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Abstract

We address the problem of reconstructing a multi-band signal from its sub-Nyquist point-wise samples. To

date, all reconstruction methods proposed for this class ofsignals assumed knowledge of the band locations. In this

paper, we develop a non-linear blind perfect reconstruction scheme for multi-band signals which does not require

the band locations. Our approach assumes an existing blind multi-coset sampling method. The sparse structure

of multi-band signals in the continuous frequency domain isused to replace the continuous reconstruction with

a single finite dimensional problem without the need for discretization. The resulting problem can be formulated

within the framework of compressed sensing, and thus can be solved efficiently using known tractable algorithms

from this emerging area. We also develop a theoretical lowerbound on the average sampling rate required for

blind signal reconstruction, which is twice the minimal rate of known-spectrum recovery. Our method ensures

perfect reconstruction for a wide class of signals sampled at the minimal rate. Numerical experiments are presented

demonstrating blind sampling and reconstruction with minimal sampling rate.

Index Terms

Kruskal-rank, Landau-Nyquist rate, multiband, multiple measurement vectors (MMV), nonuniform periodic

sampling, orthogonal matching pursuit (OMP), signal representation, sparsity.

I. INTRODUCTION

The well known Whittaker, Kotelńikov, and Shannon (WKS) theorem links analog signals with a discrete

representation, allowing the transfer of the signal processing to a digital framework. The theorem states that a

real-valued signal bandlimited toB Hertz can be perfectly reconstructed from its uniform samples if the sampling

rate is at least2B samples per second. This minimal rate is called the Nyquist rate of the signal.

Multi-band signals are bandlimited signals that posses an additional structure in the frequency domain. The

spectral support of a multi-band signal is restricted to several continuous intervals. Each of these intervals is called

a band and it is assumed that no information resides outside the bands. The design of sampling and reconstruction

systems for these signals involves three major considerations. One is the sampling rate. The other is the set of
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multi-band signals that the system can perfectly reconstruct. The last one is blindness, namely a design that does

not assume knowledge of the band locations. Blindness is a desirable property as signals with different band

locations are processed in the same way. Landau [1] developed a minimal sampling rate for an arbitrary sampling

method that allows perfect reconstruction. For multi-bandsignals, the Landau rate is the sum of the band widths,

which is below the corresponding Nyquist rate.

Uniform sampling of a real bandpass signal with a total widthof 2B Hertz on both sides of the spectrum was

studied in [2]. It was shown that only special cases of bandpass signals can be perfectly reconstructed from their

uniform samples at the minimal rate of2B samples/sec. Kohlenberg [3] suggested periodic non-uniform sampling

with an average sampling rate of2B. He also provided a reconstruction scheme that recovers anybandpass

signal exactly. Lin and Vaidyanathan [4] extended his work to multi-band signals. Their method ensures perfect

reconstruction from periodic non uniform sampling with an average sampling rate equal to the Landau rate. Both

of these works lack the blindness property as the information about the band locations is used in the design of

both the sampling and the reconstruction stages.

Herley and Wong [5] and Venkataramani and Bresler [8] suggested a blind multi-coset sampling strategy that

is called universal in [8]. The authors of [8] also developeda detailed reconstruction scheme for this sampling

strategy, which is not blind as its design requires information about the spectral support of the signal. Blind

multi-coset sampling renders the reconstruction applicable to a wide set of multi-band signals but not to all of

them.

Although spectrum-blind reconstruction was mentioned in two conference papers in 1996 [6],[7], a full spectrum-

blind reconstruction scheme was not developed in these papers. It appears that spectrum-blind reconstruction has

not been handled since then.

We begin by developing a lower bound on the minimal sampling rate required for blind perfect reconstruction

with arbitrary sampling and reconstruction. As we show the lower bound is twice the Landau rate and no more

than the Nyquist rate. This result is based on recent work of Lue and Do [20] on sampling signals from a union

of subspaces.

The heart of this paper is the development of a spectrum-blind reconstruction (SBR) scheme for multi-band

signals. We assume a blind multi-coset sampling satisfyingthe minimal rate requirement. Theoretical tools are

developed in order to transform the continuous nature of thereconstruction problem into a finite dimensional

problem without any discretization. We then prove that the solution can be obtained by finding the unique sparsest

solution matrix from Multiple-Measurement-Vectors (MMV). This set of operations is grouped under a block we

nameContinuous to Finite(CTF). This block is the cornerstone of two SBR algorithms wedevelop to reconstruct

the signal. One is entitled SBR4 and enables perfect reconstruction using only one instance of the CTF block

but requires twice the minimal sampling rate. The other is referred to as SBR2 and allows for sampling at the

minimal rate, but involves a bi-section process and severaluses of the CTF block. Other differences between the

algorithms are also discussed. Both SBR4 and SBR2 can easilybe implemented in DSP processors or in software



3

environments.

Our proposed reconstruction approach is applicable to a broad class of multi-band signals. This class is the blind

version of the set of signals considered in [8]. In particular, we characterize a subsetM of this class by the maximal

number of bands and the width of the widest band. We then show how to choose the parameters of the multi-coset

stage so that perfect reconstruction is possible for every signal in M. This parameter selection is also valid for

known-spectrum reconstruction with half the sampling rate. The setM represents a natural characterization of

multi-band signals based on their intrinsic parameters which are usually known in advance. We prove that the

SBR4 algorithm ensures perfect reconstruction for all signals in M. The SBR2 approach works for almost all

signals inM but may fail in some very special cases (which typically willnot occur). As our strategy is applicable

also for signals that do not lie inM, we present a nice feature of a success recovery indication.Thus, if a signal

cannot be recovered this indication prevents further processing of invalid data.

The CTF block requires finding a sparsest solution matrix which is an NP-hard problem [12]. Several sub-optimal

efficient methods have been developed for this problem in thecompressed sensing (CS) literature [15],[16]. In our

algorithms, any of these techniques can be used. Numerical experiments on random constructions of multi-band

signals show that both SBR4 and SBR2 maintain a satisfactoryexact recovery rate when the average sampling

rate approaches their theoretical minimum rate requirement and sub-optimal implementations of the CTF block

are used. Moreover, the average runtime is shown to be fast enough for practical usage.

Our work differs from other main stream CS papers in two aspects. The first is that we aim to recover a

continuous signal, while the classical problem addressed in the CS literature is the recovery of discrete and finite

vectors. An adaptation of CS results to continuous signals was also considered in a set of conferences papers (see

[21],[22] and the references therein). However, these papers did not address the case of multi-band signals. In

[22] an underlying discrete model was assumed so that the signal is a linear combination of a finite number of

known functions. Here, there is no discrete model as the signals are treated in a continuous framework without any

discretization. The second aspect is that we assume a deterministic sampling stage and our theorems and results

do not involve any probability model. In contrast, the common approach in compressive sensing assumes random

sampling operators and typical results are valid with some probability less than 1 [13],[19],[21],[22].

The paper is organized as follows. In Section II we formulateour reconstruction problem. The minimal density

theorem for blind reconstruction is stated and proved in Section III. A brief overview of multi-coset sampling is

presented in Section IV. We develop our main theoretical results on spectrum-blind reconstruction and present the

CTF block in Section V. Based on these results, in Section VI,we design and compare the SBR4 and the SBR2

algorithms. Numerical experiments are described in Section VII.
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II. PRELIMINARIES AND PROBLEM FORMULATION

A. Notation

Common notation, as summarized in Table I, is used throughout the paper. Exceptions to this notation are

indicated in the text.

TABLE I

NOTATION

x(t) continuous time signal with finite energy
X(f) Fourier transform ofx(t) (that is assumed to exist)
a[n] bounded energy sequence
z∗ conjugate of the complex numberz
(
¯
v) vector

(
¯
v)i or (

¯
v)(i) ith entry of (

¯
v)

(
¯
v)(f) vector that depends on a continuous parameterf

(
¯
A) matrix

(
¯
A)ik ikth entry of (

¯
A)

(
¯
A)T , (

¯
A)H transpose and the conjugate-transpose of (

¯
A)

(
¯
A) � 0 (

¯
A) is an Hermitian positive semi-definite (PSD) matrix

(
¯
A)† the Moore-Penrose pseudo-inverse of (

¯
A)

S finite or countable set
Si ith element ofS
|S| cardinality of a finite setS
T infinite non-countable set
λ(T ) the Lebesgue measure ofT ⊆ R

In addition, the following abbreviations are used. Theℓp norm of a vector (
¯
v) is defined as

‖(
¯
v)‖pp =

∑

i

|(
¯
v)i|

p, p ≥ 0.

