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High-Resolution Radar
via Compressed Sensing

Matthew A. Herman and Thomas Strohmer

Abstract

A stylized compressed sensing radar is proposed in which thetime-frequency plane is discretized into anN×N
grid. Assuming the number of targetsK is small (i.e.,K ≪ N2), then we can transmit a sufficiently “incoherent”
pulse and employ the techniques of compressed sensing to reconstruct the target scene. A theoretical upper bound on
the sparsityK is presented. Numerical simulations verify that even better performance can be achieved in practice.
This novel compressed sensing approach offers great potential for better resolution over classical radar.

Index Terms

Compressed sensing, radar, sparse recovery, matrix identification, Gabor analysis, Alltop sequence.

I. INTRODUCTION

RADAR, sonar and similar imaging systems are in high demand inmany civilian, military, and biomedical
applications. The resolution of these systems is limited byclassical time-frequency uncertainty principles.

Using the concepts of compressed sensing, we propose a radically new approach to radar, which under certain
conditions provides better time-frequency resolution. Inthis simplified version of a monostatic, single-pulse, far-
field radar system we assume that the targets are radially aligned with the transmitter and receiver. As such, we will
only be concerned with the range and velocity of the targets.Future studies will include cross-range information.

There are three key points to be aware of with this approach: (1) The transmitted signal must be sufficiently
“incoherent.” Although our results rely on the use of a deterministic signal (the Alltop sequence), transmitting
white noise would yield a similar outcome. (2) This approachdoes not use a matched filter. (3) The target scene
is recovered by exploiting the imposed sparsity constraints.

This report is a first step in formalizing the theory of compressed sensing radar and contains many assumptions.
In particular, analog to digital (A/D) conversion and related implementation details are ignored. Some of these
issues are discussed in [1] where the potential to design simplified hardware is highlighted.

The rest of this section establishes notation and tools fromtime-frequency analysis, while Section II reviews
the concepts of sparse representations and compressed sensing. Our main contribution can be found in Sections III
and IV. Other applications are addressed in Section V.

A. Notation and Tools from Time-Frequency Analysis

In this paper boldface variables represent vectors and matrices, while non-boldface variables represent functions
with a continuous domain. Throughout this discussion we only consider functions with finite energy, i.e.,f ∈ L2(R).
For two functionsf, g ∈ L2(R), their cross-ambiguity functionof τ, ω ∈ R is defined as [2]

Afg(τ, ω) =

∫

R

f(t+ τ/2)g(t − τ/2)e−2πiωtdt, (1)

where · denotes complex conjugation, and the upright Roman letteri =
√
−1. The short-time Fourier transform

(STFT) of f with respect tog is Vgf(τ, ω) =
∫

R
f(t) g(t− τ)e−2πiωtdt. A simple change of variable reveals that,

within a complex factor, the cross-ambiguity function is equivalent to the STFT

Afg(τ, ω) = eπiωτ Vgf(τ, ω). (2)
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Whenf = g we have the(self) ambiguity functionAf (τ, ω). The shape of theambiguity surface|Af (τ, ω)| of f
is bounded above thetime-frequency plane(τ, ω) by |Af (τ, ω)| ≤ Af (0, 0) = ‖f‖22.

The radar uncertainty principle[3] states that if
∫∫

U
|Afg(τ, ω)|2dτdω ≥ (1− ε) ‖f‖22‖g‖22 (3)

for somesupportU ⊆ R
2 andε ≥ 0, then the area

|U | ≥ (1− ε). (4)

Informally, this can be interpreted as saying that the size of an ambiguity function’s “footprint” on the time-frequency
plane can only be made so small.

In classical radar, the ambiguity function off is the main factor in determining the resolution between targets [4].
Therefore, the ability to identify two targets in the time-frequency plane is limited by the essential support of
Af (τ, ω) as dictated by the radar uncertainty principle. The primaryresult of this paper is that, under certain
conditions, compressed sensing radar achieves better target resolution than classical radar.

II. COMPRESSEDSENSING

Recently, the signal processing/mathematics community has seen a paradigmatic shift in the way information is
represented, stored, transmitted and recovered [5]–[7]. This area is often referred to asSparse Representations and
Compressed Sensing. Consider a discrete signals of lengthM . We say that it isK-sparseif at mostK ≪ M
of its coefficients are nonzero (perhaps under some appropriate change of basis). With this point of view thetrue
information content ofs lives in at mostK dimensions rather thanM . In terms of signal acquisition it makes
sense then that we should only have to measure a signalN ∼K times instead ofM . We do this by makingN
non-adaptive, linear observationsin the form ofy = Φs whereΦ is a dictionary of sizeN×M . If Φ is sufficiently
“incoherent,” then the information ofs will be embedded iny such that it can be perfectly recovered with high
probability. Current reconstruction methods include using greedy algorithms such asorthogonal matching pursuit
(OMP) [7], and solving the convex problem:

min ‖s′‖1 s.t. Φs′ = y. (5)

The latter program is often referred to asBasis Pursuit1 (BP) [5], [6]. A new algorithm,regularized orthogonal
matching pursuit(ROMP) [8] has recently been proposed which combines the advantages of OMP with those of BP.

