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Abstract
In this work, we introduce a simple and effective scheme to achieve joint blind source separation
(BSS) of multiple datasets using multi-set canonical correlation analysis (M-CCA) [1]. We first
propose a generative model of joint BSS based on the correlation of latent sources within and between
datasets. We specify source separability conditions, and show that, when the conditions are satisfied,
the group of corresponding sources from each dataset can be jointly extracted by M-CCA through
maximization of correlation among the extracted sources. We compare source separation
performance of the M-CCA scheme with other joint BSS methods and demonstrate the superior
performance of the M-CCA scheme in achieving joint BSS for a large number of datasets, group of
corresponding sources with heterogeneous correlation values, and complex-valued sources with
circular and non-circular distributions. We apply M-CCA to analysis of functional magnetic
resonance imaging (fMRI) data from multiple subjects and show its utility in estimating meaningful
brain activations from a visuomotor task.

Index Terms
Joint blind source separation; canonical correlation analysis; independent component analysis; group
analysis

I. Introduction
Blind source separation (BSS) has been successfully applied to a wide variety of applications
such as the estimation of brain activations in fMRI data and speech enhancement for robust
speech recognition. When multiple datasets are jointly analyzed as a group, e.g., when
estimating brain activations in fMRI data from a group of subjects, or, when separating speech
and audio signals in multiple frequency bands, BSS methods face the challenge of keeping the
coherence of separated sources across different datasets. For instance, in group fMRI data
analysis, the coherence among source estimates across different subjects is important for
subsequent analysis stages such as group level inference and the study of inter-subject
variability [2]. In speech or audio source separation in the frequency domain, the coherence
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among the source estimates across different frequency bands is crucial for reliable back-
reconstruction of the source estimates to the temporal domain [3]. Therefore, a joint BSS
scheme on multiple datasets is motivated for separating the latent sources from each dataset
while keeping the correspondence of the source estimates across different dataset.

A number of methods have been proposed for achieving joint BSS. Group ICA [2] maintains
the coherence of the source estimates by assuming a common signal subspace shared by all
datasets and maximizes the statistical independence of the sources within the common signal
subspace. Because ICA is performed in the common signal subspace, a group dimension
reduction stage is required to aggregate the common features across the datasets while
discarding the distinct features for their lesser contribution to the variance of aggregated data.
After ICA, a disaggregation procedure has to be employed to back-reconstruct the source
estimates for each individual subject. Tensorial ICA [4] specifies a similar common signal
subspace model as Group ICA. In addition, each group of the corresponding mixing vectors is
represented by a common mixing vector associated with a cross-subject variation vector using
a rank-one approximation. In this way, the group datasets are decomposed into a three-way
tensor product of the common sources, common mixing vectors, and the associated cross-
subject variation vectors.

Independent vector analysis (IVA) models the corresponding sources from each dataset as an
independent source vector with a dependent multivariate super-Gaussian distribution [3]. The
source separation method is then developed as a generalization of Infomax ICA [5] by
maximizing the mutual information between joint and factorized source vector distributions.
In the derivation of IVA learning rule, the covariance matrix in the independent source vector
distribution is assumed to be an identity matrix. Therefore, the group of corresponding sources
within an independent source vector are assumed to be uncorrelated with each other. In [6], it
is noted that the dependencies among those corresponding sources are implied in the higher
order moments of the distribution function. However, even though, the development of IVA
algorithm is simplified by the assumption of an identity covariance matrix, the performance
of the algorithm might suffer when separating independent source vectors containing correlated
source elements.

In this work, we introduce a joint BSS model for a group of datasets based on the correlation
of latent sources within and between datasets. We show that joint BSS can be achieved by M-
CCA. M-CCA is developed as an extension of canonical correlation analysis (CCA) to find
linear transforms that simplify the correlation structure among a group of random vectors [1].
M-CCA algorithm takes multiple stages, where in each stage, a linear combination is found
for each random vector such that correlation among the group of resulting variates, i.e. the
canonical variates, is maximized. Motivated by M-CCA, we propose a generative model for
joint BSS and study source separability conditions based on between-set source correlation
values and eigenvalues of each group of corresponding sources. We show that, when the
canonical variates obtained at different stages are constrained to be uncorrelated, M-CCA
achieves joint BSS of the latent sources under the proposed generative model and derived
separability conditions.

Through numerical simulation we show that, compared with Group ICA and IVA, M-CCA
achieves better performance on joint BSS of (i) large number of datasets, (ii) group of
corresponding sources with heterogeneous correlation values, and (iii) complex-valued sources
with circular and non-circular distributions. We also apply M-CCA to jointly separate brain
activations from group fMRI data and show that M-CCA estimates brain networks that exhibit
higher cross-subject consistency.
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In Section II, we introduce a generative model for joint BSS of group datasets and state source
separability conditions based on (i) the distinction of between-set source correlation values and
(ii) the maximum eigenvalue of each group of corresponding sources. We justify that joint BSS
of sources in the generative model can be achieved by a multi-stage deflationary correlation
maximization scheme. In Section III, we give a brief review of CCA and M-CCA, and outline
the implementation of M-CCA for joint BSS. In section IV, we compare source separation
performance of M-CCA with the existing methods on simulated data and group fMRI data. In
the last section, we discuss several interesting aspects of M-CCA method to conclude the work.

