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Abstract—Tailored for the emerging class of cognitive radio
networks comprising primary and secondary wireless users, the
present paper deals with dynamic allocation of sub-carriers, rate
and power resources based on channel state information (CSI) for
orthogonal frequency-division multiple access (OFDMA). Users
rely on adaptive modulation, coding and power modes that they
select in accordance with the limited-rate feedback they receive
from the access point. The access point uses CSI to maximize
a generic concave utility of the average rates in the network
while adhering to rate and power constraints imposed on the
primary and secondary users to respect cognitive radio related
hierarchies. When the channel distribution is available, optimum
dual prices are found to optimally allocate resources across users
dynamically per channel realization. In addition, a simple yet
optimal on-line algorithm that does not require knowledge of the
channel distribution and iteratively computes the dual prices per
channel realization is developed using a stochastic dual approach.
Analysis of the computational and feedback overhead along with
simulations assessing the performance of the novel algorithms
are also provided.

Keywords: Cognitive radios, dynamic resource manage-
ment,scheduling, non-linear convex optimization, dual formu-
lation, adaptive signal processing, quantization.

I. INTRODUCTION

The proliferation of wireless services along with the per-
ceived spectrum under-utilization have motivated recent re-
search on dynamic spectrum management and wireless cog-
nitive radios (CRs). CRs capable of sensing the spectrum,
allocating radio resources and accessing the system bandwidth
dynamically, as well as using available stimuli to track down
their environment. A number of challenges arise with such
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dynamic and hierarchical means of accessing the spectrum
[14]. As CR users typically communicate in an opportunistic
manner, they should be capable of sensing the spectrum over
a wide range of frequencies and perform online dynamic
scheduling and allocation of resources to improve bandwidth
utilization. Accordingly, CR users must be capable of adapting
their transmission and reception parameters to the intended
dynamically changing channel while respecting possible hier-
archies and adhering to power constraints and diverse quality
of service (QoS) requirements. Adapting to the environment
and the channel conditions constitutes one of the major tasks
in CR research and development, and is the main focus of this
paper.

The merits of adaptive schemes which exploit knowledge of
perfect (P-) instantaneous channel state information (CSI) and
channel statistics to optimally allocate the transmit resources
in wireless systems are well documented; see e.g., [13] and
[10, Chap. 9] for point-to-point, or, [33], [20] and [36] for
multi-user links. Since the assumptions of perfect knowledge
of the instantaneous CSI or the channel statistics may be
unrealistic for many practical systems, recent research has
focused on adaptive schemes that: (i) rely on instantaneous
quantized (Q-) CSI that can be pragmatically acquired via a
limited-rate feedback link; see e.g., [24], [21], [25]; and (ii)
do not require channel statistics but allocate resources based
on stochastic approximation algorithms (these can be viewed
as “intelligent” least mean-square (LMS) type schemes which
learn the unavailable information on-the-fly); see [30], [9] and
[35] for a recent review. Application of such adaptive schemes
has been recently investigated to manage resources in CR
based on different approaches: utility optimization [16], [37],
[26] and economic bid [2]; game theory [15], [38]; and multi-
agent schemes [17], to name a few; see also [1] and [28] for
surveys.

The present paper investigates resource allocation (RA)
based on Q-CSI for CR operating over fading channels,
with known or unknown channel statistics. The focus is on
a CR, where co-existing primary and secondary users [28]
rely on orthogonal frequency multiple access1 (OFDMA). For
such a scenario, the access point relies on the current CSI,
channel statistics, and user specifications to optimally allocate
resources and notify users about the optimal schedule through
a feedback channel. This allows users to adapt their trans-
missions (power, rate, and subchannel) accordingly. Channel-
adaptive transmissions mitigate the adverse effects of fading,
and further exploit the diversity provided by the channel. The

1In principle, any other orthogonal basis can be used as a set of transmit
waveforms.
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main contributions are:

• Channel-adaptive resource (power, rate, subcarrier) al-
location is obtained as the solution of a constrained
optimization problem, which naturally takes into account
different user priorities, specific utility functions, indi-
vidual QoS requirements, and physical layer parameters,
e.g., channel statistics. The resultant optimum dynamic
resource allocation depends only on the current channel
realization, and dual variables that can be readily inter-
preted as user-specific prices.

• While the resource allocation is found in closed-form,
the user-specific prices capture the differences among
users in terms of priority, QoS, as well as average
channel conditions. Optimal prices are acquired for two
different scenarios: (i) when channel statistics are known,
allocation relies on convex optimization tools [5] and
amounts to an iterative algorithm that converges to the
optimum value of the dual prices; and (ii) when channel
statistics are not known, an adaptive stochastic algorithm
is developed capable of learning the intended channels
on-the-fly, and converging in probability to the optimal
solution.

• Computational and feedback overhead is assessed for
both time division duplex (TDD) and frequency division
duplex (FDD) CRs, and found to be affordable for
most practical systems. Further reduction of the feedback
requirements is accomplished through channel quantiza-
tion, which yields reduced-size optimal power and rate
codebooks.

Recent research has investigated distributed RA for wireless
CR with primary and secondary users to optimize the sum-
capacity for CDMA [31] and OFDMA systems [3] based
on P-CSI. Different from these works, the present paper
considers: (i) maximization of a generic utility objective
entailing practical adaptive power, modulation, and coding
schemes; (ii) an access point collecting the CSI and performing
the optimal resource allocation; and (iii) instead of P-CSI,
practically affordable Q-CSI via a finite-rate feedback link
between the access point and the users. The access point
and a feedback channel have been consistently recognized
as facilitators of both sensing and intelligence [14], tasks of
paramount importance for CRs.

Another problem that during the last years has received
a lot of attention is the design of stochastic RA schemes
for wireless networks by solving a suitably defined utility
maximization problem. Relevant works in this area include
[30], [7], [19], [8], [27], [6], and [9]. Using principles of
optimization theory, duality, dynamic control and adaptive
signal processing, these works develop stochastic schemes
that achieve optimality and stabilize the network. Although
related, the algorithms developed here are different because:
(i) schemes are tailored for a specific CR scenario; (ii) a novel
dual-only approach is introduced that does not require any
primal iteration; (iii) power and rate are jointly adapted to meet
a prescribed bit error rate (BER); (iv) maximum rate and power
constraints are introduced. (Incorporation of power constraints
to the utility maximization problem had been mentioned in

[9] and [6].); and (v) schemes are developed to account
explicitly for Q-CSI. The latter is challenging because rate and
power functions under Q-CSI are non-Lipschitz continuous
which renders convergence non-trivial to establish. Last but
not least, the aforementioned works mainly focus on stochastic
algorithms while the present approach is equally applicable
to non-stochastic designs, along the lines of e.g., [20] and
[23]. The non-stochastic schemes give rise to algorithms where
the dual prices are computed off-line and stationary resource
allocation schemes that only depend on the channel state.