III. M ATRIX IDENTIFICATION VIA COMPRESSEDSENSING

A. Problem Formulation

Consider an unknown matrixH ∈ C
N×N ′

and an orthonormal basis (ONB)(H i)
NN ′−1
i=0 for C

N×N ′

. Note that
there are necessarilyNN ′ elements in this basis, and their ortho-normality is with respect to the inner product derived
from the Frobenius norm (i.e.,〈A,B〉F = trace(A∗B) for any A,B ∈ C

N×N ′

). Then there exist coefficients
(si)

NN ′−1
i=0 such that

H =
NN ′−1
∑

i=0

siH i. (6)

Our goal is to identify/discover the coefficients(si)
NN ′−1
i=0 . Since the basis elements are fixed, identifying these coef-

ficients is tantamount to discoveringH . We will do this by designing a test functionf = (f0, . . . , fN ′−1)
T ∈ C

N ′

and observingHf ∈ C
N . Here,( · )T denotes the transpose of a vector or a matrix. Figure 1 depicts this from

a systems point of view whereH is an unknown “block box.” Systems like this are ubiquitous in engineering
and the sciences. For instance,H may represent an unknown communication channel which needsto be identified
for equalization purposes. In general, any linear time-varying (LTV) system can be modeled by the basis of time-
frequency shifts (described in the next section).

1When in the presence of additive noisee the measurements are of the formy = Φs + e. If each element of the noise obeys|en| ≤ ε,
then BP can be reformulated as

min ‖s′‖1 s.t. |(Φs
′ − y)n| ≤ ε, n = 0, . . . , N − 1.
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f −→ H −→ y = Hf

Black Box

Fig. 1. Unknown systemH with input probef and output observationy.

For simplicity, from now on assume thatN ′ = N . The observation vector can be reformulated as

y =
N2−1
∑

i=0

siH if =
N2−1
∑

i=0

siϕi = Φs, (7)

where
ϕi = H if ∈ C

N (8)

is theith atom,Φ = (ϕ0 | · · · |ϕN2−1) ∈ C
N×N2

is the concatenation of the atoms, ands = (s0, · · ·, sN2−1)
T ∈ C

N2

is the coefficient vector. The system of equations in (7) is clearly highly underdetermined. Ifs is sufficiently sparse,
then there is hope of recoverings from y. To use the reconstruction methods of compressed sensing weneed to
designf so that the dictionaryΦ is sufficiently incoherent.

B. The Coherence of a Dictionary

We are interested in how the atoms of a general dictionaryΦ = (ϕi)i ∈ C
N×M (with N ≤ M ) are “spread

out” in C
N . This can be quantified by examining the magnitude of the inner product between its atoms. The

coherenceµ(Φ) is defined as the maximum of all of the distinct pairwise comparisonsµ(Φ) = maxi 6=i′ |〈ϕi,ϕi′〉|.
Assuming that each‖ϕi‖2 = 1 the coherence is bounded [9], [10] by

√

M −N

N(M − 1)
≤ µ(Φ) ≤ 1. (9)

Whenµ(Φ) = 1 we have two atoms which are aligned. This is the worst-case scenario:maximal coherence. In the
other extreme, whenµ(Φ) =

√

(M −N)/N(M − 1) we have the best-case scenario:maximal incoherence. Here
the atoms can be thought of as being “spread out” inC

N . When a dictionary can be expressed as the union of 2
or more ONBs, this lower bound becomes1/

√
N [11].

C. The Basis of Time-Frequency Shifts

It is well-known from pseudo-differential operator theory[12] that any matrix can be represented by a basis of
time-frequency shifts. Let theN ×N matrices

T =













0 1
1 0

. . . . . .
0 1 0













, M =













ω0
N 0
ω1
N

. . .
0 ωN−1

N













respectively denote theunit-shift and modulation operatorswhereωN = e2πi/N is theN th root of unity. Theith
time-frequency basis element is defined as

H i = M imodN · T ⌊i/N⌋, (10)

where ⌊·⌋ is the floor function. A simple calculation shows that the family (H i)
N2−1
i=0 forms an ONB with

respect to the Frobenius inner product. Further, under thisbasis it is known that some practical systemsH with
meaningful applications have a sparse representations [13]–[15]. This fact complements the theorems developed
in the subsequent sections.

A finite collection of length-N vectors which are time-frequency shifts of a generating vector, and which spans
the spaceCN is called a (discrete)Gabor frame[12]. Since(H i)

N2−1
i=0 is an ONB, it follows that our dictionaryΦ
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is a Gabor frame. Without loss of generality, assume‖f‖2 = 1. Because eachH i is a unitary matrix we have
from (8) that‖ϕi‖2 = 1 for i = 0, . . . , N2 − 1. We can also expressΦ as the concatenation ofN blocks

Φ =
(

Φ
(0) |Φ(1) | · · · |Φ(N−1)

)

, (11)

where thekth blockΦ(k) = Dk ·WN , with Dk = diag{fk, . . . , fN−1, f0, . . . , fk−1}, andWN = (ωpq
N )N−1

p,q=0. Here,
Φ

(k),Dk, andWN are all matrices of sizeN ×N . Essentially, the first column ofΦ(k) consists of the vectorf
shifted byk units in time (with no modulation). The remainingN−1 columns ofΦ(k) consist of theN−1 other
possible modulations of this first column. Since there areN different modulates for each of theN time shifts, we
haveN2 combinations of time-frequency shifts, and these form the atoms of our dictionary.

