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Abstract—The concept of multiple-input multiple-output
(MIMO) radar allows each transmitting antenna element to
transmit an arbitrary waveform. This provides extra degrees
of freedom compared to the traditional transmit beamforming
approach. It has been shown in the recent literature that MIMO
radar systems have many advantages. In this paper, we consider
the joint optimization of waveforms and receiving filters in the
MIMO radar for the case of extended target in clutter. A novel
iterative algorithm is proposed to optimize the waveforms and
receiving filters such that the detection performance can be maxi-
mized. The corresponding iterative algorithms are also developed
for the case where only the statistics or the uncertainty set of the
target impulse response is available. These algorithms guarantee
that the SINR performance improves in each iteration step. Nu-
merical results show that the proposed methods have better SINR
performance than existing design methods.

Index Terms—Beamforming, clutter, extended target, multiple-
input multiple-output (MIMO) radar, waveform design.

I. INTRODUCTION

ULTIPLE-INPUT multiple-output (MIMO) radar is an
M emerging field which has drawn considerable attention
recently. Unlike the traditional SIMO (single-input multiple-
output) radar, which can only transmit scaled versions of a signal
waveform, the MIMO radar is capable of transmitting arbitrary
waveforms [21], [22]. This provides extra degrees of freedom
in the design of the radar systems. In this paper, we consider the
joint optimization of the transmitted waveforms and receiving
filters in the MIMO radar for the case of extended target in
clutter.

The MIMO radar systems can be classified into two cate-
gories: 1) bistatic MIMO radar [27], and 2) colocated MIMO
radar [28]. In the bistatic case, the transmitting antennas are
widely apart such that each views a different aspect of the target.
The concept of MIMO radar can be used to increase the spatial
diversity of the system [23], [24], [26]. The spatial diversity can
improve the performance of detection [26] and angle estimation
[25]. A tutorial on the bistatic MIMO radar can be found in [27].
In the colocated radar case, the transmitting antennas are close
enough such that the target radar cross sections (RCS) observed
by the transmitting antenna elements are identical. In this case,
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the concept of MIMO radar can be used to increase the spa-
tial resolution. Several advantages have been demonstrated by
different authors, including excellent interference rejection ca-
pability [30], [31], improved parameter identifiability [29], and
enhanced flexibility for transmit beampattern design [5], [7]. A
tutorial on the colocated MIMO radar can be found in [28]. In
this paper, we focus on the colocated MIMO radar.

The MIMO radar waveform design problems have been
studied in [5]-[16]. These methods can be broken into three
categories: 1) covariance matrix based design [5]-[9]; 2) radar
ambiguity function based design [10]-[13]; and 3) extended
target based design [14]-[16]. In the covariance matrix based
design methods, the covariance matrix of the waveforms are
considered instead of the entire waveform. Consequently, this
kind of design methods affects only the spatial domain. In [5]
and [6], the covariance matrix of the transmitted waveforms is
designed such that the power can be transmitted to a desired
range of angles. In [7], the authors have also designed the
covariance matrix of the transmitted waveforms to control the
spatial power. However, in [7], the cross correlation between
the transmitted signals at a number of given target locations
is minimized. This can further increase the spatial resolution
in the receiver. In [8], the covariances between waveforms
have been optimized for several design criteria based on the
Cramér—Rao bound matrix. In [9], given the optimized covari-
ance matrix, the corresponding signal waveforms are designed
to further achieve low peak-to-average-power ratio (PAR) and
higher range resolution.

The radar ambiguity function based methods optimize the
entire waveforms instead of just their covariances. Thus these
design methods involve not only the spatial domain but also
the range domain. The angle-Doppler-range resolution of the
radar system can be characterized by the MIMO radar ambi-
guity function [38]-[40]. In [11]-[13], the sidelobe of the au-
tocorrelation and the cross correlation between waveforms are
minimized. This sharpens the radar ambiguity function. In [10],
the waveforms are directly optimized so that a sharper radar am-
biguity function can be obtained. Thus the spatial and range res-
olution of point targets can be improved.

In the extended target based methods also, the entire wave-
form is considered as in the radar ambiguity function based
approaches. However, unlike the ambiguity function based
methods which consider the resolutions of point targets, these
methods consider the detection or estimation of extended
targets. These methods require some prior information about
the target and/or clutter impulse response. The extended target
based methods have been also studied in the SIMO case [1]-[4],
[17]-[20]. In [17], the waveform is optimized to maximize the
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SINR subject to the constraint that the waveform is similar
to a desired waveform. This constraint improves the PAR and
the range resolution of the waveform. In [18], the optimal
radar code which considers detection probability, Doppler
frequency estimation accuracy, PAR and the range resolution is
proposed. In [19] and [20], the mutual information between the
received waveforms and the target impulse response has been
optimized by properly designing the transmitting waveforms.
This idea has been extended to the MIMO radar case in [15].
The corresponding robust design has also been proposed in
[16]. However, in [15]-[20] the effect of the clutter is ignored.
In [1]-[4], the clutter impulse response has been considered. In
these methods, the SINR has been maximized to improve the
detection performance by properly designing the transmitting
waveform. Both [1] and [2] have proposed different iterative
algorithms to maximize the SINR. In [1], Pillai et al. have
proven that in the continuous-time SIMO radar case, the op-
timal transmitted waveform must be minimum-phase. For the
MIMO radar, SINR maximization with both target and clutter
information has been considered in [14]. A MIMO extension of
the method in [1] and a gradient based method have been pro-
posed in [14] to solve for the transmitted waveforms. Several
suboptimal solutions have also been studied in [14].