II. Joint BSS by correlation maximization
In this section, we first introduce a generative model for group datasets based on within- and
between-set source correlation structures. Next, we study two types of source separability
conditions, (i) condition on between-set source correlation values and (ii) condition on
eigenvalues of source correlation matrices, for achieving joint BSS by a multi-stage correlation
maximization scheme.

A. Generative model for group dataset
We assume the following generative model:

i. For a group of M datasets, each dataset, , m = 1, 2, …, M
contains linear mixtures of K sources given in the source vector

, mixed by a nonsingular matrix, Am, i.e.,

(1)

where xm, sm ∈ ℂK are K-dimensional complex random vectors, whose samples form
the mixture dataset and source dataset respectively, Am ∈ ℂK×K is a non-singular
complex square matrix;

ii. Sources are uncorrelated within each dataset and have zero mean and unit variance,
i.e.,

and

(2)

where (·)H denotes the Hermitian transpose and I is the identity matrix;

iii. Sources from any pair of datasets m ≠ n; m, n ∈ {1, 2, …, M} have nonzero correlation
only on their corresponding indices. Without loss of generality, we assume that the
magnitude of correlation between corresponding sources are in non-decreasing order,
i.e.,
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where , (·)* represents complex conjugate, and |·| represents the
magnitude of a complex quantity.

Assumptions (ii) and (iii) can be written in a compact form in terms of the

concatenated source vector :

where  for m, n ∈ {1, 2, …, M} is a diagonal matrix
with the correlation values of the corresponding sources in sm and sn on its diagonal.

This assumed correlation pattern for latent sources in the generative model can be effectively
used to construct a joint source separation scheme. In this scheme, the group of sources that
have the maximal between-set correlation values are first extracted from the datasets. By
removing the estimated sources from the datasets and repeating the correlation maximization
procedure, subsequent procedures can extract groups of corresponding sources from each
dataset in decreasing order of between-set correlation values.

B. Joint BSS by maximizing between-set source correlation values
In this section, we state the separability condition based on source correlation values, i.e., the
entries in Λm,n and prove that, when the condition is satisfied, a joint BSS can be achieved by
a multistage correlation maximization scheme. We study joint BSS on M = 2 datasets and joint
BSS on M > 2 datasets as two comparative cases in order to highlight how the source
separability condition is relaxed for joint BSS on multiple datasets compared to the case of two
datasets.

1) Joint BSS of two datasets—Given two datasets xm, m = 1, 2, following the generative
model given in (i)–(iii) in Section II-A and

(3)

the first pair of corresponding sources,  and  can be jointly

extracted, up to phase ambiguity, by two demixing vectors,  and , that maximize the
magnitude of correlation coefficient between the two extracted sources, i.e.,

where . In other words, (3) defines source separability
condition by correlation maximization on two datasets.

To see this, suppose x1 and x2 are linear mixtures of sources from s1 and s2 respectively, i.e.,

 and , where αk, βk, k = 1, 2, …, K, are complex-valued mixing
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coefficients. Without loss of generality, we assume that x1 and x2 have unit variance, the
correlation between x1 and x2 can be written as

since , ∀k ≠ l.

We have

(4)

due to the triangle inequality.

The right side of inequality (4) can be written as an inner product of two vectors, z1 and z2,
where

and

Noting that x1 and x2 have unit variance, the sources are assumed to have unit variance

according to the generative model, we then have  and . Therefore,
vectors z1 and z2 are confined on a K-dimensional hyper-ellipsoid with semi-axes

According to assumption (iii) in the generative model and the condition specified in (3), we

have , ∀k > 1, hence,

(5)
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where the equality holds and the inner product is maximized if the angle between z1 and z2 is

zero, i.e., z1 and z2 are parallel and point to the same direction, and . Fig. 1
illustrates maximization of 〈z1, z2〉 in two-dimensional plane.

By (4) and (5), |r ̄1,2| achieves its maximum, , when . Correspondingly,

we have  and .

Therefore, if two demixing vectors  and  can be found to maximize the correlation
between the extracted sources from each dataset, the extracted sources are the first pair of
corresponding sources, up to phase ambiguity.

Now, suppose that the first pair of corresponding sources are extracted and removed from x1

and x2. By the same reasoning, the second pair of corresponding sources  and  can be
jointly recovered by two demixing vectors that maximize the correlation coefficients if

By induction, the kth pair of corresponding sources can be jointly recovered by correlation
maximization if

As a conclusion, all the K pairs of corresponding sources can be jointly recovered from x1 and
x2 in this deflationary procedure if the following condition is satisfied

(6)

If each dataset is whitened before joint BSS, the demixing matrix for each dataset becomes an
orthonormal matrix. In this case, removal of the extracted sources in the deflationary scheme
can be converted to the constraint that the current demixing vector be orthogonal to the
previously obtained ones. Compared with source removal, imposing orthogonality constraints
on the demixing vectors has the advantage that each joint source extraction stage can be solved
as a constrained optimization problem [1].