D. The Probing Test Functionf

We now introduce a candidate probe functionf which results in remarkable incoherence properties for the
dictionaryΦ. Consider theAlltop sequencefA = (fn)

N−1
n=0 for some primeN ≥ 5, where [16]

fn =
1√
N

e2πin
3/N . (12)

This function has been proposed for use in telecommunications (CDMA, etc.), for constructing themutually unbiased
bases(MUBs) used in quantum physics and quantum cryptography [17], and was made popular in the frames
community in [18].

Let ΦA denote the Gabor frame generated by the Alltop sequence (12). Since its atoms are already grouped into
N × N blocks in (11), we will maintain this structure by denoting the jth atom of thekth block asϕ(k)

j . Note

that ‖fA‖2 = 1, so we have0 ≤ |〈ϕ(k)
j ,ϕ

(k′)
j′ 〉| ≤ 1 for any j, j′, k, k′ = 0, . . . , N − 1. Within thesameblock (i.e.,

k = k′) we have

Property 1: |〈ϕ(k)
j ,ϕ

(k)
j′ 〉| =

{

0, if j 6= j′

1, if j = j′.

Thus, eachΦ(k) is an ONB forCN . Moreover, fordifferentblocks (i.e.,k 6= k′) we have

Property 2: |〈ϕ(k)
j ,ϕ

(k′)
j′ 〉| =

1√
N

for all j, j′ = 0, . . . , N − 1. This means that there is amutual incoherencebetween the atoms of different blocks
(equivalently, theN blocks make up a set of MUBs). Trivially, it follows thatµ(ΦA) = 1/

√
N . Furthermore, with

M = N2 in (9) we see that the lower bound of1/
√
N + 1 is practically attained. These amazing properties are

due to the cubic phase factor in the Alltop sequence (12), andthe fact thatN is prime. More details and proofs
can be found in [16].

Remark. Actually, in theory the Alltop sequence yields a set ofN +1 MUBs. This can be achieved by adjoining
theN canonical unit vectors to theN2 time-frequency shifted Alltop sequences. This results in atotal of N2 +N
vectors (grouped inN + 1 MUBs) that still maintain Properties 1 and 2. However, this last MUB is simply the
identity matrix. Since it possesses no intrinsic time-frequency structure, we do not see how to use this fact to our
advantage in the context of radar.

Remark. By inspection of (9) we observe that the smallest possible incoherence forM = N2 vectors is1/
√
N + 1

which is slightly smaller than the incoherence of the Gabor frame resulting from the Alltop sequence. If a set of
vectors obtains this optimal bound, it is automatically an equiangular tight frame, see [18]. It is conjectured that
for anyN there exists an (equiangular tight) Gabor frame withN2 elements which achieves the bound1/

√
N + 1.

However, explicit constructions are known only for a very few cases, cf. [19]. Therefore, and because the difference
between1/

√
N and1/

√
N + 1 is negligible for largeN , we will continue our investigation using Alltop sequences.
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E. Identifying Matrices via Compressed Sensing: Theory

Having established the incoherence properties of the dictionaryΦA we can now move on to apply the concepts
and techniques of compressed sensing. It is worth pointing out that most compressed sensing scenarios deal with
a K-sparse signals (for somefixedK), and one is tasked with determining how many observations are necessary
to recover the signal. Our situation is markedly different.Due to the fact thatΦA is constrained to beN × N2,
we know y = ΦAs will contain exactlyN observations. WithN fixed, our compressed sensing dilemma is to
determine how sparses should be such that it can be recovered fromy.

Therefore, withN measurements, we can only consider recovering signals which are less thanN -sparse. Indeed,
we hope to recover anyK-sparse signals with K ≤ C · N/ logN for someC > 0. The following theorems
summarize the recovery ofN × N matrices via compressed sensing when identified with the Alltop sequence.
Their proofs appear in Appendix A. Assume throughout that prime N ≥ 5.

Theorem 1. SupposeH =
∑

i siH i ∈ C
N×N has aK-sparse representation under the time-frequency ONB, with

K < 1
2(
√
N + 1), and that we have observedy = HfA. Then we areguaranteed to recovers either via BP or

OMP.

The sparsity condition in Theorem 1 is rather strict. Instead of the requirement ofguaranteedperfect recovery,
we can ask to achieve it with onlyhigh probability. This more modest expectation provides us with a sparsity
condition which is more generous.

Unless specified otherwise, arandom signal in this paper refers to avector whose nonzero (complex) coefficients
are independent with a Gaussian distribution of zero mean and unit variance.2 Further, these nonzero coefficients
are uniformly distributed along the length of the vector.

Theorem 2. Suppose randoms ∈ C
N2

is a K-sparse vector withK ≤ N/(16 log (N/ε)) for some sufficiently
small ε. Suppose further thatH =

∑

i siH i ∈ C
N×N and that we have observedy = HfA. Then BP will

recovers with probability greater than1 − 2ε2 −K−ϑ for someϑ ≥ 1 s.t.
√

ϑ logN/ log (N/ε) ≤ c wherec is
an absolute constant.

With Additive Noise. Theorems 1 and 2 can be extended to include the case of noisy observed signals. This
will of course have an effect on the sparsity of the signal of interest. For instance, the value ofK in Theorem 1
is reduced from1

2 (
√
N + 1) to 1

2(
√
N + 1)/(1 + 2εN/T ) as seen in the following theorem.

