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Abstract

A stylized compressed sensing radar is proposed in whickitteefrequency plane is discretized into ahx N
grid. Assuming the number of targefs is small (i.e.,K < N?), then we can transmit a sufficiently “incoherent”
pulse and employ the techniques of compressed sensingansteact the target scene. A theoretical upper bound on
the sparsityK is presented. Numerical simulations verify that even Ibgitaformance can be achieved in practice.
This novel compressed sensing approach offers great jedtéot better resolution over classical radar.
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. INTRODUCTION

ADAR, sonar and similar imaging systems are in high demanchamy civilian, military, and biomedical
applications. The resolution of these systems is limitedclagsical time-frequency uncertainty principles.
Using the concepts of compressed sensing, we propose alipdiew approach to radar, which under certain
conditions provides better time-frequency resolutiontHis simplified version of a monostatic, single-pulse, far-
field radar system we assume that the targets are radiaiiyemiwith the transmitter and receiver. As such, we will
only be concerned with the range and velocity of the targeasure studies will include cross-range information.
There are three key points to be aware of with this approabhTle transmitted signal must be sufficiently
“incoherent.” Although our results rely on the use of a deteistic signal (the Alltop sequence), transmitting
white noise would yield a similar outcome. (2) This approdcies not use a matched filter. (3) The target scene
is recovered by exploiting the imposed sparsity constsaint
This report is a first step in formalizing the theory of congs®d sensing radar and contains many assumptions.
In particular, analog to digital (A/D) conversion and reldtimplementation details are ignored. Some of these
issues are discussed in [1] where the potential to desigpli§iead hardware is highlighted.
The rest of this section establishes notation and tools fliome-frequency analysis, while Section Il reviews
the concepts of sparse representations and compresséagsédsr main contribution can be found in Sections Il
and IV. Other applications are addressed in Section V.
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A. Notation and Tools from Time-Frequency Analysis

In this paper boldface variables represent vectors andaaatrwhile non-boldface variables represent functions
with a continuous domain. Throughout this discussion we oohsider functions with finite energy, i.¢..c L(R).
For two functionsf, g € L?(R), their cross-ambiguity functionf 7,w € R is defined as [2]

Apy(r,w) = /R Flt+7/2)g(f = 7/2)e 2t gy, (1)

where™ denotes complex conjugation, and the upright Roman létten/—1. The short-time Fourier transform
(STFT) of £ with respect tag is V, f(,w) = [z f(t) g(t — 7)e?™“!dt. A simple change of variable reveals that,
within a complex factor, the cross-ambiguity function isusqlent to the STFT

Apg(T,w) = ™V, f(T,w). )
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When f = g we have the(self) ambiguity functiond(7,w). The shape of theambiguity surfacg.As(7,w)| of f
is bounded above théme-frequency planér,w) by |A (7, w)| < A£(0,0) = || f||3.
The radar uncertainty principle3] states that if

| Msstr)fards = (=2 1718913 ©
for somesupportU C R? ande > 0, then the area
Ul > (1—e¢). (4)

Informally, this can be interpreted as saying that the sizm@mbiguity function’s “footprint” on the time-frequeync
plane can only be made so small.

In classical radar, the ambiguity function gfis the main factor in determining the resolution betweegdts [4].
Therefore, the ability to identify two targets in the tinteduency plane is limited by the essential support of
A¢(7,w) as dictated by the radar uncertainty principle. The primasult of this paper is that, under certain
conditions, compressed sensing radar achieves bettet tagplution than classical radar.

II. COMPRESSEDSENSING

Recently, the signal processing/mathematics communigyskean a paradigmatic shift in the way information is
represented, stored, transmitted and recovered [5]-Jk drea is often referred to &parse Representations and
Compressed Sensin@onsider a discrete signal of length M. We say that it isK-sparseif at most K < M
of its coefficients are nonzero (perhaps under some apptepchange of basis). With this point of view ttrae
information content ofs lives in at mostK dimensions rather thai/. In terms of signal acquisition it makes
sense then that we should only have to measure a siyralK times instead of\/. We do this by makingV
non-adaptive, linear observatioiirs the form ofy = ®s where® is a dictionary of sizeV x M. If ® is sufficiently
“incoherent,” then the information of will be embedded iny such that it can be perfectly recovered with high
probability. Current reconstruction methods include gsimeedy algorithms such asthogonal matching pursuit
(OMP) [7], and solving the convex problem:

min |81 s.t. s’ =y. (5)

The latter program is often referred to Basis Pursuit (BP) [5], [6]. A new algorithm,regularized orthogonal
matching pursuifROMP) [8] has recently been proposed which combines thargtdges of OMP with those of BP.

