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Abstract—Wireless “MIMO” systems, employing multiple
transmit and receive antennas, promise a significant increase
of channel capacity, while orthogonal frequency-division multi-
plexing (OFDM) is attracting a good deal of attention due to its
robustness to multipath fading. Thus, the combination of both
techniques is an attractive proposition for radio transmission.
The goal of this paper is the description and analysis of a new
and novel pilot-aided estimator of multipath block-fading chan-
nels. Typical models leading to estimation algorithms assume
the number of multipath components and delays to be constant
(and often known), while their amplitudes are allowed to vary
with time. Our estimator is focused instead on the more realistic
assumption that the number of channel taps is also unknown
and varies with time following a known probabilistic model. The
estimation problem arising from these assumptions is solved
using Random-Set Theory (RST), whereby one regards the mul-
tipath-channel response as a single set-valued random entity.
Within this framework, Bayesian recursive equations determine
the evolution with time of the channel estimator. Due to the
lack of a closed form for the solution of Bayesian equations, a
(Rao–Blackwellized) particle filter (RBPF) implementation of
the channel estimator is advocated. Since the resulting estimator
exhibits a complexity which grows exponentially with the number
of multipath components, a simplified version is also introduced.
Simulation results describing the performance of our channel
estimator demonstrate its effectiveness.

Index Terms—Bayes theory, channel estimation, MIMO-OFDM,
particle filtering, random finite set theory, sequential Monte Carlo.

I. INTRODUCTION

W IRELESS multiple-input-multiple-output (MIMO) sys-
tems, employing several transmit and receive antennas,

are known to provide a significant increase of channel capacity
[3], [9]. Combination of MIMO with orthogonal-frequency-di-
vision multiplexing (OFDM), which has simple implementation
and robustness against frequency-selective block-fading chan-
nels [22], has been advocated recently [5]. A basic feature of
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these systems is their reliance upon the knowledge of channel
state information (CSI) at the receiver. This can be achieved, for
example, by sending a sequence of pilot symbols known to the
receiver or by using blind techniques, which do not require the
transmission of pilots (for an overview of pilot-aided and blind
channel estimators for MIMO-OFDM, see [2], [6], and refer-
ences therein). Compared with pilot-aided, blind channel esti-
mation generally requires a long data record to extract the infor-
mation needed, and hence is typically adopted on slowly time-
varying channels. In addition, it entails a high complexity, which
is to be traded off for the loss of spectral efficiency caused,
in pilot-aided techniques, by the transmission of symbols not
bearing any information.

This work is devoted to pilot-based sequential estimation of
time-varying multipath channels for MIMO-OFDM. Unlike
previous studies on the same topic, here we assume that the
number of multipath components, their delays, and their am-
plitudes, may vary with time according to a known evolution
model. The availability of a training set makes it possible to
define “clairvoyant” detectors, wherein the channel state is first
estimated, then employed to detect information symbols. In
the time-varying scenario outlined above, channel tracking is a
key to achieve satisfactory performance. A classical approach
to channel estimation consists of assuming that all paths are
always simultaneously active, and tracking their evolution. If
this is done, the estimation quality is impaired, because receiver
resources are wasted to estimate the amplitudes of paths that
are not active. Recently, estimators of channels with unknown
order were considered (see, e.g., [16]). However, the channel
order is assumed to be constant in time, and all paths active.
The new approach we follow here relies instead on modeling
the channel response as a finite random set (FRS), which allows
us to avoid the assumptions that the exact number of active
paths are known and/or constant. Their evolution is tracked
by exploiting finite set statistics (FISST) [13], a mathematical
tool that has recently found application in multisensor-multi-
target tracking [12], multispeaker tracking [11], and multiuser
detection [4]. With this technique, path births or deaths, and
amplitude variations, are reflected by changes of the elements
and/or the cardinality of a properly defined random set, and can
be tracked once a model for the channel dynamics is available.

