
1

Optimum Codebook Design and Average SEP
Loss Analysis of Spatially Independent and

Correlated Feedback Based MISO Systems with
Rectangular QAM Constellation

Yogananda Isukapalli, Student Member, IEEE, Jun Zheng, Member, IEEE, and
Bhaskar D. Rao, Fellow, IEEE

Abstract—In this paper we present an optimum codebook

design algorithm that minimizes the loss in average symbol

error probability (SEP) of a spatially correlated multiple input

single output (MISO) system with finite-rate feedback under

both perfect and imperfect channel estimate assumptions.

Towards the goal of designing an optimum codebook that

minimizes average SEP (ASEP) loss due to finite-rate channel

quantization, we derive the distortion function as a first order

approximation of the instantaneous SEP loss. Utilizing high

resolution quantization theory and assuming perfect channel

estimation at the receiver, we analyze the loss in ASEP

for spatially independent and correlated finite-rate feedback

transmit beamforming MISO systems with M1 × M2-QAM

constellation. We then consider the high-SNR regime and show

that the loss associated with quantizing the spatially indepen-

dent channels is related to the loss associated with quantizing

the spatially correlated channels by a scaling constant given

by the determinant of the correlation matrix. We also present

simulation results that illustrate the effectiveness of the new

codebook design and validate the derived analytical expressions

for ASEP loss.

Index Terms: MISO systems, transmit beamforming, codebook
design, spatial correlation, finite-rate feedback, rectangular QAM.

I. INTRODUCTION

In this paper we focus on multiple input single out-
put (MISO) systems where channel state information (CSI)
is conveyed from the receiver to the transmitter through a
finite-rate feedback link, a topic of much recent interest [1]-
[7]. These works develop and analyze finite-rate feedback
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schemes under a variety of conditions. [8] discussed the im-
portance of using right metric for codebook design. However,
[8] did not provide codebook construction based on the av-
erage bit error probability (metric considered in [8]) criteria.
The importance of the choice of performance metric and the
effect of mismatch in the channel statistics assumptions are
the main focus of this paper.

The effect of limited feedback on the ergodic capacity
is a well studied concept. Average Symbol Error Probabil-
ity (ASEP), another important communication system perfor-
mance metric, has received much less attention. For a limited
set of constellations and for independent and identically dis-
tributed (i.i.d.) fading channels it has been analyzed utilizing
an approximation to the statistical distribution of the key
random variable that characterizes the system performance.
Specifically for spatially i.i.d. channels both [1] and [2] char-
acterized the absolute amplitude square of the inner product
between the channel direction and its quantized version as
a truncated beta distribution and used it to study effect
of quantization on ASEP. Similar to the capacity analysis,
ASEP analysis for correlated channels using such statistical
methods have not met with much success. In this paper
we first design codebooks that are optimum for minimizing
the average symbol error probability loss assuming perfect
channel knowledge at the receiver. For this scenario, we then
make use of the source coding based framework developed
in [4] to analyze the ASEP loss in correlated Rayleigh
fading channels with rectangular QAM constellation. The
application of the theory in [4] to this problem is quite
involved because of the complicated dependency of the
objective function on the random variables involved as well
as the nature of the constellation (M1 × M2-QAM). The
impact of the performance metric on the performance of
the quantizer is highlighted by comparing the performance
with past quantizer designs which utilize capacity loss as
a metric. The quantizer design problem in the presence of
channel estimation errors is also addressed and compared to
the designs that assume perfect channel knowledge at the
receiver.

The rest of this paper is organized as follows. In Section II,
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we introduce the system model. Optimum transmit beam-
forming vector under both perfect and imperfect channel
estimate scenarios and optimum codebook design specific to
minimizing the loss in average symbol error probability are
developed in Section III. The average SEP loss expressions
for spatially independent and correlated channels are derived
for rectangular M1 ×M2-QAM modulation in Section IV.
Numerical and simulation results are presented in Section V.
We conclude this paper in Section VI.

Notation: Small and upper case bold letters indicate vector
and matrix respectively. E(.), (.)T , (.)H , |.|, and �.� denote
expectation, transpose, Hermitian, absolute value, and 2-
norm respectively. x ∼ p(x) indicates that the random
variable x is distributed as p(x). x ∼ NC (0,Σ) indicates
a circularly symmetric complex Gaussian random variable x

with mean 0 and covariance Σ.