2) Joint BSS of more than two datasets—In case of joint BSS on M > 2 datasets, we

notice that there are  correlation coefficients among the group of
corresponding sources in M datasets. We define
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i.e., the sum of correlation magnitudes, as the measure of overall correlation among the kth
group of extracted sources. Since the maximum of R̂(k) is achieved if and only if each element

 in the sum reaches its maximum, it is straightforward to extend condition (6) to M datasets
as

(7)

and conclude that, when (7) is satisfied, joint BSS of K sources in M datasets can be achieved
by maximizing R̂(k), k = 1, 2, …, K, using a deflationary procedure.

However, the condition specified in (7) is not a necessary condition to achieve joint BSS on
M datasets. To see this, we consider joint extraction of the first group of corresponding sources

in M datasets by maximizing . When R̂ (1) is maximized, all , ∀m, n ∈ {1,
2, …, M} reach their respective maximum. Apply source separability condition in (3) to the
mth and nth datasets, we have that, when  is maximized, the first source in these two
datasets are jointly extracted if

(8)

Therefore, to guarantee that the first source in all M datasets are extracted, we just need to find,
for each m = 1, 2, …, M, an index n ∈ {1, 2, …, M}, n ≠ m, such that (8) is satisfied. Hence,
the necessary condition to extract the first group of corresponding sources by maximization of
R̂ (1) can be stated as

Suppose R̂(k), k = 1, 2, …, K, is sequentially maximized with the aforementioned deflationary
scheme, the necessary condition for joint BSS of K sources in M dataset can be stated as

(9)

It is important to note that: when M = 2, (9) reduces to (6); when M > 2, (9) is a more relaxed
condition than (7) which is a direct extension of (6). The difference between (9) and (7) suggests
that, with respect to the generative model introduced in Section II-A, joint BSS on a larger
group of datasets is easier to be achieved than joint BSS on a smaller group of datasets.

C. Joint BSS by maximizing eigenvalue of source correlation matrix
In this section, we study source separability condition based on the maximum eigenvalues of
source correlation matrices. We show that, according to the generative model, eigenvalues of
the augmented source correlation matrix Rs are composed of eigenvalues of correlation
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matrices for each group of corresponding sources. Furthermore, eigenvector corresponding to
the maximum eigenvalue for a group of corresponding sources directly indicates the
separability condition of the group of sources.

To analyze Rs, we first notice that for a square matrix A and a permutation matrix P of the
same size, A′ = PAPT has the same eigenvalues as A and the corresponding eigenvectors has
the relation x′= PT x. Therefore, we can work on a permuted version of the augmented
correlation matrix  without losing generality.

We permute columns and rows of Rs such that the non-zero correlation values of the
corresponding source groups are clustered to form submatrices on the main diagonal, as shown
below.

Let:

then, we have

where R(k) is the M×M source correlation matrix of the kth group of corresponding sources
from each dataset.

Since  is block diagonal, its eigenvalues are the eigenvalues of R(k), k = 1, 2 …, K. The
eigenvectors of  are composed of the eigenvectors of R(k), k = 1, 2 …, K, in its kth segment
of length M and zeros elsewhere.

Based on the assumption in Section II-A, between-set source correlation values are non-
increasing across different groups of corresponding sources. Given that all the diagonal
elements of R(k), k = 1, 2 …, K, are constrained to be one, R(1) is the closest to being singular
and the maximum eigenvalue of R(k) provides a measure on degree of singularity. Hence, when

Li et al. Page 8

IEEE Trans Signal Process. Author manuscript; available in PMC 2010 March 9.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



the first group of corresponding sources can be extracted by the eigenvector of  associated
with its largest eigenvalue.

Through a deflationary procedure described in Section II-B, the eigenvector associated with
λmax(R(k)) extracts the kth group of corresponding sources when

Therefore, the source separability condition can be stated as

(10)

To provide insight into the ordering of λmax(R(k)), here we demonstrate an approximation of
R(k) with identical cross-correlation values as in [7] p. 478. The approximated R(k) takes the
following form:

where ρk is a constant pairwise source correlation value.

Since R(k) = (1 − ρk)I + ρk11T, it can be shown that λmax(R(k)) = 1 + (M − 1) ρk, and
λmin(R(k)) = 1 − ρk with multiplicity (M−1). Hence (10) is satisfied for ρ1 > ρ2 > … > ρK and
each group of corresponding sources can be jointly extracted by the eigenvectors associated
with λmax(R(k)), k = 1, 2, …, K.

In our framework, the demixing transformations obtained by M-CCA are constrained to be
orthonormal. Due to invariance of eigenvalues to orthonormal transformation, source
separability condition derived from source correlation matrix Rs is directly applicable to the
mixture datasets.