I1l. M ATRIX IDENTIFICATION VIA COMPRESSEDSENSING
A. Problem Formulation

Consider an unknown matriéf € CV*N" and an orthonormal basis (ONBH ;)X for CV*N'. Note that
there are necessarily N’ elements in this basis, and their ortho-normality is witspext to the inner product derived
from the Frobenius norm (i.e{A, B)r = trac§ A*B) for any A, B € CV*'). Then there exist coefficients
(i)Y such that

NN'—1
H = Z SiHi- (6)
i=0
Our goal is to identify/discover the coefficier(ts)fi]g"l. Since the basis elements are fixed, identifying these coef-
ficients is tantamount to discoverirdd. We will do this by designing a test functigh= (fo, ..., fav—1)T € CV

and observingd f ¢ CV. Here,(-)" denotes the transpose of a vector or a matrix. Figure 1 defict from

a systems point of view wher&l is an unknown “block box.” Systems like this are ubiquitonseingineering
and the sciences. For instandd, may represent an unknown communication channel which neells identified
for equalization purposes. In general, any linear timedvay (LTV) system can be modeled by the basis of time-
frequency shifts (described in the next section).

"When in the presence of additive noisethe measurements are of the fogn= ®s + e. If each element of the noise obeys, | < «,
then BP can be reformulated as
min ||s’||; s.t. [(®s' —y)u| <e, n=0,...,N—1
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Black Box

Fig. 1. Unknown systenfd with input probef and output observatiog.

For simplicity, from now on assume that’ = N. The observation vector can be reformulated as

N2-1 N2-1
y = > siHif = ) sip; = ®s, (7)
i=0 i=0
where
p; = H;f eCV (8)
is theith atom ® = (¢ | -+ | @n=_1) € CV*N* is the concatenation of the atoms, anet (sg, - - -, sy2_1)" € CN°

is the coefficient vector. The system of equations in (7)ésudy highly underdetermined. ¥ is sufficiently sparse
then there is hope of recoveringfrom y. To use the reconstruction methods of compressed sensingeack to
designf so that the dictionary is sufficiently incoherent

B. The Coherence of a Dictionary

We are interested in how the atoms of a general dictiodry (p,); € CV*M (with N < M) are “spread
out” in CV. This can be quantified by examining the magnitude of therirpreduct between its atoms. The
coherenceg.(®) is defined as the maximum of all of the distinct pairwise congoas.(®) = max;.; [(;, @)
Assuming that eaclip;||2 = 1 the coherence is bounded [9], [10] by

M- N
N(M —1)

Whenp(®) = 1 we have two atoms which are aligned. This is the worst-caspasm:maximal coherencen the
other extreme, whep(®) = /(M — N)/N(M — 1) we have the best-case scenarntaximal incoherenceHere

the atoms can be thought of as being “spread outCih. When a dictionary can be expressed as the union of 2
or more ONBs, this lower bound becomes/N [11].

< @) < L. ©)

C. The Basis of Time-Frequency Shifts

It is well-known from pseudo-differential operator thedfy?] that any matrix can be represented by a basis of
time-frequency shifts Let the N x N matrices

0 1 w 0
1 0 w3

T = . M = N
0 1 0 0 wy

respectively denote thenit-shift and modulation operatorsvherewy = ¢>™/V is the Nth root of unity. Theith
time-frequency basis element is defined as

Hi — MimOdN’TU/NJ, (10)

where |-] is the floor function. A simple calculation shows that the ilan*(Hi)f.\fo‘l forms an ONB with
respect to the Frobenius inner product. Further, underlthgss it is known that some practical systefswith
meaningful applications have a sparse representatifi8]—[15]. This fact complements the theorems developed
in the subsequent sections.

A finite collection of lengthA vectors which are time-frequency shifts of a generatingare@nd which spans
the spaceC” is called a (discretefsabor frame[12]. Since(Hi)f\fo‘1 is an ONB, it follows that our dictionargp



is a Gabor frame. Without loss of generality, assuhfélo = 1. Because eaclld; is a unitary matrix we have
from (8) that||¢;,|2 = 1 fori = 0,..., N? — 1. We can also expresh as the concatenation df blocks

P = (cI,(O) &M ... |<1>(N—1)), (11)
where thekth block ®*) = D, - Wy, with Dy, = diag{ fy. . .., fn—1. fo, .- - fr—1}, and Wy = (). Here,
®*) D, and Wy are all matrices of siz&V x N. Essentially, the first column cd(*) consists of the vectof
shifted byk units in time (with no modulation). The remainidfg—1 columns of®(*) consist of theN —1 other

possible modulations of this first column. Since there &rdifferent modulates for each of th¥ time shifts, we
have N? combinations of time-frequency shifts, and these form tioena of our dictionary.

D. The Probing Test Functioif

We now introduce a candidate probe functignwhich results in remarkable incoherence properties for the
dictionary ®. Consider theAlltop sequencefy = (fn)ffz‘ol for some primeN > 5, where [16]

L oring/N
n = ——=e T/ 12
f Vi (12)
This function has been proposed for use in telecommunitaGDMA, etc.), for constructing thautually unbiased
bases(MUBs) used in quantum physics and quantum cryptography, [A7d was made popular in the frames
community in [18].