II. SYSTEM MODEL

We consider a multiple input single output system with t
antennas at the transmitter and one antenna at the receiver.
The wireless channel h ∈ Ct×1 between the transmitter
and the receiver is modeled as a correlated frequency-flat
Rayleigh fading channel with spatial distribution given by
h ∼ NC

�
0,Σh

�
1. Let w ∈ Ct×1 be the unit norm beam-

forming vector (BV) at the transmitter. Then, the received
signal is given by

y = hHw sm + η , (1)

where η ∼ NC
�
0, 1

�
. For simplicity the time indices

are ignored in the above equation. The transmitted two
dimensional modulation symbol is denoted by sm with
E[|sm|2] = ρ. Note that ρ represents the SNR. The channel
is estimated at the receiver and is partially available at the
transmitter through a finite-rate feedback link of B bits
per CSI update. More specifically, a quantization codebook
W =

�
�v1, · · · , �vN

�
, composed of N = 2B unit-norm

transmit BV’s is assumed to be known to both the receiver
and the transmitter. Based on the channel estimate, the
receiver selects the best code point �v from the codebook
and sends the corresponding index back to the transmitter
through an error free link [1]-[7].

III. OPTIMUM TRANSMIT BEAMFORMING VECTOR AND
CODEBOOK DESIGN

In this section, under the assumption of perfect and
imperfect estimates of the channel at the receiver, we design
the optimum codebook matched to the distortion function,
the average SEP loss.

1We normalize the channel covariance matrix such that the mean of the
eigenvalues equals to one, i.e. Trace(Σ h) = t.

A. Perfect Channel Estimate at the Receiver

Assuming perfect knowledge of the channel vector h, the
optimum transmit BV, a well-known result, is given by the
channel direction vector

v =
h
�h� .

In a low rate feedback link based system, the receiver selects
the code point �v that is closest to v. Assuming no errors in
the feedback link, the unit-norm vector �v is employed as
the BV at the transmitter. The received signal can now be
written as

y = �h, �v� sm + η

=
√

α �v, �v� sm + η (2)

where
α = �h�2

and
�x, y� = x

H
y.

1) Distortion Function - Average SEP of Rectangular
QAM: In this subsection, we derive the non-mean-squared
distortion function, the average SEP loss for a rectangular
M1 × M2-QAM constellation of size M = M1M2. The
transmitting symbol sm = sx + jsy , m = 0, 1, . . . ,M − 1,
x = 0, 1, . . . ,M1 − 1, y = 0, 1, . . . , M2 − 1. Here
sx = axd, and sy = ayd, where ax = −(M1 − 1) + 2x
(i.e., axd is the in-phase M1-PAM constellation symbol)
and ay = −(M2 − 1) + 2y (i.e., ayd is the quadrature-
phase M2-PAM constellation symbol). Average symbol error
probability without channel quantization for the in-phase
M1-PAM is given by [9]

PP M1
= 2

�
1− 1

M1

�
E

�
Q

�√
λα

��
(3)

where

Q(x) =
1√
2π

∞�

x

exp(−u2/2) du ,

λ = ρφ ,

and

φ =
6

M2
1 + M2

2 − 2
.

The ASEP for Quadrature M2-PAM is given by (3), with
M1 replaced by M2. The ASEP of M1 × M2-QAM with
perfect feedback is given by

PP−QAM = PP M1
+ PP M2

− PP M1
PP M2

.

The ASEP with finite-rate channel quantization for M1-PAM
is given by,

PQM1
= 2

�
1− 1

M1

�
E

�
Q

��
λα |�v, �v�|2

��
. (4)
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The ASEP for M2-PAM with channel quantization is given

by (4), with M1 replaced by M2. The ASEP of M1 ×M2-
QAM with finite-rate quantization is given by

PQ−QAM = PQM1
+ PQM2

− PQM1
PQM2

.

The finite-rate quantization results in an increase in the
average symbol error probability, which is given by

PLoss = PQ−QAM − PP−QAM .

The instantaneous SEP loss due to finite-rate CSI quan-
tization is taken to be the system distortion function
DQ(v, �v ; α), and is given by

DQ(v, �v ; α) �=
�
Q

��
λα|�v, �v�|2

�
−Q

�√
λα

��
·

�
A + C

�
Q

�√
λα

�
+ Q

��
λα|�v, �v�|2

���
(5)

where

A = 2
�

2− 1
M1

− 1
M2

�
, (6)

and
C = −4

�
1− 1

M1
− 1

M2
+

1
M1M2

�
. (7)

Under high resolution assumption, the quantized beam-
forming vector �v is close to v, and the inner product
|�v, �v�| is close to one. In this case, the distortion function
DQ

�
v, �v ; α

�
can be approximated using a first order Taylor

series expansion w.r.t. the random variable |�v, �v�|2. After
some manipulations, the distortion function can be written
as

DQ(v, �v ; α) ≈ exp
�
−λα

2

�
·
�

λα

8π
·

�
A + 2C Q

�√
λα

�� �
1− |�v, �v�|2

�
. (8)

In this paper, we only consider the case with same distance

d in both in-phase and quadrature-phase. The analysis can
be easily extended to the case where the distances are not
the same.