The rest of the paper is organized as follows. After intro-
ducing preliminaries on the setup in Section II, we formulate
the optimization problem and develop the optimal resource
allocation as a function of the channel conditions and the
dual prices in Section III. Computation of the optimal dual
prices when the channel statistics are known is addressed in
Section IV.A, whereas a convergent stochastic algorithm for
the case where channel statistics are unknown is the subject
of Section IV.B. Partially distributed implementations and
channel quantization that allow for reduced feedback overhead
are discussed in Section V. Numerical results and comparisons
corroborating the analytical claims are presented in Section VI.
Concluding remarks in Section VII wrap up this paper.

Notation: Lower- and upper-case boldface fonts are used
to denote (column) vectors and matrices, respectively; (·)T

denotes transpose and (·)† conjugate; X ≥ 0 means all entries
of X are nonnegative; FX(X) denotes the joint cumulative
distribution function (CDF) of matrix X; likewise, Fx(x)
denotes the CDF of a scalar x; EX[·] stands for the expectation
operator over X; b·c (d·e) denotes the floor (ceiling) operation;
I{·} is short for the indicator function; i.e., I{x} = 1 if x is
true and zero otherwise; [x]+ := min(x, 0); βn ↓ 0 denotes
a sequence converging to 0; and O(·) and o(·) stand for the
Landau’s big “O” and little “o” orders.

II. MODELING PRELIMINARIES

Consider an OFDMA air interface between an access point
(AP) equipped with a central scheduler and J wireless users.
Users j = 1, . . . , Jp are primary spectrum holders and users
j = Jp + 1, . . . , J are secondary ones as in the spectrum
overlay paradigm. The overall bandwidth B is divided into
K orthogonal narrow-band subcarriers, each with bandwidth
B/K small enough to ensure that the fading channel on it
is flat, i.e., non-selective. The wireless link between the AP
and user j at subcarrier k = 1, . . . , K is characterized by its
random square magnitude hj,k, which is assumed normalized
by the receiver noise variance. The overall JK×1 gain vector
h := {hj,k, j = 1, . . . , J, k = 1, . . . , K} is stationary and
ergodic with joint CDF F (h).

Per subcarrier k = 1, . . . ,K, we introduce a non-negative
time-sharing vector τ k(h) := {τj,k(h), j = 1, . . . , J},
where entries τj,k(h) depend on the channel realization h and
obey the constraint

∑J
j=1 τj,k(h) ≤ 1. The fraction τj,k(h)

represents the percentage (of time) user j gains access to
subcarrier k per realization h over the channel coherence
interval; and the constraint

∑J
j=1 τj,k(h) ≤ 1 ensures that

when several users are scheduled over the same subcarrier, the
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duration per channel coherence interval can be split among
users (time-shared) so that the access over time2 remains
orthogonal. If scheduled, i.e., if τj,k(h) > 0, user j transmits
on subcarrier k with rate rj,k(h) and power pj,k(h).

The AP acquires with a sufficient number of training
symbols the CSI vector h based on which it optimizes resource
triplets {τj,k(h), rj,k(h), pj,k(h) ∀ j, k}, and feeds back the
optimal schedule to the users using a finite number of bits.
This limited-rate feedback enables channel-adaptive operation
based on a finite number of possible transmit-configurations.
Tailored to such a set-up, let S denote a set containing
a finite number of adaptive modulation, coding, and power
(AMCP)3 combinations (modes). Specifically, let the mth
AMCP mode for the jth user on subcarrier k consist of: (i) a
chosen modulation (e.g., 16-QAM) and a channel code (e.g., a
convolutional code with rate 1/2) with overall rate rj,k,m; and
(ii) a discrete power level pj,k,m. Therefore, the set of AMCP
modes is defined as S := {(rj,k,m, pj,k,m) |j = 1, . . . , J, m =
1, . . . ,Mj,k, k = 1, . . . ,K} where m = 1, . . . , Mj,k indicates
that the AMCP modes can be different for each user-subcarrier
pair. We will find it convenient to extend the definition of S
and include a fictitious user j = 0 with r0,m,k = 0, p0,m,k = 0
and M0,k = 1 ∀k, representing an inactive transmitter. This
extended definition of S will allow us to deal with the case
where no user transmits on subcarrier k. Throughout Sections
III and IV it will be assumed that the codebook S of rates and
powers is prescribed, while in Section V an algorithm will be
presented to optimize its construction.

The finite cardinality of S does not limit users to utilize
transmit-rates and powers constrained to a specific AMCP
mode (i.e., rj,k,m and pj,k,m) since they can naturally sup-
port (under the prescribed BER) transmit-rates expressed as
linear combinations of these AMCP modes by time-sharing
their usage per subcarrier k. Specifically, using the mode m
over ζj,k,m percentage of the τj,k time fraction, and letting
τj,k,m := ζj,k,mτj,k, user j can support rate

rj,k(h) =
Mj,k∑
m=1

τj,k,m(h)rj,k,m (1)

where clearly
∑J

j=1

∑Mj,k

m=1 τj,k,m ∈ [0, 1]; and now the
time-allocation vector is defined as τ (h) := {τj,k,m(h),
j = 1, . . . , J, m = 1, . . . , Mj,k, k = 1, . . . , K}. Through
time-sharing, any linear combination of rates rj,k,m as in (1)
gives rise to the same linear combination of corresponding
powers pj,k,m; hence,

pj,k(h) =
Mj,k∑
m=1

τj,k,m(h)pj,k,m. (2)

Based on the instantaneous rate and power resources in
(1) and (2), the average rate and average power of user

2For existing OFDMA systems, typical bounds on the coherence and
symbol intervals are 5-100 ms and 5-500 µs, respectively. This means that
during a coherence interval several hundreds of symbols are transmitted;
hence, those symbols can be assigned to different users.