III. Implementation of joint BSS by M-CCA
A. CCA and M-CCA

CCA is a statistical method that summarize the correlation structure between two random
vectors by linear transformations [8]. Given two random vectors x1 and x2, CCA seeks two
transformation vectors, a and b, such that the correlation between variables y1 = aT x1 and y2
= bT x2 is maximized. The variables y1 and y2 are defined as the first pair of canonical variates
between x1 and x2. Similarly, the second pair of transformation vectors can be found such that
the resulting canonical variates achieve maximum correlation and are uncorrelated to the
previously obtained canonical variates. The process can continue and the total number of
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canonical variates is limited by the minimum dimension of x1 and x2. It is shown in [7] that
all the transformation vectors of CCA can be obtained by solving an eigenvalue decomposition
problem.

M-CCA extends the theory of CCA to more than two random vectors to identify canonical
variates that summarize the correlation structure among multiple random vectors by linear
transformations [1]. In contrast to CCA where correlation between two canonical variates is
maximized, M-CCA optimizes a objective function of the correlation matrix of the canonical
variates from multiple random vectors such that the canonical variates achieve maximum
overall correlation. Furthermore, due to the consideration of multiple random vectors, M-CCA
can not be solved by a simple eigenvalue decomposition problem as in the case of CCA. Instead,
M-CCA takes multiple stages such that in each stage, one group of canonical variates are
obtained by optimizing the objective function with respect to a set of transformation vectors.
For the second stage and higher stages in M-CCA, the estimated canonical variates are
constrained to be uncorrelated to the ones estimated in the previous stages. M-CCA reduces
to CCA when the number of random vectors is two.

A recent advancement of M-CCA is the development of the signal processing network structure
and the corresponding adaptive algorithm to achieve M-CCA on multiple datasets [9].
Although the adaptive implementation of M-CCA is important in many signal processing
applications, in this work, we focus on batch mode M-CCA algorithms as they are typically
used in BSS of fMRI data.

In summary, CCA and M-CCA find linear coordinates on which the within- and between-set
correlation structures of multiple random vectors are simplified. That is, canonical variates
obtained from the same random vector are uncorrelated with each other, and canonical variates
obtained from different random vectors are correlated only on their corresponding indices.

B. Implementation of M-CCA to achieve joint BSS
The multi-stage deflationary correlation maximization scheme discussed in Section II can be
implemented using the M-CCA algorithm [1]. To measure the overall correlation among
canonical variates, five objective functions based on the correlation matrix of group canonical
variates are proposed [1]. Two objective functions are, respectively, sum and sum of squares
of all entries in the correlation matrix, i.e., SUMCOR and SSQCOR. The other three are based
on the eigenvalues of the correlation matrix, i.e., MAXVAR, MINVAR, and GENVAR.

The five objective functions of M-CCA algorithm are closely related. Given that the

eigenvalues of R(k) sum up to M, the maximum of SSQCOR objective, i.e.,  is
dominated by λmax; the minimum of GENVAR objective, i.e., min Πi λi is dominated by
λmin. As for SUMCOR, i.e., max Σi,j rij, is similar to SSQCOR after proper sign correction on
each source in the group. Therefore, the five M-CCA objective functions yield similar results
on a group dataset.

In II-A, we have introduced a generative model for joint BSS where the latent sources have a
similar correlation structure as the canonical variates in M-CCA. The justification of source
separation is developed based on (i) sum over correlation magnitudes between all pairs of
jointly extracted sources and (ii) maximum eigenvalues of the group of corresponding sources.
Maximization of (i) can be achieved by the SSQCOR objective and maximization of (ii) is
achieved directly achieved by the MAXVAR objective to optimize the demixing vectors for
jointly extracting the sources.

As an example, we summarize the M-CCA procedure based on the SSQCOR objective as the
following. Procedures based on other objective functions are similarly defined.
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• Stage 1

• Stage 2 to K

for k = 2:K

end

In [1], stage 1 is solved by first writing out the partial derivative function of the sum of squares
objective with respect to each demixing vector and finding the stationary point by letting the
partial derivative function equal to zero. Since the sum of squares objective is a quadratic form
of each demixing vector, the partial derivative function is a linear function of each demixing
vector. Therefore, closed form solution of the stationary point can be derived. Starting from
an initial point, each demixing vector is updated in sequel to guarantee that the objective is
increasing and a sweep through all the demixing vectors constitutes one step of the iterative
maximization procedure. The iterations cease when the objective convergence criterion is met
and the resulting demixing vectors are taken as the optimal solution. Stage 2 and higher stages
are solved in a similar manner with the objective function replaced by a Lagrangian
incorporating the orthogonality constraints on the demixing vectors. A Matlab implementation
of the M-CCA algorithm is available at the web link: http://mlsp.umbc.edu/resources.