2) Optimum Codebook Design for Rectangular QAM with
Perfect Channel Estimate : The codebook is designed to
minimize the average SEP loss. The cost function for SEP
loss given in (8) is different compared to the ergodic ca-
pacity loss function employed in [1]. However, the general
vector quantization (VQ) framework can still be used with
appropriate modification. The criteria in this case is given
by

max
Q(.)

E|�α̃v, Q(h)�|2,

Q(h) = v̂ (9)

where

α̃2 = exp
�
−λα

2

� �
λα

8π

�
A + 2C Q

�√
λα

��
.
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Codebook Optimized for Minimizing the SEP Loss
Codebook Optimized for Minimizing the Capacity Loss
Unquantized Feedback

Fig. 1. Comparison between the codebook optimized to minimize the
average capacity loss and ASEP loss with BPSK constellation, number of
transmit antennas t=3, and the number of feedback bits B=4.

With this new design criterion, the codebook is designed
by iterating the two conditions of Lloyd algorithm, the
nearest neighbor-hood condition and centroid condition, until
convergence. More details on the algorithm design can be
found in [1]. It should be noted that similar to the case of
capacity loss, because of the form of the SEP loss function,
the codebook designed for spatially i.i.d. channel for the SEP
distortion is also optimum for the capacity loss function. A
drawback with the new codebook is that the codebook has
to be designed for each operating SNR, constellation and
correlation matrix.

Fig. 1 shows the ASEP resulting from using codebooks
optimized for ergodic capacity loss and average SEP loss
when evaluated using the ASEP metric. Note that optimum
codebook implies that there is a separate codebook for each
SNR point. The gains with the optimum codebook designed
for SEP loss are evident in Fig. 1. As seen in Fig. 1 there is
a gain of 1.2dB at an SNR of 15dB, with number of transmit
antennas t = 3 and the feedback bits B = 4, between using
the codebook optimized for ASEP loss and the codebook
optimized for average capacity loss. The gain is increasing
with SNR indicating that at medium-high SNR it is important
to use the optimum codebook designed specifically for
minimizing ASEP loss. The spatial correlation matrix in
Fig. 1 is assumed to have a Toeplitz structure with the
first row being [1, 0.9, 0.81]. In section.IV we quantify the
loss due to quantization under i.i.d. and correlated scenarios
assuming perfect channel estimation at the receiver and the
optimum codebook designed in this section.

B. Erroneous Channel Estimate at the Receiver

With channel estimation errors, the optimum transmit
beamforming vector is no longer given by the channel
direction vector. We consider design of a codebook that
takes into account the statistics of the channel estimate. The
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effect of estimation errors are abstracted using the modeling
approach as in [12]. This modeling results in the channel
estimate, �h and the actual channel, h, being related in the
following manner:

h = �h + n (10)

where
�h ∼ NC (0,Σim) ,

Σim = ΣceΣ−1
ee Σec

and the uncorrelated error term n ∼ NC (0,Σn) where

Σn = Σh −ΣceΣ−1
ee Σec.

Σh and Σee are the autocorrelation matrices of h and �h
respectively, Σce and Σec are the cross-correlation matrices.
The correlation between the two processes indicates the
quality of the channel estimate. This modeling can be
justified for pilot based channel estimation schemes.

With estimation errors, the received signal with an arbi-
trary unit norm beamforming vector w is given by

y =
�
�h + n

�H

w sm + η

= �h
H

w sm + ζ (11)

where conditioned on w and assuming that sm belongs to

PSK constellation,

ζ ∼ NC
�
0, 1 + ρ w

HΣnw
�
.

The appearance of signal term in the noise is due to the fact
that only the channel estimate �h is available at the receiver
instead of actual channel h. Selection of wopt, the optimum
BV, is based on maximizing the following received SNR

wopt = arg max
�w�=1

�
ρ w

H�h �h
H

w

1 + ρ wHΣnw

�

= arg max
�w�=1

�
w

H �h �h
H

w

wH Σd w

�

where

Σd = ρΣn + I.

