fail is due to the uselwbptimal algorithms to find{(),; this
issue also occurs in SBR4. As explained before, we assunhidga0 means an incorrect solution and halves the
interval 7. An interesting behavior of MMV methods is that evenif)( cannot be found fof7, the algorithm
may still find a sparse solution for each of its subsectiorsis] the indication flag is also a way to partially
overcome the practical limitations of MMV techniques. Nthat the indication property is crucial for SBR2 as
it helps to refine the partitio® and reduce the sub-optimality resulting from the MMV altfomi.

We point out that Proposition] 4 shows th&at C By. We also have thait C Ayy from Proposition11,
which motivates our approach. The SBR2 algorithm itselfsdoet impose any additional limitations dn p, C
other than those of Theorem 3 required to ensure the unigsesfethe solution. Therefore, theoretically, perfect
reconstruction forM is guaranteed if the samples are acquired at the minima) wate the exception of the

special cases discussed before.
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SPECTRUM-BLIND RECONSTRUCTION METHODS FOR MULT4BAND SIGNALS

WKS theorem SBR4 SBR2
Sampling method Uniform Multi-coset Multi-coset
Fully-blind Yes Yes Yes
# Uniform sequences 1 P P
Minimal sampling rate Nyquist 2 x Landau 2 x Landau
Achieves lower bound of Theore |1 No Yes Yes
Reconstruction method Ideal low pass SBR4 SBR2
Time complexity constant 1 MMV system | bi-section + finite # of MMV
Applicability supp X (f) € F z(t) € Ak z(t) € Br N Agg3
Indication No for z(t) € Ak only No

The complexity of SBR2 is dictated by the number of iteradiof the bi-section process, which is also affected
by the behavior of the MMV algorithm that is used. Numericgberiments in Section VIl show that empirically
SBR2 converges sufficiently fast for practical usage.

Finally, we emphasize that SBR2 does not provide an indinatin the success recovery oft) even for
x(t) € M since there is no way to know in advancezift) is a signal of the special type that SBR2 cannot

recover.

C. Comparison between SBR4 and SBR2

Table[dl compares the properties of SBR4 and SBR2. We added\KS theorem as it also offers spectrum-
blind reconstruction. Both SBR4 and SBR2 algorithms recdlie setS according to the paradigm stated in
Section V-B. Observe that an indication property is avddainly for SBR4 and only if the signals are known to
lie in Ag. Although both SBR4 and SBR2 can operate at the minimal sagphte, SBR2 guarantees perfect
reconstruction for a wider set of signals 4% is a true subset 0Bx N Ay

Considering signals from\1 we have to restrict the parameter selection. The specifiasb@ehof SBR4 and
SBR2 for this scenario is compared in Tablé IIl. In particuBBR4 requires twice the minimal rate.

In the tables, perfect reconstruction refers to reconstmowith a brute-force MMV method that finds the
correct solution. In practice, sub-optimal MMV algorithmsy result in failure of recovery even when the other
requirements are met. The indication flag is intended toodiscthese cases.

The entire reconstruction scheme is presented in[Fig. 3.sEheme together with the tables allow for a wise
decision on the particular implementation of the systenea€y, for 2 > 0.5 it should be preferred to sample at
the Nyquist rate and to reconstruct with an ideal low passrfifor) < 0.5 we have to choose between SBR4

and SBR2 according to our prior on the signal. Typicallysitnatural to assume(t) € M for some values of

3except for special signals discussed in Sedfion VI-B.
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COMPARISON OFSBR4AND SBR2FOR SIGNALS INM

22

SBR4 SBR2
# Uniform sequences p > 4N p>2N
Minimal rate 4 x Landau 2 x Landau
Lower bound of Th[1| No Yes
Parameter selection | TheoreniBp > 4N | TheoreniB
Perfect reconstruction Yes Yes®
Indication Yes No

Parameters selection
(Proposition 1)

¥y
Bi-section #@Si
No onD T =i dins flag()
T false

L,p,C
Multi-coset SN \
Sampling . Reconstt
SBR4 algorithm ugxi;‘s
Yes i e

;& Uniform sampling

at the Nyquist
rate

Ideal Low pass
filter

Spectrum-blind

Sampling Spectrum-blind recovery of S

Recovery of signal
x(t) using S

Fig. 3. Spectrum-blind reconstruction scheme.

N and B and derive the required parameter selection according e T# It is obvious that ifp > 4N is used
then SBR4 should be preferred since it is less complicatad 8BR2.