3The utilization of discrete AMC modes for wireless communication
systems was introduced by [11]. Recently, systems where the transmit-power
is also adapted using a finite set of discrete power levels have been investigated
by, e.g., [21] for single-user systems and [34] for multi-user systems.

j = 1, . . . , J are expressed, respectively, as

r̄j := Eh




K∑

k=1

Mj,k∑
m=1

τj,k,m(h)rj,k,m


 (3)

p̄j := Eh




K∑

k=1

Mj,k∑
m=1

τj,k,m(h)pj,k,m


 . (4)

III. CHANNEL-ADAPTIVE RESOURCE ALLOCATION

The optimal resource allocation will be obtained in this
section as the solution of a constrained optimization problem.
The objective of this problem will be based on concave
and increasing so called utility functions Uj(r̄j), that are
commonly used in resource allocation tasks (not only restricted
to communication systems), and account for the “social” utility
(reward) that a specific resource gives rise to. On the other
hand, to guarantee QoS, reliability of the wireless links will
be maintained under a maximum allowable BER ε̌j , which in
principle can be different per user j. Furthermore, to respect
primary/secondary CR hierarchies, a minimum average rate
řj will be enforced for primary user transmissions indexed
by j = 1, . . . , Jp; while to prevent secondary users from
“abusing” the spectrum, maximum average rates řj will be
imposed for these users too indexed by j = Jp + 1, . . . , J .
Finally, maximum individual average power constraints p̌j will
be present for both primary and secondary users.

Then the optimal allocation maximizes the total utility
subject to (s.to) average rate and power constraints:





max
τ (h),r(h),p(h)

∑J
j=1 Uj(r̄j)

s.to C1. řj ≥ řj , j = 1, . . . , Jp

C2. r̄j ≤ řj , j = Jp + 1, . . . , J

C3. p̄j ≤ p̌j , j = 1, . . . , J

C4. τ (h) ∈ Fτ

C5. τ (h), r(h),p(h) ∈ Fε

(5)

where constraints C1 and C2 enforce the primary-secondary
CR hierarchies; constraints C3 ensure adherence to the power
budget of individual users; constraints C4 dictate the user
allocation to be feasible, i.e., Fτ represents the time policies so
that the total usage of each subcarrier cannot exceed one; and
the last constraint ensures reliability of the transmissions by
satisfying a minimum BER, i.e., Fε represents the allocation
policies that satisfy the BER requirement. Note that the last
constraint has to be imposed since users rely on AMCP modes
instead of capacity-achieving coded transmissions.

To solve (5), we will re-formulate the original optimization
problem considering the following issues:

• Constraint C5 can be easily satisfied provided that per
channel realization h only the AMCP modes meeting
the required BER are considered in the optimization
task. With εj,k,m(pj,k,m, rj,k,m|hj,k) denoting the instan-
taneous BER expressed as a convex function of the
channel gain, the transmit-power and rate per channel
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realization h, we can define the set of modes per terminal
j and subcarrier k

Mj,k(hj,k) := {m : εj,k,m(pj,k,m, rj,k,m|hj,k) ≤ ε̌j}
(6)

that satisfies its BER requirement. The triplet of sub-
scripts in εj,k,m signify that different modulation and
coding schemes are allowed for each user, mode, and
subcarrier4.

• Feasibility of the time allocation policy in C4 can be
easily described by the set of constraints

τj,k,m(h) ≥ 0 ∀ h, j, k, m and
J∑

j=1

∑

m∈Mj,k(hj,k)

τj,k,m(h) ≤ 1; ∀ h, k. (7)

Different from C1 − C3, these constraints have to be
satisfied for each and every realization h.

• All the optimization variables in (5) can be expressed
as linear combinations of τ (h) and the mode pairs
(rj,k,m, pj,k,m) ∈ S [cf. (1)-(4)]. Since all the elements
of S are known a priori, the only optimization variable
is τ (h). Once τ ∗(h) is found, r∗(h) = r(τ ∗(h)) and
p∗(h) = p(τ ∗(h)) can be obtained.

Based on these considerations and after substituting (3)
and (4) into (5), the optimal management of resources can
be determined as the solution of the following constrained
optimization problem:





max
τ (h)

∑J
j=1 Uj

(
Eh

[∑K
k=1

∑
m∈Mj,k(hj,k) τj,k,m(h)rj,k,m

])

s.to C1. Eh

[∑K
k=1

∑
m∈Mj,k(hj,k) τj,k,m(h)rj,k,m

]
≥ řj ,

j = 1, . . . , Jp

C2. Eh

[∑K
k=1

∑
m∈Mj,k(hj,k) τj,k,m(h)rj,k,m

]
≤ řj ,

j = Jp + 1, . . . , J

C3. Eh

[∑K
k=1

∑
m∈Mj,k(hj,k) τj,k,m(h)pj,k,m

]
≤ p̌j ,

∀j
C4.1. τj,k,m(h) ≥ 0; ∀h, ∀j, k, m

C4.2.
∑J

j=1

∑
m∈Mj,k(hj,k) τj,k,m(h) ≤ 1; ∀h, ∀k.

(8)
The problem formulated as in (8) is convex and can be

efficiently solved using a Lagrange multiplier based primal-
dual approach [5, Sec. 5.1]. Note that in principle, C1 and C2
(which enforce the hierarchy between primary and secondary
users) entail a serious threat to convexity. This is because
the same function is constrained in opposite directions – the
average rate is lower-bounded in C1 and upper-bounded in
C2. As a result, the original problem can be convex only if
such a function is linear w.r.t. the optimization variables. Due

4By selecting the AMCP modes as in (6), the BER requirement is satisfied
per channel realization. Alternatively, one could constrain the average BER
across all channel realizations. Average BER constraints however, create non-
linear coupling among rj,k,m, pj,k,m and τj,k,m for a given user j, rendering
the problem harder to solve. On the other hand, since the inequality in (6) is
a stricter constraint, the total utility could be slightly smaller. However, for
related optimization problems it has been established that this degradation is
practically negligible [25].

to the operating conditions considered in this paper, namely
orthogonal access and transmissions based on AMCP modes,
this is indeed the case [c.f. (3) and (4)], and convexity of (8)
can thus be ensured.