Practical implementation of an FRS estimator relies on ad hoc
approximations of Bayesian filtering equations. Among them,
sequential Monte Carlo (SMC) algorithms [21] and probability
hypothesis density (PHD) filters [12], [20] have attracted a good
deal of attention. We shall not consider PHD filters here, be-
cause their use relies upon a set of assumptions on the dynamic

1053-587X/$25.00 © 2009 IEEE



3168 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 57, NO. 8, AUGUST 2009

Fig. 1. MIMO-OFDM system.

model and on the available observations which are not met in
our problem [13]. We focus instead our attention to SMC al-
gorithms, which approximate Bayesian recursions by numer-
ical integration and are inherently more flexible than PHD fil-
ters [1]. Since the accuracy of SMC approximations generally
decreases as the number of entities to be estimated increases
(for a fixed number of particles), we are faced with the problem
of efficiently tracking a densely populated dynamic scenario by
using a computationally feasible algorithm [21]. Recently, an ef-
ficient multiple-target tracking SMC filter based on the concept
of Rao–Blackwellization was advocated [19]. This consists of
sampling only some of the random variables involved in SMC,
while others are handled analytically through Kalman filtering
(KF). The only required assumption is that, upon suitable condi-
tioning, the problem reduces to a linear Gaussian one, viz., the
system be conditionally linear Gaussian (CLG) [8].1 Building
partially on the results of [19], we introduce here a Rao–Black-
wellized particle filtering (RBPF) algorithm for the joint esti-
mation of the number of active paths and their amplitudes in
MIMO-OFDM channels. An approximate (and hence subop-
timal) version of this algorithm is also introduced, and its per-
formance is assessed. It achieves a remarkable complexity re-
duction at the price of a very limited performance loss. We also
show that the proposed channel estimation procedure can handle
situations where the multipath delays are not integer multiples
of the inverse of the transmission bandwidth.

The balance of this paper is organized as follows. Section II
describes the system model and the problem statement, while
Section III is devoted to channel tracking, along with the in-
troduction of FRS estimators and the illustration of their im-
plementation through RBPF. Section IV contains numerical re-
sults, while concluding remarks form the object of Section V.

A few words on our notations: Normal-face letters denote
scalar values. Lower-case (respectively, upper-case) boldface
letters are used for column vectors (respectively, matrices).

1Nonlinear evolutions can, in any case, be dealt with through extended
Kalman filtering (EKF) or unscented Kalman filtering (UKF).

Upper calligraphic letters are used for random sets. A su-
perscript denotes transposition; denotes Hermitian
transposition; is the Moore–Penrose pseudoinverse of
matrix . denotes expectation. When applied to sets,
denotes the cardinality of , and when applied to a complex
scalar, denotes the magnitude of . denotes the
identity matrix, and the all-zero matrix. If ,

, is a sequence of column vectors of the same
dimension then and stands for
the diagonal matrix with the column vector on its diagonal.

and denote the determinant and the trace of

the square matrix , respectively. Finally, and
.

II. PROBLEM STATEMENT

Consider the system architecture depicted in Fig. 1. This
shows a MIMO-OFDM system with transmit and receive
antennas. At each transmit antenna, an OFDM modulator
employing subcarriers is used. The symbols transmitted by
the th antenna at discrete time index are stacked into the

-dimensional column vector ,
which undergoes an IFFT and the insertion of a cyclic prefix
of length , denoting the maximum length
of all multipath channels. At the th receive antenna, the
cyclic prefix is removed and an FFT is computed, whereby the

-dimensional column vector of the observations takes the
form [2]

(1)

where , and
is an -dimensional column

vector representing the channel impulse response from the th
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Fig. 2. Symbol pattern of a generic transmission antenna in a MIMO-OFDM
system.

transmit to the th receive antenna.2 As to , it represents
additive noise, i.e., , while is
the Fourier matrix whose entry is

(2)
Notice the assumption, implicit in the model above, that the
delays are integer multiples of the inverse of the transmission
bandwidth: the extension to noninteger delays will be dealt with
briefly below. A number of pilot symbols are uni-
formly interleaved with data to enable channel estimation, ac-
cording to the symbols pattern shown in Fig. 2.

The signal observed in the pilot subcarriers at the th
receive antenna at time is organized into the -dimen-
sional column vector .
Analogously, the observations from the information sub-
carriers are organized in the -dimensional column
vector where , for

, is the th information subcarrier index. With
these notations, (1) can be rewritten as

Pilot subcarriers: (3a)

Information subcarriers:

(3b)

where ,

,

, , while and
are sub-matrices of , of order and ,
respectively.