The default value forp is 2, so that‖(
¯
v)‖ denotes theℓ2 norm of (

¯
v). The standardL2 norm is used for continuous

signals. Theith column of (
¯
A) is written as (

¯
A)i, the ith row is ((

¯
A)T )i written as a column vector.

Indicator sets for vectors and matrices are defined respectively as

I((
¯
v)) = {k | (

¯
v)(k) 6= 0}, I((

¯
A)) = {k | ((

¯
A)T )k 6= (

¯
0)}.

The setI((
¯
v)) contains the indices of non-zero values in the vector (

¯
v). The setI((

¯
A)) contains the indices of

the non-identical zero rows of (
¯
A).

Finally, (
¯
A)S is the matrix that contains the columns of (

¯
A) with indices belonging to the setS. The matrix

(
¯
A)S is referred to as the(columns) restrictionof (

¯
A) to S. Formally,

((
¯
A)S)i = ((

¯
A))Si

, 1 ≤ i ≤ |S|.
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Similarly, (
¯
A)S is referred to as therows restrictionof (

¯
A) to S.

B. Multi-band signals

In this work our prime focus is on the setM of all complex-valued multi-band signals bandlimited toF =

[0, 1/T ] with no more thanN bands where each of the band widths is upper bounded byB. Fig. 1 depicts a

typical spectral support forx(t) ∈ M.

Fig. 1. Typical spectrum support ofx(t) ∈ M.

The Nyquist rate corresponding to anyx(t) ∈ M is 1/T . The Fourier transform of a multi-band signal has

support on a finite union of disjoint intervals inF . Each interval is called a band and is uniquely represented by

its edges[ai, bi]. Without loss of generality it is assumed that the bands are not overlapping.

Although our interest is mainly in signalsx(t) ∈ M, our results are applicable to a broader class of signals,

as explained in the relevant sections. In addition, the results of the paper are easily adopted to real-valued signals

supported on[−1/2T,+1/2T ]. The required modifications are explained in Appendix A and are based on the

equations derived in Section IV-A.

C. Problem formulation

We wish to perfectly reconstructx(t) ∈ M from its point-wise samples under two constraints. One is blindness,

so that the information about the band locations is not used while acquiring the samples and neither can it be

used in the reconstruction process. The other is that the sampling rate required to guarantee perfect reconstruction

should be minimal.

This problem is solved if either of its constraints is removed. Without the rate constraint, the WKS theorem

allows perfect blind-reconstruction for every signalx(t) bandlimited toF from its uniform samples at the Nyquist

ratex(t = n/T ). Alternatively, if the exact number of bands and their locations are known, then the method of

[4] allows perfect reconstruction for every multi-band signal at the minimal sampling rate provided by Landau’s

theorem [1].

In this paper, we first develop the minimal sampling rate required for blind reconstruction. We then use a multi-

coset sampling strategy to acquire the samples at an averagesampling rate satisfying the minimal requirement. The

design of this sampling method does not require knowledge ofthe band locations. We provide a spectrum-blind

reconstruction scheme for this sampling strategy in the form of two different algorithms, named SBR4 and SBR2. It
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is shown that if the sampling rate is twice the minimal rate then algorithm SBR4 guarantees perfect reconstruction

for everyx(t) ∈ M. The SBR2 algorithm requires the minimal sampling rate and guarantees perfect reconstruction

for most signals inM. However, some special signals fromM, discussed in Section VI-B, cannot be perfectly

reconstructed by this approach. Excluding these special cases, our proposed method satisfies both constraints of

the problem formulation.

III. M INIMAL SAMPLING RATE

We begin by quoting Landau’s theorem for the minimal sampling rate of an arbitrary sampling method that

allows known-spectrum perfect reconstruction. It is then proved that blind perfect-reconstruction requires a minimal

sampling rate that is twice the Landau rate.

A. Known spectrum support

Consider the space of bandlimited functions restricted to aknown supportT ⊆ F :

BT = {x(t) ∈ L2(R) | suppX(f) ⊆ T }. (1)

A classical sampling scheme takes the values ofx(t) on a known countable set of locationsR = {rn}
∞
n=−∞. The

setR is calleda sampling setfor BT if x(t) can be perfectly reconstructed in a stable way from the sequence of

samplesxR[n] = x(t = rn). The stability constraint requires the existence of constantsα > 0 andβ < ∞ such

that:

α‖x− y‖2 ≤ ‖xR − yR‖
2 ≤ β‖x− y‖2, ∀x, y ∈ BT . (2)

Landau [1] proved that ifR is a sampling set forBT then it must have a densityD−(R) ≥ λ(T ), where

D−(R) = lim
r→∞

inf
y∈R

|R ∩ [y, y + r]|

r
(3)

is the lower Beurling density, andλ(T ) is the Lebesgue measure ofT . The numerator in (3) counts the number

of points fromR in every interval of widthr of the real axis1. This result is usually interpreted as a minimal

averagesampling rate requirement forBT , andλ(T ) is called the Landau rate.

B. Unknown spectrum support

Consider the setNΩ of signals bandlimited toF with bandwidth occupation no more than0 < Ω < 1, so that

λ (suppX(f)) ≤
Ω

T
, ∀x(t) ∈ NΩ.

1The numerator is not necessarily finite but as the sampling set is countable the infimum takes on a finite value.
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The Nyquist rate forNΩ is 1/T . Note thatNΩ is not a subspace so that the Landau theorem is not valid here.

Nevertheless, it is intuitive to argue that the minimal sampling rate forNΩ cannot be belowΩ/T as this value is

the Landau rate had the spectrum support been known.

A blind sampling setR for NΩ is a sampling set whose design does not assume knowledge ofsuppX(f).

Similarly to (2) the stability ofR requires the existence ofα > 0 andβ <∞ such that:

α‖x− y‖2 ≤ ‖xR − yR‖
2 ≤ β‖x− y‖2, ∀x, y ∈ NΩ. (4)

Theorem 1 (Minimal sampling rate):Let R be a blind sampling set forNΩ. Then,

D−(R) ≥ min

{

2Ω

T
,
1

T

}

. (5)

Proof: The setNΩ is of the form

NΩ =
⋃

T ∈Γ

BT , (6)

where

Γ = {T | T ⊆ F , λ(T ) ≤ Ω/T}. (7)

Clearly, NΩ is a non-countable union of subspaces. Sampling signals that lie in a union of subspaces has been

recently treated in [20]. For everyγ, θ ∈ Γ define the subspaces

Bγ,θ = Bγ + Bθ = {x+ y |x ∈ Bγ , y ∈ Bθ}. (8)

SinceR is a sampling set forNΩ, (4) holds for some constantsα > 0, β <∞. It was proved in [20, Proposition

2] that (4) is valid if and only if

α‖x− y‖2 ≤ ‖xR − yR‖
2 ≤ β‖x− y‖2, ∀x, y ∈ Bγ,θ (9)

holds for everyγ, θ ∈ Γ. In particular,R is a sampling set for everyBγ,θ with γ, θ ∈ Γ.

Observe that the spaceBγ,θ is of the form (1) withT = γ ∪ θ. Applying Landau’s density theorem for each

γ, θ ∈ Γ results in

D−(R) ≥ λ(γ ∪ θ), ∀γ, θ ∈ Γ. (10)

Choosing

γ =

[

0,
Ω

T

]

, θ =

[

1− Ω

T
,
1

T

]

,

we have that forΩ ≤ 0.5,

D−(R) ≥ λ(γ ∪ θ) = λ(γ) + λ(θ) =
2Ω

T
. (11)

If Ω ≥ 0.5 thenγ ∪ θ = F and

D−(R) ≥ λ(γ ∪ θ) =
1

T
. (12)
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Combining (11) and (12) completes the proof.

In [20], the authors consider minimal sampling requirements for a union of shift-invariant subspaces, with a

particular structure of sampling functions. Specifically,they view the samples as inner products with sampling

functions of the form{ψk(t−m)}1≤k≤K,m∈Z, which includes multi-coset sampling. Theorem 1 extends this result

to an arbitrary point-wise sampling operator. In particular, it is valid for non periodic sampling sets that are not

covered by [20].

An immediate corollary of Theorem 1 is that ifΩ > 0.5 then uniform sampling at the Nyquist rate with an

ideal low pass filter satisfies the requirements of our problem formulation. Namely, both the sampling and the

reconstruction do not use the information about the band locations, and the sampling rate is minimal according to

Theorem 1. AsM is contained in the space of bandlimited signals, this choice also provides perfect reconstruction

for every x(t) ∈ M. Therefore, in the sequel we assume thatΩ ≤ 0.5 so that the minimal sampling rate of

Theorem 1 is exactly twice the Landau rate.