IV. Experiments
A. Joint BSS on simulated datasets

1) Generation of the group datasets—We generate K groups of sources with samples
drawn randomly from a Laplacian distribution. Each group contains M sources. A positive
definite matrix Σk is randomly generated for the kth group of sources. A linear transformation
Ck is then applied to each group of sources to impose a correlation structure specified by Σk

so that the sources form the group of corresponding sources. Specifically, we use 
where E and Λ are eigenvector and eigenvalue matrices of Σk. Across different groups k = 1,
2, …, K, the entry values in the correlation matrix Σk are generated in decreasing order. One
source from each group is picked out to form the set of K latent sources for one dataset. The
K sources are then mixed by a randomly generated K × K nonsingular mixing matrix.

2) Factors related to the separation performance—We study the performance of joint
BSS by M-CCA method with respect to the following three factors. (i) The number of datasets
incorporated in the joint BSS, (ii) The homogeneity of correlation values within the group of
corresponding sources, and (iii) Real valued sources and complex-valued sources with circular
and non-circular distributions.

3) Measure of performance and comparison with reference methods—Ten Monte
Carlo trials are performed with different realizations of the sources and mixing matrices in

Li et al. Page 11

IEEE Trans Signal Process. Author manuscript; available in PMC 2010 March 9.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://mlsp.umbc.edu/resources


each trial. The performance of the BSS algorithm is evaluated using the normalized inter-
symbol interference (ISI) [10]

where G = {gij} is the global matrix, i.e., the product of estimated demixing matrix and true
mixing matrix. In the case of joint BSS on multiple datasets, the coherence of the source
separation among different datasets should also be taken into account. Therefore, we calculate
ISI based on the average global matrix of all datasets. When the sources are jointly separated
for all datasets, the estimated global matrices for all datasets should be close to an identity
matrix up to the same permutation. Correspondingly, the ISI for a successful joint BSS is close
to zero.

We compare the performance of Group ICA, IVA, and M-CCA in each simulated case.

4) Experimental results
i. We test the estimation of different number of simulated datasets in a joint BSS scheme

by the three algorithms and calculate ISI as shown in Fig. 2. It is observed that the
performance of M-CCA improves as the number of datasets increases from M = 2 to
M = 8 and saturates for M > 8. The observation agrees with the separability condition
of M-CCA in that, when the number of datasets increases, the separability condition
becomes more relaxed and the chance for a given dataset to have distinct source
correlation values with at least one other dataset is increased. For large number of
datasets, the separability condition is always easy to satisfy, therefore, the
performance does not improve as the number of datasets further increases and the
residual separation error is due to finite sample size effect.

ii. Although it is natural to expect the between-set correlation values to be similar within
a group of corresponding sources, there might be correlation values that are
significantly different for certain sources in the group due to, e.g., the existence of
outliers. To test the performance of source separation in this more general case, we
inject, within each group, a set of sources with correlation values significantly
different from the other sources in the group so that the entries in the correlation matrix
are distributed heterogeneously.

Fig. 3 shows a performance comparison for joint separation of sources with
homogeneous and heterogeneous correlation values. The performance of Group ICA
degrades in the presence of heterogeneous source correlation values while the
performance of M-CCA is not affected by the heterogeneous correlation values. In
the first step of Group ICA, a set of common source factors representing each group
of corresponding sources is found by performing group dimension reduction on
concatenated data using PCA. In the second step, ICA is applied within the subspace
of common source factors to maximize the independence. When there are outliers in
the group of corresponding sources, Group ICA is not able to handle those outliers
since group dimension reduction keeps only the dominating common factors while
ignoring the outliers due to their insignificant contribution to the common factor.
Therefore, it is reasonable to observe that the joint BSS performance of Group ICA
degrades in the case of heterogeneous source correlation.
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iii. It is worth noting that Group ICA, IVA, and M-CCA are all capable of analyzing
complex-valued data. This includes complex-valued sources, complex-valued mixing
matrices, or both complex-valued sources and mixing matrices.

Since our implementation of Group ICA uses the Infomax (or maximum likelihood) ICA
algorithm [5] to estimate group level sources, matching the nonlinearity to source distribution
improves the performance. One important classification of complex source distribution is based
on circularity. A complex source distribution is circular when its probability density is a
function of only the source magnitude. Relation between nonlinear functions for Infomax ICA
algorithm and complex-valued source distributions is studied in [11]. In our experiments, we
use arctan(·) nonlinearity for Group ICA when the simulated complex-valued sources have
non-circular distributions as it has been noted to provide robust separation performance. We
use the nonlinear function proposed in [12] when the sources have circular distributions.

For IVA and M-CCA algorithms, on the other hand, no additional configuration is needed
when processing the complex-valued data.

Fig. 4 shows the performance comparison for joint BSS on real, complex circular and complex
non-circular sources. It is observed that M-CCA performance is robust to both real and
complex-valued sources, as well as complex-valued sources with circular and non-circular
distributions. The performance of Group ICA slightly degrades when the complex-valued
sources are circular. The performance difference between M-CCA and Group ICA is more
significant for small sample size N = 360, because M-CCA achieves joint BSS by second order
statistics of the sources while Group ICA and IVA both implicitly use higher order statistics.