In this paper, we consider the waveform design problem
which maximizes the SINR in the presence of clutter in the
colocated MIMO radar case. As shown in [1], [2], and [14],
the difficulty of this problem is that the objective function,
namely the SINR, is not a convex function of the transmitted
waveforms. Moreover, it cannot be easily solved by Lagrange
multiplier methods. In [1], [2], and [14], different iterative
methods have been developed. In [2], the algorithm guarantees
the SINR improves in each iterative step. However, it has not
been extended to the MIMO case because the algorithm is
based on the symmetry of the SIMO radar ambiguity function
[41], which is no longer valid in the MIMO radar case. On the
other hand, in [1] and [14], the algorithms work for the MIMO
radar case. However they do not guarantee nondecreasing
SINR in each iteration step. Consequently, these algorithms
cannot guarantee convergence. In this paper, we propose a
new algorithm which works in the MIMO radar case and
guarantees nondecreasing SINR in each iteration step. The
numerical results show that it converges faster and has better
SINR performances than the method in [1] and [14]. We also
consider the case where only a partial information of the target
impulse response is known. This includes the case where only
the statistics of the target impulse response are given and
the case where only an uncertainty set of the target impulse
response is given. The corresponding iterative algorithms have
been developed for both cases.

The extended target based waveform design problem is very
different from other types of radar waveform design. It requires
the knowledge of the clutter statistics and the target impulse re-
sponse or its statistics. It also requires the transmitted wave-
forms to adapt to the changing statistics in real-time. There-
fore, it is more complicated than other methods. The clutter
information can be estimated by previous received signals be-
fore the target appears. We assume the impulse response of the
target of interest is known. The goal is to design the waveforms
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which are best suitable for detecting this particular target of in-
terest. However, this assumption may not be practical because
the target impulse response depends on the orientation of the
target. Therefore, in Section IV, we discuss the case where only
the statistics or the uncertainty set of the target impulse response
is available. The optimal waveforms for the detection are the
waveforms which lead to the greatest SINR. Thus, we consider
the problem of maximizing the SINR with the total energy con-
straint. Some of the important design issues such as constant
modulus and range resolution are not considered in this paper.
From a practical stand point, it is important that the radar trans-
mitter has a low PAR. Also, the optimal waveforms obtained by
the proposed method may not have good performance for range
estimation. The waveform design problem which takes into ac-
count these important issues will be explored in the future.

The rest of this paper is organized as follows Section II in-
troduces the signal model, formulates the problem and reviews
the existing algorithms. Section III proposes the new iterative al-
gorithm for jointly designing the transmitted waveforms and the
receiving filters. Section IV proposes the iterative algorithms for
random target and uncertain target cases. Section V shows the
results of numerical simulations. Finally Section VI concludes
the paper.

Notations: Matrices and vectors are denoted by capital letters
in boldface (e.g., A). Superscript” and t denote transpose and
transpose conjugation, respectively. The expression (A ) ; rep-
resents the element of matrix A located at the kth row and the
Ith column. The notation tr(A) denotes the trace of matrix A.
The notation ||A||r denotes the Frobenius norm of the matrix
A . The notation £a denotes the angle of the complex number a.
The notation | a] is defined as the largest integer smaller than a.
The notation (n mod m) represents the remainder of division
of n by m. The notation vec(A) denotes a vector formed by re-
shaping the matrix A. For example, for a matrix A € CNV*M|
the kth element of the vector x = vec(A) € CVM*1 can be
expressed as

(%)k = (A)(k mod N),[k]-

II. PROBLEM FORMULATION AND REVIEW

Fig. 1(a) illustrates the model used in this paper. Consider
a MIMO radar system with Np transmitting antennas and N
receiving antennas. A finite duration Nt x 1 vector signal f(n)
is converted to analog waveforms, modulated, and emitted.
The waveforms are reflected back by the target and clutter with
transfer function T, (s) and C,(s), respectively. In the receiver,
Npgr waveforms are received, demodulated and converted back
to a discrete vector signal r(n). Then the received signal r(n)
is processed by a receiving filter H(z) to further determine
the existence of the target. Fig. 1(b) illustrates the discrete
baseband equivalent model where T(z) and C(z) represent
the transfer functions of the target and clutter, respectively. We
assume T'(z) is a known FIR filter. It can be represented as

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on August 24, 2009 at 13:35 from IEEE Xplore. Restrictions apply.



CHEN AND VAIDYANATHAN: MIMO RADAR WAVEFORM OPTIMIZATION

N N
’ | A .
f(n) T H Detection|
| (2) [ 7 ’| (2) I

L I I ]

T T T
transmitted waveforms  target and clutter  receiving filter
(b)

Fig. 1. Illustration of (a) the signal model. (b) The discrete baseband equivalent
model.

where t(n) € CNeXN7T jg the impulse response of the target
(i-e., ty(n) = impulse response from the /th transmitting an-
tenna to the kth receiving antenna) and L is the order of the FIR
filter. The clutter transfer function can be represented as

n=—oo

where c¢(n) € CN#XNT s the impulse response of clutter.
We assume vec(c(n)) is a vector wide-sense stationary (WSS)
process with known covariance

R.(m) £ E[vec(c(n))vec(c(n — m))T]. (1)

The Ng x 1 vector process v(n) shown in Fig. 1(b) represents
the noise in the receiver. We also assume the covariance

R, (m) 2 E[v(n)v(n —m)T] @)

is known. The assumption of the availability of this prior infor-
mation has also been made in [1]-[4], [14].