The trade-off presented here between complexity and saghie also exists in the known-spectrum reconstruc-
tion of [8]. Sampling at the minimal rate of Landau requiresz@onstruction that consists of piecewise constant
filters. The number of pieces and the reconstruction conitglgxkow with L. This complexity can be prevented
by doubling the value ofy which also doubles the average sampling rate according3p Then, [(2P){(30) are
used to reconstruct the signal by only one inversion of a knovatrix [6].

VII. NUMERICAL EXPERIMENTS

We now provide several experiments demonstrating the stagstion using algorithms SBR4 and SBR2 for
signals fromM. We also provide an example in which the signals do not liehendlassM but in the larger set
implied by Ax for SBR4 and byB; N Ak for SBR2.
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A. Setup

The setup described hereafter is used as a basis for all gegierents.

Consider an example of the cladd with F = [0,20 GHZ, N = 4 and B = 100 MHz. In order to test the
algorithms 1000 test cases from this class were generateldmay according to the following steps:

1) draw{a;}¥, uniformly at random fron{0,20GHz — B].

2) seth; =a; + B for 1 <i < N, and ensure that the bands do not overlap.

3) GenerateX(f) by

(P (SrH) +551(7). f€ Ulasdi

0, otherwise.

X(f) =

For everyf the values ofSi(f) and S;(f) are drawn independently from a normal distribution withazer
mean and unit variance. The functieiif) is constant in each band, and is chosen such that the bargiener
is equal toe; wheree; is selected uniformly from [1,5].
The Landau rate for each of the signalsNsB = 400 MHz, and thus the minimal rate requirement for blind
reconstruction iS00 MHz due to Theorerh]1.

Several multi-coset systems are considered with the fatigyparameters. The valuk is common in all the
systems. The value gf is varied fromp = N = 4 to p = 8N = 32 representing 29 different systems. A universal
patternC' is constructed by choosing prinfg since according to [10] this ensures that every sampliritpipais
universal.

An experiment is conducted by sampling the signals usindh edcthe multi-coset systems. Each of these
combinations is used as an input to both SBR4 and SBR2 diguwsit\We selected the Multi-Orthogonal Matching
Pursuit (M-OMP) method [16] to solve the MMV systems for tipasest solution. The empirical success rate of

each algorithm is calculated as the ratio of simulations Imictv the recovered sét is correct.

B. Sampling rate and practical limitations

We begin by selecting the largest possible value of primgatisfying [2B):
1
= < — = 200.
L =199 < BT 200 (51)

Thus, the minimal rate requirement holds only for> 2N. Specifically, forp = 2N the sampling rate is
p/LT = 804 MHz. Observe that a non-prim& = 200 would give the minimal rate exactly. This setting is
discussed later on.

Fig.[4 depicts the empirical success rate with- 199, N = 4 as a function op. It is evident that fop < 2N the
setS could not be recovered by neither of the algorithms sinceséimpling rate is below the bound of Theorieim 1.
As expected, SBR2 outperforms SBR4 as it achieves the sampiei@hsuccess rate for a lower average sampling

rate. It is also seen that far = 4N the sampling rate is slightly more than four times the Landza. Indeed,
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algorithm SBR4 maintains a high recovery rate for this valtie. The usage of SBR2 with M-OMP maintains a
high recovery rate fop/N = 2.6, which is more than the minimal rate. Other MMV algorithmsyniee used to
improve this result, however we used only M-OMP as it is sienghd fast.

We next consider a scenario with= 23, which clearly satisfie$ (23). Here, for= N = 4 we have a sampling
rate of 3.4 GHz which is much higher than the minimal requieai This selection of. represents a practical
desire to satisfy the minimal rate requirement with a reduzgue ofp, since realizing the multi-coset sampling
requiresp analog-to-digital devices. Figl 5 presents the empirieabvery rate in this case. Note that Tablé Il
shows that in order to guarantee perfect reconstructionMbiwe needp > 4N for SBR4, andp > 2N for
SBR2. However, these conditions are only sufficient. Indéeid evident from Fig[b that both algorithms reach
a satisfactory recovery rate for lower valuespof

In Table[TM, we tabulate the average run time of one case otliteo 000 tested. Our experiments were conducted
on an ordinary PC desktop with an Intel CPU running at 2.4Ghi2 812MB memory RAM. We used Matlab
version 7 to encode and execute the algorithms. Note thafl.fer 199,p = 2N we encountered a significant
increase in SBR2 runtime. The reason is that the averagelisgmpte is very close to the minimal possible,

thus the recursion depth of the algorithm grows as it is hataldind a suitable partition séd. Forp = 4N the
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AVERAGE RUN TIME OF SBR4AND SBR2wWITH MOMP (MSEC)