It is easy to see thatM ⊂ NΩ for Ω = NBT . Therefore, for known spectral support, the Landau rate isNB.

Despite the fact thatM is a true subset ofNNBT , the proof of Theorem 1 can be adopted to show that a minimal

density of2NB is required so that stable perfect reconstruction is possible for signals fromM.

We point out that both Landau’s and Theorem 1 state a lower bound but do not provide a method to achieve

the bounds. The rest of the paper is devoted to developing a reconstruction method that approaches the minimal

sampling rate of Theorem 1.

IV. U NIVERSAL SAMPLING

This section reviews multi-coset sampling which is used in our development. We also briefly explain the

fundamentals of known-spectrum reconstruction as derivedin [8].

A. Multi-coset sampling

Uniform sampling ofx(t) at the Nyquist rate results in samplesx(t = nT ) that contain all the information

aboutx(t). Multi-coset sampling is a selection of certain samples from this grid. The uniform grid is divided into

blocks ofL consecutive samples. A constant setC of lengthp describes the indices ofp samples that are kept in

each block while the rest are zeroed out. The setC = {ci}
p
i=1 is referred to as the sampling pattern where

0 ≤ c1 < c2 < ... < cp ≤ L− 1. (13)

Define theith sampling sequence for1 ≤ i ≤ p as

xci [n] =

{

x(t = nT ) n = mL+ ci, for somem ∈ Z

0 otherwise. (14)

The sampling stage is implemented byp uniform sampling sequences with period1/(LT ), where theith sampling

sequence is shifted byciT from the origin. Therefore, a multi-coset system is uniquely characterized by the
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parametersL, p and the sampling patternC.

Direct calculations show that [8]

Xci(e
j2πfT ) =

1

LT

L−1
∑

r=0

exp

(

j
2π

L
cir

)

X
(

f +
r

LT

)

, (15)

∀ f ∈ F0 =

[

0,
1

LT

)

, 1 ≤ i ≤ p,

whereXci(e
j2πfT ) is the discrete-time Fourier transform (DTFT) ofxci [n]. Thus, the goal is to choose parameters

L, p,C such thatX(f) can be recovered from (15).

For our purposes it is convenient to express (15) in a matrix form as

(
¯
y)(f) = (

¯
A)(

¯
x)(f), ∀f ∈ F0, (16)

where (
¯
y)(f) is a vector of lengthp whoseith element isXci(e

j2πfT ), and the vector (
¯
x)(f) containsL unknowns

for eachf

(
¯
x)i(f) = X

(

f +
i

LT

)

, 0 ≤ i ≤ L− 1, f ∈ F0. (17)

The matrix (
¯
A) depends on the parametersL, p and the setC but not onx(t) and is defined by

(
¯
A)ik =

1

LT
exp

(

j
2π

L
cik

)

. (18)

Dealing with real-valued multi-band signals requires simple modifications to (16). These adjustments are detailed

in Appendix A.

The Beurling lower density (i.e. the average sampling rate)of a multi-coset sampling set is

1

TAVG
=

p

LT
, (19)

which is lower than the Nyquist rate forp < L. However, an average sampling rate above the Landau rate is not

sufficient for known-spectrum reconstruction. Additionalconditions are needed as explained in the next section.

B. Known-spectrum reconstruction and universality

The presentation of the reconstruction is simplified using CS sparsity notation. A vector (
¯
v) is calledK-sparse

if the number of non-zero values in (
¯
v) is no greater thanK. Using theℓ0 pseudo-norm the sparsity of (

¯
v) is

expressed as‖(
¯
v)‖0 ≤ K. We use the following definition of the Kruskal-rank of a matrix [14]:

Definition 1: The Kruskal-rank of (
¯
A), denoted asσ((

¯
A)), is the maximal numberq such that every set ofq

columns of (
¯
A) is linearly independent.

Observe that for everyf ∈ F0 the system of (16) has less equations than unknowns. Therefore, a prior on

(
¯
x)(f) must be used to allow for recovery. In [8] it is assumed that the information about the band locations is

available in the reconstruction stage. This information supplies the setI((
¯
x)(f)) for everyf ∈ F0. Without any



10

additional prior the following condition is necessary for known-spectrum perfect reconstruction

(
¯
x)(f) is p-sparse, ∀f ∈ F0. (20)

Using the Kruskal-rank of (
¯
A) a sufficient condition is formulated as

(
¯
x)(f) is σ((

¯
A))-sparse, ∀f ∈ F0. (21)

The known-spectrum reconstruction of [8] basically restricts the columns of (
¯
A) to I((

¯
x)(f)) and inverts the

resulting matrix in order to recover (
¯
x)(f).

A sampling patternC that yields a fully Kruskal-rank (
¯
A) is called universal and corresponds toσ((

¯
A)) = p.

Therefore, the set of signals that are consistent with (21) is the broadest possible if a universal sampling pattern

is used. As we show later, choosingL ≤ 1
BT

, p ≥ N and a universal patternC makes (21) valid for every signal

x(t) ∈ M.

Finding a universal patternC, namely one that results in a fully Kruskal-rank (
¯
A), is a combinatorial process.

Several specific constructions of sampling patterns that are proved to be universal are given in [8],[10]. In particular,

choosingL to be prime renders every pattern universal [10].

To summarize, choosing a universal pattern allows recoveryof anyx(t) satisfying (20) when the band locations

are known in the reconstruction. We next consider blind signal recovery using universal sampling patterns.

V. SPECTRUM-BLIND RECONSTRUCTION

In this section we develop the theory needed for SBR. These results are then used in the next section to construct

two efficient algorithms for blind signal reconstruction.

The theoretical results are devoted in the following steps:We first note that when considering blind-reconstruction,

we cannot use the prior of [8]. In Section V-A we present a different prior that does not assume the information

about the band locations. Using this prior we develop a sufficient condition for blind perfect reconstruction which

is very similar to (21). Furthermore, we prove that under certain conditions onL, p,C, perfect reconstruction is

possible for every signal inM. We then present the basic SBR paradigm in Section V-B. The main result of the

paper is transforming the continuous system of (16) into a finite dimensional problem without using discretization.

In Section V-C we develop two propositions for this purpose,and present the CTF block.

A. Conditions for blind perfect reconstruction

Recall that for everyf ∈ F0 the system of (16) is undetermined since there are fewer equations than unknowns.

The prior assumed in this paper is that for everyf ∈ F0 the vector (
¯
x)(f) is sparse but in contrast to [8] the location

of the non-zero values is unknown. Clearly, in this case (20)is still necessary for blind perfect reconstruction. The

following theorem from the CS literature is used to provide asufficient condition.
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Theorem 2:Suppose (
¯
x̄) is a solution of (

¯
y) = (

¯
A)(

¯
x). If ‖(

¯
x̄)‖0 ≤ σ((

¯
A))/2 then (

¯
x̄) is the unique sparsest

solution of the system.

Theorem 2 and its proof are given in [11], [15] with a slightlydifferent notation ofSpark(A) instead of the

Kruskal-rank of (
¯
A). Note that the condition of the theorem is not necessary as there are examples that the

sparsest solution (
¯
x̄) of (

¯
y) = (

¯
A)(

¯
x) is unique while (

¯
x̄) > σ((

¯
A))/2.

Using Theorem 2, it is evident that perfect reconstruction is possible for every signal satisfying

(
¯
x)(f) is

σ((
¯
A))

2
-sparse, ∀f ∈ F0. (22)

As before, choosing a universal pattern makes the set of signals that conform with (22) the widest possible. Note

that a factor of two distinguishes between the sufficient conditions of (21) and of (22), and results from the fact

that here we do not know the locations of the non-zero values in (
¯
x)(f).

Note that (22) provides a condition under which perfect reconstruction is possible, however, it is still unclear

how to find the original signal. Although the problem is similar to that described in the CS literature, here finding

the unique sparse vector must be solved for each valuef in the continuous intervalF0, which clearly cannot be

implemented.

In practice, conditions (21) and (22) are hard to verify since they require knowledge ofx(t) and depend on

the parameters of the multi-coset sampling. We therefore prefer to develop conditions on the classM which

characterizes multi-band signals based on their intrinsicproperties: the number of bands and their widths. It is

more likely to know the values ofN andB in advance than to know if the signals to be sampled satisfy (21) or

(22). The following theorem describes how to choose the parametersL, p andC so that the sufficient conditions

for perfect reconstruction hold true for everyx(t) ∈ M, namely it is a unique solution of (16). The theorem

is valid for both known and blind reconstruction with a slight difference resulting from the factor of two in the

sufficient conditions.