With the prior information of the target impulse response and
the second order statistics of the clutter impulse response and
noise, our goal is to jointly design the N X 1 transmitted vector
waveform f(n) and the Np X 1 receiving filter H(z) to maxi-
mize the detection rate. It is well known that the optimal detec-
tion can be obtained by the log-likelihood ratio test [42]. In this
case, the detection rate is a nondecreasing function of the SINR.
Therefore, our goal becomes to maximize the SINR by choosing
f(n) and H(z). The single-input single-output (SISO) case of
this problem, where Ng = Np = 1, has been studied by De-
Long and Hofstetter in 1967 [2]-[4] and more recently by Pillai
et al. [1]. Two different types of iterative methods have been
proposed for solving this problem. DeLong and Hofstetter’s it-
erative method takes advantage of the symmetry property of the
cross ambiguity function. This method guarantees the SINR im-
proves in each iteration step. Nevertheless, the symmetry prop-
erty cannot be applied in the general MIMO case. Consequently
this method cannot be generalized to the MIMO case. On the
other hand, Pillai’s method has been generalized to the MIMO
case by Friedlander [14]. However, this method does not guar-
antee that the SINR improves in each iteration step. We will
soon briefly review this method. In this paper, we propose a new
iterative method for optimizing the MIMO radar transceiver. It
works in the MIMO case and also guarantees the SINR improves
in every iteration step.

3535

L
R-R T

Fig. 2. The FIR equivalent model.

A. Problem Formulation

The received baseband waveform r(n) can be expressed as
Ly

r(n)=>_(t(n —m)+c(n—m))-f(m)+v(n)

m=0

where Lt is the order of the finite duration signal f(n). We
define

r2 [r(0)" r(1)7---r(Lp)"]" € CNratx1

where Lp is the order of the receiving filter H(z). Then the
overall received signal can be expressed as

r=(T+C)f+v
where
£ 2 [8(0)7 £(1)7 - £(Lp)T] " e CVr et
v 2 [v(0)T v(1)T - .V(LR)T]T e CNR(EatDXL (3

and T and C are block Toeplitz matrices defined as

KO
6(1)  +(0)
ot .0
Ty 1 () 4
0 t(L) t(1)
[0 0 D)
and
Fe0)  e(-1) o(~Lr)]
c(0) :

_C(l./R) C(LR.— 1)

Fig. 2 illustrates the FIR equivalent model, where the Np x
(Lr + 1) vector h consists of the impulse response of the re-
ceiving filter H(z). The receiving filter output can be expressed
as

=hir=n' l f
y=hlr=h!Tf+h!Cf+h'!v.

signal clutter  noise

Thus the SINR at the filter output can be expressed as

1 2
p(£,h) 2 [ 1]

T ot A O
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Our goal is to maximize the SINR subject to the power con-
straint, that is

max p(f, h) subject to IIf]1? < 1. (6)

One can first observe that this problem is in general not convex
because the objective function is a fourth order rational function.
In general, there will be multiple local maxima in the feasible
set. It is in general not easy to find the global maximum.

B. Review of Pillai’s Method [1]

Now we briefly review the method proposed in [1] for solving
the optimization problem in (6). Note that the original method
proposed in [1] uses a continuous-time SISO model. We review
a slightly modified version of this method which works in our
discrete-time MIMO model as shown in Fig. 1(b).

To solve (6), we can first solve h in terms of f. In this case,
the optimization problem becomes

max |hTTf|2
b hiE[CETClh + hiE[vvi]h’

Define
R.; 2 et ()

and R, = F [VVT]. Note that R. s can be obtained by using
the clutter covariance R.(m) in (1) and R,, can be obtained by
using the noise covariance R, (m) in (2). The above problem
can be recast as

min hf(R.; +R,)h
subject to hiTe=1.

This is the well-known minimum variance distortionless re-
sponse (MVDR) problem [37]. The solution to this problem is

h = a(R. s + R,)"'Tf. ®)

where « is a scalar which satisfies the equality constraint. Note
that the scalar can be ignored because it has no effect on the
original objective function in (5).

Substituting the above h back into the objective function
in (5). The new objective function becomes et (Re,f +
R.,)~!Tf which is a function of f only. Therefore the opti-
mization problem becomes

max fITH (R, ; + R,) ' T
subject to [[f||*> < 1. (9)

Now this problem has only one parameter f. If R.. 7 isaconstant,
the above problem is the well-known Rayleigh quotient [43] and
the solution to f will be the principal component of the matrix
Tt (R.,s+R,) "' T.However, note that from (7), R.. s isa func-
tion of f as well. To solve this problem, Pillai ef al. proposed a
method which starts with an initial f and then uses this f to com-
pute the matrix f (R.,f + R,)~'T. Then the principal com-
ponent of this matrix is computed to update f. This process is re-
peated until the SINR is large enough. As we have shown here,
this method can be used in the MIMO case. Nevertheless, this
method does not guarantee nondecreasing SINR in each iteration
step. Consequently, the convergence cannot be guaranteed.
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III. PROPOSED ITERATIVE METHOD

In this section, a new iterative algorithm is introduced for
solving the SINR maximization problem in (6). Different from
the approach in [1], this proposed method guarantees nonde-
creasing SINR in each iteration step. The technique applied here
is that we first optimize the receiving filter h for fixed trans-
mitted waveforms f and then optimize f for fixed receiving filter
h. This kind of optimization technique has been applied in dif-
ferent fields such as multiuser transceiver design [32], multicar-
rier transceiver design [33], and adaptive paraunitary filterbank
design [34]. It can be shown that the algorithm gives a solution
which is not only a local optimum, but also the global optimum
separately along the f dimension and the h dimension.