Let ®5 denote the Gabor frame generated by the Alltop sequence%ie its atoms are already grouped into
N x N blocks in (11), we will maintain this structure by denotifgetith atom of thekth block as<p§k). Note
that || fall2 = 1, so we have) < \(cpg-k),(pg]f/)ﬂ <1foranyj,j, k k' =0,...,N—1. Within the sameblock (i.e.,

k = k') we have
: k) Ry _ )0, i gFES
Property 1 |<(P] 790]" >| - { 17 If j :j/-

Thus, each®®) is an ONB forC~. Moreover, fordifferentblocks (i.e.,k # k') we have

k) (K 1
Property 2: |(<P§- )7905-/ M = N
for all j,5/=0,..., N — 1. This means that there ismautual incoherenceetween the atoms of different blocks

(equivalently, theNV blocks make up a set of MUBS). Trivially, it follows thai{®a) = 1/+/N. Furthermore, with
M = N?in (9) we see that the lower bound of\/N + 1 is practically attained These amazing properties are
due to the cubic phase factor in the Alltop sequence (12),thedact thatN is prime. More details and proofs
can be found in [16].

Remark. Actually, in theory the Alltop sequence yields a setdft 1 MUBs. This can be achieved by adjoining
the N canonical unit vectors to th&? time-frequency shifted Alltop sequences. This results total of N2 + N
vectors (grouped inV + 1 MUBSs) that still maintain Properties 1 and 2. However, tlastIMUB is simply the
identity matrix. Since it possesses no intrinsic time-frelcy structure, we do not see how to use this fact to our
advantage in the context of radar.

Remark. By inspection of (9) we observe that the smallest possitehierence fol = N? vectorsisl /\/N + 1
which is slightly smaller than the incoherence of the Galbamk resulting from the Alltop sequence. If a set of
vectors obtains this optimal bound, it is automatically guiangular tight frame, see [18]. It is conjectured that
for any N there exists an (equiangular tight) Gabor frame with elements which achieves the bount/N + 1.
However, explicit constructions are known only for a verywfeases, cf. [19]. Therefore, and because the difference
betweenl /v/N and1/y/N + 1 is negligible for largeN, we will continue our investigation using Alltop sequences



E. Identifying Matrices via Compressed Sensing: Theory

Having established the incoherence properties of theodiaty &5 we can now move on to apply the concepts
and techniques of compressed sensing. It is worth pointiiighmt most compressed sensing scenarios deal with
a K-sparse signa$ (for somefixed K), and one is tasked with determining how many observatioesiacessary
to recover the signal. Our situation is markedly differddtie to the fact thatb, is constrained to béVv x N2,
we knowy = ®ps will contain exactly N observations. WithV fixed, our compressed sensing dilemma is to
determine how sparse should be such that it can be recovered frgm

Therefore, withNV measurements, we can only consider recovering signalshvee less thaiv-sparse. Indeed,
we hope to recover any -sparse signak with K < C' - N/log N for someC > 0. The following theorems
summarize the recovery oV x N matrices via compressed sensing when identified with theog\lsequence.
Their proofs appear in Appendix A. Assume throughout thaherN > 5.

Theorem 1. SupposeH = Y, s; H; ¢ CV* has aK-sparse representation under the time-frequency ONB, with
K < %(\/N+ 1), and that we have observed= H f,. Then we aregguaranteed to recovers either via BP or
OMP.

The sparsity condition in Theorem 1 is rather strict. Indte&the requirement ofjluaranteedperfect recovery,
we can ask to achieve it with onlgigh probability This more modest expectation provides us with a sparsity
condition which is more generous.

Unless specified otherwise random signal in this paper refers towector whose nonzero (complex) coefficients
are independent with a Gaussian distribution of zero meahuauit variancé. Further, these nonzero coefficients
are uniformly distributed along the length of the vector.

Theorem 2. Suppose randoms € CV” is a K-sparse vector withk' < N/(16log (N/¢)) for some sufficiently
small . Suppose further thall = 3, s;H; ¢ CV*V and that we have observeg = H f,. Then BP will

recovers with probability greater thanl — 22 — K—7 for somed > 1 s.t. ./9log N/log (N/¢) < ¢ wherec is

an absolute constant.

With Additive Noise. Theorems 1 and 2 can be extended to include the case of nosgrvell signals. This
will of course have an effect on the sparsity of the signalmériest. For instance, the value &f in Theorem 1
is reduced from§ (VN + 1) to 3(vVN + 1)/(1 + 2eN/T) as seen in the following theorem.

Theorem 3. SupposeH =, s; H; ¢ CV* has aK-sparse representation under the time-frequency ONB, with
K < (VN +1)/(1+2eN/T). Suppose further that we have obsergee H fa -+ e, where each element of the
noise|e,| < . Then the solutios* to BP exhibits stabilityl|s — s*||; < 7.

In a similar way, Theorem 2 can be rephrased to account fogreed signals which have been perturbed.