As anticipated, representation (3) is highly redundant,
since it assumes the simultaneous presence of paths

2We hasten to recall here that a “standard” way of proceeding further with
this model consists of keeping a constant number� of components in vector
� . Whenever the number of actual paths is lower than � , the corre-
sponding vector components are set to zero. This procedure is far from optimum,
as the receiver wastes computational resources to estimate the amplitudes of
nonexisting paths. The approach taken in this paper, one which is typical of
random-set-theoretical analyses and will be illustrated in detail infra, models
every component as a singleton-or-empty set, thus avoiding the estimation of
absent paths.

for each transmit-receive antenna pair at any epoch . To
dispense with this assumption, we introduce a random-set
model for the channel. Explicitly, let us introduce the sin-
gleton-or-empty set , if the th path from the th
transmit to the th receive antenna is not active at time ,
and , otherwise.
The channel state for the pair at epoch is completely
described by the disjoint union

(4)

Here, is a finite random set (FRS) defined on
. The whole multipath channel ob-

served by the th receive antenna at time , denoted , can
be written as the disjoint union

(5)

where now is an FRS on
. Notice that is uniquely speci-

fied by an FRS on a countable space, , the projection
of onto , and
by an FRS . On
the other hand, is totally ordered by the standard
“ ” relation, and induces a bijection between and

, viz., once is known, can be associated
with an -dimensional vector whose nonzeros entries,
uniquely identified by , contain the continuous parts
of , namely the elements of . Similar considera-
tions apply to , which is specified by its projections on

and , and ,
respectively.

The signal received at the th receive antenna can thus be
written as in (3), with the understanding that the tap weight vec-
tors are now given by the following set functions:

if
otherwise.

(6)
Equation (6) highlights the fact that efficient channel tracking
amounts to sequentially estimating the FRSs , which, in
turn, requires defining a model for their evolution. In what fol-
lows, we introduce a Markov model for the channel dynamics,
whereby customary Bayesian recursions allow causal channel
tracking.

A. Channel Dynamics

From now on we assume that distinct transmit-receive
antenna pairs generate independent channels,3 and that the
coefficients of different paths are themselves independent. This
makes it sufficient to characterize only the singleton-or-empty
sets , which, in turn, allows the description of both

and through the properties of disjoint unions of
independent FRS’s. In our model, is the union of the

3We disregard the consideration of correlated channels, whose analysis is
more complicated but does not involve any additional theoretical difficulty in
the present context.
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path gains surviving from time , denoted ,
and of the path gains born at time , denoted . Hence, we
have

(7a)

(7b)

(7c)

In (7), we have exploited once again the fact that the FRSs
and can be equivalently described through their

projections onto and , while
is the singleton-or-empty random set

w.p.

w.p. .

(8)
Here, is the probability that a path active at disap-
pears at , and . The constraints (7b) and (7c) reflect
the facts that no component, among those active at time ,
can migrate to the set of new paths, and that the paths surviving
at are a subset of those active at . Since

(9)

the assumption that the paths may disappear or survive indepen-
dently of each other yields

(10)

and

(11)

where is the transition density describing
the evolution of the gains of the surviving paths. Thus

(12)

Analogously, defining

, the independence assumption for
the FRS of the newly born paths yields

(13)

where is the probability that a new path arises, while
is the marginal probability density function of the th

newly born path gain from the th transmit to the th receive
antenna at epoch .

The transition density of , i.e.,

(14)

can now be determined through the generalized-convolution for-
mula [4] as shown in (15) shown at the bottom of the page, and

(16)

Under the assumption that are independent across and
, we have

(17)

(15)
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Equation (17) represents the transition model for the multipath
channel experienced by the th receive antenna.

B. Clairvoyant Decoding

The availability of a set of pilot signals allows the implemen-
tation of a clairvoyant4 data detector, wherein the observations
(3a) are used to obtain estimates of the channel state , and
then, in the conditional likelihood of the observations (3b), to
detect information symbols. Notice indeed that

(18)

whereby a clairvoyant detector is obtained as

(19)

with is an estimate of obtained through the pilot
observations (3a). Availability of allows one to split the
minimization in (19) into disjoint minimizations, as one
can easily verify by noticing that

(20)

where we have defined

(21a)

(21b)

...
. . .

... (21c)

(21d)

Here, models the frequency-flat fading experienced
by the th information subcarrier from the th transmit to the

th receive antenna at time . Notice that the complexity of the

4The word “clairvoyant” is used in the same sense as in [18, ch. 14].

above receiver grows linearly with the number of information
subcarriers, and exponentially with the number of transmit an-
tennas.5

The final step to be taken, one which forms the object of next
sections, can be formulated as the following problem. Given the
observation of the pilot subcarriers at the generic th receive
antenna up to time (i.e., for ), the pilot sym-
bols sent by the transmit antennas (i.e., for
and ), and the channel model of Section II-A, de-
rive a causal estimator for , so as to enable
real-time implementation of the clairvoyant detector (19).