The solution to the above maximization problem is given by

wopt =
Σ−1

d
�h

�Σ−1
d

�h�
. (12)

With this selection of the beamforming vector, the received

SNR ρe is given by

ρe = ρω ,

ω = �h
H

Σ−1
d

�h . (13)

1) Distortion Function - Average SEP of BPSK Con-
stellation: In this section, to illustrate how the codebook
design changes because of estimation errors, we focus on
BPSK constellation. The extension of codebook design for
rectangular QAM constellation is relatively straightforward.
The average symbol error probability with un-quantized
version of optimum beamforming vector given in (12) is

PP = E
�
Q

��
2ρω

��
, (14)

The ASEP with quantized feedback (i.e., w = �v ) is given

by

PQ = E
�
Q

��
2ρ τ

��
(15)

where

τ =
�vH �h �h

H �v
�vH Σd �v

.

Under high resolution assumption, the instantaneous loss

in SEP due to quantization can be approximated by taking
the first order Taylor series expansion w.r.t. the variable τ
around ω as

DQ-BPSK(v, �v; ω) =
�
Q

��
2ρ τ

�
−Q

��
2ρω

��

≈ exp (−ρω)
�

ρ

ω4π
(ω − τ) . (16)

2) Optimum Codebook Design for BPSK with Estimation
Errors: The design criteria is to minimize the average
symbol error probability loss

min
Q(.)

E

�
�vHΣv�v
�vHΣd�v

�
(17)

where

Σv = exp (−ρω) /
√

ω
�

ω Σd − �h �h
H

�
.

We now briefly discuss the two conditions of Lloyd algo-

rithm.
Nearest Neighborhood Condition: Beginning with an arbi-
trary set of unit vectors �vi, i = 1, · · · , N forming the code-
book W , the optimum Voronoi Regions Ri, i = 1, · · · , N
are found from the following condition

Ri =

�
v ∈ Ct :

�vH

i
Σv�vi

�vH

i
Σd�vi

≤
�vH

j
Σv�vj

�vH

j
Σd�vj

,∀j �= i

�
.

Centroid Condition: The codebook W is updated in this

step. For a given partition Ri obtained from the previous
step, the new set of beamforming vectors satisfy
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Fig. 2. Effectiveness of codebook design that takes channel estimation
errors into account as compared to codebook designed specific to ASEP
loss but ignoring estimation errors - BPSK constellation, number of transmit
antennas t=3, and the number of feedback bits B=4.

�vi = arg min
��v�=1,�v∈Ri

E

�
�vHΣv�v
�vHΣd�v

�

= arg min
��v�=1,�v∈Ri

�
�vHΣm�v
�vHΣd�v

���� v ∈ Ri

�
, i = 1, · · · , N

where

Σm = E(Σv).

In the implementation of the algorithm Σm has to be
estimated from the training unit norm vectors belonging to
Ri. The generalized eigenvalue equation for Σd and Σm is

ΣmF = ΛΣdF

where

Λ = diag (λ1, · · · ,λt) ,

and

F = (f1, · · · , ft) .

Assuming that λ1 > λ2 · · · > λt, the solution to minimiza-
tion function is given by

�vi =
ft

�ft�
.

The above two conditions are iterated until convergence.
Note that compared to the perfect channel estimation sce-
nario, the encoding process is also different. Fig. 2 shows
the effectiveness of designing the codebook (for each SNR
point) taking estimation errors into account. For the results
shown in Fig. 2, Σh is simulated following the correlation
model in [16]: A linear antenna array with antenna spacing

of half wavelength, angle of arrival φ = 0◦ and an uniform
angular spread of [−π/5,π/5]. Σim is simulated in a similar
fashion with an uniform angular spread of [−π/5.5,π/5.5]
and the resulting correlation matrix is scaled by 0.7582.
Note that the various auto and cross correlation matrices are
included in Σim, so they are not specified separately. The
noise correlation matrix is given by

Σn = Σh −Σim.

IV. AVERAGE SEP LOSS ANALYSIS

To obtain insights into the performance of quantized
feedback schemes developed, we make use of the analytical
results based on high resolution theory developed in [4].
Though the optimum codebook under both perfect and
imperfect channel estimates were developed above, due to
analytical tractability reasons, the ASEP loss analysis is
carried out only under the assumption that perfect channel
estimate is available at the receiver. In the last subsection,
we consider the high-SNR regime for an insight into the
effect of quantization on a correlated channel. We only
present the end results and the details are relegated to the
Appendices. For the purpose of completeness, in Appendix-
I we briefly summarize the asymptotic distortion analysis
of the generalized vector quantizer results that are relevant
for the analysis of average SEP loss of M1 × M2-QAM
constellation. The distortion analysis results presented are
really lower bounds that become more accurate as the
number of feedback bits increase.