We have already solved h in terms of f in (8). Now we ex-
plain how to solve f in terms of h and then we will explain the
iterative process. For fixed h, the transmitted waveforms f can
be obtained by solving the following optimization problem:

IhfTep?
max
f fiR.,f+hiR,h

subject to [|f||* <1 (10)

where R, 2 E [Cthh]L ClandR, 2 E [va]. Note that both
R.,», and R, can be obtained by using the prior second order
information defined in (1) and (2). We first look at the Lagrange
multiplier method to solve this problem. The Lagrangian can be
defined as

IhfTe?
fiR,,f+hiR,h

where )\ is the Lagrange multiplier. Differentiating the above
function with respect to f and setting it to zero, we obtain

L(£, )2 AETE-1), A>0

TThh (R, + hIR D) - I THPRAE
(fTR,4f + hTR, h)?

One can see that the above equation has a high order polynomial
of f in the numerator. This makes it hard to solve in general.
We have already seen that directly solving the problem using
the method of Lagrange multiplier is not easy. To overcome
this difficulty, we recast the problem by using the following
proposition.
Proposition 1: 1f f, solves the optimization problem

IhfTep
max
f fTR.,f +hiR b - £TF
then f,, = f,/||f.|| solves (10).
Proof: Forany f € CN7(Lr+1)X1 qatisfying ||f]|? < 1
ihfTf,, |2 B IhfTf, |2
LR 1f. +hiRE £R.Af, +hIR £,
IhfTf?
>
fiR,,f + hiR h - £if
IhfTep?
~ TR, f +hiRh

Af =0.

Y

The first inequality is because of the definition of f,. The second
inequality is from the fact that ||f||? < 1. We also have ||f,||> <
1. Therefore f,, is a solution to (10). |
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Similar technique has been used in [32] to solve an MSE min-
imization problem in multiuser transceivers. This proposition
allows us to get rid of the power constraint in (10) and solve
the unconstrained problem in (11) instead. Equation (11) can be
further recast as the MVDR problem

min f1(R., + bR, h - D)f
subject to hiTe = 1.
The solution to the above problem is [37]

f = a(R.s +hIR,h-1)~'TTh (12)
where « is a scalar which satisfies the power constraint. Note
that this scalar can be ignored because f needs to be normalized
to unit norm according to Proposition 1.

Now we know how to solve h in terms of f and f in terms of
h. We can iteratively solve for the transmitted waveforms f and
the receiving filter h. Thus the objective function, namely SINR,
will be nondecreasing in every iteration step. The algorithm is
summarized as follows.

Algorithm 1: Given the target impulse response T(z), noise
covariance R,,(m), the clutter covariance R.(m), and an initial
value of the transmitted waveforms f, the transceiver pair (f, h)
can be optimized by repeating the following steps:

1. Compute R, 5 = E[Cﬁ‘TCT]
h—(R.;+R,)"'Tf
Compute R, = E[CThhiC]

f—(R., + hiR,h-T)"1TTh

. f—1/||f].

We stop when the SINR improvement becomes insignificant.
Because the objective function is bounded and is nondecreasing
in each step, according to monotone convergence theorem the
objective function will converge to some value ®, [46]. Even
though the point (f,h) corresponding to this result @, is not
unique, the algorithm stops in one particular (f,, h,) yielding
... Since f, and h, are local optimum along f and h dimension
separately, the solution (f,, h,) is also a local optimum, that is

A

de > 0 such that
p(f.h) > p(f.h), ¥ [If — £ + [Ih — b |? < .

Moreover, the algorithm finds the global maximum along f di-
mension or h dimension in each step. Therefore, when the al-
gorithm converges, the solution (f, h,) will be the global op-
timum along the f dimension and h dimension separately, that
is

P(f*7 h*)
) *

p(f*7h)7 Vh
p(fi,hy) >p

(f.h,), V|f]* < 1.

2
>

So, the solution obtained by this iterative algorithm is actually
stronger than a local maximum.

1) Matched Filter Bound: To evaluate the performance of the
suboptimal iterative algorithm, we are interested in how close
its SINR performance is to the global optimal solution of the
problem in (6). However, it does not appear to be a simple matter
to obtain the global optimal solution. To avoid this difficulty,

3537

we compare the performance of the proposed method to a com-
putable upper bound of the global maximum. One way to ob-
tain such an upper bound is to drop the clutter term in the SINR
expression in (5). This bound is often called the matched filter
bound. It can be expressed as

IhfTe)?
max ——————

subject to [|f||* < 1.
£h hiR,h

One can first solve h in terms of f as in (8) and obtain
h = oR;'Tf

where « is a scalar which will be determined by the power con-
straint. Substituting the above solution into the objective func-
tion, the optimization problem becomes

max fTTTRJITf subject to [|f||* < 1.

This is the well-known Rayleigh quotient [43]. The solution of
f is the principal component of the matrix TTR; LT and the
maximum of the objective function is the largest eigenvalue of
TTRIT which is denoted as

M (TTRIT).

Therefore, this matched filter bound can be easily obtained.
The numerical results for the proposed iterative method and the
matched filter bound will be presented in Section V.

IV. ITERATIVE METHOD WITH RANDOM AND UNCERTAIN
TARGET IMPULSE RESPONSE

The iterative method introduced in Section III requires the
information of the target impulse response T(z). In this sec-
tion, we focus on the case where only a partial information of
the target impulse response is available. We consider two dif-
ferent cases. In the first, the target impulse response is modelled
as a WSS random process. We assume only the covariance of
the process is known. An iterative algorithm for maximizing the
SINR in this case will be derived in this section. In the second
case, the target impulse response is deterministic but unknown.
We assume the target impulse response lies in a convex uncer-
tainty set. An iterative algorithm will be proposed in this section
to maximize the worst SINR among all the possible target im-
pulse responses in the given uncertainty set.