F. ldentifying Matrices via Compressed Sensing: Simuhatio

Numerical simulations were performed and indicate thathleries above are actually somewhat pessimistic. The
simulations were conducted as follows. The values of prisheanged fromb to 127, and the sparsity< ranged
from 1 to V. For each ordered pairV, K) a complex-valued/-sparse vectos of length N2 was randomly
generated. With this random signal the observagjca ®5 s was generated. Theg,and 5 were input to convex
optimization software [21], [22] to implement BP (5). Deaat* as the solution to the BP program. The recovered
vector was deemed successful if the erfier— s*||; < 10~*. This procedure was repeatéd0 times for each
(N, K)-pair; the total number of successes was recorded and theraged.

Figure 2 shows how the numerical simulations compare to fi#me 1 and 2. The fraction of successful BP
recoveries as a function ¢fV, K) is shown as solid, gray-black contour lines. Although thiies of N used in
the simulations were relatively small, we see from thesearigal results what appears to be a trend. The dashed,
red line represent& = N/(2log N), and the zone of “perfect reconstruction” lieslowthis line. In this region a

2For complex signals, each nonzero entry has real and imggjraats which are independent, Gaussian random variakiteszero mean
and a variance of /2; thus the unit variance of each nonzero coefficient is thaltre$ the sum of the variances of its real and imaginary
parts. From the rotational invariance of the Gaussianibigton it can be shown that the phase of each random coeifficsecircularly
symmetric, i.e., its phase is uniformly distributed on theeival [0, 27). See Appendix A of [20].



randomN x N matrix (i.e., H as defined in Theorem 2) with < K < N/(2log N) can be perfectly recovered
with high probability by observingg = H fa. This is empirical evidence that the denominator in the ujyoeind

of K in Theorem 2 can be relaxed frolog (N/e) to justlog N, and that the proportionality constafit= 1/2.
However, it is still an open mathematical problem to provie for the Alltop sequence. Furthermore, the overly
strict constraint of Theorem 1 can be seen by the lower dasied blue line representing = %(\/N+ 1).
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Fig. 2. Numerical results from 100 independent Matlab satiahs implementing BP for differeritV, K)-pairs. The solid, gray-black lines
are contours whose values represent the fraction of sfotessoveries vs. théV-K domain. The dashed, red line shows that Theorem 2 is
overly pessimistic. The region below this is the zone of feetr reconstruction.” The lower dash-dotted, blue linasttates that Theorem 1

is too strict.

IV. RADAR
A. Classical Radar Primer

Consider the following simple (narrowband) 1-dimensionabnostatic, single-pulse, far-field radar modétno-
staticrefers to the setup where the transmitter (Tx) and recefey &re collocated. The far-field assumption permits
us to model the targets as point sources. Suppose a targeedoatrange x is traveling withconstant velocity
and hagreflection coefficient,,. Figure 3 shows such a radar with one target. After transmitsignal f(¢), the
receiver observes the reflected signal

r(t) = Spof(t — 7p)eXwt, (13)

wherer, = 2z/c is the round trip time of flight¢ is the speed of lighty, ~ —2wyv/c is the Doppler shift, and

is the carrier frequency. The basic idea is that thiege-velocityinformation (z,v) of the target can be inferred
from the observetime delay-Doppler shiftr,,w,) of f in (13). Hence, a time-frequency shift operator basis is a
natural representation for radar systems [23].

Fig. 3. Simplified radar model. Tx transmits sigrngland Rx receives the reflected (or echoed) signhatcording to (13).



Using amatched filter at the receiver, the reflected signais correlated with a time-frequency shifted version
of the transmitted signaf via the cross-ambiguity function (1)

Ar)| = | [r@FE=r)e ]
= ’vavff( — Ty W — Wy)|
= |vav4f(7'_7—:]caw_wv)|- (14)

From this we see that the time-frequency plane consists efathbiguity surface off centered at the target’s
“location” (7,,w,) and scaled by its reflection coefficief,,|. Extending (14) to include multiple targets is
straightforward. Figure 4 illustrates an example of theetiimlequency plane with five targets; two of these have
overlapping uncertainty regions. The uncertainty reg®a rough indication of the essential supportdf in (3).
Targets which are too close will have overlapping ambigtitgctions. This may blur the exact location of a
target, or make uncertain how many targets are located ivengiegion in the time-frequency plane. Thus, the
range-velocity resolution between targets of classicaéras limited by the radar uncertainty principle.
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Fig. 4. The time-frequency plane discretized intoéink N grid. Shown are five targets with their associated unceytaiggions. Classical
radar detection techniques may fail to resolve the two targdose regions are intersecting. In contrast, compressesing radar will be
able to distinguish them as long as the total number of tarigetuch less theiV2.

B. Compressed Sensing Radar

We now propose our stylized compressed sensing radar wimnderuappropriate conditions can “beat” the
classical radar uncertainty principle! Considértargets with unknown range-velocities and correspondifigcetion
coefficients. Next, discretize the time-frequency plarte ian N x N grid as depicted in Figure 4. Recognizing
that each point on the grid represents a unique time-freggushift H; (10) (with a corresponding reflection
coefficients;), it is easy to see that every possible target scene can besmyed by some matrikd (6). If the
number of targetdy < N?, then the time-frequency grid will be sparsely populatey.“Bectorizing” the grid,
we can represent it as aii? x 1 sparse vectors.