III. RECURSIVE FILTERING

The evolution with time of the predicted density of the FRS
is described by the Chapman–Kolmogorov equation

(22)

where the symbol emphasizes the fact that the integral
in (22) is a set integral [13]. At time , the observation
is made available, and hence the filtering distribution can be
updated by using Bayes’ rule

(23)

Equations (22) and (23), the “Bayesian recursions” (BR), de-
fine the so-called Bayesian filter. A closed-form solution of the
above equations is, in general, unavailable, and hence approx-
imate techniques are needed. We defer to Section III-B a de-
scription of the approximations to the BR. Before doing that,
we discuss how an estimate of the random set can be de-
rived from .

A. Defining FRS estimators

Once the a posteriori density is computed,
a “Bayesian” estimate of can be obtained, as outlined
for example in [13], by minimizing the expected value of a
suitable cost function. Two popular such estimators are known
as GMAP-I (also, “Marginal Multitarget Estimator”) and
GMAP-II (also, “Joint Multitarget Estimator”). GMAP-I is a
two-stage estimator, wherein the set cardinality is estimated
first. Defining

(24)
the probability that the cardinality of equals , we have

(25)

5If needed, linearity in the number of transmit antennas can always be granted
by resorting to suboptimal strategies borrowed from multiuser-detection theory
[17].
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GMAP-II performs the estimation in a single step:

(26)

where is a small constant determined by the cost function that
this estimator minimizes [13]. GMAP-I minimizes first the ex-
pected value of the cost function , involving only the cardi-
nality of the set [13, p. 192]:

(27)

and, successively, performs a MAP estimation given the esti-
mated cardinality. Indeed, GMAP-II minimizes the expected
value of the cost function , where is defined
as

and

otherwise

(28)

where is a closed ball in . The choice of this estimator
implies that no cost is incurred whenever (a) the number of ac-
tive paths and their location are estimated correctly, and (b) the
true and estimated values of the continuous components are both
contained in a closed ball whose size is reflected by the choice
of the constant in (26). If either (a) or (b) is not satisfied, then
the cost is 1.

For the specific problem studied in this paper, we advocate
a novel estimation rule, which turns out to be preferable to
GMAP-I and GMAP-II. The reason for this is that GMAP-I
and GMAP-II were originally defined in the context of a mul-
tisensor-multitarget tracking framework, wherein the discrete
elements typically describe the target type and/or its tactical
importance. In our scenario, we have ,
which is generally not true in situations where the discrete
components of the objects of interest are allowed to coincide,
as in multisensor-multitarget tracking. In our specific context,
we look instead for a cost function associating proper weights
to an error in the estimate of the countable part, i.e., ,
and to that in the estimate of the continuous part, i.e., .
Based on this rationale, the cost function we advocate is

.

(29)

This assigns cost to any wrong estimate of the set of active
paths or of their location. If this estimate is correct, the cost is a
function of the discrepancies between estimated and true con-
tinuous parameters. The actual selection of and of reflects
the relative weights assigned to the errors in the discrete and the
continuous parameters. Define

(30)

the probability mass function of . The causal optimum
estimator corresponding to (29) minimizes, at each epoch , the
conditional risk

(31)

Not unexpectedly, the estimates of and are
inherently coupled. However, for large (i.e., as errors in
the discrete part, containing the object identities, carry much
more weight than the errors in the continuous parts), the two
estimates tend to decouple, which suggests a two-step estimator
minimizing separately the two summands in (31). This is what
we call GMAP-III. If is a quadratic function, the second
minimization yields the conditional expectation, and hence the
GMAP-III estimator is the following:

(32)

We now review the SMC methods enabling the implementation
of the above estimation rules.