A. Random Target Impulse Response

We first consider the random target impulse response case.
We assume the coefficients of the target impulse response
vec(t(n)) is a WSS random process. We assume the covariance
matrix, which is defined as

R, (m) 2 Elvec(t(n))vec(t(n — m))T]

is known. In this case, the SINR at the receiving filter output is
defined as

g2
p(f,h) A E”h Tf| ]

~ E[nfCeP) + Blhv]?] 1
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The goal is to solve the following optimization problem:

max p(f,h) subject to ||f]|? < 1.

The same technique used in Section III can be used to iteratively
optimize the parameters h and f in each step. To solve h in terms
of f, the optimization problem can be written as

hiR, ;h
max -
b hiR.;h+hiR,h

where R, ; 2 E[T#IT], R, ; £ E[cETCl]and R, 2
E [VVT]. Define L. ¢ as the lower triangular Cholesky factor of
R. ¢ +R,. Inother words, the lower triangular matrix L. ¢ sat-

isfies Lc,fLi 7 = Re,s + Ry Define x = Li #h. By changing
variables, the optimization problem can be rewritten as

< L7IR, L fx

max
x xTx

This is the well-known Rayleigh quotient [43] and the solu-
tion to the problem is the principal component of the matrix
L;}Rt,fL(,,f. Thus, the solution h can be expressed as

h= L;;[ ~p(L;1Rt,fL;I) (14)

where p(A) denotes the principal component of matrix A.
To solve f in terms of h, the optimization problem becomes
the following:

IR, ,f
max
t fIR.,f+hiR,h
subject to ||f||* < 1

where Ry p, £ E[TThhTT] and R j, £ E[CThhTC]. Itcanbe
easily verified that a similar result as in Proposition 1 still holds
in this case. We can obtain the solution by solving the following
problem instead:

IR, ,f
max .
£ fTR.,f +hiR,h - £1f.

Using the same technique for solving h, we can obtain

£=L_| pL R D)

where L, ¢ is the lower triangular matrix such that L, fLi F=
R., +hiR,h-T.

We summarize the iterative algorithm for optimizing the
transceiver pair in the case of random target impulse response
as the following.

Algorithm 2: Given the target impulse response covariance
R.(m), the clutter covariance R.(m), the noise covariance
R, (m), and an initial value of the transmitted waveforms f,
the transceiver pair (f,h) can be optimized by repeating the
following steps:

1. Compute R, ; = E[CfTCl], R, ; = E[THTT
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2. Compute the Cholesky decomposition R. s + R, =
Lv,leL,f

3. he— L Ip(L7}R, LT

4. Compute R, = E[CThhiC], R,), = E[TThhiT]

5. Compute the Cholesky decomposition R. ;+ hi R,h-I=
Lc,fLI, f

6. f— L Ip(L7}R,,L 1)

7. £ = £/}l
We stop when the SINR improvement becomes insignificant.

We have extended the proposed iterative method to the
random target impulse response case. Note that it is not clear
how to extend the method proposed in [1] to this case. The
method proposed in [1] requires substituting the solution of h in
(8) back into the objective function and obtain the optimization
problem with only f parameter as in (9). In the random target
impulse response case, substituting the solution h in (14) back,
the objective function becomes

ML IR L) (s)

where A1(A) denotes the maximum eigenvalue of matrix A.
The iterative method proposed in [1] treats the matrix R ¢ in (9)
as a constant with respect to f in every iteration and obtains the
transmitted waveforms f by Rayleigh principle [43]. However,
in the case of random target impulse response, even if we treat
the matrix LC_} as a constant with respect to f, it does not appear
to be a simple matter to choose f to maximize the objective
function in (15). For similar reason, it does not appear to be
a simple matter to compute the matched filter bound which we
have obtained for the deterministic target case.

B. Uncertain Target Impulse Response

We now consider the second case where the target impulse
response is deterministic but unknown. We assume the target
matrix T lies in a known convex set S. Our goal is to maximize
the worst SINR in this set. The worst SINR can be expressed as

hiTe)2
p(f,;h) = min | | . (16)
TS B[|lhfCE2] + E[|hfv]?]
So the goal is to solve the following optimization problem:
nflz;,lxp(f,h) subject to [|f||* < 1. (17)

To solve this problem, we first recast the problem using the fol-
lowing proposition.
Proposition 2: Define

Tpei2
n(f, h) £ min [h!Tf] . (18)
Tes F[hfCt)2] + E[hiv|?] - £Tf
If (f,, h,) solves the problem
max n(f,h) (19)

then (f,,, h,) solves (17), where f,, 2 o/ |1 Eel]-
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Proof: For any (f,h) € CNt(Er+1) » CNr(Lr+1) satis-
fying ||If||> < 1, we have p(f.,h) = n(f,,h) > n(f,h) >
p(f,h). Also, ||f..||? < 1. Therefore, (f,, hy) solves (17). =

One can see that the logical flow of this proof is identical to
Proposition 1. This proposition allows us to get rid of the power
constraint in (17) and solve the unconstrained problem in (19)
instead. To solve the max-min problem, one can first solve for
the worst target matrix T in the minimization problem in (18).
Since the feasible set S is convex and the objective function is
quadratic with respect to T, the optimization problem in (18)
is a convex problem. It can be solved numerically if the values
of f and h are given. However, the values of f and h have not
yet been given at this moment. They are parameters which will
be maximized in (19). So, in order to solve the problem in this
manner, we need to solve T in terms of f and h analytically.
Then the objective function 7(f, h) in (18) can be expressed an-
alytically in terms of f and h. However, in general, the analytic
solution may not be available. Even if we can obtain the analytic
form of T, the resulting function n(f, h) might not be concave
in terms of parameter f or h. If 7(f, h) is not concave in terms
of f or h, the problem in (19) is in general not easy to solve.