Assume that the Alltop sequengig is sent by the transmittérThe received signal now is of the form in (7). If
the number of targets obey the sparsity constraints in merl-3 then we will be able to reconstruct the original
target scene using compressed sensing techniques. Mardayeesolution of the recovered target scene is limited
by how the time-frequency plane is discretized as dictatethe N2 unique time-frequency shifts. That isltiple
targets located at adjacent grid points can be resoldee to the nature of compressed sensing reconstruction. The
effect of discretization on the resolution is discussed orerdetail in the next section.

In reality, we are not actually “beating” the classical utiamty principle as claimed above. Rather, we are just
transferring to a different mathematical perspective. e compressed sensing uncertainty princifgedictated
by the sparsity constraints of Theorems 1-3.

3The transmitter in Fig. 3 sendmsalogsignals. We assume here that there exists a continuoud sigign when discretized is the Alltop
sequence (12).



It is interesting to note that Alltop specifically mentiorteetapplicability of his sequence to spread-spectrum
radar. The cubic phase in (12) is known in classical radardisaiete quadratic chirp, which is similar to what bats
use to “image” their environment (although bats use a caotissonar chirp). The use of a chirp is an effective
way to transmit a wide-bandwidth signal over a relativelgrstime duration. However, here in compressed sensing
radar we make use of the incoherence property of the Alltopueece, which is due to specific properties of prime
numbers. Recall the three key points of this novel approéththe transmitted signal must ecoherent, (2)
there isno matched filter, (3) instead, compressed sensing techniques are usedoierebesparsetarget scene.

C. Comparison of Resolution Limits

In this section we analyze the resolution limit for compegssensing radar and compare it to the resolution
limit dictated by the radar uncertainty principle.

Assume that the transmitted signal is bandlimited[iec%Bl,%Bl]. Actually, the received signal will have a
somewhat larger bandwidtB > B; due to the Doppler effect. However, in practice this inceegsbandwidth is
small, so we can assunm@ ~ B;. We observe the signal over a durafichii and for simplicity sample it at the
Nyquist rate B. That means we gathéy¥ = BT many samples during the observation interval. It is welhkn
that observing a signal over a duration peribdyives rise to a maximum frequency resolutionlgf’. The time
resolution is equal to the Nyquist sampling rate, il¢3. The step-size for the discretization of the time-freqyenc
plane is therefore limited té/7" and1/B, respectively.

If N > 5is prime then we can use the Alltop sequence as describe@ iprévious section and recover multiple
targets with a resolution of /N. Otherwise, there exist other “incoherent” sequences lwhan provide similar
results to Theorems 1-3; and therefore, can also achievedut®n of 1/N. Thus for fixedI" and fixedB, the
smallest rectangle in the time-frequency plane which camrrdselved with compressed sensing radar has size
1/T x1/B=1/N.J5

Now consider the Heisenberg uncertainty box associatdd twé radar uncertainty principle. When= 0 in (4)
this box must have aarea of at least unityThis lower bound determines the resolution limit of claakiradar.
Juxtapose this with the resolution limit of compressed isgnsve can easily make this box smaller by increasing
the observation period” and/or the bandwidtiB3.® Therefore, in theory, compressed sensing radar can achieve
better resolution than conventional radar.

Can we achieve an even better resolution thaN for fixed duration?” and fixed bandwidtiB with compressed
sensing radar? Not with the existing theory and the existilggrithms. To achieve better resolution one might
be tempted to increase the sampling rate. However, ovelsamptroduces correlations between the samples,
therefore it would not improve the incoherence of the colarmh® (in practice though we always oversample
signals, but for different reasons).

The lower limit of 1/(T'B) appears in other areas of classical radar as well, usuatheicontext of “thumbtack”
functions. A function is “thumbtack-like” if all of its vakes are close to zero except for a unique large spike. These
waveforms are also sometimes referred to as “low-cormiatsequences. Due to Properties 1 and 2 of the Alltop
sequence in Section I1l-D we see that its ambiguity surfateadly has this thumbtack feature too. Other thumbtack-
like ambiguity surfaces include those associated with theefiorms which generate the equiangular line sets found
in [24]. The crucial difference here is that, in general, kweer resolution limit of1 /(7'B) can only be achieved
in classical radar if there igist one targetAs soon as several targets are clustered together thefenetece from
the non-zero portions of the ambiguity function causesfglssitives. This dictates the resolution limit, i.e., how
close targets can be and still be able to reliably distifguieem. The next section show computer simulations
which demonstrate this.

“We assume a periodic model here which can be relaxed usindasthzero-padding procedures.

Note that a precise analysis on the resolution limits of casged sensing radar must also take into account approwgriae continuous-
time, continuous-frequency, infinite-dimensional radasdel by a discrete, finite-dimensional model. We will report this topic in a
forthcoming paper.