Theorem 3. SupposeH =
∑

i siH i ∈ C
N×N has aK-sparse representation under the time-frequency ONB, with

K < 1
2(
√
N +1)/(1 + 2εN/T ). Suppose further that we have observedy = HfA + e, where each element of the

noise|en| ≤ ε. Then the solutions⋆ to BP exhibits stability‖s− s⋆‖1 ≤ T .

In a similar way, Theorem 2 can be rephrased to account for observed signals which have been perturbed.

F. Identifying Matrices via Compressed Sensing: Simulation

Numerical simulations were performed and indicate that thetheories above are actually somewhat pessimistic. The
simulations were conducted as follows. The values of primeN ranged from5 to 127, and the sparsityK ranged
from 1 to N . For each ordered pair(N,K) a complex-valued,K-sparse vectors of length N2 was randomly
generated. With this random signal the observationy = ΦAs was generated. Then,y andΦA were input to convex
optimization software [21], [22] to implement BP (5). Denote s⋆ as the solution to the BP program. The recovered
vector was deemed successful if the error‖s − s⋆‖2 ≤ 10−4. This procedure was repeated100 times for each
(N,K)-pair; the total number of successes was recorded and then averaged.

Figure 2 shows how the numerical simulations compare to Theorems 1 and 2. The fraction of successful BP
recoveries as a function of(N,K) is shown as solid, gray-black contour lines. Although the values ofN used in
the simulations were relatively small, we see from these numerical results what appears to be a trend. The dashed,
red line representsK = N/(2 logN), and the zone of “perfect reconstruction” liesbelow this line. In this region a

2For complex signals, each nonzero entry has real and imaginary parts which are independent, Gaussian random variables with zero mean
and a variance of1/2; thus the unit variance of each nonzero coefficient is the result of the sum of the variances of its real and imaginary
parts. From the rotational invariance of the Gaussian distribution it can be shown that the phase of each random coefficient is circularly
symmetric, i.e., its phase is uniformly distributed on the interval [0, 2π). See Appendix A of [20].
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randomN ×N matrix (i.e.,H as defined in Theorem 2) with1 ≤ K ≤ N/(2 logN) can be perfectly recovered
with high probability by observingy = HfA . This is empirical evidence that the denominator in the upper bound
of K in Theorem 2 can be relaxed fromlog (N/ε) to just logN , and that the proportionality constantC = 1/2.
However, it is still an open mathematical problem to prove this for the Alltop sequence. Furthermore, the overly
strict constraint of Theorem 1 can be seen by the lower dash-dotted, blue line representingK = 1

2(
√
N + 1).

20 40 60 80 100 120
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 K = (N1/2+1)/2
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0.9

Fig. 2. Numerical results from 100 independent Matlab simulations implementing BP for different(N,K)-pairs. The solid, gray-black lines
are contours whose values represent the fraction of successful recoveries vs. theN -K domain. The dashed, red line shows that Theorem 2 is
overly pessimistic. The region below this is the zone of “perfect reconstruction.” The lower dash-dotted, blue line illustrates that Theorem 1
is too strict.

IV. RADAR

A. Classical Radar Primer

Consider the following simple (narrowband) 1-dimensional, monostatic, single-pulse, far-field radar model.Mono-
staticrefers to the setup where the transmitter (Tx) and receiver (Rx) are collocated. The far-field assumption permits
us to model the targets as point sources. Suppose a target located atrangex is traveling withconstant velocityv
and hasreflection coefficientsxv. Figure 3 shows such a radar with one target. After transmitting signalf(t), the
receiver observes the reflected signal

r(t) = sxvf(t− τx)e
2πiωvt, (13)

whereτx = 2x/c is the round trip time of flight,c is the speed of light,ωv ≈ −2ω0v/c is the Doppler shift, andω0

is the carrier frequency. The basic idea is that therange-velocityinformation (x, v) of the target can be inferred
from the observedtime delay-Doppler shift(τx, ωv) of f in (13). Hence, a time-frequency shift operator basis is a
natural representation for radar systems [23].

|=
(

f
--
⊕

r
mm

Tx/Rx Target

Fig. 3. Simplified radar model. Tx transmits signalf , and Rx receives the reflected (or echoed) signalr according to (13).
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Using amatched filter at the receiver, the reflected signalr is correlated with a time-frequency shifted version
of the transmitted signalf via the cross-ambiguity function (1)

|Arf (τ, ω)| =
∣

∣

∣

∫

R

r(t)f(t− τ)e−2πiωtdt
∣

∣

∣

= |sxvVff(τ − τx, ω − ωv)|
= |sxvAf (τ − τx, ω − ωv)|. (14)

From this we see that the time-frequency plane consists of the ambiguity surface off centered at the target’s
“location” (τx, ωv) and scaled by its reflection coefficient|sxv|. Extending (14) to include multiple targets is
straightforward. Figure 4 illustrates an example of the time-frequency plane with five targets; two of these have
overlapping uncertainty regions. The uncertainty region is a rough indication of the essential support ofAf in (3).
Targets which are too close will have overlapping ambiguityfunctions. This may blur the exact location of a
target, or make uncertain how many targets are located in a given region in the time-frequency plane. Thus, the
range-velocity resolution between targets of classical radar is limited by the radar uncertainty principle.