Theorem 3 (Uniqueness):Let x(t) ∈ M be a multi-band signal. If:

1) The value ofL is limited by

L ≤
1

BT
, (23)

2) p ≥ N for known reconstruction orp ≥ 2N for blind,

3) C is a universal pattern,

then, for everyf ∈ F0, the vector (
¯
x)(f) is the unique solution of (16).

Proof: If L is limited by (23) then for theith bandTi = [ai, bi] we have

λ(Ti) ≤ B ≤
1

LT
, 1 ≤ i ≤ N.

Therefore,f ∈ Ti implies

f +
k

LT
/∈ Ti, ∀k 6= 0.
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According to (17) for everyf ∈ F0 the vector (
¯
x)(f) takes the values ofX(f) on a set ofL points spaced by

1/LT . Consequently, the number of non-zero values in (
¯
x)(f) is no greater than the number of the bands, namely

(
¯
x)(f) is N -sparse.

SinceC is a universal pattern,σ((
¯
A)) = p. This implies that conditions (21) and (22) are satisfied.

Note that the condition on the value ofp implies the minimal sampling rate requirement. To see this,substitute

(23) into (19):

1

TAVG
=

p

LT
≥ pB. (24)

As pointed out in the end of Section III-B, if the signals are known to lie inM then the Landau rate isNB,

which is implied byp ≥ N . Theorem 1 requires an average sampling rate of2NB, which can be guaranteed if

p ≥ 2N .

B. Reconstruction paradigm

The goal of our reconstruction scheme is to recover the signal x(t) from the set of sequencesxci [n], 1 ≤ i ≤ p.

Equivalently, the aim is to reconstruct (
¯
x)(f) of (16) for everyf ∈ F0 from the input data (

¯
y)(f).

A straight forward approach is to find the sparsest solution (
¯
x)(f) on a dense grid off ∈ F0. However, this

discretization strategy cannot guarantee perfect reconstruction. In contrast, our approach is exact and does not

require discretization.

Our reconstruction paradigm is targeted at finding the diversity set which depends onx(t) and is defined as

S =
⋃

f∈F0

I((
¯
x)(f)). (25)

The SBR algorithms we develop in Section VI are aimed at recovering the setS. With the knowledge ofS perfect

reconstruction of (
¯
x)(f) is possible for everyf ∈ F0 by noting that (16) can be written as

(
¯
y)(f) = (

¯
A)S (

¯
x)S(f). (26)

If the diversity set ofx(t) satisfies

|S| ≤ σ((
¯
A)), (27)

then

((
¯
A)S)

†(
¯
A)S = I, (28)

where (
¯
A)S is of sizep× |S|. Multiplying both sides of (26) by((

¯
A)S)

† results in:

(
¯
x)S(f)= ((

¯
A)S)

†(
¯
y)(f), ∀f ∈ F0. (29)

From (25),

(
¯
x)i(f) = 0, ∀f ∈ F0, i /∈ S. (30)
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Thus, onceS is known, and as long as (27) holds, perfect reconstruction can be obtained by (29)-(30).

As we shall see later on (27) is implied by the condition required to transform the problem into a finite

dimensional one. Furthermore, the following proposition shows that forx(t) ∈ M, (27) is implied by the parameter

selection of Theorem 3.

Proposition 1: If L is limited by (23) then|S| ≤ 2N . If in addition p ≥ 2N andC is universal then for every

x(t) ∈ M, the setS satisfies (27).

Proof: The bands are continuous intervals upper bounded byB. From (17) it follows that (
¯
x)(f) is constructed

by dividing F into L equal intervals of length1/LT . Therefore ifL is limited by (23) then each band can

either be fully contained in one of these intervals or it can be split between two consecutive intervals. Since

the number of bands is no more thanN it follows that |S| ≤ 2N . With the additional conditions we have that

σ((
¯
A)) = p ≥ 2N ≥ |S|.

As we described, our general strategy is to determine the diversity setS and then recoverx(t) via (29)-(30). In

the non-blind setting,S is known, and therefore if it satisfies (27) then the same equations can be used to recover

x(t). However, note that when the band locations are known, we mayuse a value ofp that is smaller than2N

since the sampling rate can be reduced. Therefore, (27) may not hold. Nonetheless, it is shown in [8], that the

frequency axis can be divided into intervals such that this approach can be used over each frequency interval.

Therefore, once the setS is recovered there is no essential difference between knownand blind reconstruction.

C. Formulation of a finite dimensional problem

The set of equations of (16) consists of an infinite number of linear systems because of the continuous variable

f . Furthermore, the expression for the diversity setS given in (25) involves a union over the same continuous

variable. The main result of this paper is thatS can be recovered exactly using only one finite dimensional problem.

In this section we develop the underlying theoretical results that are used for this purpose.

Consider a givenT ⊆ F0. Multiplying each side of (16) by its conjugate transpose wehave

(
¯
y)(f)(

¯
y)H(f) = (

¯
A)(

¯
x)(f)(

¯
x)H(f)(

¯
A)H , ∀f ∈ T . (31)

Integrating both sides over the continuous variablef gives

(
¯
Q) = (

¯
A)(

¯
Z)0(

¯
A)H , (32)

with the p× p matrix

(
¯
Q) =

∫

f∈T
(
¯
y)(f)(

¯
y)H(f)df � 0, (33)

and theL× L matrix

(
¯
Z)0 =

∫

f∈T
(
¯
x)(f)(

¯
x)H(f)df � 0. (34)
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Define the diversity set of the intervalT as

ST =
⋃

f∈T

I((
¯
x)(f)). (35)

Now,

((
¯
Z)0)ii =

∫

f∈T
|(
¯
x)i(f)|

2df.

This means that((
¯
Z)0)ii = 0 if and only if (

¯
x)i(f) = 0,∀f ∈ T , which implies thatST = I((

¯
Z)0).

The next proposition is used to determine whether (
¯
Z)0 can be found by a finite dimensional problem. The

proposition is stated for general matrices (
¯
Q), (

¯
A).

Proposition 2: Suppose (
¯
Q) � 0 of sizep×p and (

¯
A) are given matrices. Let (

¯
Z) be anyL×L matrix satisfying

(
¯
Q) = (

¯
A)(

¯
Z)(

¯
A)H , (36a)

(
¯
Z) � 0, (36b)

|I((
¯
Z))| ≤ σ((

¯
A)). (36c)

Then,rank((
¯
Z)) = rank((

¯
Q)). If, in addition,

|I((
¯
Z))| ≤

σ((
¯
A))

2
, (36d)

then, (
¯
Z) is the unique solution of (36a)-(36d).

Proof: Let (
¯
Z) satisfy (36a)-(36c). DefinerQ = rank((

¯
Q)), rZ = rank((

¯
Z)). Since (

¯
Z) � 0 it can be

decomposed as (
¯
Z) = (

¯
P )(

¯
P )H with (

¯
P ) of sizeL× rZ having orthogonal columns. From (36a),

(
¯
Q) = ((

¯
A)(

¯
P ))((

¯
A)(

¯
P ))H . (37)

It can be easily be concluded thatI((
¯
Z)) = I((

¯
P )), and thus|I((

¯
P ))| ≤ σ((

¯
A)). The following lemma whose

proof is given in Appendix B ensures that the matrix (
¯
A)(

¯
P ) of sizep× rZ also has full column rank.

Lemma 1:For every two matrices (
¯
A), (

¯
P ), if |I((

¯
P ))| ≤ σ((

¯
A)) then rank((

¯
P )) = rank((

¯
A)(

¯
P )).

Since for every matrix (
¯
M) it is true thatrank((

¯
M)) = rank((

¯
M)(

¯
M)H), (37) impliesrZ = rQ.

For the second part of Proposition 2 suppose that (
¯
Z), (

¯
Z̃) both satisfy (36a),(36b),(36d). From the first part,

rank((
¯
Z)) = rank((

¯
Z̃)) = rQ.

Following the earlier decompositions we write

(
¯
Z) = (

¯
P )(

¯
P )H , I((

¯
Z)) = I((

¯
P )) (38)

(
¯
Z̃) = (

¯
P̃ )(

¯
P̃ )H , I((

¯
Z̃)) = I((

¯
P̃ )).
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In addition,

|I((
¯
P ))| ≤

σ((
¯
A))

2
, |I((

¯
P̃ ))| ≤

σ((
¯
A))

2
. (39)

From (36a),

(
¯
Q) = ((

¯
A)(

¯
P ))((

¯
A)(

¯
P ))H = ((

¯
A)(

¯
P̃ ))((

¯
A)(

¯
P̃ ))H , (40)

which implies that

(
¯
A)((

¯
P )− (

¯
P̃ )(

¯
R)) = 0, (41)

for some unitary matrix (
¯
R). It is easy to see that (39) results in|I((

¯
P̃ )(

¯
R))| ≤ σ((

¯
A))/2. Therefore the matrix

(
¯
P ) − (

¯
P̃ )(

¯
R) has at mostσ((

¯
A)) non-identical zero rows. Applying Lemma 1 to (41) results in(

¯
P ) = (

¯
P̃ )(

¯
R).