®There are, of course, practical considerations that pteweplementing an extremely large observation period andémdwidth, which
we ignore for the purpose of this paper.



D. Compressed Sensing and Classical Radar Simulations

Figures 5 and 6 show the result of Matlab radar simulatiows. gurposes of normalization the grid spacing
in these figures id /v/N. Hence, the numbers shown on the axes represent multiplegyaV. A random time-
frequency scene withl' = 8 targets andV = 47 is presented in Figure 5(a). Theompressed sensing radar
simulation used the Alltop sequence to identify the targktsthe noise-free case of Figure 5(b) it is clear that
compressed sensing was abletrfectly reconstructhe target sceng|§ — s*||o ~ 10~8). Moreover, it is obvious
that targets located adjacent grid pointscan be resolved, confirming the discussion of the last sectio

Figure 5(c) shows how compressed sensing starts to suffeéeirpresence of additive white Gaussian noise
(AWGN). Here the signal-to-noise ratio (SNR) is 15 dB. Soramff false positives have appeared, yet the target
scene has still been identified. The performance with 5 dB &N\shown in Figure 5(d). One target was lost, many
false positives have appeared, and the magnitudes of thetsanave been significantly reduced. Clearly, these are
all undesirable effects. It remains an open problem in thapessed sensing community how to deal with such
noisy situations.
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Fig. 5. Radar simulation witli{ = 8 targets on al7 x 47 time-frequency grid. (a) Original target scene. Compréss&nsing reconstruction
of original target scene with SNR: (lp dB, (c) 15 dB, (d) 5 dB. Notice in (b) that compressed sensiaidegtly recovers (a) in the case
of no noise.

As a comparison to compressed sensing Figure 6 preskssical radarreconstruction (whicluses a matched
filter as described in Section IV-A) with two different transmittpulses. The ambiguity surfaces associated with
these two waveforms demonstrate, in some sense, two exdrmefraditional radar performance. In the first case, the
ambiguity surface is a relatively wide Gaussian pulse, @agiin the second case the ambiguity surface is a highly
concentrated “thumbtack” function. We stress that thesenat necessarily the final results of traditional target
reconstruction, and are included only for rough compatridorpractice, radar engineers use extremely advanced
technigues to determine target range and velocity.

Figures 6(a), 6(c), and 6(e) show the original target scdriéigure 5(a) reconstructed using a Gaussian pulse.
The (self) ambiguity function associated with a Gaussialseis a two-dimensional (2D) Gaussian pulse as a
result of the STFT in (2). Therefore, according to (14) we thext the radar scenes in these figures consist of a 2D
Gaussian pulse centered at each target in the time-freguymace. In each of these it is clear that the targets in the
center are contained within the Heisenberg boxes of itshieigs. Depending on the sophistication of subsequent
algorithms some of the targets may be unresolvable. It & &tparent that Figures 6(c) and 6(e) suffer from added
noise, and this compounds the problem of accurate resol{4io

As a consequence of the grid spacing, the Heisenberg bogiasmbwith the Gaussian pulse’s ambiguity surface
has been normalized to a square of unit area. This roughlegponds to the support size bfin (4), and is
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empirically verified in Figure 6(a) where we see that the diten of the uncertainty region around the isolated
target at(r,w) = (10, 29) spans approximately seven grid points. Since the grid sgasil /v/N we confirm that
the base and height of the Heisenberg box are each apprakyniat,/47 ~ 1.

Returning to the discussion of the previous section, it &aclthat the noise-free cases shown in Figures 5(b)
and 6(a) experimentally confirm that compressed sensirgy ieah achieve much higher resolution than traditional
techniqued. To make the comparison fair, we are using the same number sdéraditions in the recovery for
both compressed sensing and classical radar. In this siglmmomes apparent that we are leveraging the power
of compressed sensing theory in a different way than exgthin Section Il. The typical compressed sensing
application makefar fewerobservations than necessary and still obtains perfechstiaation of the data. However,
in this model of compressed sensing radar we implicitly assilyquist sampling of the baseband signal. Therefore,
with this setup, the benefit of employing compressed sensngvery manifests itself as a dramaiticrease in
resolution

10 20 30

20,30 40

10 20,30 40 10

Fig. 6. Traditional radar reconstruction of Fig. 5(a)’'sgimal target scene. With no noise: (a) Gaussian pulse, (WppAkequence. With
SNR = 15 dB: (c) Gaussian pulse, (d) Alltop sequence. With SNRdB: (e) Gaussian pulse, (f) Alltop sequence.

In contrast with a Gaussian pulse we now examine a waveforosevassociated ambiguity surface is thumbtack-
like. Figures 6(b), 6(d), and 6(f) depict the original tergeendraditionally reconstructedising the Alltop sequence.
Take note of the distinction with compressed sensing radesgmted in Section 1V-B which also uses this function.
Here, the classical approach transmits the Alltop sequemzkthen uses matched filter to correlate the received
signal with a time-frequency shifted Alltop sequence asli#)( The radar scene will now consist of a thumbtack

"There are many different ways to determine resolution issital radar. Moreover, in the presence of noise, the SNR alas be
incorporated. See [2], [4].
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function centered at each target. In theory, this radar evgubvide target resolution similar to our compressed
sensing version (i.e., the target is represented as a pmimtes in time-frequency plane rather than a “spread out”
uncertainty region).