0 N−1τ →

N−1

ω
↑ •

••

•
•

✚✙
✛✘

✚✙
✛✘

✚✙
✛✘

✚✙
✛✘

✚✙
✛✘

Fig. 4. The time-frequency plane discretized into anN ×N grid. Shown are five targets with their associated uncertainty regions. Classical
radar detection techniques may fail to resolve the two targets whose regions are intersecting. In contrast, compressedsensing radar will be
able to distinguish them as long as the total number of targets is much less thenN2.

B. Compressed Sensing Radar

We now propose our stylized compressed sensing radar which under appropriate conditions can “beat” the
classical radar uncertainty principle! ConsiderK targets with unknown range-velocities and corresponding reflection
coefficients. Next, discretize the time-frequency plane into anN × N grid as depicted in Figure 4. Recognizing
that each point on the grid represents a unique time-frequency shift H i (10) (with a corresponding reflection
coefficientsi), it is easy to see that every possible target scene can be represented by some matrixH (6). If the
number of targetsK ≪ N2, then the time-frequency grid will be sparsely populated. By “vectorizing” the grid,
we can represent it as anN2× 1 sparse vectors.

Assume that the Alltop sequencefA is sent by the transmitter3. The received signal now is of the form in (7). If
the number of targets obey the sparsity constraints in Theorems 1-3 then we will be able to reconstruct the original
target scene using compressed sensing techniques. Moreover, the resolution of the recovered target scene is limited
by how the time-frequency plane is discretized as dictated by theN2 unique time-frequency shifts. That is,multiple
targets located at adjacent grid points can be resolveddue to the nature of compressed sensing reconstruction. The
effect of discretization on the resolution is discussed in more detail in the next section.

In reality, we are not actually “beating” the classical uncertainty principle as claimed above. Rather, we are just
transferring to a different mathematical perspective. Thenew compressed sensing uncertainty principleis dictated
by the sparsity constraints of Theorems 1-3.

3The transmitter in Fig. 3 sendsanalogsignals. We assume here that there exists a continuous signal which when discretized is the Alltop
sequence (12).
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It is interesting to note that Alltop specifically mentions the applicability of his sequence to spread-spectrum
radar. The cubic phase in (12) is known in classical radar as adiscrete quadratic chirp, which is similar to what bats
use to “image” their environment (although bats use a continuoussonar chirp). The use of a chirp is an effective
way to transmit a wide-bandwidth signal over a relatively short time duration. However, here in compressed sensing
radar we make use of the incoherence property of the Alltop sequence, which is due to specific properties of prime
numbers. Recall the three key points of this novel approach:(1) the transmitted signal must beincoherent, (2)
there isno matched filter, (3) instead, compressed sensing techniques are used to recover thesparsetarget scene.

C. Comparison of Resolution Limits

In this section we analyze the resolution limit for compressed sensing radar and compare it to the resolution
limit dictated by the radar uncertainty principle.

Assume that the transmitted signal is bandlimited to[−1
2B1,

1
2B1]. Actually, the received signal will have a

somewhat larger bandwidthB > B1 due to the Doppler effect. However, in practice this increase in bandwidth is
small, so we can assumeB ≈ B1. We observe the signal over a duration4 T and for simplicity sample it at the
Nyquist rateB. That means we gatherN = BT many samples during the observation interval. It is well-known
that observing a signal over a duration periodT gives rise to a maximum frequency resolution of1/T . The time
resolution is equal to the Nyquist sampling rate, i.e.,1/B. The step-size for the discretization of the time-frequency
plane is therefore limited to1/T and1/B, respectively.

If N ≥ 5 is prime then we can use the Alltop sequence as described in the previous section and recover multiple
targets with a resolution of1/N . Otherwise, there exist other “incoherent” sequences which can provide similar
results to Theorems 1-3; and therefore, can also achieve a resolution of 1/N . Thus for fixedT and fixedB, the
smallest rectangle in the time-frequency plane which can beresolved with compressed sensing radar has size
1/T × 1/B = 1/N .5

Now consider the Heisenberg uncertainty box associated with the radar uncertainty principle. Whenε = 0 in (4)
this box must have anarea of at least unity. This lower bound determines the resolution limit of classical radar.
Juxtapose this with the resolution limit of compressed sensing: we can easily make this box smaller by increasing
the observation periodT and/or the bandwidthB.6 Therefore, in theory, compressed sensing radar can achieve
better resolution than conventional radar.

Can we achieve an even better resolution than1/N for fixed durationT and fixed bandwidthB with compressed
sensing radar? Not with the existing theory and the existingalgorithms. To achieve better resolution one might
be tempted to increase the sampling rate. However, oversampling introduces correlations between the samples,
therefore it would not improve the incoherence of the columns of Φ (in practice though we always oversample
signals, but for different reasons).

The lower limit of1/(TB) appears in other areas of classical radar as well, usually inthe context of “thumbtack”
functions. A function is “thumbtack-like” if all of its values are close to zero except for a unique large spike. These
waveforms are also sometimes referred to as “low-correlation” sequences. Due to Properties 1 and 2 of the Alltop
sequence in Section III-D we see that its ambiguity surface actually has this thumbtack feature too. Other thumbtack-
like ambiguity surfaces include those associated with the waveforms which generate the equiangular line sets found
in [24]. The crucial difference here is that, in general, thelower resolution limit of1/(TB) can only be achieved
in classical radar if there isjust one target. As soon as several targets are clustered together then interference from
the non-zero portions of the ambiguity function causes false positives. This dictates the resolution limit, i.e., how
close targets can be and still be able to reliably distinguish them. The next section show computer simulations
which demonstrate this.