Note that average rate constraints in (5) and (8) guarantee
that the average information rate of a primary user remains
above a given requirement. However, there is no guarantee
about the instantaneous transmit-rate. In other words, the
formulation in (8) implicitly assumes that users are equipped
with infinitely backlogged queues, where the information to
be sent is stored. As a result, only non-real time traffic
without instantaneous short-term delay requirements can be
accommodated. Likewise, the solvers of (8) developed in the
ensuing sections presume that the problem at hand is feasible
too. If the minimum rate requirements of primary users are
too high, and their power budgets too small, the optimization
in (8) could be infeasible. This however is readily detectable,
since the Lagrange multipliers associated with some of the
infeasible users would grow unbounded. Clearly, in such a
case the only option to stabilize the system resorts to dropping
some primary users. Unfortunately, the problem of selecting
the optimum users to drop (a.k.a. admission control) is often
NP-hard and goes beyond the scope of this work.

Remark 1: Sum-utility maximization has been employed by
scheduling, MAC layer, and networking algorithms; see e.g.,
[22], [16], [9], and references therein. A special case of (5)
and (8) occurs when the utility function takes the linear form
Uj(r̄j) := wj r̄j , with wj ≥ 0 representing a rate-reward
weight whose value can be tuned to effect fairness and priority.
If Uj(r̄j) := wj r̄j and C1 and C2 are not present (i.e., řj = 0
if j ≤ Jp and řj = ∞ if j > Jp), then (5) reduces to the clas-
sical weighted sum-rate maximization problem encountered in
information-theoretic studies; see e.g., [20]. Furthermore, it is
worth emphasizing that: (i) the results we will derive can be
applied to the weighted-sum-rate maximization problem; and
(ii) we will find links between the two problems and provide
intuition behind the weight vector w := [w1, . . . , wJ ]T .

Remark 2: OFDMA entails transmit-waveforms {gj(t)}J
j=1

corresponding to the complex exponential basis
{ej2π

(k−1)t
KTs }K

k=1. Recent works have shown how the
complexity of sensing and waveform design in CR can
be reduced if users represent {gj(t)}J

j=1 using a basis
{ψk(t)}K

k=1 tailored to the intended propagation channel [31].
Interestingly, the formulation of (5) can be also applied to
bases other than the exponential. Differences arise only in
interpreting the physical meaning of the variables involved.
Specifically,

√
hj,k has to be interpreted as the projection

of the jth user’s channel hj(t) over the kth member of the
conjugate basis (†), i.e.,

√
hj,k :=

∫ (n+1)KTs

nKTs
hj(t)ψ

†
k(t)dt

with n indexing symbols; and
√

pj,k(h) must be understood
as the coefficient that the jth user utilizes to weigh the kth
element of the basis, i.e., gj(t) =

∑K
k=1

√
pj,k(h)ψk(t). This

in turn implies that once a specific basis is selected, solving (5)
yields not only the optimum resource allocation parameters,
but also the optimally designed transmit-waveforms.
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A. Characterizing the optimum channel-adaptive resource
management

Let λrj
and λpj

denote the Lagrange multipliers associated
with average rate and power constraints of the primary (j =
1, . . . , Jp) and secondary (j = Jp + 1, . . . , J) users. Ignoring
temporarily the instantaneous constraints C4, the Lagrangian
is a function of τ and λ := [λr1 , λp1 , . . . , λrJ

, λpJ
]T given

by

L(λ, τ ) :=
J∑

j=1

Uj(r̄j(τ )) +
Jp∑

j=1

λrj
(r̄j(τ )− řj)

−
J∑

j=Jp+1

λrj (r̄j(τ )− řj)−
J∑

j=1

λpj
(p̄j(τ )− p̌j). (9)

The Lagrange dual function is

D(λ) := max
τ∈Fτ

L(λ, τ ) (10)

where C4.1 and C4.2 representing the feasible policies in Fτ

are imposed explicitly since they were not considered in the
Lagrangian. Finally, with λ ≥ 0 denoting that all entries of λ
are non-negative, the dual problem of (8) is

min
λ≥0

D(λ). (11)

Since our problem is convex and strict feasibility is as-
sumed, solving the unconstrained problem in (11) amounts to
solving the original constrained problem in (8). But to solve
(11), we will need first to solve the maximization in (10).
Given λ, the optimum time allocation τ∗j,k,m(λ,h) depends
on both the current channel realization and the value of the
multipliers. Upon substituting τ ∗(λ,h) ∀h into (3) and (4) we
can find the optimum values of the average rate and power
r̄∗j (λ) and p̄∗j (λ), which generally depend on λ. Moreover,
for future use let us introduce user-specific weights defined
through the derivative U ′

j as

wj(λ) := U ′
j(r̄

∗
j (λ)). (12)

Clearly, if the utility function is linear, then wj is a constant
not dependent on λ. The reason behind introducing (12) will
be apparent in Section IV-A when the algorithm to find the
optimum λ∗ will be presented and w will be recast as an
auxiliary dual variable.

To express the solution of (10), it is useful to introduce what
we term link quality indicators

ϕj,k,m(λ,h) := ϕj,k,m(λj , wj(λ), hj,k)
:= (wj(λ) + λrj )rj,k,m − λpj pj,k,m,

∀m ∈Mj,k(hj,k), j = 1, . . . , Jp (13)
ϕj,k,m(λ,h) := ϕj,k,m(λj , wj(λ), hj,k)

:= (wj(λ)− λrj )rj,k,m − λpj pj,k,m,

∀m ∈Mj,k(hj,k), j = Jp + 1, . . . , J ; (14)

where by construction ϕ0,m,k = 0, and using (12) ϕj,k,m

can be expressed also as a function of U ′
j . Per subcarrier k,

we determine for each user j = 1, . . . , J the “most-efficient”
mode in the sense that

m∗
j,k(λ, w(λ),h) := arg max

m∈Mj,k(hj,k)
ϕj,k,m(λ, w(λ),h);

(15)
and select the “most-efficient” user as the one with index

j∗k(λ, w(λ),h) := arg max
j

ϕj,k,m∗
j,k

(λ, w(λ),h). (16)

Per sub-carrier k, the optimal schedule of time-sharing frac-
tions turns out to be (cf. Appendix A)

τ∗j,k,m(λ, w(λ),h) =
{

1, if j = j∗k and m = m∗
j∗k ,k

0, otherwise.
(17)

i.e., the “most-efficient” user is the only user gaining access
to the subcarrier k. For this reason, user j∗k will be termed
“winner user” of subcarrier k.

Appendix A contains the derivation of (17) and shows that:
(i) the allocation in (17) always maximizes the Lagrangian in
(10); and (ii) if more than one user attain the maximum, the
policy of allowing only one of them accessing each subcarrier
is still optimum. Specifically, if a tie occurs, the user selected
for transmission can be randomly chosen among the multiple
winners so that the QoS constraints are met with equality5.