However, the situation is not so simple. The non-zero postiof the ambiguity function can accumulate to create
undesirable effects. This is shown in Figure 6(b) where @pparenteven in the ideal case of no added noise
that there is a great deal of interference. Moreover, thie tgf “noise” is deterministic and cannot be remedied
by averaging over multiple observations. Notice that thterference seems to be distributed over a wide range
of amplitudes. In fact, referring to the original target sedn Figure 5(a), it appears that some of the weaker
targets (i.e., the ones with the smallest reflection coefficin magnitude) have been buried in this noise. Even
if a reasonable threshold could be determined, perhapsaifdyv of the strongest targets would be detected and
many false positives would remain. This is a substantiabl@rm since the dynamic range of the targets can be
quite large.

We present these results to emphasize that naive applicafidraditional radar techniques with the Alltop
sequence will fail if the radar scene contains more thanqufew strong targets. The outcome will be similar if
other low-correlation sequences are used.

Regardless of whether a transmitted waveform has an antpiguiface which is spread or narrow, interference
from adjacent targets will necessarily occur in classiadhr, and this will result in undesirable effects. In costira
compressed sensing radar does not experience this ietecteisince it completely dispenses with the need for a
matched filter. Therefore, there are no issues with the amtgifunction of the transmitted signal.

V. OTHER APPLICATIONS

Narrowbandradar is by no means the only application to which the tealesgpresented here can be used.
Widebandradar systems admit a received signal which is of the form

r@)] ~ |r(F=2)

a

, a=1-2v/c.

This shift-scaled signal is well-represented by a wavedstidy and it seems feasible to replace the time-frequency
dictionary by a properly chosen time-scale dictionary. ldifferent direction, the methods introduced in this paper
can also be extended to multiple-input multiple-output \\Il) radar systems.

Our approach can also be applied, with suitable modificatitmother applications that involve the identification
of a linear (time-varying) system. For instance, a challegdask in underwater acoustic communication is the
estimation of the acoustic propagation channel. Unlike ileafadio channels, underwater acoustic channels often
exhibit large delay spreads with substantial Doppler shifif course, the location of the scatterers and the amount
of Doppler shift area priori not known. However, it is known that underwater commun@athannels do have a
sparse representation in the time-frequency domain, g2g.[14]. Thus, there is a good chance that our approach
via compressed sensing can lead to a channel estimatiorothétht provides higher resolution than conventional
methods. We point out that in order to turn compressed sg+imsed underwater acoustic channel estimation into
a reliable method, one needs to carefully incorporate uariather properties of underwater environments, e.g.,
whether we are dealing with a deep sea environment or a shalier environment.

Another application where the proposed compressed semlgipgach seems useful arises in high-resolution
radar imaging. For instance, when we consider the imagin@nokiing) point targets, one would need to combine
our time-frequency based approach with the Born approximaif Helmholtz's equation. This approach is a topic
of our current research.

Other applications arise in blind source separation [1&}as, as well as underwater acoustic imaging based on
matched field processing.

VI. DISCUSSION

We have provided a sketch for a high-resolution radar systased on compressed sensing. Assuming that the
number of targets obey the sparsity constraint in Theorethe Alltop sequence can perfectly identify the radar
scene with high probability using compressed sensing tqaks. Numerical simulations confirm that this sparsity
constraint is too strict and can be relaxedio< N/(2log N), although this has yet to be proven mathematically.
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It must be emphasized that our model presents radar in arrsi@lified manner. In reality, radar engineers
employ highly sophisticated methods to identify targetst Example, rather than a single pulse, a signal with
multiple pulses is often used and information is averagest egveral observations. We also did not address how to
discretize the analog signals used in both compressedngeasd classical radar. A more detailed study covering
these issues is the topic of another paper.

Related to the discretization issue is the fact that consgeesensing radar does not use a matched filter at the
receiver. This will directly impact A/D conversion, and hte potential to reduce the overall data rate and to
simplify hardware design. These matters are discussed]jmafthough it does not consider the case of moving
targets. In our study the major benefit of relinquishing thatahed filter is to avoid the target uncertainty and
interference resulting from the ambiguity function.

Since many of the implementation details of our compressedisg radar have yet to be determined, and since
classical radar can also be implemented in many ways we wdyeable to make a rough comparison between their
respective resolutiondRegardless, the radar uncertainty principle lies at theecoff traditional approaches and
limits their performanceWe contend that compressed sensing provides the potemt@dhieve higher resolution
between targets. The radar simulations presented configrcldim.