4We assume a periodic model here which can be relaxed using standard zero-padding procedures.
5Note that a precise analysis on the resolution limits of compressed sensing radar must also take into account approximating the continuous-

time, continuous-frequency, infinite-dimensional radar model by a discrete, finite-dimensional model. We will reporton this topic in a
forthcoming paper.

6There are, of course, practical considerations that prevent implementing an extremely large observation period and/or bandwidth, which
we ignore for the purpose of this paper.
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D. Compressed Sensing and Classical Radar Simulations

Figures 5 and 6 show the result of Matlab radar simulations. For purposes of normalization the grid spacing
in these figures is1/

√
N . Hence, the numbers shown on the axes represent multiples of1/

√
N . A random time-

frequency scene withK = 8 targets andN = 47 is presented in Figure 5(a). Thecompressed sensing radar
simulation used the Alltop sequence to identify the targets. In the noise-free case of Figure 5(b) it is clear that
compressed sensing was able toperfectly reconstructthe target scene (‖s−s⋆‖2 ∼ 10−8). Moreover, it is obvious
that targets located atadjacent grid pointscan be resolved, confirming the discussion of the last section.

Figure 5(c) shows how compressed sensing starts to suffer inthe presence of additive white Gaussian noise
(AWGN). Here the signal-to-noise ratio (SNR) is 15 dB. Some faint false positives have appeared, yet the target
scene has still been identified. The performance with 5 dB SNRis shown in Figure 5(d). One target was lost, many
false positives have appeared, and the magnitudes of the targets have been significantly reduced. Clearly, these are
all undesirable effects. It remains an open problem in the compressed sensing community how to deal with such
noisy situations.
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Fig. 5. Radar simulation withK = 8 targets on a47×47 time-frequency grid. (a) Original target scene. Compressed sensing reconstruction
of original target scene with SNR: (b)∞ dB, (c) 15 dB, (d) 5 dB. Notice in (b) that compressed sensing perfectly recovers (a) in the case
of no noise.

As a comparison to compressed sensing Figure 6 presentsclassical radarreconstruction (whichuses a matched
filter as described in Section IV-A) with two different transmitted pulses. The ambiguity surfaces associated with
these two waveforms demonstrate, in some sense, two extremes of traditional radar performance. In the first case, the
ambiguity surface is a relatively wide Gaussian pulse, whereas in the second case the ambiguity surface is a highly
concentrated “thumbtack” function. We stress that these are not necessarily the final results of traditional target
reconstruction, and are included only for rough comparison. In practice, radar engineers use extremely advanced
techniques to determine target range and velocity.

Figures 6(a), 6(c), and 6(e) show the original target scene of Figure 5(a) reconstructed using a Gaussian pulse.
The (self) ambiguity function associated with a Gaussian pulse is a two-dimensional (2D) Gaussian pulse as a
result of the STFT in (2). Therefore, according to (14) we seethat the radar scenes in these figures consist of a 2D
Gaussian pulse centered at each target in the time-frequency plane. In each of these it is clear that the targets in the
center are contained within the Heisenberg boxes of its neighbors. Depending on the sophistication of subsequent
algorithms some of the targets may be unresolvable. It is also apparent that Figures 6(c) and 6(e) suffer from added
noise, and this compounds the problem of accurate resolution [4].

As a consequence of the grid spacing, the Heisenberg box associated with the Gaussian pulse’s ambiguity surface
has been normalized to a square of unit area. This roughly corresponds to the support size ofU in (4), and is
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empirically verified in Figure 6(a) where we see that the diameter of the uncertainty region around the isolated
target at(τ, ω) = (10, 29) spans approximately seven grid points. Since the grid spacing is 1/

√
N we confirm that

the base and height of the Heisenberg box are each approximately 7/
√
47 ≈ 1.

Returning to the discussion of the previous section, it is clear that the noise-free cases shown in Figures 5(b)
and 6(a) experimentally confirm that compressed sensing radar can achieve much higher resolution than traditional
techniques.7 To make the comparison fair, we are using the same number of observations in the recovery for
both compressed sensing and classical radar. In this sense,it becomes apparent that we are leveraging the power
of compressed sensing theory in a different way than explained in Section II. The typical compressed sensing
application makesfar fewerobservations than necessary and still obtains perfect reconstruction of the data. However,
in this model of compressed sensing radar we implicitly assume Nyquist sampling of the baseband signal. Therefore,
with this setup, the benefit of employing compressed sensingrecovery manifests itself as a dramaticincrease in
resolution.
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Fig. 6. Traditional radar reconstruction of Fig. 5(a)’s original target scene. With no noise: (a) Gaussian pulse, (b) Alltop sequence. With
SNR = 15 dB: (c) Gaussian pulse, (d) Alltop sequence. With SNR= 5 dB: (e) Gaussian pulse, (f) Alltop sequence.