Substituting the optimal time allocation (17) into (1) and
(2), it is possible to express the optimum transmit-rate and
power per user and subcarrier as

r∗j,k(λ, w(λ),h) :=
∑

m∈Mj,k(hj,k)

τ∗j,k,m(λ, w(λ),h)rj,k,m

(18)

p∗j,k(λ, w(λ),h) :=
∑

m∈Mj,k(hj,k)

τ∗j,k,m(λ, w(λ),h)pj,k,m

(19)
where indeed for any given triplet (λ, w(λ),h), the optimal
schedule lets terminal j∗k exclusively transmit with its most
efficient rate-power pair while having all other terminals j 6=
j∗k defer on subcarrier k.

Once the primal solution of (10) has been found, the dual
problem (11) can be solved to obtain the optimal multipliers
λ∗. The complementary slackness condition [5, Sec. 5.5.2],
implies that the optimal multipliers in (11) must satisfy

r̄j(λ∗) = řj or λ∗rj
= 0, j = 1, . . . , J (20)

p̄j(λ∗) = p̌j or λ∗pj
= 0, j = 1, . . . , J, (21)

where having any λ∗rj
or λ∗pj

equal to zero means that
the corresponding constraint is inactive; i.e., it is naturally
satisfied without being explicitly imposed. Equally interesting,
if the problem is infeasible the value of the corresponding
multipliers will grow to infinity. This lends itself naturally to
an admission control policy, i.e., to a criterion for dropping
users or QoS requirements that render the problem infeasible
[35].

5A more detailed explanation of this “tie resolution” can be found in
Appendix A; however, it is worth mentioning that if the AMCP modes are
linearly independent, the probability of this event vanishes as J , K or Mj,k

grow large.
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The non-linear system of (13)-(21) completely characterizes
the optimum allocation parameters. At the optimum, these
equations can be viewed as the Karush-Kuhn-Tucker (KKT)
conditions of (8). Even though with λ and w(λ) fixed the
remaining variables can be analytically found [cf. (13)-(17)],
there is no analytical solution for the system when the dual
prices λ and w(λ) are also considered as variables. As a
result, one has to resort to numerical search algorithms to
find the jointly optimal solution. In the next section, we
develop two such convergent algorithms to find the optimum
λ∗ and w(λ∗). Recall that once the optimum dual prices λ∗

and w(λ∗) are found, (13)-(17) yield the optimum channel-
adaptive resource allocation parameters; i.e., the optimum
management of resources as a function of h. A remark is
now due on the structure of the link quality indicator in (13)-
(14), which relates the winner-takes-all strategy in (17) with
the optimal solution of other resource allocation problems.

Remark 3: Regarding λrj and λpj as prices of the rate and
power and wj(λ) = U ′

j(r̄j(λ)) as a rate-weight representing
the marginal utility per transmitted bit6, the link quality indica-
tors in (13) and (14) determine the net rate reward (rate reward
minus power cost) of the (j, m)th mode on subcarrier k. This
means that users with large wj(λ) = U ′

j(r̄j(λ)) are promoted
for selection since they contribute a lot to the increase of the
total utility. In a secondary market CR set-up, to satisfy the
individual QoS per user, the marginal utility of the primary
users j ≤ Jp is promoted through the additive multiplier
λrj > 0; whereas these positive multipliers are subtracted
from the marginal utility to prevent abusive spectrum access
by secondary users j > Jp. (Likewise, λpj > 0 can be
always viewed as a penalty or cost.) Using such indicators, the
optimal allocation maximizes the average utility so that per
channel realization h each subcarrier k is uniquely assigned
to the winning user-mode pair (j∗k ,m∗

j∗k ,k) with the highest
net rate reward. Further, it must be emphasized that neither
the structure of the channel link quality indicators in (13) and
(14) nor the values (prices) of wj , λrj , and λpj have been
imposed a fortiori. Instead, they emerge from the optimal
solution of the problem in (8). This in turn implies that the
optimal management of resources depends only on the current
channel realization h and on the dual user-specific prices
(correspondingly rewards) λ (w).

The winner-takes-all strategy has been shown to be optimal
for other problems that also deal with orthogonal sharing of
resources among users. For example, in the context of multi-
user wireless channels, a related scheduling that maximizes
ergodic capacity subject to average power constraints can be
found in [20]. Similarly, from a network utility maximization
perspective, (17) can be viewed as an enhancement of the max-
weight scheduling; see e.g., [19], [30]. In fact, some of these
works use instantaneous values of the queue lengths instead
of dual price values; see e.g., [9] and references therein.

6Using the approximation U ′j(r̄j)
.
= ∆Uj/∆rj , with ∆rj = 1, the weight

reduces to wj(λ) = ∆Uj .

IV. FINDING THE OPTIMAL DUAL PRICES

In this section, we present two algorithms for finding the
optimal dual prices λ∗ and w(λ∗). The first relies on a
subgradient iteration which exploits the knowledge of the
channel CDF F (h). The second relies on an adaptive LMS-
like iteration and does not require knowledge of the channel
statistics. For both algorithms, convergence is analyzed and
differences are identified.

A. Channel statistics known: off-line calculation

Since the problem in (8) is convex and maximization
of the associated Lagrangian can be obtained uniquely, λ∗

can be found by iterating over the dual function which is
always convex and its global optimum can be found using
(sub)gradient iterations [4, Chap. 6]. However, since (13),
(14), (20), and (21) involve expectations over the channel
gains, knowledge of the channel CDF is required. Furthermore,
although uniquely defined by (13)-(17), finding the optimal
primal variable τ ∗(λ,h) in each dual iteration is numerically
non-trivial. This is because finding the optimum time alloca-
tion τ ∗(λ,h) on the one hand, requires the optimum weight
vector w(λ) [cf. (17)]; while on the other hand, finding w(λ)
one needs r̄∗(λ) and therefore τ ∗(λ,h) ∀h [cf. (12) and (3)].
Although this “chicken-egg” dilemma can be resolved through
a nested iterative search (recall that the solution is uniquely
defined), the computational burden is considerably high. This
burden can be lightened by defining w(λ) as a separate
auxiliary variable w that does not depend on λ. To this end,
we introduce in Appendix B an equivalent formulation of (8)
where w is treated as a dual variable and its determination
can thus be decoupled from that of τ ∗(λ,h).