A. Distortion Analysis for spatially i.i.d. Channels
The final expression for the loss in ASEP of a spatially

i.i.d. MISO system with rectangular QAM is given by

DQ-iid =

�√
λ(t− 1)A 2t−1Γ

�
t + 1

2

�

√
π t! (λ + 2)(t+ 1

2 )

�
· 2−

B
t−1 +

�
λ(t− 1) C Γ

�
t + 1

2

�

4π (1 + λ)t+1 Γ
�
t + 3

2

�

�
·

2F1

�
1, t + 1; t +

3
2
;

1
1 + κ

�
· 2−

B
t−1 , (18)

A and C are defined in (6) and (7), 2F1(·, ·; ·; ·) is the
hypergeometric function [15], and

κ =
λ

λ + 2
.

Important steps in the derivation of above equation are given
in Appendix-II.

B. Distortion Analysis for Spatially Correlated Channels
Assuming that the optimum codebook is used, the ASEP

loss of a spatially correlated MISO system is given by

DQ-cor =

�
β1

�
t,λ,Σh

�
TD + β2

�
t,λ,Σh

�
�

λ

2
TE

�
·

γ−1
t

· |Σh|−1 · 2−
B

t−1 (19)
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where

β1

�
t,λ,Σh

�
=

� �

v: g(v)=0

�λ

2
+ vHΣ−1

h v
� (1−t)(t+ 1

2 )
t ·

dv

� t
t−1

,

and

β2

�
t,λ,Σh

�
=

� �

v: g(v)=0

�
λ + vHΣ−1

h v
� (1−t)(t+1)

t ·

2F1

�
1, t + 1; t +

3
2
;

1
1 + ν

� t−1
t

dv

� t
t−1

.

TD, TE , and ν are defined in (37), (38), and (39) respectively.
The derivation details of the above equation can be found in
Appendix-III.

C. Mismatched Distortion Analysis for Correlated Channels

As pointed out in section III-A2, if the codebook designed
for capacity is used for average symbol error probability
analysis there will be a loss due to the mismatch in codebook
design. From the results in [10], the loss due to mismatch
can be calculated as

DLow-mm = 2−
B

t−1

�

Q
Iw,mm

c,opt (v) [λcap(v)]
1

t−1 p
�
v
�
dv,

(20)
Iw,mm

c,opt is the constrained, weighted, and mismatched inertial

profile. Due to the nature of mismatch2, using the results
in [10] and [11], it is easy to show that Iw,mm

c,opt is same
as Iw

c, opt
�
v
�

given by (36). λcap, the point density function
of the capacity loss metric (clearly sub-optimal for ASEP
metric), is given by (eq.(30) in [11]) and p

�
v
�

is given
by (34). Even if the codebook is designed specific to
minimizing the average SEP loss, a mismatch (e.g. by using
codebook designed for a different SNR) is still possible.
By selecting different system parameters (SNR, correlation
matrix, constellation type) for point density function and the
constrained and weighted inertial profile, (20) can also be
used to analytically characterize the loss due to the usage of
a wrong codebook.

D. Distortion Analysis in High-SNR Regime

The analytical expressions for SEP loss of M1 ×M2-ary
QAM constellation for transmit beamforming of a MISO
system are given by (18) and by (19) for spatially i.i.d.
and correlated cases. The equations are lengthy and complex
providing limited insight into the system behavior. In high-
SNR regime it is easy to see that κ ≈ 1. For spatially i.i.d.
MISO fading channels, the average distortion, DQ-H-SNR-iid,
under high-SNR assumption can be simplified as

2The mismatched distortion function is a scaled version of the true
optimal distortion function, hence the optimal Voronoi shapes remains same.

DQ-H-SNR-iid =

�
2t−1 (t− 1)A Γ

�
t + 1

2

�
√

π t! φt

�
· 2−

B
t−1 ρ−t +

�
(t− 1) C Γ

�
t + 1

2

�

4π Γ
�
t + 3

2

�
φt

�
·

2F1

�
1, t + 1; t +

3
2
;
1
2

�
2−

B
t−1 ρ−t . (21)

From the above equation it is clear that the diversity order
is ‘t’ and increasing the number of feedback bits has an
exponential impact on the system distortion function, notice
that this fact is true even without the high-SNR assumption.
The rest of the terms in (21) depend on the number of
transmitting antennas and the size of the rectangular QAM
constellation. For spatially correlated channel, the functions
β1