Substituting this into (38) we have that (
¯
Z) = (

¯
Z̃).

The following proposition shows how to construct the matrix(
¯
Z) by finding the sparsest solution of a linear

system.

Proposition 3: Consider the setting of Proposition 2 and assume (
¯
Z) satisfies (36d). Letr = rank((

¯
Q)) and

define a matrix (
¯
V ) of size p × r using the decomposition (

¯
Q) = (

¯
V )(

¯
V )H , such that (

¯
V ) has r orthogonal

columns. Then the linear system

(
¯
V ) = (

¯
A)(

¯
U) (42)

has a unique sparsest solution matrix (
¯
U)0. Namely, (

¯
V ) = (

¯
A)(

¯
U)0 and |I((

¯
U)0)| is minimal. Moreover, (

¯
Z) =

(
¯
U)0(

¯
U)H0 .

Proof: Substitute the decomposition (
¯
Q) = (

¯
V )(

¯
V )H into (36a) and let (

¯
Z) = (

¯
P )(

¯
P )H . The result is

(
¯
V ) = (

¯
A)(

¯
P )(

¯
R) for some unitary (

¯
R). Therefore, the linear system of (42) has a solution (

¯
U)0 = (

¯
P )(

¯
R). It is

easy to see thatI((
¯
U)0) = I((

¯
P )) = I((

¯
Z)), thus (36d) results in|I((

¯
U)0)| ≤ σ((

¯
A))/2. Applying Theorem 2 to

each of the columns of (
¯
U)0 provides the uniqueness of (

¯
U)0. It is trivial that (

¯
Z) = (

¯
U)0(

¯
U)H0 .

Using the same arguments as in the proof it is easy to concludethatI((
¯
Z)) = I((

¯
U)0), so thatST can be found

directly from the solution matrix (
¯
U)0. In particular, we develop theContinuous to Finite(CTF) block which

determines the diversity setST of a given frequency intervalT . Fig. 2 presents the CTF block that contains the

flow of transforming the continuous linear system of (16) on the intervalT into the finite dimensional problem

of (42) and then to the recovery ofST . The role of Propositions 2 and 3 is also illustrated. The CTFblock is the

heart of the SBR scheme which we discuss next.

In the CS literature, the linear system of (42) is referred toas an MMV system. Theoretical results regarding

the sparsest solution matrix of an MMV system are given in [15]. Finding the solution matrix (
¯
U)0 is known to

be NP-hard [12]. Several sub-optimal efficient algorithms for finding (
¯
U)0 are given in [16]. Some of them can

indicate a success recovery of (
¯
U)0. We explain which class of algorithms has this property in Section VI-A.



16

Fig. 2. Continuous to finite block (CTF). This block determines the diversity setST of a given intervalT .

VI. SBR ALGORITHMS

The theoretical results developed in the previous section are now used in order to construct the diversity setS

which enables the recovery ofx(t) via (29)-(30).

We begin by defining a classA of signals. The SBR4 algorithm is then presented and is proved to guarantee

perfect reconstruction for signals inA. We then show that in order to ensure thatM ⊆ A the sampling rate must

be at least4NB, which is twice the minimal rate stated in Theorem 1. To improve on this result, we define a

classB of signals, and introduce a conceptual method to perfectly reconstruct this class. The SBR2 algorithm is

developed so that it ensures exact recovery for a subset ofB. We then prove thatM is contained in this subset

even for sampling at the minimal rate. However, the computational complexity of SBR2 is higher than that of

SBR4. Since universal patterns lead to the largest setsA andB, we assume throughout this section that universal

patterns are used, which results inσ((
¯
A)) = p.

A. The SBR4 algorithm

Define the classAK of signals

AK = {suppX(f) ⊆ F and |S| ≤ K}, (43)

with S given by (25). LetT = F0, and observe that a multi-coset system withp ≥ 2K ensures that all the

conditions of Proposition 2 are valid for everyx(t) ∈ AK . Thus, applying the CTF block onT = F0 results in a

unique sparsest solution (
¯
U)0, with S = I((

¯
U)0). The reconstruction of the signal is then carried out by (29)-(30).

We note that (27) is valid as it represents the classAp that containsAK for p ≥ 2K.

Algorithm 1, named SBR4, follows the steps of the CTF block inFig. 2 to recover the diversity setS from

(
¯
y)(f), for anyx(t) ∈ AK . The algorithm also outputs an indication flag which we discuss later on.

The SBR4 algorithm guarantees perfect reconstruction of signals inAK from samples at twice the Landau rate,

which is also the lower bound stated in Theorem 1. To see this,observe that (25) implies that everyx(t) ∈ AK

must satisfy

λ(suppX(f)) ≤
K

LT
. (44)
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Algorithm 1 SBR4
Input: (

¯
y)(f), Assume: σ((

¯
A)) = p

Output: the setS, flag
1: SetT = F0

2: Compute the matrix (
¯
Q) by (33)

3: Decompose (
¯
Q) = (

¯
V )(

¯
V )H according to Proposition 3

4: Solve the MMV system (
¯
V ) = (

¯
A)(

¯
U) for the sparsest solution (

¯
U)0

5: S = I((
¯
U)0)

6: flag = {|S| ≤ p
2}

7: return S, flag

AlthoughAK is not a subspace, we use (44) to say that the Landau rate forAK is K/LT as it contains subspaces

whose widest support isK/LT . As we proved,p ≥ 2K ensures perfect reconstruction forAK . Substituting the

smallest possible valuep = 2K into (19) results in an average sampling rate of2K/LT .

It is easy to see that flag is equal to 1 for every signal inAK . However, when a sub-optimal algorithm is used

to solve the MMV in step 4 we cannot guarantee a correct solution (
¯
U)0. Thus, flag=0 indicates that the particular

MMV method we used failed, and we may try a different MMV approach.

Existing algorithms for MMV systems can be classified into two groups. The first group contains algorithms

that seek the sparsest solution matrix (
¯
U)0, e.g. Basis Pursuit [17] or Matching Pursuit [18] with a termination

criterion based on the residual. The other contains methodsthat approximate a sparse solution according to user

specification, e.g. Matching Pursuit with a predetermined number of iterations. Using a technique from the latter

group neutralizes the indication flag as the approximation is always sparse. Therefore, this set of algorithms should

be avoided if an indication is desired.

An important advantage of algorithm SBR4 is that the matrix (
¯
Q) can be computed in the time domain from

the known sequencesxci [n], 1 ≤ i ≤ p. The computation involves a set of digital filters that do notdepend on

the signal and thus can be designed in advance. The exact details are given in Appendix C.

The drawback of the setAK , is that typically we do not know the value ofK. Moreover, even ifK is known,

then usually we do not know in advance whetherx(t) ∈ AK asAK does not characterize the signals according

to the number of bands and their widths. Therefore, we would like to determine conditions that ensureM ⊆ AK .

Proposition 1 shows that forx(t) ∈ M the setS satisfies|S| ≤ 2N if L ≤ 1/BT . Thus, under this condition on

L we haveM ⊆ A2N , which in turn impliesp = 4N as a minimal value forp. Consequently, SBR4 guarantees

perfect reconstruction forM under the restrictionsL ≤ 1/BT andp ≥ 4N . However, the Landau rate forM is

NB, while p = 4N implies a minimal sampling rate of4NB. Indeed, substitutingp = 4N andL ≤ 1/BT into

(19) we have
p

LT
≥

4N

T 1
BT

= 4NB. (45)

In contrast, it follows from Theorem 3 thatp ≥ 2N is sufficient for uniqueness of the solution. The reason for
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the factor of two in the sampling rate is that (
¯
x)(f) is N -sparse for each specificf ; however, when combining

the frequencies, the maximal size ofS is 2N . The SBR2 algorithm, developed in the next section, capitalizes on

this difference to regain the factor of two in the sampling rate, and thus achieves the minimal rate, at the expense

of a more complicated reconstruction method.

B. The SBR2 algorithm

We now would like to reduce the sampling rate required for signals ofM to its minimum, i.e. twice the Landau

rate. To this end, we introduce a setBK for which SBR2 guarantees perfect reconstruction, and thenprove that

M ⊆ BN if p ≥ 2N .