To overcome this difficulty, we apply the following proposi-
tion.

Proposition 3: If (x,,T,) solves

lyfTx]?
XTRX

min max
TeS x

for some y and R, then it also solves

lyITx|?
maxmimn ———.
x TeS xIRx

Proof: Applying Proposition 1 in [35], one can verify that
(x4, Ty) is a saddle point, that is

YT _ [y T, ?
xIRx ~ XIRX*
<|y]LTX*|2

, Vx#0, TeS.
x.Rx,

By using the minimax theorem [44], the saddle point also solves
the second optimization problem. [ |

This proposition allows us to change the order of the maxi-
mization with respect f and h and the minimization with respect
to T in (18) and (19).

To solve the optimization problem in (19), we use the iterative
approach as before. In each step, we optimize f with fixed h or
optimize h with fixed f. We first demonstrate how to solve f
with fixed h, that is, to solve

. IhfTf2
max min
i Tes fIR, ,f + hIR,h - £1F

, for fixed h.

Applying Proposition 3, the above problem can be recast as

. IhfTf2
min max .
Tes f fi(R., +hiR,h-I)f

3539

Using the same MVDR approach for obtaining (12), one can
obtain

f = a(Res +hIR,h-T)~'TTh

where « is a scalar which will be determined by the power con-
straint. Substituting f into the objective function, the optimiza-
tion problem becomes

minh! T(R., + hR,h - 1)~ TTh.

TES
Observing the above problem, one can see that the cost func-
tion is a convex function and the feasible set S is a convex set.
Therefore it is a convex optimization problem. Note that since
h is fixed now, the solution T can be solved numerically. This
T yields the worst case target in the uncertainty set.

With similar technique, one can also solve h with fixed f, and

obtain the following solution:

h=a(R.;+R,)"'Tf

where « is a scalar which will be determined by the power con-
straint, and T is the solution to the following convex optimiza-
tion problem

min fTT (R, ; + R,)~1Tf
TeS ’

which can be solved numerically.

With these methods, we can increase the worst SINR defined
in (16) in each step by optimizing f or h one at a time. We
summarize the algorithm as the following.

Algorithm 3: Given the target matrix uncertainty set S, the
clutter covariance R..(m), noise covariance R, (m), and an ini-
tial value of the transmitted waveforms f, the transceiver pair
(f,h) can be optimized by the following steps.

1. Compute R, 5 = E’[Cﬁ'TCT]

T, «— arg minpes f]LTT(RCYf +R,)'Tf
h—(R.;+R,)"'T.f

Compute R..;, = E[CThhfC]

T, — argminpes hI T(R,, + hfR,h - T)~!TTh

f—(R., +hR,h-1)'Tin
7. f—f£/||f]]
We stop when the SINR improvement becomes insignificant.
1) Special Case: Sphere Uncertainty Set: Now we consider
a sphere uncertainty set, that is

SANRUEE

S={T [T - Tolf <%} (20)
where T is the origin and r is the radius of the sphere. Note that
this is a special case of the convex uncertainty set. We assume r
is small enough so that 0 ¢ S. This is a reasonable assumption
because if 0 € S, no matter how we choose f and h, the worst
SINR in (16) will always be zero. In this case, one can use the
Lagrange multiplier method to solve for the worst SINR in (16)
and obtain

i Tt — e Ton 2

21
E[lhfCf2] + hfR,h @D

n(f,h)
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The derivation of the above worst SINR expression is shown in
the Appendix . Although an analytic solution for the worst SINR
can be obtained, one can see that 7)(f, h) is not convex in either
f or h. So it is difficult to maximize the worst SINR from the
above expression.
We can apply Algorithm 3 to solve this problem. In this case,
the convex optimization in Step 2 of Algorithm 3 becomes
min

(22)
IT—To |5 <r?

ffrf(R.; + R,)"'TH.
As we have mentioned earlier, this is a convex optimization
problem and therefore can be solved numerically. However, we
will show that in this special case of the sphere uncertainty set, a
simple line search algorithm can be used to solve this problem.
Define the Lagrangian as

LT, ) 2 ffThR., + R,)~1TE
FA(tr((T = To)(T = To) 1) — #2)

where A > 0 is the Lagrange multiplier. Differentiating the
above function with respect to T and setting it to zero, we obtain

(Ro.s + R,) 2T + AT - Tp) = 0. (23)

From the above equation, one can observe that T — T has
rank one. Without loss of generality, there exists some u €
CNr(Lr+1)X1 gych that

T - T, = uff.

Substituting T = T+ uf T into (23) and solving for u, one can
obtain

T =T — (A(Res + Ry) + || f]I2D) " TofET.

We have almost finished solving for T except that there is still an
unknown Lagrange multiplier A in the above equation. Note that
usually the constraint in (22) can be either an active constraint

|T = Toll7 = r? (24)

or an inactive constraint | T — Ty||% < 72. The inactive con-
straint only happens when the cost function reaches global min-
imum, that is, T = 0. But T = 0 cannot happen because we
have assumed 0 ¢ S. Consequently, the constraint will always
be active as in (24). Thus the Lagrange multiplier A can be ob-
tained by solving (24). Define the eigenvalue decomposition

R(‘,f + Rv = QDQT

where Q is unitary and D is diagonal. Equation (24) can thus
be expressed as

|IT — Toll%
—[I(AM(Re.s + Ry) + [[F12T) " To T |12
—[I£])% - |(AD + [I£]2D) " QT Tof|?