Algorithm 1: Generic RBPF

1: Given
for to

2: Sample

3: Set
4: Update the weight

end
Normalization
for to

5:
end

6: Resampling with replacement

7: OUTPUT

B. Tracking the Posterior Density

Whenever a closed-form expression for the Bayesian re-
cursions (22), (23) is missing (which occurs in almost all
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cases, a notable exception being the linear Gaussian problem),
approximate and efficient filtering techniques are typically
employed to track a posteriori densities. In particular, SMC
techniques, which rely upon a sample-based construction of the
densities involved in (22) and (23), have established themselves
as an invaluable tool for the implementation of random-set
tracking systems [21]. Unfortunately, SMC efficiency de-
creases as the dimension of the state space increases, hence
possibly requiring an inordinately large number of particles.6

To reduce complexity, a clever choice consists of resorting to
“Rao–Blackwellization,” a technique that improves efficiency
by analytically marginalizing some of the random variables
(those being Gaussian and appearing linearly) from the joint fil-
tering density. Thus, only the nonlinear part of the system model
is estimated through SMC, while its linear part is estimated
through conventional Kalman filtering. Rao-Blackwellized
particle filtering can result in a decrease of the variance of the
SMC estimates and of their complexity, at the cost of its limited
applicability—the system under consideration must be condi-
tionally linear Gaussian (CLG). In our framework, the dynamic
channel model of Section II-A, under the assumption that the
densities and

in (12) and (13), respectively, are Gaussian, yields in fact a
CLG system. Thus, RBPF can be applied outright through the
two following basic steps:

1) sample using efficient SMC methods;
2) evaluate through

Kalman filtering for each sample of ;
where we have employed the customary notation to de-
note the sequence of the FRSs . Recall that,
while general Bayesian filtering aims at propagating the fil-
tering distribution , RBPF relies on a recursion
for the so-called joint a posteriori density ,
from which the filtering density can often be easily obtained.
Under the Markov assumption for , the joint a posteriori
density satisfies the recursion

(33)

Resorting to the specification of through and
, we have, from (14)

(34)

Notice that is a random set defined on a count-
able space, while , conditioned on , is
a random set whose cardinality equals . Due to
the CLG hypothesis, the conditional a posteriori density

is analytically tractable
through Kalman filtering. Hence, we can easily marginalize

6For a thorough discussion of SMC in random-set tracking, the interested
reader is deferred to the now abundant literature on this issue, such as, e.g.,
[13].

out from the joint a posteriori density, and look for
an estimator of , which lies in a space of
reduced dimension (viz., a countable space). Formally, we have

(35)

where the density follows the recursion

(36)

Assume that we have an approximation of the posterior density
at time in terms of particles:

(37)

where is the “0–1” measure

if
otherwise.

(38)

When the measurement is available, the RBPF performs
the operations described in Algorithm 1 in order to determine
an approximation in terms of particles of .
Note that the quantity in
Algorithm 1 is the “importance distribution,” which plays a key
role in SMC algorithms and whose choice will be discussed
later on in this subsection. From the particle approximation of
the joint a posteriori density

(39)

it is straightforward to obtain the filtering density required for
causal channel estimation

(40)

Moreover, since the density is
analytically tractable, we can obtain a set of particles for the
elements of as

(41)

for (this follows from the mapping in (6)). We
remark incidentally that, in the CLG scenario we are assuming,
(41) represents the conditional minimum-mean-square error
(MMSE) and the conditional maximum a posteriori (MAP) es-
timator of the elements of . The full joint a posteriori
density can finally be written

(42)
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Online estimation of the paths active at epoch can be thus
performed by maximizing the filtering density of :

(43)

while the elements of are estimated as

(44)

a task that can be accomplished by KF. Indeed, from the law of
total expectation

(45)

From (43) and (44), we may notice that RBPF is akin
to the family of the GMAP-III estimators. Actually, we
prove in the Appendix that the RBPF-based estimator is
asymptotically (in signal-to-noise ratio) Bayes-optimal for
the cost family (29) when we choose to be quadratic:

.
As anticipated earlier, the “importance distribution” repre-

sents a degree of freedom whose choice has a great impact on
the overall algorithm efficiency. The optimal importance dis-
tribution, i.e., the one minimizing the variance of the particle
weights, is [13], [19]

(46)

corresponding to the weight update law

(47)

Notice that the computation of the above distribution requires
an additional integration stage, viz.,

(48)

Since is an FRS on a countable space, the integral
above becomes a summation, whose first term can be evaluated
through a KF for each value of .