In contrast with a Gaussian pulse we now examine a waveform whose associated ambiguity surface is thumbtack-
like. Figures 6(b), 6(d), and 6(f) depict the original target scenetraditionally reconstructedusing the Alltop sequence.
Take note of the distinction with compressed sensing radar presented in Section IV-B which also uses this function.
Here, the classical approach transmits the Alltop sequence, and then uses amatched filter to correlate the received
signal with a time-frequency shifted Alltop sequence as in (14). The radar scene will now consist of a thumbtack

7There are many different ways to determine resolution in classical radar. Moreover, in the presence of noise, the SNR must also be
incorporated. See [2], [4].
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function centered at each target. In theory, this radar would provide target resolution similar to our compressed
sensing version (i.e., the target is represented as a point source in time-frequency plane rather than a “spread out”
uncertainty region).

However, the situation is not so simple. The non-zero portions of the ambiguity function can accumulate to create
undesirable effects. This is shown in Figure 6(b) where it isapparent,even in the ideal case of no added noise,
that there is a great deal of interference. Moreover, this type of “noise” is deterministic and cannot be remedied
by averaging over multiple observations. Notice that the interference seems to be distributed over a wide range
of amplitudes. In fact, referring to the original target scene in Figure 5(a), it appears that some of the weaker
targets (i.e., the ones with the smallest reflection coefficient in magnitude) have been buried in this noise. Even
if a reasonable threshold could be determined, perhaps onlya few of the strongest targets would be detected and
many false positives would remain. This is a substantial problem since the dynamic range of the targets can be
quite large.

We present these results to emphasize that naive application of traditional radar techniques with the Alltop
sequence will fail if the radar scene contains more than justa few strong targets. The outcome will be similar if
other low-correlation sequences are used.

Regardless of whether a transmitted waveform has an ambiguity surface which is spread or narrow, interference
from adjacent targets will necessarily occur in classical radar, and this will result in undesirable effects. In contrast,
compressed sensing radar does not experience this interference since it completely dispenses with the need for a
matched filter. Therefore, there are no issues with the ambiguity function of the transmitted signal.

V. OTHER APPLICATIONS

Narrowbandradar is by no means the only application to which the techniques presented here can be used.
Widebandradar systems admit a received signal which is of the form

|r(t)| ∼
∣

∣

∣f
(t− aτx

a

)∣

∣

∣, a = 1− 2v/c.

This shift-scaled signal is well-represented by a wavelet basis, and it seems feasible to replace the time-frequency
dictionary by a properly chosen time-scale dictionary. In adifferent direction, the methods introduced in this paper
can also be extended to multiple-input multiple-output (MIMO) radar systems.

Our approach can also be applied, with suitable modifications, to other applications that involve the identification
of a linear (time-varying) system. For instance, a challenging task in underwater acoustic communication is the
estimation of the acoustic propagation channel. Unlike mobile radio channels, underwater acoustic channels often
exhibit large delay spreads with substantial Doppler shifts. Of course, the location of the scatterers and the amount
of Doppler shift area priori not known. However, it is known that underwater communication channels do have a
sparse representation in the time-frequency domain, e.g.,see [14]. Thus, there is a good chance that our approach
via compressed sensing can lead to a channel estimation method that provides higher resolution than conventional
methods. We point out that in order to turn compressed sensing-based underwater acoustic channel estimation into
a reliable method, one needs to carefully incorporate various other properties of underwater environments, e.g.,
whether we are dealing with a deep sea environment or a shallow water environment.

Another application where the proposed compressed sensingapproach seems useful arises in high-resolution
radar imaging. For instance, when we consider the imaging of(moving) point targets, one would need to combine
our time-frequency based approach with the Born approximation of Helmholtz’s equation. This approach is a topic
of our current research.

Other applications arise in blind source separation [15], sonar, as well as underwater acoustic imaging based on
matched field processing.

VI. D ISCUSSION

We have provided a sketch for a high-resolution radar systembased on compressed sensing. Assuming that the
number of targets obey the sparsity constraint in Theorem 2,the Alltop sequence can perfectly identify the radar
scene with high probability using compressed sensing techniques. Numerical simulations confirm that this sparsity
constraint is too strict and can be relaxed toK ≤ N/(2 logN), although this has yet to be proven mathematically.
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It must be emphasized that our model presents radar in a rather simplified manner. In reality, radar engineers
employ highly sophisticated methods to identify targets. For example, rather than a single pulse, a signal with
multiple pulses is often used and information is averaged over several observations. We also did not address how to
discretize the analog signals used in both compressed sensing and classical radar. A more detailed study covering
these issues is the topic of another paper.

Related to the discretization issue is the fact that compressed sensing radar does not use a matched filter at the
receiver. This will directly impact A/D conversion, and hasthe potential to reduce the overall data rate and to
simplify hardware design. These matters are discussed in [1], although it does not consider the case of moving
targets. In our study the major benefit of relinquishing the matched filter is to avoid the target uncertainty and
interference resulting from the ambiguity function.

Since many of the implementation details of our compressed sensing radar have yet to be determined, and since
classical radar can also be implemented in many ways we were only able to make a rough comparison between their
respective resolutions.Regardless, the radar uncertainty principle lies at the core of traditional approaches and
limits their performance.We contend that compressed sensing provides the potential to achieve higher resolution
between targets. The radar simulations presented confirm this claim.