L =199 L =23
SBR4 | SBR2| SBR4 | SBR2
p=N 7 608 4.2 51.4

p=2N| 16.1 | 1034 | 57 | 6.4
p=4N | 214 | 248 | 6.7 | 6.7

runtime dramatically improves, however in this case SBR¥ imapreferred due to the advantages that appear in
Table[l. It can be seen that fat = 23 the average runtime is low for both algorithms. This scenegpresents
a case that the value ¢$| is very low compared t@N, and thus it is easier to find a partition get Moreover,

M-OMP becomes faster as the solution is sparser.

C. Applicability

The previous experiments demonstrated the applicabifit§BR4 and SBR2 to signals that lie ix. We now
explore the case in which(t) ¢ M.

In this experiment we used the basic setup with- 199 but the signals are constructed in a different way. Each
one of the 1000 signals is constructed XY f) = a(f) (Sr(f) + 7S1(f)), Vf € Fo. The functiona(f) depends
on the algorithm and it makes sure that) € Ay for the test cases of SBR4. Similarky(f) is used to form
signalsx(t) € Bx N Asx for SBR2. The construction of these signals dependé drecause of the definitions of
A and B . We selecteds’ = 8 which results in a Landau rate é&f /LT = 804 MHz in either construction. In
addition, we made sure that the signals do not lie\ih

Fig.[6 shows the empirical recovery rate of SBR4 and SBR2is1gbenario. The valug = 4N = 16 serves as
a threshold for satisfactory recovery, as the samplingfratéhis value ofp is p/ LT = 1608 MHz, which is twice
the Landau rate. It can also be seen that SBR4 performs biedieISBR2 as it does not involve a sub-optimal stage
of recovering the partition seéP. Both algorithms suffer from the sub-optimality technigder MMV systems.

Note that the signals here are synthesized so that they likeirrelevant sets. However, for a generic signal
x(t) ¢ M there is no way to know in advance whether it lies in one oféhssts. Moreover, there is no way to
infer it from the samplesy((f). In addition, even if SBR4 is used for this signal and it retuflag=1, there is no
meaning for this indication since the uniqueness of thetmwlus guaranteed only for(¢) € Ax which cannot

be ensured for a generic multi-band signal.

D. Random sampling patterns

Theorem[B requires a universal sampling pattern, which mdimding a pattern resulting i ((4)) = p.

However, computing the value of((A)) requires a combinatorial process for non-primeThe "bunched” pattern
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Fig. 7. Performance of SBR algorithms with= 200.

C ={0,1,...,p — 1} given in [8] is proved to be universal but the matriX)(is not well conditioned for this
choice [7]. Alternatively, it follows from the work of Caedet. al.[19] that random sampling patterns are most
likely to produce a high value fos((A)) if L,p are large enough. Therefore, for practical usage the sagpli
pattern can be selected randomly even for non-priméig.[4 presents an experiment with= 200. We point
out that the random selection process is carried out only,0and the same sampling patterns are used for all
the tested signals. Comparing Figs. 4 ahd 7 it is seen thakethdts are very similar although the exact value of
o((A)) is unknown.

This experiment was also performed when for evah< p < 8N the patterns are selected @s= {ci|c;, =
2k, 0 < k < p— 1}, which is proved in [10] to render((A)) = 1. In this case both SBR4 and SBR2 could not

recover any of the 1000 test cases. Thus, the universalitheopattern is crucial to the success of our method.

VIIl. CONCLUSIONS

In this paper we suggested a method to reconstruct a mudd-tsignal from its samples when the band
locations are unknown. Our development enables a fully tepmeblind system where both the sampling and

the reconstruction stages do not require this knowledge.
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Our main contribution is in proving that the reconstructfmoblem can be formulated as a finite dimensional
problem within the framework of compressed sensing. Th&ilteis accomplished without any discretization.
Conditions for uniqueness of the solution and algorithmdirid it were developed based on known theoretical
results and algorithms from the CS literature.

In addition, we proved a lower bound on the sampling rate ittn@roves on the Landau rate for the case of
spectrum-blind reconstruction. One of the algorithms weppsed indeed approaches this minimal rate for a wide
class of multi-band signals characterized by the numberaoftib and their widths.