It must be stressed again that the success of this stylizegrassed sensing radar relied on iheoherenceof
the dictionary®, resulting from the Alltop sequence. There exist other prghfunctions with similar incoherence
properties. Numerical simulations withas a random Gaussian signal, as well as a constant-envelogemn-phase
signal indicate similar behavior to what we have reportedtie Alltop sequence. At the time of writing this paper
we became aware of a similar study [25] where the propertighase functions are analyzed in the context of
abstract system identification using compressed sensing.

There is also the possibility of combining classical raga&hniques with/; recovery. Initial tests show that while
we get good reconstruction, the results are not guaranged, in the case of no noise. Figure 7 shows a striking
example. In this noise-free scenario, a Gaussian pulse éas transmitted and reconstruction is done uging
minimization. Figure 7(a) shows an original radar scené \kit= 3 targets. It is clear from Figure 7(b) thabne
of the targets have been correctly recovered. In contrdspiem 1 proves that we agriaranteedto perfectly
recover both of these target scenes when transmitting thepAsequence. (Note, in order to employ Theorem 1,
we need to satisfy{ < 1(v/N +1). With N = 47 we can only usé< = 3 targets sinc& < 1 (v/47+1) ~ 3.93.)

40 o 40 o
0.

26 7 O 20600 w0

A E R RS R LR e R LR N ER R USSR L (O :ﬁ::ﬁ::::ﬁ::ﬁ:::::o-:

10 :ff:f:f::f::ff::f:oﬁ.f 10 D S S S P
.

10 20,30 40 10 20,30 40

Fig. 7. Radar simulation witl’ = 3 targets on al7 x 47 time-frequency grid. (a) Original target scene. (b) Triadiél Gaussian pulse
and reconstruction using: minimization (no noise). It is clear that conventional naglath /; minimization completely fails. However,
Theorem lguaranteesperfect recovery in this case.

APPENDIXA
PROOF OF THETHEOREMS

For notational simplicity denote the coherence of dictign® asp.. We need the following theorems which deal
with incoherent dictionaries such & € CV*V*. Recall for®, that . = 1/y/N with prime N > 5.

Proposition 1 ( [26], Theorem B) Let X be a randomK -column subdictionary o® (i.e, everyK-column subset
of ® has an equal probability of being chosen). The conditigm®K log K - 0 + %H‘I’H2 < c¢d with ¢ > 1 implies
that P{|| X*X — I|| > 6} < K~ wherec is an absolute constant.
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Proposition 2 ( [26], Theorem 14) Suppose random € CN* has supportl’, sparsenes# = |T'|, and nonzero
coefficients whose phases are uniformly distributed on therval [0,27). Sety = &s, and let & be the

submatrix consisting of the columps of ® for j € 7. Suppos&u?K < 1/log (N?/¢) and that the least singular
value o (®7) > 1/1/2. Thens is the unique solution to BP except with probabildy.

Proposition 3 ( [27], Theorem 3) Suppose a noisy signgl= ®s-+e is constructed as a sparse combination of the
columns of dictionarg® € CN*N* with coherence:. Assume the sparsity efobeysK < (1+u)/(2u—+4evVN/T),
and the entries of the noise are boundeg| < . Then the solutios™* to BP exhibits stabilityl|s — s*||; < 7.

A. Theorem 1

Proof: Theorem B in [7] (which incorporates results from [27], [28hd [29]) concludes for general dictio-
nary ® that everyK-sparse signas with K < %(;rl + 1) is the unique sparsest representation, and is guaranteed
to be recovered by both BP and OMP when obserwng ®s. Set® = ®, and assume the hypothesis of
Theorem 1. Equation (7) provides= H fa = ®ps. The result follows by substituting = 1/v/N. |

B. Theorem 2

Proof: Set® = ®a. Let o/ denote the event thgtX*X — I| < % and let# represent the event that
BP recovers randors from the observatiory = H fy = ®as. Proposition 1 concern]@(%c) where 7€ is the
complement of set7, and Proposition 2 addressB&%|.«7). To apply these propositions we need their conditions
to be satisfied simultaneously. Sindg is a unit-norm tight frame we know thd, ||> = N. With = 1/V/N

and takingy = % the condition of Proposition 1 is

| K K c
J— . — < —.
log K -9 + N 5 (15)

Fix ¢ = £2 for some sufficiently small desired probability of error iroposition 2. The sparsity condition can now
be rewritten ask’ < N/(16log (N/e)). Substituting this into (15) the LHS is less than

i N 1
161og (N/2) Og(16log (N/s)) T 1610 (N/2)

Y 1
\/16log(N/s) log NV + \/16log(N/5)

1 [ Jlog N .
—y | —= Y. log N > 1). 16
< 2\ Tog (V/2) (sinced,log N > 1) (16)

Choosed > 1 such that\/Jlog N/log (N/e) < c is satisfied. Assume the other conditions of Proposition 2
(observe that event/ implies o (®7) > 1/v/2), and letX = &1 in Proposition 1. Then

P(#) > P(%B|o)P(F)
> (1-2H)(1-KY)
>

1-22 - K™Y (17)
as desired. [ |
C. Theorem 3

Proof: As in the proof of Theorem 1, this follows immediatetyutatis mutandis [ |
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