In all cases, the performance of IVA is poor on the simulated datasets. This is likely to be
caused by the uncorrelatedness assumption on the group of corresponding sources in the IVA
model. Figure 5 shows the 2D scatter plot of a pair of corresponding sources from the simulated
datasets. It is observed that the pair of sources assume correlation whereas in IVA, the
corresponding sources within an independent source vector are assumed to have a multivariate
distribution with no second-order dependence [3]. Although higher-order dependence is a valid
assumption, in this work, we focus on second-order dependence among the corresponding
sources and use it to achieve joint BSS.

It is worth noting that correlation structure could be incorporated into the multivariate source
vector distribution in IVA, at the expense of increased algorithm complexity. However, we
would like to note that the correlation structure has to be either pre-specified or estimated by
an algorithm such as M-CCA. This is an interesting topic by itself and worth further
investigation.

B. Joint BSS on a group of fMRI datasets
1) fMRI data acquisition—Twelve right handed participants with normal vision – six
females, six males, average age 30 years – participated in the study. Subjects performed a
visuomotor task involving two identical but spatially offset, periodic, visual stimulus, shifted
by 20 seconds from one another. The visual stimuli were projected via an LCD projector onto
a rear-projection screen subtending approximately 25 degrees of visual field, visible via a
mirror attached to the MRI head coil. The stimuli consisted of an 8 Hz reversing checkerboard
pattern presented for 15 seconds in the right visual hemifield, followed by 5 seconds of an
asterisk fixation, followed by 15 seconds of checkerboard presented to the left visual hemifield,
followed by 20 seconds of asterisk fixation. The 55 second set of events was repeated four
times for a total of 220 seconds. The motor stimuli consisted of participants touching their
thumb to each of their four fingers sequentially, back and forth, at a self-paced rate using the
hand on the same side on which the visual stimulus is presented.
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Scans were acquired at the Olin Neuropsychiatry Research Center at the Institute of the Living
on a Siemens Allegra 3T dedicated head scanner equipped with a 40mT/m gradients and a
standard quadrature head coil. The functional scans were acquired using gradient-echo echo
planar imaging with the following parameters: repeat time (TR) = 1.50s, echo time (TE) = 27
ms, field of view = 24 cm, acquisition matrix = 64 × 64, flip angle = 60 degrees, slice thickness
= 4mm, gap = 1mm, 28 slices, ascending acquisition. Six ‘dummy’ scans were performed at
the beginning to allow for longitudinal equilibrium, after which the paradigm was
automatically triggered to start by the scanner.

A total number of twelve datasets are jointly analyzed. Each dataset is preprocessed according
to typical fMRI analysis procedures consisting of slice timing correction, image registration,
motion correction, smoothing, whitening, and dimension reduction [13]. Thirty-two
normalized principal components are retained for each dataset and M-CCA is applied to the
twelve sets of retained principal components.

We present two sources of interest from the M-CCA and Group ICA estimation results: (i) a
source showing activation at inferior parietal lobule, posterior cingulate, and medial frontal
gyrus (this set of regions is called the “default mode” network which tends to be less active
during the performance of a task [14]), and (ii) the pre- and post-central gyrus (motor cortex)
and occipital lobe (primary visual cortex).

The estimated mean activation maps over all datasets, image of the cross-subject source
correlation matrices, and the mean time course are displayed in Figures 6 and 7. The right and
left side visuomotor task paradigm is overlaid onto the estimated time courses for reference.
The results obtained by M-CCA are presented on the upper row and Group ICA on the lower
row.

For component (i), the estimated sources by M-CCA and Group ICA are shown in Figure 6.
It is observed that the spatial map estimated by M-CCA shows higher cross-subject correlation
level than Group ICA. The time courses of default mode estimated by M-CCA and Group ICA
both show expected negative correlation against the onset of the visuomotor task. Furthermore,
a multiple linear regression is performed on the estimated time course with the right (R) and
left (L) visuomotor paradigm regressors. It is observed that time course estimated by M-CCA
has more significant regression coefficients with the task paradigms, i.e., M-CCA (R): −0.52
with estimated confidence interval (CI): [−0.38,−0.65] and (L): −0.87 CI: [−0.74, −1.01];
Group ICA (R): −0.45 CI: [−0.28, −0.62] and (L) −0.60 CI:[−0.43, −0.77]. Hence M-CCA
achieves higher consistency on spatial activation region and also the time courses show a higher
correlation with the task paradigm.. The agreement on the spatial and temporal features
suggests that default mode network is a common feature across all subjects that is driven by
both left and right visuomotor task.

For component (ii), the estimated sources by M-CCA and Group ICA are shown in Figure 7.
It is observed that the motor and visual activation on the right and left side of the cerebrum are
estimated as one component by M-CCA, whereas in Group ICA, these activation regions are
estimated as two independent components. ICA estimates sources with maximal non-Gaussian
distributions, which is closely related to the sparsity of the identified regions in the brain
activation map. Hence, the right and left side visual and motor activation regions are estimated
by ICA as two separate components. On the other hand, M-CCA emphasizes consistency of
the activation region across subjects. The sign of the right and left side activation regions are
relative due to the sign ambiguity of BSS. Hence, the right and left side activation regions form
a network that represent a consistent task-related feature of the group.