C. Low-Complexity Approximation

The complexity of the channel estimator introduced in
Section III grows linearly with , but the number of particles
to approximate the optimal inference grows exponentially with

. Thus, if no simplification is introduced, the applicability
of the estimator is limited to situations where is small.
The main reason for its complexity is that, given the realization

of the channel at time , the range of
is the whole power set of . To be able to apply
the algorithm to channels with a large , this range should
be reduced. A reasonable simplification consists of assuming
that the channel variations between two adjacent discrete-time
instants are so slow that at most one multipath component is
added (with probability ) or subtracted (with probability

). This is tantamount to assuming that at most
transitions may take place at each epoch, whereby the model
transition density is the one in (49), shown at the bottom of
the page. Should the multipath channel vary so rapidly that
the above assumption becomes invalid, one can expect that the
simplified RFS algorithm takes some discrete-time instants to
adjust to large channel variations. However, as we shall describe
below, simulation results show that the loss in performance to
be traded off for complexity reduction (the number of particles
to perform this suboptimal inference grows linearly with )
is acceptable.

D. Extension to Noninteger Delays

The generalization of the channel estimation procedure to the
case of noninteger delays is fairly straightforward, and requires
only a few changes in the discussion above. Let denote the

if

if

if

otherwise

(49)
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sampling interval of the OFDM system (so that the total band-
width of the waveform is ). Then, the singleton-or-empty
set can be rewritten as in (50), shown at the bottom
of the page, where , ,

, and rep-
resents the delay of the th path from the th transmit antenna to
the th receive antenna at time . A reasonable statistical model
for the delays, which we assume from now on, is the following:

1) ;

2)

(a Markov process
with reflective boundary);

where denotes the uniform distribution in the interval
. Defining and as in (4) and (5), respectively,

the FRS introduced in (7) becomes as in (51).

w.p.

w.p. (51)

Likewise, we may define the set of newly born paths in the
link as in

(52)

Next, we generalize the measurement model of (1), by ex-
tending the one examined in [10] to the case of MIMO systems.
Adopting the same notation as in Section II, the measurement
model with noninteger delays turns out to be very similar to
(1), the major difference being in the matrix , which becomes
now channel-dependent. We have

(53)

and the observations are written as

(54)

showing that the channel delays enter nonlinearly in the mea-
surement model.

Generalization of the Rao–Blackwellized SMC algorithm for
the noninteger case is also rather straightforward. Indeed,
is completely specified by the three FRSs.

1) , the projection of onto
.

2) .

3) .
Once again, the system is CLG given and ,
whereby the FRS can be integrated out. The only dif-
ference with respect to the case of integer delays is that we have
to draw samples from rather then from

. Since the space where lies is
not countable any longer (it is indeed a hybrid one), a larger
number of particles is required, but asymptotic optimality (as

) is not undone. An alternative approach (which we
shall not pursue here) consists of resorting to EKF (or UKF) to
locally linearize the model.

The Rao–Blackwellized SMC for noninteger delays is sum-
marized in Algorithm 2.

Algorithm 2: Generic RBPF Noninteger Delays

1: Given
2: for to

3: Sample

4: Set

5: Set
6: Update the weight [see (55), shown at the bottom of

the page]
7: end
8: Normalization
9: for to

10:
11: end
12: Resampling with replacement

13: OUTPUT

if the th path from the th transmit to the
th receive antenna is not active at time

otherwise
(50)

(55)
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A significant difference with the previous case is that no explicit
form of the optimal importance distribution is available. For this
reason, we resort here to the so-called bootstrap filter, i.e., we
adopt the prior distribution as importance distribution

(56)

Paralleling the arguments leading to (16), the transition density
of the FRS of the set of the delays is written as

(57)

and the weight update is

(58)
where can be
evaluated by a Kalman filter.

IV. NUMERICAL RESULTS

To illustrate our algorithm, we choose a MIMO-OFDM
system with subcarriers, , , ,
and frequency spacing between pilot subcarriers. Pilot
subcarriers are located at

(59)

The average energy per symbol, , is uniform
(so that the pilot symbols are equally spaced and equally pow-
ered). Moreover, the pilot symbols are assumed to be phase-
shift orthogonal (see [2]), meaning that the pilot sequence from
each antenna must not only be orthogonal to the pilot sequences
from other antennas, but also to be circularly shifted versions
thereof. The modulation scheme is 4-QAM. As to the channel,
we assume a uniform multipath delay profile, a multipath spread
smaller than the guard time, and uncorrelated path gains. The
overall channel energy is normalized to one.