It must be stressed again that the success of this stylized compressed sensing radar relied on theincoherenceof
the dictionaryΦA resulting from the Alltop sequence. There exist other probing functions with similar incoherence
properties. Numerical simulations withf as a random Gaussian signal, as well as a constant-envelope random-phase
signal indicate similar behavior to what we have reported for the Alltop sequence. At the time of writing this paper
we became aware of a similar study [25] where the properties of these functions are analyzed in the context of
abstract system identification using compressed sensing.

There is also the possibility of combining classical radar techniques withℓ1 recovery. Initial tests show that while
we get good reconstruction, the results are not guaranteed,even in the case of no noise. Figure 7 shows a striking
example. In this noise-free scenario, a Gaussian pulse has been transmitted and reconstruction is done usingℓ1
minimization. Figure 7(a) shows an original radar scene with K = 3 targets. It is clear from Figure 7(b) thatnone
of the targets have been correctly recovered. In contrast, Theorem 1 proves that we areguaranteedto perfectly
recover both of these target scenes when transmitting the Alltop sequence. (Note, in order to employ Theorem 1,
we need to satisfyK < 1

2(
√
N +1). With N = 47 we can only useK = 3 targets since3 < 1

2(
√
47+1) ≈ 3.93.)
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Fig. 7. Radar simulation withK = 3 targets on a47 × 47 time-frequency grid. (a) Original target scene. (b) Traditional Gaussian pulse
and reconstruction usingℓ1 minimization (no noise). It is clear that conventional radar with ℓ1 minimization completely fails. However,
Theorem 1guaranteesperfect recovery in this case.

APPENDIX A
PROOF OF THETHEOREMS

For notational simplicity denote the coherence of dictionary Φ asµ. We need the following theorems which deal
with incoherent dictionaries such asΦA ∈ C

N×N2

. Recall forΦA thatµ = 1/
√
N with primeN ≥ 5.

Proposition 1 ( [26], Theorem B). Let X be a randomK-column subdictionary ofΦ (i.e, everyK-column subset
of Φ has an equal probability of being chosen). The condition

√

µ2K logK · ϑ+ K
N2 ‖Φ‖2 ≤ cδ with ϑ ≥ 1 implies

that P{‖X∗X − I‖ ≥ δ} ≤ K−ϑ wherec is an absolute constant.
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Proposition 2 ( [26], Theorem 14). Suppose randoms ∈ C
N2

has supportT , sparsenessK = |T |, and nonzero
coefficients whose phases are uniformly distributed on the interval [0, 2π). Sety = Φs, and let ΦT be the
submatrix consisting of the columnsϕj of Φ for j ∈ T . Suppose8µ2K ≤ 1/ log (N2/ζ) and that the least singular
valueσmin(ΦT ) ≥ 1/

√
2. Thens is the unique solution to BP except with probability2ζ.

Proposition 3 ( [27], Theorem 3). Suppose a noisy signaly = Φs+e is constructed as a sparse combination of the
columns of dictionaryΦ ∈ C

N×N2

with coherenceµ. Assume the sparsity ofs obeysK < (1+µ)/(2µ+4ε
√
N/T ),

and the entries of the noise are bounded|en| ≤ ε. Then the solutions⋆ to BP exhibits stability‖s− s⋆‖1 ≤ T .

A. Theorem 1

Proof: Theorem B in [7] (which incorporates results from [27], [28], and [29]) concludes for general dictio-
naryΦ that everyK-sparse signals with K < 1

2(µ
−1 +1) is the unique sparsest representation, and is guaranteed

to be recovered by both BP and OMP when observingy = Φs. Set Φ = ΦA and assume the hypothesis of
Theorem 1. Equation (7) providesy = HfA = ΦAs. The result follows by substitutingµ = 1/

√
N .

B. Theorem 2

Proof: Set Φ = ΦA . Let A denote the event that‖X∗X − I‖ < 1
2 , and letB represent the event that

BP recovers randoms from the observationy = HfA = ΦAs. Proposition 1 concernsP(A ∁) whereA ∁ is the
complement of setA , and Proposition 2 addressesP(B|A ). To apply these propositions we need their conditions
to be satisfied simultaneously. SinceΦA is a unit-norm tight frame we know that‖ΦA‖2 = N . With µ = 1/

√
N

and takingδ = 1
2 the condition of Proposition 1 is

√

K

N
logK · ϑ +

K

N
≤ c

2
. (15)

Fix ζ = ε2 for some sufficiently small desired probability of error in Proposition 2. The sparsity condition can now
be rewritten asK ≤ N/(16 log (N/ε)). Substituting this into (15) the LHS is less than

√

ϑ

16 log (N/ε)
log

( N

16 log (N/ε)

)

+
1

16 log (N/ε)

<

√

ϑ

16 log (N/ε)
logN +

√

1

16 log (N/ε)

<
1

2

√

ϑ logN

log (N/ε)
(sinceϑ, logN ≥ 1). (16)

Chooseϑ ≥ 1 such that
√

ϑ logN/log (N/ε) ≤ c is satisfied. Assume the other conditions of Proposition 2
(observe that eventA implies σmin(ΦT ) ≥ 1/

√
2), and letX = ΦT in Proposition 1. Then

P(B) ≥ P(B|A )P(A )

≥ (1− 2ε2)(1−K−ϑ)

> 1− 2ε2 −K−ϑ (17)

as desired.

C. Theorem 3

Proof: As in the proof of Theorem 1, this follows immediatelymutatis mutandis.
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