�
t,λ,Σh

�
and β2

�
t,λ,Σh

�
are difficult to evaluate. How-

ever, we can evaluate them in closed form under high SNR
assumption as follows:

β1−H−SNR

�
t, λ,Σh

�
= λ−(t+ 1

2 ) 2(t+ 1
2 ) γ

t
t−1
t

,

and

β2−H−SNR

�
t,λ,Σh

�
= 2 λ−(t+1) γ

t
t−1
t

where β1−H−SNR and β2−H−SNR are high-SNR versions
of β1 and β2. After some manipulations we arrive at an
interesting simple relation between the ASEP loss associated
with spatially correlated and i.i.d. channel scenarios as

DQ-H-SNR-iid = |Σh|DQ-H-SNR-cor. (22)

In the correlated case the loss is a simple scaling of the

loss associated with i.i.d. case, the scaling factor being the
determinant of the correlation matrix. Note that this analysis
is quite general in the sense that we can have an arbitrary
correlation structure across the antennas. The quantization
parameter B, and number of antennas, t, both appear in
the exponent for the correlated scenario under general and
high-SNR regimes. In the correlated scenario, the additional
loss in ASEP due to quantization is independent of the
constellation size. The diversity order is also not effected as a
result of quantization. For both i.i.d. and correlated channels,
in high-SNR regime, the ASEP without quantization can be
written in terms of ASEP with quantization and ASEP loss
due to quantization as follows:

PP−QAM ≈ c1 ρ−t

�
1 + c2 2−

B
t−1

�

= c1 (ρ−∆ρ)−t

where

∆ρ =
�
1−

�
1 + c2 2−

B
t−1

�− 1
t

�
ρ .

∆ρ can be viewed as the SNR penalty caused by the finite-
rate quantization of the CSI, c1 and c2 are constants. Note
that exact values of c1 and c2 can be calculated but are



7

2 3 4 5 6 7 8
10−5

10−4

10−3

10−2

10−1

Number of Feedback Bits, B

Av
er

ag
e 

SE
P 

Lo
ss

SEP Analysis for Spatially IID and Correlated Channels

Simulation
Analytical

IID Channel  SNR=10dB  2x4 QAM

Correlated Channel SNR=24dB 4x4 QAM

Fig. 3. ASEP loss due to finite-rate quantization with M1 × M2-
QAM constellation for both spatially i.i.d. and spatially correlated channels,
number of transmit antennas t=3.

not relevant for the present discussion. The insights from
the above equation are as follows: The system performance
in terms of SEP is more sensitive to the finite-rate channel
quantization in the high-SNR regime and in order to maintain
the same SNR penalty due to finite-rate feedback, the quan-
tization resolution B has to increase as the system average
SNR increases. Since ∆ρ/ρ � 1, after some manipulation,
we can obtain a relation for number of feedback bits B as

B

t− 1
= − log2

��
1−∆ρ/ρ)−t − 1

�
/c2

�

≈ − log2(∆ρ) + log2(ρ)− log2(t) + log2(c2),

which means for a fixed number of antennas t, in order to
maintain a fixed SNR loss ∆ρ,

B ≈ (t− 1) log2(ρ) + c .

V. NUMERICAL AND SIMULATION RESULTS

A sample simulation in Fig. 3 plots the average SEP loss
due to the finite-rate quantization of the channel direction
versus feedback rate B, for a 3 × 1 MISO system over
perfectly estimated spatially i.i.d. and correlated Rayleigh
fading channels with different rectangular M1 ×M2-QAM
constellations at system SNRs ρ = 10dB, and 24dB, re-
spectively. Codebooks are designed by using optimal cri-
terion, suitable for minimizing ASEP loss, as explained in
section III-A2. The spatially correlated channel is simulated
by the correlation model in [16]: A linear antenna array with
antenna spacing of half wavelength, angle of arrival φ = 0◦
and uniform angular-spread in [−30◦, 30◦].

Fig. 3 shows the analytical and simulation plots for both
spatially i.i.d. and correlated channels. The analytical expres-
sion for i.i.d. is closed form, and for correlated channel the
expression is closed form under high SNR assumption. The

simulation and analytical results match well as the number
of feedback bits increase. The distortion function we have is
a first order approximation and this approximation becomes
accurate as the number of feedback bits increase. Also note
that the analytical expression for distortion is not optimum
but a lower bound on the optimum, which becomes more
tight as the number of feedback bits increases.