Consider first the transmission of OFDM symbols
through a channel with , , and

. The path gains follow the Gauss–Markov model

(60)

(61)

Fig. 3. FMSE versus SNR.

with the average energy of one path, and . We
have simulated an RBPF with optimal importance distribution
and , the approximate version of the RBPF presented
in Section III-C (referred as RBPF-1), and compared it to the
least-square (LS) channel estimator of [2], which assumes that
all paths are active, neglects the dynamic model of the channel,
and performs the ML channel estimate in the form

(62)

We also examine the behavior of a “standard” channel es-
timator, viz., one assuming that all paths are active and
performing Kalman filtering to track their variations.

The figure of merit represented in Fig. 3 is the frequency-
domain mean-square error (FMSE), defined as

while the abscissa is labeled by the signal-to-noise ratio (SNR),
defined as . This figure shows that the RBPF
outperforms the standard LS estimator by about 6 dB at a FMSE
of , while the RBPF-1 ends up in a small loss with respect
to the original RBPF.

Fig. 4 shows the bit-error rate (BER) achieved by the clair-
voyant detector (19) based on the channel estimates of the LS,
KF, RBPF, and RBPF-1 estimators. For comparison purposes,
the performance of an ML detector assuming complete channel
state information (CCSI) is also shown. These results show that,
at , RBPF outperforms LS by about 3 dB, and
closely follows the ML-CCSI ideal performance for all SNRs.
Notice also that the LS estimator outperforms the KF. As ex-
pected, RBPF-1 performance is very close to RBPF.

Figs. 5 and 6 show the FMSE and the BER, respectively, for
a MISO (multi-input single-output) system with same param-
eters of the previous scenario except for , ,

. From Fig. 5 it is clear that, augmenting the number
of pilot symbols, the quality of the channel estimator does not
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Fig. 4. BER versus SNR.

Fig. 5. FMSE versus SNR.

degrade and the proposed algorithms outperforms the competi-
tors. As expected, with a single receiving antenna the BER is far
larger than the previous scenario wherein spatial diversity was
exploited.

Figs. 7–9 show a snapshot of the real components of the esti-
mated channel at 20 dB from the first transmit antenna
to the first receive antenna, i.e., (the parameters are the
same as for Figs. 3 and 4). The first path is assumed active from

to , the second path from to ,
and the third path from to . The fourth path is
never active. Fig. 7 refers to an RBPF with optimal importance
function and , Fig. 8 to an LS. The degradation of the
LS estimates, with respect to the RBPF, is apparent. Indeed, the
RBPF-based channel estimator estimates the active paths more
accurately, immediately detecting births and deaths, while LS
suffers from the lack of suitable exploitation of the channel dy-
namics. The advantage of the random-set-theoretic framework
is especially apparent from Fig. 9, which represents the esti-
mated real components of a conventional KF. Notice that path
deaths and births start transient phases in the KF, which ulti-
mately impair the overall estimation accuracy. This is the pri-

Fig. 6. BER versus SNR.

Fig. 7. Snapshot of the RBPF estimates.

mary reason of the weak performance of the KF in terms of BER
and FMSE: in fact, as the figure clearly shows, as long as a path
remains active, the KF is able to track closely the evolution of
its amplitude.

The effectiveness of the RBPF estimator can be justified an-
alytically by considering the conditional MSE at time , given
the configuration of the paths active up to epoch :

(63)

Since, conditioned upon , the system is linear
Gaussian, the KF represents the optimum unbiased estimator at
any given time , i.e., the one minimizing (63) once is
known. On the other hand, the conditional posterior Cramér Rao
lower bound (PCRLB) [15] is given by the trace of the matrix

which, in turn, can be evaluated through KF. Since RBPF
does not assume any prior knowledge as to the set sequence
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Fig. 8. Snapshot of the LS estimates.

, its conditional MSE is obtained by averaging over
the quantity

MSE

(64)

showing that represents a lower bound to the con-
ditional MSE attainable by an RBPF estimator. Fig. 10 com-
pares the conditional PCRLB to the conditional MSE of an
RBPF-based channel estimator. These results refer to a sce-
nario similar to that of Figs. 3 and 4, and consider the channel
estimated by the first receive antenna, i.e., . Indeed, the
multipath channel coefficients from the first transmit antenna
to the first receive antenna, i.e., , are characterized as in
Figs. 7–9, while has its first path active from to

, its second path active from to , its third
path active from to , and its fourth path active
from to . The performance has been evaluated
through 100 independent realizations of the channel amplitudes.
The closeness of the conditional generalized MSE of an RBPF
estimator to its lower bound confirms its suitability for channel
tracking. Fig. 11 shows the FMSE of the RBPF and of the LS
estimator for the case of noninteger delays. Here s,

s (the guard interval), s and the same
parameters as for Fig. 3, with (as already stated, when
considering noninteger delays a larger number of particles is re-
quired). Once again, RBPF distinctively outperforms LS whose

Fig. 9. Snapshot of the KF estimates.