Once w is treated as a dual variable, the new dual function
depends both on λ and w [cf. Appendix B]. To implement
the resultant numerical search over dual prices, let i denote the
iteration index and β(i) a small decreasing stepsize. With U ′−1

j

representing the inverse function of U ′
j , define also the rate-

weight function as r̃j(wj) := U ′−1
j (wj). Intuitively speaking,

r̃j(wj) represents the average rate for which the weight wj is
optimum [cf. (12)]. Note that for Uj(·) monotonically increas-
ing and strictly convex, U ′−1

j (·) (thus r̃j(·)) is positive and
monotonically decreasing. Then, assuming that the channel
CDF is known, the optimal off-line solution for w and λ can
be found through the iterations

λ(i+1)
rj

=

[
λ(i)

rj
− β(i)

(
Eh

[
K∑

k=1

r∗j,k(λ(i),w(i),h)

]
− řj

)]+

,

j = 1, . . . , Jp (22)

λ(i+1)
rj

=

[
λ(i)

rj
− β(i)

(
řj − Eh

[
K∑

k=1

r∗j,k(λ(i), w(i),h)

])]+

,

j = Jp + 1, . . . , J (23)

λ(i+1)
pj

=

[
λ(i)

pj
− β(i)

(
p̌j − Eh

[
K∑

k=1

p∗j,k(λ(i),w(i),h)

])]+

,

j = 1, . . . , J (24)
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w
(i+1)
j =

[
w

(i)
j −β(i)

(
r̃j(w(i))−Eh

[
K∑

k=1

r∗j,k(λ(i), w(i),h)

])]+

,

j = 1, . . . , J. (25)

If the utility is linear (not strictly convex), then wj is constant
and the update in (25) is not required. Notice that each iteration
involves expectations over the channel CDF and requires first
computing the optimal allocation for all h after substituting
λ(i) and w(i) (available from the previous iteration i) into (18)
and (19). Using convergence results from convex optimization
[4, Chap. 6] we have the following claims:
Theorem 1: If the convex problem (8) is strictly feasible, the
updates (22)-(25) represent subgradient iterations whose fast
(linear) convergence to the optimal λ∗ and w∗ as i increases
and β(i) decreases is guaranteed from any initial positive
value, λ(0) ≥ 0, w(0) ≥ 0. After the optimum values λ∗ and
w∗ are found, the optimal resource allocation per channel
realization is in turn provided by τ ∗(h) = τ ∗(λ∗, w∗,h).

Proof: See Appendix B.
To interpret Theorem 1, recall first that due to the convexity

of (8) the optimal solution can be found by solving (11).
Therefore, since (22)-(25) correspond to subgradient iterations
of the unconstrained convex problem in (11), their convergence
to the optimum is guaranteed (the same can be argued for the
augmented problem where w is recast as a dual variable). The
iterations (22)-(25) are typically run off-line (i.e., before the
communication starts) during the initialization phase of the
system, or, whenever the CDF of the vector channel changes.
If necessary, the standard subgradient (first-order) iterations
in (22)-(25) can be replaced by modified versions whose
speed of convergence is even faster (see [4, pp. 624-629]
for details). However, we advocate the standard subgradient
iterations since, besides being convergent, they are simple to
implement. This simplicity will also facilitate the development
of stochastic (Sec. IV-B) and/or partially distributed (Sec. V)
on-line implementations of the original off-line iterations.

It is worth stressing that treating w as a dual variable, not
only mitigates the “chicken-egg” problem mentioned at the
beginning of this section, but also allows one to optimally find
w∗ using a subgradient iteration. This unifies all the updates
(which now take place in the same (dual) domain and exhibit
similar convergence), and renders the allocation policy (13)-
(17) dependent only on the realization h, and the dual prices
λ∗ and w∗.

There are situations where solving (22)-(25) is not a viable
alternative either because F (h) is unknown, or, because the
channel statistics do not remain invariant over time; or, the
computational burden associated with re-calculating (22)-(25)
each time they change can not be afforded. For such scenarios,
we go one step further in the next section to develop fully on-
line solutions that do not require knowledge of the channel
CDF and incur negligible computational complexity.

B. Channel statistics unknown: learning the environment on-
the-fly

Suppose that the fading channel vector h remains invariant
over a block of OFDMA symbols but can vary from block-to-
block (block fading channel model). Let n denote the current

block index and h[n] the fading state during block n, whose
duration is dictated by the channel coherence interval. The
main difficulty in implementing on-line the optimal channel-
adaptive allocation derived in (18)-(19) is that λ and w have
to be known, which requires an off-line computation based
on the channel CDF. To tackle this problem, we will rely on
adaptively updated instantaneous estimates of λ and w that
eventually will allow us to bypass the off-line calculation as
well as the need to know the channel statistics. To this end, we
will replace the expectations in (22)-(25) by standard stochas-
tic approximations. This will allow us to substitute the off-line
iteration index i by the instantaneous block (time) index n,
and then execute an on-line recursion across blocks to obtain
the instantaneous estimates ŵ[n] := [ŵ1[n], . . . , ŵJ [n]]T and
λ̂[n] := [λ̂r1 [n], λ̂p1 [n], . . . , λ̂rJ

[n], λ̂pJ
[n]]T as in (26)-(29).

Iterates r∗j,k[n] := r∗j,k(λ̂[n], ŵ[n],h[n]) and p∗j,k[n] :=
p∗j,k(λ̂[n], ŵ[n],h[n]) in (26)-(29) are computed based on (18)
and (19) and represent the current rate and power of the user
j on subcarrier k over block n, while stepsize β[n] ∈ [0, 1]
implements a forgetting effect in the averaging. To find r∗j,k[n]
and p∗j,k[n] per block n, the optimum AMCP mode and user
for each subcarrier k have to be found by substituting the
current λ̂[n], ŵ[n],h[n] estimates into (13)-(17). Once the
allocation parameters of the nth block are obtained, we can use
(26)-(29) to update both reward weights ŵ[n+1] and Lagrange
multipliers λ̂[n + 1] with negligible (linear in the number of
modes, users and subcarriers) computational complexity.

Devoid of the expectation operators, the updates (26)-(29)
offer unbiased estimates of the subgradient projections in (22)-
(25). Such iterations along with the on-line optimal alloca-
tion amount to a stochastic dual (SD) algorithm for solving
the utility maximization problem in (5). Per block n, this
algorithm performs a weighted sum-rate maximization with
adaptive weights provided by ŵj [n] + λ̂rj [n] and λ̂pj [n] for
primary CR users and ŵj [n]−λ̂rj [n] and λ̂pj [n] for secondary
CR users to obtain on-line optimal allocation, whereas the
variables λ̂[n+1] and ŵ[n+1] are updated using instantaneous
transmit-powers and rates.