VI. CONCLUSION

We considered the problem of designing an optimum
codebook that minimizes the loss in average SEP and
analyzing the effect of finite-rate feedback on the ASEP
of a transmit beamforming MISO system with rectangular
QAM utilizing a high-resolution source coding perspective.
We derived the distortion function as a first order approxi-
mation of the instantaneous SEP loss and used it to design
optimum codebook under both perfect and imperfect channel
estimate assumptions. Assuming perfect channel estimation
at the receiver, no feedback delay and under high resolution
assumptions, we provided analytical expressions for loss in
ASEP due to finite-rate channel quantization for spatially
independent and correlated channels. We then considered
the high-SNR regime and showed that the loss associated
with the spatially i.i.d. case is the loss associated with the
spatially correlated case scaled by the determinant of the
correlation matrix. The simulation results are in agreement
with the analytical expressions. The presented framework of
analysis can be extended to analyze the loss in SEP or BEP
of other two dimensional linear modulation schemes.
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APPENDIX-I: HIGH RESOLUTION THEORY

It is assumed that the source variable h is a two-vector
tuple, (v, α), where vector v ∈ Q represents the actual
quantization variable of dimension 2t and α ∈ Z is the
additional side information of dimension 1. The side infor-
mation α is available at the receiver but not at the transmitter.
The encoding or the quantization process is denoted as
�v = Q(v, α). The distortion introduced by a finite-rate
quantizer is defined as

D = E
�
DQ

�
v, �v ; α

��

where DQ
�
v, �v ; α

�
is a general non-mean-squared distor-

tion function between v and �v that is parameterized by α.
It is further assumed that function DQ has a continuous
second order derivative Wα(v), the sensitivity matrix, with
the (i, j)th element given by

wi,j =
1
2

∂2

∂ vi∂ vj

DQ
�
v , �v ; α

� ����
v=�v

. (23)

Wα(v) represents sensitivity matrix of an unconstrained
source. However, the beamforming vector has a norm con-
straint �v� = 1, and a phase constraint ��v, �v� = 0. We
denote the constrained space as g(v) = 0. Since we are
operating in the constrained space, the degrees of freedom
in v reduce from 2t to 2t − 2. The sensitivity matrix is
replaced by its constrained version Wc, α(v) given by

Wc, α

�
v
�

= VT

n
Wα

�
v
�
Vn , (24)

where Vn ∈ R2t×2t−2 is an orthonormal matrix with its
columns constituting an orthonormal basis for the null space
N

�
∂

∂ v g(v)
�
. Under high resolution assumption, the asymp-

totic distortion of the generalized finite-rate quantization
system can be lower bounded by the following form

DLow = 2−
B

t−1

��

Q

�
Iw

c,opt(v) p
�
v
�� t−1

t dv
� t

t−1

, (25)

where Iw
c,opt

�
v
�

is the constrained average optimal inertial
profile defined as [4]

Iw
c,opt

�
v
�

=
�

Z
Ic,opt

�
v ; α

�
p
�
α
��v

�
d α . (26)

The normalized inertial profile of an optimal quantizer is
defined as the minimum inertia of all admissible Voronoi
regions. The inertial profile of any Voronoi shape, including
the constrained optimal inertial profile, Ic,opt

�
v ; α

�
, can be

tightly lower bounded by that of an M-shaped hyper-ellipsoid

Ic,opt
�
v ; α

�
� t− 1

t

���Wc,α(v)
��

κ2
2t−2

� 1
2t−2

(27)

where | · | represents determinant and κn is the volume of
an n-dimensional unit sphere.

APPENDIX-II: AVERAGE SEP LOSS ANALYSIS FOR
SPATIALLY I.I.D. CHANNEL

In this appendix, we make use of the asymptotic distortion
bounds presented in Appendix-I and show the main steps in
arriving at the loss in average symbol error probability for
the M1 × M2-QAM constellation. The relevant distortion
function DQ

�
v, �v ; α

�
is given in (8). Due to space limita-

tions, we only outline the important steps and present the
final results.

The lower bound on asymptotic distortion given by (25),
requires the computation of constrained sensitivity ma-
trix (24), lower bound on constrained normalized inertial
profile of an optimal quantizer (27) and the weighted con-
strained inertial profile (26). After some simplification the
constrained sensitivity matrix for the distortion function of
SEP loss (instantaneous) can be shown to be given by

Wc, α

�
v
�

= exp
�
−λα

2

� �
λα

8π

�
A + 2C Q

�√
λα

��
·

I2t−2. (28)

For spatially independent and correlated channels, the op-
timal inertial profile is obtained by substituting (28), the
constrained sensitivity matrix, into the hyper-ellipsoidal ap-
proximation given by (27). The optimal constrained inertial
profile is given by

Ic, opt (v ; α) =

�
(t− 1)

t
exp

�
−λα

2

�
γ
− 1

t−1
t

�
λα

8π

�
·

�
A + 2C Q

�√
λα

��
(29)

where

γt =
πt−1

(t− 1)!
.