Fig. 10. MSE of the RBPF versus conditional PCRLB.

Fig. 11. MSE of the RBPF for noninteger delays.

performances are totally disappointing due to the energy leakage
phenomenon [7].



ANGELOSANTE et al.: SEQUENTIAL ESTIMATION OF MULTIPATH MIMO-OFDM CHANNELS 3179

V. CONCLUSION

We have examined the estimate of multipath MIMO-OFDM
channels with an unknown and time-varying number of paths.
By using Random-Set Theory, we have derived recursive equa-
tions for the evolution with time of the a posteriori density of
the channel responses, and introduced a new Bayesian channel
estimator. Due to the lack of a closed-form solution of the re-
cursive equations, sequential Monte Carlo (“particle-filtering”)
methods have been applied. Rao–Blackwellized particle fil-
tering, as applied to a conditionally linear Gaussian model,
has been shown to provide an estimator which outperforms
all those previously proposed. The problem of the complexity
arising from long channel responses has been solved by intro-
ducing a simplification of the estimator that guarantees a linear
growth of the computational burden with the channel length. A
generalization to channel responses not constrained to integer
delays has finally been described.

APPENDIX

In this Appendix, we prove that the GMAP-III estimator in
(43) and (44) attains the global minimum of (31) for high SNR,
and hence, is asymptotically Bayes-optimal for the cost function

in (29). Denote the estimator . The
Bayes-optimal estimator minimizes the conditional risk

(65)

Consider . Then,

corresponds to the total mean-squared error in the estimation
of the continuous parameters, under the assumption that the

discrete parameter has been correctly estimated. The CLG
system modeling our MIMO-OFDM system can be described
as

(66a)

(66b)

where is a matrix whose
entry is given in (67)

if
and

otherwise
(67)

and is a matrix whose
entry is given in7

if
and

if
and

otherwise.
(68)

Moreover, is a
matrix and is a -dimen-
sional column vector. is a -dimensional column
vector such that . Con-
ditioned on , the matrix sequences and 8

are known, thus Kalman filtering can be applied to generate
estimates of . Let us compute the total mean squared
error, i.e.,

. From the law of total expectation, we have

(69)

7This definition of� and� are consistent with the channel model devel-
oped supra for the linear and Gaussian dynamics of (60) and (61).

8In the following we will not indicate explicitly the dependence of � and
� on ��� � when no confusion arises.
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Let us define the a posteriori mean-squared error matrix as

(70)

For each realization of , the mean-squared error
matrix and the Kalman Filter estimate satisfy the recursions

(71a)

(71b)

(71c)

(71d)

(71e)

where is the one-step prediction

(72)

and is the predicted mean-squared error matrix

(73)

Assume that 9 so that is a tall matrix. In
the literature, is referred to as the Kalman gain matrix.
We study the asymptotic behavior of the Kalman gain as

, i.e., as SNR . Bearing in mind that the matrix
is not full-rank, and replacing the inverse in

(71c) by the Moore–Penrose pseudoinverse, after straightfor-
ward calculations it can be proven that

(74)

Thus, using a conditional Kalman filter we obtain

(75)

for each . This means that, provided that
, by using the expected a posteriori

mean (i.e., the Kalman filter), for large SNR, the mean squared
error tends to zero, irrespective of . Since each
term of (69) can be seen as the trace of a mean-squared error
matrix obtained by Kalman filtering, then

(76)

If conditional Kalman filtering is used, in the high-SNR region
the conditional risk in (65) is

(77)

9This condition is necessary in this analysis to guarantee the asymptotical
optimality of GMAP-III in the SNR, but in general has to be fulfilled according
to the sampling theorem, meaning that the number of pilot tones must increase
when the multipath delay spread and the number of transmit antennas increase
[14].

which is minimized when
is maximized. Thus, GMAP-III is asymptotically (in
SNR) Bayes-optimal. In fact, it attains the global min-
imum of the unconditional risk, since it first maximizes

and then, for high SNR,
forces

to approach zero.
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