Ngr(Lr+1)—1
ey QTR
2o (- (D) + TP

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 57, NO. 9, SEPTEMBER 2009

Note that (D), > 0 because R. s + R, is positive semidefinite.
Also, we have the Lagrange multiplier A > 0. Therefore, the
left side of the last equality is a decreasing function of A. This
implies the solution for A is unique. In this case, the solution
for A can be easily found by some simple line search algorithm
such as Newton’s method [45].

Using the same argument, one can solve the convex optimiza-
tion problem in Step 5 of Algorithm 3 and obtain the following
solution:

T=Ty—hhiTy(AR.,+hiR.h - 1)+ | |21

where ) is the Lagrange multiplier. It can be solved by a line
search algorithm using the following relation

QT
(v (D) + B2

NT(LT+1)71

>

=0

] -

where QDQJr is the eigenvalue decomposition of the matrix
(R., + hiR,h - T).

Therefore, in the sphere uncertainty set case, the numerical
convex optimization in Step 2 and Step 5 of Algorithm 3 can
be replaced by the aforementioned method which can be much
more efficient. In [36], similar result has been obtained for
solving beamformer robust against steering vector mismatch.
The second order cone programming has been replaced by the
line search algorithm in [36], by using the Lagrange multiplier
method.

V. NUMERICAL RESULTS

In this section, the SINR performances of the proposed
method are compared to the method in [1] which has been
extended to the MIMO case in [14], and to the orthogonal LFM
(linear frequency modulation) waveforms. The orthogonal
LFM waveforms is defined as

6j‘1r1/2(LT+1)(lmodNT)2 . 6j27r|_l/NTJ(lm0dNT)
Np(Lr +1)

Note that LFM waveforms are designed for a different purpose,
namely, obtaining a sharp ambiguity function. They are good
candidates for distinguish point targets, and in imaging. How-
ever, the LFM waveforms may not have good SINR perfor-
mances in the extended target case.
1) Example 1: SINR Versus Number of Iterations: Consider
a MIMO radar system with number of transmitting antennas
Nrp = 4 and number of receiving antennas Np = 4. The target
impulse response is given by
1, n=0,1,..., 20
(t(n))ks = {0./ otherwise.

The clutter impulse response is modelled as an AR (auto-regres-
sive) process with covariance

1=

R.(n) = BA"BT

where the parameters A and B are 16 x 16 real matrices shown
in Fig. 3. Here A is a positive semidefinite matrix with spectral
radius less than unity. The noise v(n) is modelled as white
noise with unity variance. Fig. 4 shows the SINR performances
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Fig. 3. Example 1: The parameters used in the matrix AR model (a) Matrix A.
(b) Matrix B.
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Fig. 4. Example 1: Comparison of the SINR versus number of iterations.

defined in (5) as a function of the number of iterations. The
matched filter bound which has been derived in the end of
Section III is also shown in the figure. The matched filter SINR,
which takes the clutter signal into account is also shown in the
figure. The Note that LFM waveform is fixed, so its SINR is not
a function of the number of iterations. The initial waveforms
used in Algorithm 1 (the new algorithm proposed in Section III)
and in the method in [1] and [14] are identical. One can observe
that Algorithm 1 has a better performance than other methods.
Algorithm 1 also converges very fast. It converges in about six
iterations in this example. Moreover, in Algorithm 1, the SINR
is a nondecreasing function of the number of iterations. The
initial transmitted waveforms are shown in Fig. 5(a)—(d). Note
that the vector f contains four waveforms as defined in (3).
The optimized transmitted waveforms and receiving filters are
shown in Fig. 5(e)—(D).

2) Example 2: SINR Versus Clutter-to-Noise Ratio (CNR): In
this example, the SINR performances are compared for different
values of CNR. Consider a MIMO radar with number of trans-
mitting antennas N = 2 and number of receiving antennas
Npg = 2. The order of the target impulse response T(z) is 20.

3541
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Fig. 5. Example 1: (a)—(d) Real part of the initial transmitted waveforms.

(e)—(h) Real part of the transmitted four waveforms f obtained by Algorithm 1.
(1)—(1) Real part of the four receiving filters h obtained by Algorithm 1.
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Fig. 6. Example 2: Comparison of the SINR versus CNR.

The coefficients {(t(n))x;} are generated as i.i.d. (independent
and identically distributed) circular complex Gaussian random
variables with unity variance. The covariance of the clutter im-
pulse response R.(n) is generated by using

R.(n) = Ue(n) * Uy(—n)T

where the notation * denotes convolution, U.(n) is a4 x 4 ma-
trix sequence with length 31 and the coefficients {(U(n))x,}
are i.i.d. circular complex Gaussian random variables. The noise
v(n) is a white process with unity variance. The initial wave-
forms used in the algorithms are randomly chosen. The simu-
lation is performed by averaging among 1000 different target,
clutter and noise realizations. Fig. 6 shows the comparison of
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Fig. 7. Example 3: Comparison of the SINR versus CNR with random target
impulse response.

the SINR defined in (5) under different CNR. The matched filter
bound which has been derived in the end of Section III is also
shown on the figure. The matched filter SINR, which takes the
clutter signal into account is also shown in the figure. One can
see that Algorithm 1 has the best SINR performances among
all the methods under all CNR. Both Algorithm 1 and method
in [1] and [14] have much better performances than the LFM
waveforms. This shows that utilizing the prior information in
the transmitter is very crucial for the SINR performance.