Consider a partition ofF0 into M consecutive intervals defined by

0 = d̄1 < d̄2 < · · · < d̄M+1 =
1

LT
.

For a given partition set̄D = {d̄i} we define the set of signals

BK,D̄ = {suppX(f) ⊆ F and |S[d̄i,d̄i+1]| ≤ K, 1 ≤ i ≤M}.

Clearly, if p ≥ 2K then we can perfectly reconstruct everyx(t) ∈ BK,D̄ by applying the CTF block to each of

the intervals[d̄i, d̄i+1]. We now define the setBK as

BK =
⋃

D̄

BK,D̄, (46)

which is the union ofBK,D̄ over all choices of partition sets̄D and integersM . Note that neitherBK nor BK,D̄

is a subspace. If we are able to find a partitionD̄ such thatx(t) ∈ BK,D̄, thenx(t) can be perfectly reconstructed

usingp ≥ 2K. Since the Landau rate forBK is K/LT , this approach requires the minimal sampling rate2.

The following proposition shows that if the parameters are chosen properly, thenM ⊆ BN . Thus,p ≥ 2N and

a method to findD̄ of x(t) is sufficient for perfect reconstruction ofx(t) ∈ M.

Proposition 4: If L, p,C are selected according to Theorem 3 thenM ⊆ BN .

Proof: In the proof of Theorem 3 we showed that under the conditions of the theorem, (
¯
x)(f) is N -sparse

for everyf ∈ F0. The proof of the proposition then follows from the following lemma [8]:

Lemma 2: If x(t) is a multi-band signal withN bands sampled by a multi-coset system then there exists a

partition setD̄ = {d̄i} with M = 2N +1 intervals such thatI((
¯
x)(f)) is a constant set over the interval[d̄i, d̄i+1]

for 1 ≤ i ≤M .

Lemma 2 implies that|S[d̄i,d̄i+1]| ≤ N for every1 ≤ i ≤M = 2N + 1 which means thatx(t) ∈ BN,D̄.

So far we showed thatM ⊆ BN , however to recoverx(t) we need a method to find̄D in practice; Lemma 2

2under the convention discussed forAK .
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only ensures its existence. Given the data (
¯
y)(f), our strategy is aimed at finding any partition setD such that

Ŝ =

|D|−1
⋃

i=0

S[di,di+1] (47)

is equal toS, and such that|S[di,di+1]| ≤ K for every 1 ≤ i ≤ M . As long as (27) holds, once we findS

the solution is exactly recovered via (29)-(30). To findS, we apply the CTF block on each interval[di, di+1]. If

p ≥ 2K, then the conditions of Proposition 2 are valid, a unique solution is guaranteed for each interval. Since for

p = 2K (27) is valid forA2K , our method guarantees perfect reconstruction of signals in BK ∩A2K . As always,

using a universal pattern makes the set of signalsBK ∩ A2K the largest. Since the Landau rate forBK ∩ A2K is

K/LT this approach allows for the minimal sampling rate whenp = 2K.

In order to findD we suggest a bi-section process onF0. We initialize T = F0 and seekST . If ST does

not satisfy some condition explained below, then we halveT into T1 and T2 and determineST1
and ST2

. The

bi-section process is repeated several times until the conditions are met, or until it reaches an interval width of no

more thanǫ. The setŜ is then determined according to (47).

We now describe the conditions for which a givenT ⊆ F0 is halved. The matrix (
¯
Z)0 of (34) satisfies the

constraints (36a)-(36b). Sincex(t) ∈ A2K and p ≥ 2K (36c) is also valid. However, the last constraint (36d)

of Proposition 2 is not guaranteed as it requires a stronger condition |ST | ≤ K = p/2. Note that this condition

is satisfied immediately ifD = D̄ sincex(t) ∈ BK . We suggest to approximate the valueST = |I((
¯
Z)0)| by

rank((
¯
Q)), and solve the MMV system for the sparsest solution only ifrank((

¯
Q)) ≤ p/2. This approximation is

motivated by the fact that for any (
¯
Z) � 0 it is true thatrank((

¯
Z)) ≤ |I((

¯
Z))|. From Proposition 2 we have that

rank((
¯
Z)0) = rank((

¯
Q)) which results in

rank((
¯
Q)) ≤ |I((

¯
Z))|. (48)

However, only special multi-band signals result in strict inequality in (48). Therefore, an intervalT that produces

rank((
¯
Q)) > p/2 is halved. Otherwise, we apply the CTF block for thisT assuming that (48) holds with equality.

As in SBR4 the flag indicates a correct solution forx(t) ∈ BK ∩ A2K . Therefore, if the flag is 0 we halveT .

These reconstruction steps are detailed in Algorithm 2, named SBR2.

It is important to note that SVR2 is sub-optimal, since the final output of the algorithm̂S may not be equal to

S even forx(t) ∈ BK ∩A2K . One reason this can happen is if strict inequality holds in (48) for some intervalT .

In this scenario step 7 is executed even though (
¯
Z)0 does not satisfy (36d). For example, a signalx(t) with two

equal width bands[a1, a1 +W ] and [a2, a2 +W ] such that

⌊ a1
LT

⌋

=
⌊ a2
LT

⌋

= γ (49)

andγ +W ∈ F0. If x(t) also satisfies

X(f − a1) = X(f − a2), ∀f ∈ [0,W ], (50)
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Algorithm 2 SBR2
Input: T , Initialize: T = F0, Assume: σ((

¯
A)) = p

Output: a setŜ
1: if λ(T ) ≤ ǫ then
2: return Ŝ = {}
3: end if
4: Compute the matrix (

¯
Q) by (33)

5: if rank((
¯
Q)) ≤ p

2 then
6: Decompose (

¯
Q) = (

¯
V )(

¯
V )H

7: Solve MMV system (
¯
V ) = (

¯
A)(

¯
U)

8: Ŝ = I((
¯
U)0)

9: else
10: Ŝ = {}
11: end if
12: if (rank((

¯
Q)) > p

2 ) or (|Ŝ| > p
2) then

13: split T into two equal width intervalsT1,T2
14: Ŝ(1) = SBR2(T1)
15: Ŝ(2) = SBR2(T2)
16: Ŝ = Ŝ(1) ∪ Ŝ(2)

17: end if
18: return Ŝ

then it can be verified that|I((
¯
Z)0)| = 2 while rank((

¯
Z)0) = rank((

¯
Q)) = 1 on the intervalT = [γ, γ +W ].

This is of course a rare special case. Another reason is a signal for which the algorithm reached the termination

step 1 for some small enough interval. This scenario can happen if two or more points of̄D reside in an interval

width of ǫ. As an empty set̂S is returned for this interval, the final output may be missingsome of the elements

of S. Clearly, the value ofǫ influences the amount of cases of this type. We note that sincewe do not rely on

D = D̄ the missing values are typically recovered from other intervals. Thus, both of these sources of error are

very uncommon.

The most common case in which SBR2 can fail is due to the use of sub-optimal algorithms to find (
¯
U)0; this

issue also occurs in SBR4. As explained before, we assume that flag=0 means an incorrect solution and halves the

interval T . An interesting behavior of MMV methods is that even if (
¯
U)0 cannot be found forT , the algorithm

may still find a sparse solution for each of its subsections. Thus, the indication flag is also a way to partially

overcome the practical limitations of MMV techniques. Notethat the indication property is crucial for SBR2 as

it helps to refine the partitionD and reduce the sub-optimality resulting from the MMV algorithm.

We point out that Proposition 4 shows thatM ⊆ BN . We also have thatM ⊆ A2N from Proposition 1,

which motivates our approach. The SBR2 algorithm itself does not impose any additional limitations onL, p,C

other than those of Theorem 3 required to ensure the uniqueness of the solution. Therefore, theoretically, perfect

reconstruction forM is guaranteed if the samples are acquired at the minimal rate, with the exception of the

special cases discussed before.



21
TABLE II

SPECTRUM-BLIND RECONSTRUCTION METHODS FOR MULTI-BAND SIGNALS

WKS theorem SBR4 SBR2

Sampling method Uniform Multi-coset Multi-coset
Fully-blind Yes Yes Yes
# Uniform sequences 1 p p
Minimal sampling rate Nyquist 2 × Landau 2 × Landau
Achieves lower bound of Theorem 1 No Yes Yes
Reconstruction method Ideal low pass SBR4 SBR2
Time complexity constant 1 MMV system bi-section + finite # of MMV
Applicability suppX(f) ⊆ F x(t) ∈ AK x(t) ∈ BK ∩ A2K

3

Indication No for x(t) ∈ AK only No

The complexity of SBR2 is dictated by the number of iterations of the bi-section process, which is also affected

by the behavior of the MMV algorithm that is used. Numerical experiments in Section VII show that empirically

SBR2 converges sufficiently fast for practical usage.