Interestingly, without knowing F (h), this simple SD on-
line algorithm can learn the channel CDF on-the-fly, and
is convergent and asymptotically optimal as the following
theorem states.
Theorem 2: If problem (5) is strictly feasible, then the es-
timates obtained recursively in (26)-(29) using any initial
λ̂[0] ≥ 0 and ŵ[0] ≥ 0, converge in probability to the optimal
λ∗ and w∗(λ∗) of (5), as n →∞ and β[n] ↓ 0.

Proof: See Appendix C.
In order to avoid a premature convergence, the stepsize must

satisfy
∑∞

n=0 β[n] = ∞. Equally important, with a small
but constant stepsize β[n] = β, the SD algorithm brings
λ̂[n] to a small neighborhood of λ∗ (with size o(β)) in
o(1/β) iterations, uniformly for any initial state; see Appendix
C for detailed explanation. Because this adaptive algorithm
converges from arbitrary initializations it exhibits robustness
to channel non-stationarities as long as the channel remains
stationary for sufficiently long periods, or, the channel CDF
varies sufficiently slowly. Compared to the off-line solution,
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λ̂rj [n + 1] =

[
λ̂rj

[n]− β[n]

(
K∑

k=1

r∗j,k(λ̂[n], ŵ[n],h[n])− řj

)]+

, j = 1, . . . , Jp (26)

λ̂rj
[n + 1] =

[
λ̂rj

[n]− β[n]

(
řj −

K∑

k=1

r∗j,k(λ̂[n], ŵ[n],h[n])

)]+

, j = Jp + 1, . . . , J (27)

λ̂pj
[n + 1] =

[
λ̂pj

[n]− β[n]

(
p̌j −

K∑

k=1

p∗j,k(λ̂[n], ŵ[n],h[n])

)]+

, j = 1, . . . , J (28)

ŵj [n + 1] =

[
ŵj [n]− β[n]

(
r̃j (ŵj [n])−

K∑

k=1

r∗j,k(λ̂[n], ŵ[n],h)

)]+

, j = 1, . . . , J. (29)

the adaptive SD algorithm enjoys two attractive features: (i)
convergence to the optimal average rates without a priori
knowledge of the fading CDF, and (ii) ability to adapt the
user-mode selection based on the short-term behavior of the
channel. For example, if the channel gains for the jth primary
terminal are low over consecutive slots, the corresponding
dual rate price λrj [n] will readily rise and the net-reward
ϕj,k,m ∀m, k will correspondingly increase the probability of
selecting this terminal even if its channel gains are not as good.

V. ON THE LIMITED-RATE FEEDBACK

The optimal resource allocation presented so far can be eas-
ily implemented when the scheduler at the access point knows
the price vectors λ̂[n] and ŵ[n], the set of AMCP modes
S, and the vector channel realization h[n]. Based on those,
in every coherence interval the optimal transmit-configuration
per subcarrier (r∗j,k[n], p∗j,k[n], ∀j, k) can be computed using
(18)-(19) and fed back to the CR user terminals.

Under certain operational conditions however, the feedback
required from the access point can be reduced without loss
in performance. These conditions are different for TDD and
FDD systems, and for this reason will be discussed separately.
Because the number of variables that are updated per block
index n is higher when the channel CDF’s are unknown, in this
section we will focus on the algorithms of Section IV-B. The
related analysis when F (h) is known is a simplified version
of the one presented here, where instead of updating the dual
prices each and every n, updates take place only when the
channel statistics change.

A. TDD systems
Since for TDD systems uplink and downlink channels

are reciprocal, hj,k[n] can be acquired wherever needed by
estimating the channel in the reverse link. If the access point
knows λ̂[n], ŵ[n], S and each terminal j knows its own dual
prices
hatlambdarj [n], λ̂pj [n], ŵj [n] and AMCP modes Sj :=
{(rj,k,m, pj,k,m), ∀m, k}, channel reciprocity can be exploited
to reduce the feedback overhead under the following operating
conditions:

(oc.1) Both access point and terminals employ: (i) the same
initialization for λ̂[0] and ŵ[0]; and (ii) identical stepsize
(forgetting factor) β[n] ∀n.

(oc.2) For each block index n, the receiving access point:
(i) substitutes λ̂[n] and ŵ[n] into (13)-(17) to find the
optimal allocation parameters ∀j, k;
(ii) runs the dual updates in (26)-(29) to obtain λ̂[n + 1]
and ŵ[n + 1] ∀j, k; and
(iii) feeds back to the users the message (codeword)
cA[n] := [j∗1 [n], . . . , j∗K [n]]T . Note that cA[n] contains
only the winner user-subcarrier index corresponding to
τ∗j,k(λ̂[n], ŵ[n],h[n]) ∀j, k.

(oc.3) For each block index n, the transmitting terminals:
(i) for each subcarrier k, the winner terminal j∗k [n]
notified by the access point employs its dual prices to-
gether with hj,k[n] to find its optimum transmission mode
m∗

k[n], while all other terminals set their transmission
power and rate on this subcarrier to zero; and
(ii) once every terminal knows its transmit-rate and power
∀k, it updates its own λ̂rj [n+1], λ̂pj [n+1], and ŵj [n+1]
using (26)-(29).

It is worth emphasizing that it is possible to implement
the novel allocation schemes in such a way because both the
optimal resource allocation and the on-line updates depend
only on local information (available to each user) and the
global user scheduling decision which is fed back from the
access point. Therefore, having each user knowing its own
λ̂rj [n], λ̂pj [n], and ŵj [n] is possible provided the same
initialization (i.e., λ̂[0], and ŵ[0]) is used for the dual updates
at user terminals and at the access point.

To feed back the optimum user-subcarrier assignment the
control feedback link must be capable of carrying BA =
d∑K

k=1 log2(J + 1)e bits per block.