Numerical experiments demonstrated the trade off betweemterage sampling rate and the empirical success

rate of the reconstruction.

APPENDIX A

REAL-VALUED SIGNALS

In order to treat real-valued signal the following definigoreplace the ones given in the paper. The clets
is changed to contain all real-valued multi-band signalsdtimited to 7 = [—1/27,1/2T] with no more thanV
bands on both sides of the spectrum, where each the band iwidfiper bounded by as before. Note thaV is
even as the Fourier transform is conjugate symmetric forvalaed signals. The Nyquist rate remaih&l” and
the Landau rate iV B.

Repeating the calculations of [8] that lead fo](15) it can éensthat several modifications are required as now
explained. To form_£)(f), the interval F is still divided into L equal intervals. However, a slightly different
treatment is given for odd and even valuesigfbecause of the negative side of the spectrum. Define thef set o

L consecutive integeres

2
K= L L
——, ,—— 15, evenlL.
2 2
and redefine the intervat,
1 1
[_ oLT’ 2LT] ,  oddL
0~ 1
0, — evenL.
0.7

The vector £)(f) is now defined as

(@)i(f)=X(f+ K;/LT), VO<i<L-1,
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The dimensions of4) remainp x L with ik entry

(A = -1 exp (ﬁ—WciKk) , (52)

The definition of_§)(f) remains the same with respect # defined here. The results of the paper are thus
extended to real-valued multi-band signals siricé (16) 8 walid with respect to these definitions af)(f), (A),
and Fy.

Note that, we could have, conceptually, constructed a cexaphlued multi-band signal by taking only the
positive frequencies of the real-valued signal. The Landde of this complex version &' B /2. Nevertheless,

the information rate is the same as each sample of a complered signal is represented by two real numbers.

APPENDIX B

PROOF OFLEMMA [I]

Let » = rank((P)). Reorder the columns ofA) so that the first- columns are linearly independent. This

operation does not change the rank 8 (hor the rank of 4)(P). Define
(P)=1P)'V (P)], (53)
where (P)(!) contains the firsi- columns of (°) and the rest are contained i?)(?). Therefore,
r > rank((A)(P)) = rank((A)[(P)) (P)®)]) > rank((A)(P)™").

The inequalities result from the properties of the rank aiaaienation and of multiplication of matrices. So it is
sufficient to prove that4)(P)") has full column rank.

Let o be a vector of coefficients so thatl ((P)(V)(a) = (0). It remains to prove that this implies | = (0).
Denotek = |I((P))|. SinceI((P)M)) C I((P)) = k the vector )M (a) is k-sparse. However((A)) > k and its
null space cannot containiasparse vector unless it is the zero vector. Sifeg{ contains linearly independent

columns this implies¢) = (0).

APPENDIX C

COMPUTATION OF THE MATRIX (@)

The SBR4 algorithm computes the matrig)(in the frequency domain. A method to compute this matrix
directly from the samples in the time domain is now presented
Consider theikth element of Q) from (33):

1

Q) = /O T WO (54)
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Since_);(f) is the DTFT ofz,,[n] we can write_Q));; as,

@Q)ix = /0ﬁ (Z e, [na] eXP(‘ﬂ”f”ﬁ)) : (55)
n,€Z
<Z T, [Nk] eXp(—jwankT)> df
niEZL

L

=53 e [nial, ] /0 " exp (j2r f(ng, — ni)T) df.-

n;ELnEL

Note that from [(I¥) the sequenag,[n;] is padded byl — 1 zeros between the non-zero samples. Define the
sequence without these zeros as

Ze,Im] = x(mLT +¢T), meZ, 1<i<p.

(56)
Then, [E5) can be written as
@ik = Y Y e [mild, [ma]gilmi — my (57)
m;EZmiEL
= > e [mil(@e, * gin)lmil,
m;EL
where N
gislm] = /0 T exp (j2n f(mL + (ex — e))T) df, (58)
and
(&e, % gin)lm] = Y &%, [nlgixlm — n). (59)
ne’l
If i =k thenc¢; = ¢, and
giilm] = g[m] = % exp(jmm) sinc(m), (60)
with sinc(z) = sin(7z)/(7x).
If i £ k,
_exp (G2 (e — ) — 1
giklm] = jzw(mJL; F(cx—aNT (61)

The set of digital filterg;, can be designed immediately after setting the parameterC as these filters do
not depend on the signal.
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