3) Example 3: SINR Versus CNR With Random Target Im-
pulse Response: In this example, the SINR performances are
compared under different CNR as in the last example. How-
ever, the coefficients of the target impulse response vec(t(n))
are modelled as a WSS random process with covariance R(n).
The covariance R¢(n) is generated by using

Ry(n) = Uy(n) « Uy(—n)

where U;(n) is a 4 x 4 matrix sequence with length 21 and the
coefficients {(U;(n))r,} are i.i.d. circular complex Gaussian
random variables. Except the target impulse response, all the
parameters used in this example are identical to Example 2.
The simulation is performed by averaging among 1000 different
target, clutter, and noise realizations. Fig. 7 shows the compar-
ison of the SINR defined in (5) under various CNR. We have
explained in Section IV-A that it is not clear how to generalize
the method in [1] and [14] and the matched filter bound to this
case. Thus we only compare Algorithm 2 and LFM waveforms
in this case. One can see that Algorithm 2 has a significantly
better SINR performances than the LFM waveforms.

4) Example 4: Worst SINR Versus CNR With Uncertain
Target Impulse Response: In this example, we consider that
the target matrix T is in a sphere uncertainty set as shown in
(20). The worst SINR in (21) are compared under various CNR.
All the parameters are identical to the last example, except
the target impulse response. The center T of the sphere is a
block Toeplitz matrix generated by the matrix sequence to(n)
as in (4). The order of to(n) is 20. The elements of to(n),
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Fig. 8. Example 4: Comparison of the worst SINR versus CNR with uncertain
target impulse response.

namely {(to(n))x,:}, are generated as ii.d. circular complex
Gaussian random variables with unity variance. The radius r
is chosen to be 5% of || T||r. The simulation is performed by
averaging among 1000 different target center T, clutter, and
noise realizations. In this example, the following four different
SINR results are compared:

1) Algorithm 1 without mismatch: The transceiver pair (f, h)
is obtained by using Algorithm 1 with the target matrix
T = T. The SINR is obtained by using (5) with T = T
as well.

2) Algorithm 3: The transceiver is obtained by using Algo-
rithm 3 with the origin Ty and radius 7. The SINR is the
worst SINR obtained by using (16).

3) Algorithm I: The transceiver is obtained by using Algo-
rithm 1 with the target matrix Ty. The SINR is the worst
SINR obtained by using (16).

4) Method in [1], [14]: The transceiver is obtained by using
the method in [1] and [14] with the target matrix Ty. The
SINR is the worst SINR obtained by using (16).

Fig. 8 shows the SINR performances under different CNR. As
expected, Algorithm 1 without the target mismatch has the best
SINR performance. Algorithm 3 which is designed for robust-
ness against target mismatch has a significantly better worst
SINR performance compared to Algorithm 1 in the high CNR
region.

VI. CONCLUSION

In this paper, we have proposed an iterative algorithm for
jointly designing the transmitted waveforms and the receiving
filters to maximize the SINR in MIMO radar with the prior in-
formation of the extended target and clutter. This iterative al-
gorithm alternatively solves the optimal transmitted waveforms
and the receiving filters by fixing the other parameters. This al-
gorithm finds a local maximum which is also a global maximum
along the dimension of the transmitted waveforms and the di-
mension of the receiving filter separately. The proposed iter-
ative algorithm has also been extended to the case of random
target impulse response and the case of uncertain target impulse
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response. The numerical results show that the proposed itera-
tive algorithm converges faster and also has better SINR perfor-
mances than previously reported algorithms. Some of the im-
portant design issues such as constant modulus and range res-
olution are not considered in this paper. From a practical stand
point, it is important that the radar transmitter has a low PAR.
Also, the optimal waveforms obtained by the proposed method
may not have good performance for range estimation. The wave-
form design problem which takes into account these important
issues will be explored in the future.

APPENDIX

Here, we derive the worst SINR in the case of sphere uncer-
tainty target impulse response as shown in (21). For simplicity,
we ignore the irrelevant denominator in (16). The following op-
timization problem is considered

min IhTTE? subject to || T — Tol2 < 2. (25)

The Lagrangian of the above problem can be defined as
L(T,\) 2 [0 T[2 + A(tr((T — To)(T — To)T) — )

where A > 0 is the Lagrange multiplier. Differentiating the
Lagrangian with respect to T and setting it to zero, we obtain

(h'Tf) - bl + \(T - Ty) = 0.

From the above equality, without loss of generality, there exists
a scalar « such that

T — Ty = ahf, (26)
Note that usually the constraint in (25) can be either an active
constraint

IT — Tol|f = r* 27)
or an inactive constraint | T — Ty||% < 2. The inactive con-
straint only happens when the cost function reaches global min-
imum, that is, T = 0. But T = 0 cannot happen because we
have assumed 0 ¢ S. Consequently, the constraint will always

be active as in (27). By substituting (26) into (27), one can ob-
tain the magnitude of « as

||

_ r
[Ib[I£]]°
Substituting this result back into (26), we obtain

rhff
T=T)— —— /4
Ik

Now the only unknown in the above equation is the phase £ «.. To
solve for the unknown phase, substituting the above expression
into the cost function, one can obtain

Wi T2 = [nITof — 7 [Ihfl][E]]e/ <],
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One can easily verify that the phase which minimizes the above
cost function is Lo = KhTTOf . Therefore the solution to the
problem in (27) is

rhff

_ 7eji(hTTof)
£l ]l

T=T,

Substituting the above solution back into the cost function, one
can obtain the minimum as

0T = 0ot — o700 .
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