For spatially i.i.d. channel, h ∼ NC(0, It), the random
variable α (α = �h�2) has a pdf
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pα(x) = pα|v (x)

=
exp(−x)xt−1

(t− 1)!
, x ≥ 0 . (30)

Since the channel is spatially independent α does not depend
on the channel direction v. Using (30) and (29) in (26),
Ic,opt

�
v ; α

�
, the weighted constrained inertial profile coeffi-

cient can be obtained.
After some simplification an intermediate step in the

derivation, with a change in variable using

y = x

�
λ

2
+ 1

�
,

is given by

Iw
opt

�
v
�

= DAA Γ
�

t +
1
2

�
+

DA 2C

� ∞

0
Q (
√

µy) exp (−y) yt− 1
2 dy (31)

where

DA =
√

λ(t− 1) γ
− 1

t−1
t

√
8π t!

�
λ

2 + 1
�(t+ 1

2 )
,

and
µ =

2λ

λ + 2
,

and Γ(n) is the standard Gamma function [15]. We use

Q(x) =
1
π

π/2�

θ=0

exp
�
− x2

2 sin2 θ

�
dθ, x ≥ 0,

an alternative definition of Q function [9], to simplify the
second term with integral in (31) and arrive at

� ∞

0
Q (
√

µy) exp (−y) yt− 1
2 dy =

Γ
�
t + 1

2

�

π

π/2�

θ=0

�
sin2 θ

κ + sin2 θ

�t+ 1
2

dθ (32)

where

κ =
µ

2
.

We make use of [9, Eqn. (5.17)] to arrive at a closed form
expression

π/2�

θ=0

�
sin2 θ

κ + sin2 θ

�t+ 1
2

dθ =

√
κπ Γ (t + 1)

2 (1 + κ)t+1 Γ
�
t + 3

2

� 2F1

�
1, t + 1; t +

3
2
;

1
1 + κ

�
.(33)

for the finite integral in (32). By substituting the weighted
constrained inertial profile coefficient (31) and

p(v) =
1
γt

,

into the distortion integral (25), the ASEP loss of an i.i.d.
MISO system can be shown to be given by (18).

APPENDIX-III: AVERAGE SEP LOSS ANALYSIS FOR
SPATIALLY CORRELATED CHANNEL

In this appendix, loss in average symbol error probability
is evaluated for the spatially correlated scenario. All the
steps until the derivation of constrained normalized inertial
profile (29) are same for both spatially independent and
correlated channels. For correlated MISO fading channels
h ∼ NC

�
0, Σh

�
with channel correlation matrix Σh having

distinct eigen-values, i.e. 3 λh,1 > · · · > λh, t > 0. The
marginal pdf of v and conditional distribution of α|v can be
shown to be [14]:

pv (x) = γ−1
t

|Σh|−1
�
xHΣ−1

h x
�−t

, (34)

pα|v (x) =
xt−1

�
vHΣ−1

h v
�t exp

�
−xvHΣ−1

h v
�

(t− 1)!
.(35)

By substituting the conditional pdf pα|v (x) given by (35)
and the constrained normalized inertial profile (29) into
equation (26), the average inertial profile can be obtained
as

Iw
c, opt

�
v
�

=




�
vHΣ−1

h v
�t

�
vHΣ−1

h v + λ

2

�t+ 1
2



 ·

�
TD +

TE
√

ν

(1 + ν)t+1 2F1

�
1, t + 1; t +

3
2
;

1
1 + ν

��
(36)

where

TD =
√

λ(t− 1)γ
− 1

t−1
t

A Γ
�
t + 1

2

�
√

8π t!
, (37)

TE =
√

λ(t− 1) γ
− 1

t−1
t

C Γ
�
t + 1

2

�

Γ
�
t + 3

2

�√
8π

, (38)

and

ν =
λ�

2vHΣ−1
h v + λ

� . (39)

Using (34) and Iw
c, opt

�
v
�

in (36), with the help of the alter-
native representation of Q function, the average symbol error
probability loss of a spatially correlated transmit beamforing
multiple input single output system is given by (19).

3In this paper, we assume that the channel covariance matrix Σ h has
distinct positive eigen-values. The result can be extended to any covariance
matrix that is positive definite. If the channel covariance matrix is singular,
the quantization should be carried out in a space with reduced dimension.