In summary, we present preliminary results of M-CCA as an alternative data-driven method
for fMRI analysis and show that, in contrast to Group ICA, M-CCA emphasizes the similarity
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of components and thus estimates brain networks that are more consistently activated across
subjects.

V. Discussion
In this work, we propose a joint BSS method using M-CCA. The method has the advantages
that the source separation performance improves as the number of dataset increases. The
method outperforms the existing group analysis methods in jointly separating group of
corresponding sources with heterogeneous correlation values or, in case of complex-valued
data, when sources have circular and non-circular distributions. The method is thus promising
for application to signal processing problems where the coherence of the source estimates from
multiple datasets is required.

Although the proposed method does not explicitly incorporate noise in the model, noise is
addressed in the pre-processing step through a decomposition of each dataset into a signal
subspace and a noise subspace [13]. Therefore, the joint BSS procedure is only applied within
the signal subspace, as demonstrated in the analysis of the group fMRI data in IV-B.

In the following, we discuss several topics relevant to the M-CCA method.

A. Relation between M-CCA and “Carroll’s procedure”
PCA applied to the temporal concatenation of multiple datasets is implemented as a major step
in Group ICA to obtain the subspace of common source factors. In [1] p441–442, this PCA
scheme is called “Carroll’s procedure” and compared with the two eigenvalue-based M-CCA
objective functions, MAXVAR and MINVAR. The eigenvectors obtained by PCA on the
concatenated data can be segmented and normalized to obtain a set of transformation vectors
that, when applied to each dataset, achieve a result similar to M-CCA.

When there are outliers in the group of corresponding source, multiple eigenvalues of R(1), …,
R(k−1) could be greater or equal to λmax(R(k)). Since “Carroll’s procedure” directly selects the
first K largest eigenvalues of Rs and uses their associated eigenvectors to form the K groups
of canonical transformations, the performance of group ICA is liable to degrade in presence
of outlier sources.

In contrast, when separating the kth group of corresponding sources, the orthogonality
constraints imposed in MAXVAR and MINVAR objective, i.e., ,
m = 1, 2, …, M exclude any eigenvector of R(1), …, R(k−1) associated with an eigenvalue that
is greater or equal to λmax(R(k)). Therefore, the performance of M-CCA is robust to the presence
of outlier sources, which is observed in Section IV-A.4-(ii).

B. Comparison of M-CCA and CCA for joint BSS
When M-CCA and CCA are applied to joint BSS on datasets under the generative model in
Section II-A, M-CCA has the advantage that the separability condition is relaxed as the number
of datasets incorporated into the analysis is increased and correspondingly, the source
separation performance is improved. This is observed in the results of the source separation
experiments on simulated datasets in Section IV-A.4-(i).

On the other hand, the generative model and the separability condition together suggest that
M-CCA can be decomposed into a set of CCA procedures on certain dataset pairs that satisfy
the distinct correlation value condition. The estimates of the corresponding sources from all
datasets can then be selected by matching and combining those pairwise CCA results. In
practical data analysis, however, this idea is not feasible because the latent sources in the
datasets may not strictly follow the generative model.
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As an example, we generate M = 8 datasets with K = 20 sources in each dataset using the
method described in IV-A.1. Fig. 8 shows joint BSS results on the generated datasets by M-
CCA and multiple pairwise CCA. When the sources are not strictly uncorrelated across
different indices, M-CCA keeps the coherence of the corresponding source estimates as it
considers all the datasets during each correlation maximization stage, as shown in Fig. 8(a).
On the other hand, pairwise CCA achieves exact diagonalization on the cross-correlation
matrix of each specific dataset pair. Therefore, the sources from a dataset may have inconsistent
estimates depending on the dataset it is paired with for the CCA procedure, as shown in Fig.
8(b).

C. Robustness of the M-CCA algorithm
There are five objective functions for M-CCA, MAXVAR, MINVAR, SUMCOR, SSQCOR,
and GENVAR. Among these objective functions, MAXVAR and MINVAR lead to direct
solutions. M-CCA algorithm based on the other three objective functions, SUMCOR,
SSQCOR, and GENVAR utilizes iterative procedures to optimize the objective and hence the
initial condition has an impact on the solution.

In order to test the robustness of the iterative M-CCA solutions to different initial conditions,
we generate simulated group datasets and apply the iterative M-CCA algorithm based on
SSQCOR as discussed in Section III-B. We perform multiple Monte Carlo trials of the
algorithm on the same simulated datasets. In each trial, a random initialization is given to the
demixing vectors to start the iterative optimization of the objective function. We calculate the
Euclidean distance among the estimated demixing vectors for the same source at different trials.