Finally, we emphasize that SBR2 does not provide an indication on the success recovery ofx(t) even for

x(t) ∈ M since there is no way to know in advance ifx(t) is a signal of the special type that SBR2 cannot

recover.

C. Comparison between SBR4 and SBR2

Table II compares the properties of SBR4 and SBR2. We added the WKS theorem as it also offers spectrum-

blind reconstruction. Both SBR4 and SBR2 algorithms recover the setS according to the paradigm stated in

Section V-B. Observe that an indication property is available only for SBR4 and only if the signals are known to

lie in AK . Although both SBR4 and SBR2 can operate at the minimal sampling rate, SBR2 guarantees perfect

reconstruction for a wider set of signals asAK is a true subset ofBK ∩ A2K .

Considering signals fromM we have to restrict the parameter selection. The specific behavior of SBR4 and

SBR2 for this scenario is compared in Table III. In particular, SBR4 requires twice the minimal rate.

In the tables, perfect reconstruction refers to reconstruction with a brute-force MMV method that finds the

correct solution. In practice, sub-optimal MMV algorithmsmay result in failure of recovery even when the other

requirements are met. The indication flag is intended to discover these cases.

The entire reconstruction scheme is presented in Fig. 3. Thescheme together with the tables allow for a wise

decision on the particular implementation of the system. Clearly, forΩ > 0.5 it should be preferred to sample at

the Nyquist rate and to reconstruct with an ideal low pass filter. ForΩ ≤ 0.5 we have to choose between SBR4

and SBR2 according to our prior on the signal. Typically, it is natural to assumex(t) ∈ M for some values of

3except for special signals discussed in Section VI-B.
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TABLE III

COMPARISON OFSBR4AND SBR2FOR SIGNALS INM

SBR4 SBR2

# Uniform sequences p ≥ 4N p ≥ 2N
Minimal rate 4 × Landau 2 × Landau
Lower bound of Th. 1 No Yes
Parameter selection Theorem 3,p ≥ 4N Theorem 3
Perfect reconstruction Yes Yes3

Indication Yes No

Fig. 3. Spectrum-blind reconstruction scheme.

N andB and derive the required parameter selection according to Table III. It is obvious that ifp ≥ 4N is used

then SBR4 should be preferred since it is less complicated than SBR2.

The trade-off presented here between complexity and sampling rate also exists in the known-spectrum reconstruc-

tion of [8]. Sampling at the minimal rate of Landau requires areconstruction that consists of piecewise constant

filters. The number of pieces and the reconstruction complexity grow with L. This complexity can be prevented

by doubling the value ofp which also doubles the average sampling rate according to (19). Then, (29)-(30) are

used to reconstruct the signal by only one inversion of a known matrix [6].

VII. N UMERICAL EXPERIMENTS

We now provide several experiments demonstrating the reconstruction using algorithms SBR4 and SBR2 for

signals fromM. We also provide an example in which the signals do not lie in the classM but in the larger set

implied byAK for SBR4 and byBK ∩ A2K for SBR2.
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A. Setup

The setup described hereafter is used as a basis for all the experiments.

Consider an example of the classM with F = [0, 20 GHz], N = 4 andB = 100 MHz. In order to test the

algorithms 1000 test cases from this class were generated randomly according to the following steps:

1) draw{ai}
N
i=1 uniformly at random from[0, 20GHz−B].

2) setbi = ai +B for 1 ≤ i ≤ N , and ensure that the bands do not overlap.

3) GenerateX(f) by

X(f) =







α(f) (SR(f) + jSI(f)) , f ∈
N
⋃

i=1
[ai, bi]

0, otherwise.

For everyf the values ofSR(f) andSI(f) are drawn independently from a normal distribution with zero

mean and unit variance. The functionα(f) is constant in each band, and is chosen such that the band energy

is equal toei whereei is selected uniformly from [1,5].

The Landau rate for each of the signals isNB = 400 MHz, and thus the minimal rate requirement for blind

reconstruction is800 MHz due to Theorem 1.

Several multi-coset systems are considered with the following parameters. The valueL is common in all the

systems. The value ofp is varied fromp = N = 4 to p = 8N = 32 representing 29 different systems. A universal

patternC is constructed by choosing primeL, since according to [10] this ensures that every sampling pattern is

universal.

An experiment is conducted by sampling the signals using each of the multi-coset systems. Each of these

combinations is used as an input to both SBR4 and SBR2 algorithms. We selected the Multi-Orthogonal Matching

Pursuit (M-OMP) method [16] to solve the MMV systems for the sparsest solution. The empirical success rate of

each algorithm is calculated as the ratio of simulations in which the recovered setS is correct.

B. Sampling rate and practical limitations

We begin by selecting the largest possible value of primeL satisfying (23):

L = 199 ≤
1

BT
= 200. (51)

Thus, the minimal rate requirement holds only forp ≥ 2N . Specifically, for p = 2N the sampling rate is

p/LT = 804 MHz. Observe that a non-primeL = 200 would give the minimal rate exactly. This setting is

discussed later on.

Fig. 4 depicts the empirical success rate withL = 199, N = 4 as a function ofp. It is evident that forp < 2N the

setS could not be recovered by neither of the algorithms since thesampling rate is below the bound of Theorem 1.

As expected, SBR2 outperforms SBR4 as it achieves the same empirical success rate for a lower average sampling

rate. It is also seen that forp = 4N the sampling rate is slightly more than four times the Landaurate. Indeed,
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Fig. 4. Performance of SBR algorithms withL = 199.
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Fig. 5. Performance of SBR algorithms withL = 23.

algorithm SBR4 maintains a high recovery rate for this valueof p. The usage of SBR2 with M-OMP maintains a

high recovery rate forp/N = 2.6, which is more than the minimal rate. Other MMV algorithms may be used to

improve this result, however we used only M-OMP as it is simple and fast.

We next consider a scenario withL = 23, which clearly satisfies (23). Here, forp = N = 4 we have a sampling

rate of 3.4 GHz which is much higher than the minimal requirement. This selection ofL represents a practical

desire to satisfy the minimal rate requirement with a reduced value ofp, since realizing the multi-coset sampling

requiresp analog-to-digital devices. Fig. 5 presents the empirical recovery rate in this case. Note that Table III

shows that in order to guarantee perfect reconstruction forM we needp ≥ 4N for SBR4, andp ≥ 2N for

SBR2. However, these conditions are only sufficient. Indeed, it is evident from Fig. 5 that both algorithms reach

a satisfactory recovery rate for lower values ofp .

In Table IV, we tabulate the average run time of one case out ofthe 1000 tested. Our experiments were conducted

on an ordinary PC desktop with an Intel CPU running at 2.4GHz and 512MB memory RAM. We used Matlab

version 7 to encode and execute the algorithms. Note that forL = 199, p = 2N we encountered a significant

increase in SBR2 runtime. The reason is that the average sampling rate is very close to the minimal possible,

thus the recursion depth of the algorithm grows as it is harder to find a suitable partition setD. For p = 4N the
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TABLE IV

AVERAGE RUN TIME OF SBR4AND SBR2WITH MOMP (MSEC)

L = 199 L = 23

SBR4 SBR2 SBR4 SBR2

p = N 7 608 4.2 51.4

p = 2N 16.1 1034 5.7 6.4

p = 4N 21.4 24.8 6.7 6.7

runtime dramatically improves, however in this case SBR4 may be preferred due to the advantages that appear in

Table III. It can be seen that forL = 23 the average runtime is low for both algorithms. This scenario represents

a case that the value of|S| is very low compared to2N , and thus it is easier to find a partition setD. Moreover,

M-OMP becomes faster as the solution is sparser.

C. Applicability

The previous experiments demonstrated the applicability of SBR4 and SBR2 to signals that lie inM. We now

explore the case in whichx(t) /∈ M.

In this experiment we used the basic setup withL = 199 but the signals are constructed in a different way. Each

one of the 1000 signals is constructed byX(f) = α(f) (SR(f) + jSI(f)) , ∀f ∈ F0. The functionα(f) depends

on the algorithm and it makes sure thatx(t) ∈ AK for the test cases of SBR4. Similarly,α(f) is used to form

signalsx(t) ∈ BK ∩A2K for SBR2. The construction of these signals depends onL because of the definitions of

AK andBK . We selectedK = 8 which results in a Landau rate ofK/LT = 804 MHz in either construction. In

addition, we made sure that the signals do not lie inM.

Fig. 6 shows the empirical recovery rate of SBR4 and SBR2 in this scenario. The valuep = 4N = 16 serves as

a threshold for satisfactory recovery, as the sampling ratefor this value ofp is p/LT = 1608 MHz, which is twice

the Landau rate. It can also be seen that SBR4 performs betterthan SBR2 as it does not involve a sub-optimal stage

of recovering the partition setD. Both algorithms suffer from the sub-optimality techniques for MMV systems.

Note that the signals here are synthesized so that they lie inthe relevant sets. However, for a generic signal

x(t) /∈ M there is no way to know in advance whether it lies in one of these sets. Moreover, there is no way to

infer it from the samples, (
¯
y)(f). In addition, even if SBR4 is used for this signal and it returns flag=1, there is no

meaning for this indication since the uniqueness of the solution is guaranteed only forx(t) ∈ AK which cannot

be ensured for a generic multi-band signal.

D. Random sampling patterns

Theorem 3 requires a universal sampling pattern, which means finding a pattern resulting inσ((
¯
A)) = p.

However, computing the value ofσ((
¯
A)) requires a combinatorial process for non-primeL. The ”bunched” pattern
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Fig. 6. Performance for signalsx(t) not in M.

5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

p

E
m

pi
ric

al
 s

uc
ce

ss
 r

at
e

SBR4
SBR2

Fig. 7. Performance of SBR algorithms withL = 200.

C = {0, 1, ..., p − 1} given in [8] is proved to be universal but the matrix (
¯
A) is not well conditioned for this

choice [7]. Alternatively, it follows from the work of Cand`eset. al. [19] that random sampling patterns are most

likely to produce a high value forσ((
¯
A)) if L, p are large enough. Therefore, for practical usage the sampling

pattern can be selected randomly even for non-primeL. Fig. 7 presents an experiment withL = 200. We point

out that the random selection process is carried out only once, and the same sampling patterns are used for all

the tested signals. Comparing Figs. 4 and 7 it is seen that theresults are very similar although the exact value of

σ((
¯
A)) is unknown.

This experiment was also performed when for everyN ≤ p ≤ 8N the patterns are selected asC = {ck|ck =

2k, 0 ≤ k ≤ p− 1}, which is proved in [10] to renderσ((
¯
A)) = 1. In this case both SBR4 and SBR2 could not

recover any of the 1000 test cases. Thus, the universality ofthe pattern is crucial to the success of our method.

VIII. C ONCLUSIONS

In this paper we suggested a method to reconstruct a multi-band signal from its samples when the band

locations are unknown. Our development enables a fully spectrum-blind system where both the sampling and

the reconstruction stages do not require this knowledge.
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Our main contribution is in proving that the reconstructionproblem can be formulated as a finite dimensional

problem within the framework of compressed sensing. This result is accomplished without any discretization.

Conditions for uniqueness of the solution and algorithms tofind it were developed based on known theoretical

results and algorithms from the CS literature.

In addition, we proved a lower bound on the sampling rate thatimproves on the Landau rate for the case of

spectrum-blind reconstruction. One of the algorithms we proposed indeed approaches this minimal rate for a wide

class of multi-band signals characterized by the number of bands and their widths.

Numerical experiments demonstrated the trade off between the average sampling rate and the empirical success

rate of the reconstruction.

APPENDIX A

REAL-VALUED SIGNALS

In order to treat real-valued signal the following definitions replace the ones given in the paper. The classM

is changed to contain all real-valued multi-band signals bandlimited toF = [−1/2T, 1/2T ] with no more thanN

bands on both sides of the spectrum, where each the band widthis upper bounded byB as before. Note thatN is

even as the Fourier transform is conjugate symmetric for real-valued signals. The Nyquist rate remains1/T and

the Landau rate isNB.

Repeating the calculations of [8] that lead to (15) it can be seen that several modifications are required as now

explained. To form (
¯
x)(f), the intervalF is still divided into L equal intervals. However, a slightly different

treatment is given for odd and even values ofL, because of the negative side of the spectrum. Define the set of

L consecutive integeres

K =



















{

−
L− 1

2
, · · · ,

L− 1

2

}

, oddL

{

−
L

2
, · · · ,

L

2
− 1

}

, evenL.

and redefine the intervalF0

F0 =



















[

−
1

2LT
,

1

2LT

]

, oddL

[

0,
1

LT

]

, evenL.

The vector (
¯
x)(f) is now defined as

(
¯
x)i(f) = X(f +Ki/LT ), ∀0 ≤ i ≤ L− 1,



28

The dimensions of (
¯
A) remainp× L with ik entry

(
¯
A)ik =

1

LT
exp

(

j
2π

L
ciKk

)

, (52)

1 ≤ i ≤ p, 0 ≤ k ≤ L− 1.

The definition of (
¯
y)(f) remains the same with respect toF0 defined here. The results of the paper are thus

extended to real-valued multi-band signals since (16) is now valid with respect to these definitions of (
¯
x)(f), (

¯
A),

andF0.

Note that, we could have, conceptually, constructed a complex-valued multi-band signal by taking only the

positive frequencies of the real-valued signal. The Landaurate of this complex version isNB/2. Nevertheless,

the information rate is the same as each sample of a complex-valued signal is represented by two real numbers.

APPENDIX B

PROOF OFLEMMA 1

Let r = rank((
¯
P )). Reorder the columns of (

¯
P ) so that the firstr columns are linearly independent. This

operation does not change the rank of (
¯
P ) nor the rank of (

¯
A)(

¯
P ). Define

(
¯
P ) = [(

¯
P )(1) (

¯
P )(2)], (53)

where (
¯
P )(1) contains the firstr columns of (

¯
P ) and the rest are contained in (

¯
P )(2). Therefore,

r ≥ rank((
¯
A)(

¯
P )) = rank((

¯
A)[(

¯
P )(1) (

¯
P )(2)]) ≥ rank((

¯
A)(

¯
P )(1)).

The inequalities result from the properties of the rank of concatenation and of multiplication of matrices. So it is

sufficient to prove that (
¯
A)(

¯
P )(1) has full column rank.

Let α be a vector of coefficients so that (
¯
A)(

¯
P )(1)(

¯
α) = (

¯
0). It remains to prove that this implies (

¯
α) = (

¯
0).

Denotek = |I((
¯
P ))|. SinceI((

¯
P )(1)) ⊆ I((

¯
P )) = k the vector (

¯
P )(1)(

¯
α) is k-sparse. However,σ((

¯
A)) ≥ k and its

null space cannot contain ak-sparse vector unless it is the zero vector. Since (
¯
P )(1) contains linearly independent

columns this implies (
¯
α) = (

¯
0).

APPENDIX C

COMPUTATION OF THE MATRIX (
¯
Q)

The SBR4 algorithm computes the matrix (
¯
Q) in the frequency domain. A method to compute this matrix

directly from the samples in the time domain is now presented.

Consider theikth element of (
¯
Q) from (33):

(
¯
Q)ik =

∫ 1

LT

0
(
¯
y)i(f)(

¯
y)∗k(f)df. (54)
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Since (
¯
y)i(f) is the DTFT ofxci [n] we can write (

¯
Q)ik as,

(
¯
Q)ik =

∫ 1

LT

0

(

∑

ni∈Z

xci [ni] exp (−j2πfniT )

)

· (55)

(

∑

nk∈Z

xck [nk] exp (−j2πfnkT )

)∗

df

=
∑

ni∈Z

∑

nk∈Z

xci [ni]x
∗
ck [nk]

∫ 1

LT

0
exp (j2πf(nk − ni)T ) df.

Note that from (14) the sequencexci [ni] is padded byL − 1 zeros between the non-zero samples. Define the

sequence without these zeros as

x̂ci [m] = x(mLT + ciT ), m ∈ Z, 1 ≤ i ≤ p. (56)

Then, (55) can be written as

(
¯
Q)ik =

∑

mi∈Z

∑

mk∈Z

x̂ci [mi]x̂
∗
ck
[mk]gik[mi −mk] (57)

=
∑

mi∈Z

x̂ci [mi](x̂ck ∗ gik)[mi],

where

gik[m] =

∫ 1

LT

0
exp (j2πf(mL+ (ck − ci))T ) df, (58)

and

(x̂ck ∗ gik)[m] =
∑

n∈Z

x̂∗ck[n]gik[m− n]. (59)

If i = k thenci = ck and

gii[m] = g[m] =
1

LT
exp(jπm) sinc(m), (60)

with sinc(x) = sin(πx)/(πx).

If i 6= k,

gik[m] =
exp

(

j 2π
L
(ck − ci)

)

− 1

j2π(mL + (ck − ci))T
. (61)

The set of digital filtergik can be designed immediately after setting the parameterL, p,C as these filters do

not depend on the signal.
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