It is observed that M-CCA solutions using SSQCOR objective is robust for both homogeneous
and heterogeneous correlation structures, real and complex valued data types, as well as
complex circular and non-circular distributions. The Matlab implementation of M-CCA
mentioned in Section III-B is ready for this robustness test.

D. Relation between joint BSS by M-CCA and BSS based on secondorder statistics
The source separability conditions in this work are developed in a way similar to the BSS
methods based on second-order statistics [15], where the distinction on autocorrelation
structures of individual source signals is exploited to achieve BSS. In [15], sources in a dataset
are simultaneously separated by one set of demixing vectors that approximately jointly
diagonalize a group of covariance matrices at different time delays using the Jacobi technique.
In our approach, on the other hand, multiple sets of demixing vectors are obtained by M-CCA
to achieve approximate joint diagonalization on the cross-correlation matrices of all dataset
pairs.

E. Other relevant works on CCA for BSS
CCA has been used for BSS on a single dataset by maximizing the auto-correlation of extracted
sources [16], [17] and exploratory analysis of fMRI data [18]. The underlying assumption is
that individual sources have higher autocorrelation values than their mixtures. A constrained
CCA is applied to incorporate spatial information into fMRI analysis based on general linear
model [19]. In our approach, the correlation is maximized among the corresponding sources
extracted from multiple datasets and the autocorrelation of latent sources is not required.

M-CCA has been used in kernel-based methods to achieve ICA [20], which is known as kernel
ICA and applied to analyze heterogeneous datasets [21]. In kernel ICA, M-CCA is used for
finding the mutual information upper bound among multiple latent sources in a high
dimensional feature space. A demixing matrix is then found for minimization of the mutual
information upper bound. In this way, performing ICA in a maximum likelihood framework
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does not require any assumption on the distribution of the latent sources. It is important to note
that in this method only the first group of canonical variates, i.e., the group of canonical variates
with the maximum correlation, are obtained by M-CCA and utilized to optimize the ICA
estimation. In our approach, on the other hand, multiple groups of canonical variates are
estimated by M-CCA as the jointly extracted sources from multiple datasets.

CCA have been studied in terms of minimum MSE solution and applied in blind equalization
of SIMO and MIMO systems [22],[23]. CCA is developed as an adaptive algorithm in [24],
[25],[26]. CCA can be posed as generalized eigenvalue (GEV) decomposition [9] and the
adaptive version of GEV decomposition is studied in [27],[28].

Motivated by the multivariate generalization of mutual information, in [29], dependence among
multiple random variables is described by a graph structure and the separation of the dependent
components is posed as a density estimation problem to form the method of dependent
component analysis (DCA).

F. Summary
In this work, we propose a joint BSS scheme that achieves source separation based on latent
source correlation structures across a group of datasets. We study the source separability
conditions derived from two objective functions for M-CCA. We show that the proposed joint
BSS scheme outperforms existing group analysis methods for large number of datasets,
heterogeneous source correlation values, and processing of complex-valued data. The
application to realistic fMRI group analysis shows promising results for estimating brain
activations.
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Fig. 1.
Illustration of the ellipsoid inequality in two-dimensional space, red arrow denotes the position
of z1 and z2 achieving maximum of 〈z1, z2〉
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Fig. 2.
Source separation ISI of Group ICA, IVA, and M-CCA on different number of datasets M with
K = 40 sources within each dataset and two sample size (a) N = 360 and (b) N = 3600
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Fig. 3.
Source separation ISI of Group ICA, IVA, and M-CCA of group dataset containing sources
with homogeneous and heterogeneous correlation values. Number of datasets M = 16, K = 20
sources within each dataset and two sample size (a) N = 360 and (b) N = 3600

Li et al. Page 21

IEEE Trans Signal Process. Author manuscript; available in PMC 2010 March 9.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 4.
Source separation ISI of Group ICA, IVA, and M-CCA of group datasets containing real valued
sources, complex circular sources, and complex non-circular sources. Number of datasets M
= 16, K = 20 sources within each dataset and two sample size (a) N = 360 and (b) N = 3600
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Fig. 5.
Two dimensional scatter plot of a pair of corresponding sources from the simulated dataset,
sources have Laplacian distribution with sample size N = 3600
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Fig. 6.
Estimated mean activation maps (top left), source correlation between subjects (top right), and
time course (bottom) of the default mode by (a) M-CCA and (b) Group ICA. The right (Green
circle) and left (Red block) visuomotor task paradigm is overlaid onto the estimated time
courses for reference.
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Fig. 7.
Estimated mean activation maps (top left), source correlation between subjects (top right), and
time course (bottom) of visual and motor activation by (a) M-CCA and (b)–(c) Group ICA.
The right (Green circle) and left (Red block) visuomotor task paradigm is overlaid onto the
estimated time courses for reference.
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Fig. 8.
(a) Correlation matrix of the all source estimates of all datasets by M-CCA, (b) Correlation
matrix of the source estimates from x1 by two different CCA procedures s1 = CCA(x1, x2) vs.
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