B. FDD systems without channel quantization

For FDD systems the forward and reverse channels are
non-reciprocal, and therefore hj,k[n] is not available at the
transmitter(s). This means that when users implement step
(i) in (oc.3) they do not have sufficient information to find
m∗

j,k[n]. To bypass this, the access point has to incorporate
information of the optimum mode in the feedback message,
i.e., cB [n] := [j∗1 [n],m∗

1[n], . . . , j∗K [n],m∗
K [n]]T . Certainly, if

the users know cB [n], they do not need the value of their local
dual prices and therefore (oc.1) and step (ii) in (oc.3) is no
longer needed.
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Taking into account this augmented feedback message,
the rate required for the feedback link between the access
point and the user terminals in FDD increases to BB =
d∑K

k=1 log2(
∑J

j=0 Mj,k)e bits per block.

C. FDD systems with channel quantization

The overall utility of average rates improves as the number
of transmit-modes increases. In fact, with carefully designed
modes Mj,k(h) and Mj,k → ∞, it is possible to even
approach the asymptotically optimum water-filling solution in
[20]. On the other hand, high values of Mj,k require increased
feedback rate from the access point to the users. It is clear
that CR welcomes adaptation schemes leading to high utility
while requiring reduced limited-rate feedback. This prompted
us to investigate channel quantization schemes that reduce
the required feedback by optimizing the transmit-power and
transmit-rate codebooks. Per user j, this calls for optimizing
Sj , which so far has been assumed given.

To perform this optimization we will assume that instead
of the analog-valued hj,k (P-CSI), the optimization algorithm
relies on a quantized value hQ

j,k (Q-CSI). This value is found
using a channel quantizer and belongs to a set Lj,k with finite
cardinality Lj,k so that we can write Lj,k := {hj,k,l}Lj,k

l=1 .
Since the set of feasible modes Mj,k(hj,k) satisfying the
BER constraint in (6) is selected in accordance with hj,k,
it is necessary to adapt this definition to the quantized set-
up. To do so, it is first useful to introduce the function
εQ
j,k,m(pj,k,m, rj,k,m|hQ

j,k) which expresses the BER as a con-
vex function of the power, the rate, and the quantized version
of the channel. Based on this function, define

MQ
j,k(hQ

j,k) := {m : εQ
j,k,m(pj,k,m, rj,k,m|hQ

j,k = hj,k,l) ≤ ε̌j}
(30)

as the set of AMCP modes satisfying the instantaneous BER
requirement ε̌j .

At this point, we are ready to implement a modified version
of the scheme outlined in Section V-A tailored for FDD
systems implementing channel quantization.

(oc.4) Both access point and users: (i) use the same λ̂[0] and
ŵ[0]; (ii) identical β[n] ∀n; and (iii) replace Mj,k(hj,k)
by MQ

j,k(hQ
j,k) in every step of the resource allocation

algorithm.
(oc.5) For each block index n, the receiving access point:

(i) substitutes λ̂[n] and ŵ[n] into (13)-(17) to find the
optimal RA ∀j, k;
(ii) runs the dual updates (26)-(29) to obtain λ̂[n+1] and
ŵ[n + 1] ∀j, k; and
(iii) feeds back to the users the message cC [n] :=
[j∗1 [n], l∗1[n], . . . , j∗K [n], l∗K [n], ]T , where l∗k[n] := {l :
hQ

j∗k [n],k = hj∗k [n],k,l}, i.e., l∗k[n] represents the index of
the quantization region the channel gain of the winner
user belongs to.

(oc.6) For each block index n, the transmitting user terminals:
(i) the winner terminal j∗k [n] uses hQ

j,k = hj,k,l∗k[n]

(indexed by the access point) plus λ̂rj [n], λ̂pj [n], and
ŵj [n] (locally stored) to find its optimum transmission
mode m∗

k[n], while all other users set their transmission

power and rate on this subcarrier to zero; and
(ii) once every user terminal knows its transmit-rate and
power ∀k, it updates its own λ̂rj

[n + 1], λ̂pj
[n + 1], and

ŵj [n + 1] using (26)-(29).
Using this modifications the rate required for the feed-

back link from the access point to the users is BC =
d∑K

k=1 log2(
∑J

j=0 Lj,k)e bits per block with BC < BB .
The number of bits each winner user needs reduces from
log2(Mj,k) down to log2(Lj,k), where in general Lj,k ¿
Mj,k. Furthermore, since increasing the value of Mj,k trans-
lates to improved performance but does not increase BC , for
systems that implement (oc.4)-(oc.6) the value of Mj,k should
be only limited by hardware complexity.

On the other hand, it is easy to see that the total rate-utility is
higher for the problem based on P-CSI than for the alternative
implementation based on Q-CSI, since the latter is a special
case of the former. Interestingly, simulations will confirm that
the performance of FDD systems implementing channel quan-
tization is close to that without quantization, even for small
values of Lj,k. This behavior, which has been consistently
observed in different resource allocation problems based on
Q-CSI (see e.g., [25], [21], [34]), encourages the practical
implementation of adaptive schemes based on limited-rate
feedback.

Another interesting observation is that after convergence
of the dual iterates corresponding to the lth quantization
region on the kth subcarrier, the jth user will always utilize
the same AMCP mode if selected for transmission on that
subcarrier [cf. (30) and (15)]. This means that the jth user
will utilize at most Lj,k different modes on the kth subcarrier.
In other words, for each subcarrier k, the user j will utilize
the information contained in the dual prices to select among
the Mj,k available modes, the Lj,k that best fits the specific
CR environment. For each user j, this can be viewed as an
optimum codebook design, where starting with a codebook Sj

of size
∑

k=1 KMj,k a new codebook SQ
j is constructed with

reduced size
∑

k=1 KLj,k.
Remark 4: If needed, on top of our quantization design
further reduction of the feedback overhead can be effected
by exploiting the possible correlation among channel gains:
(i) across subcarriers (e.g., by grouping subcarriers and then
indexing each group, or, by using more sophisticated schemes
that exploit the sparsity of the transmit-signals); and (ii)
across time, e.g., by implementing differential quantization
techniques that use less (more) bits to index the regions that
are closer (further) to the previous one.
Remark 5: Given the channel quantizer, optimization so far
was carried over the rate and power codebooks, i.e., the rate
and power that a terminal utilizes when its channel belongs to
a given region. An alternative could be to jointly optimize
over the channel quantizer and the rate/power codebooks.
Although the globally optimum solution of this joint design
would lead to a larger utility, it requires off-line quantization
schemes such as the well-known Lloyd’s algorithm (see e.g.,
[18]), which besides guaranteeing only local convergence it
precludes a fully on-line solution. Investigating the design of
asymptotically optimum stochastic channel quantizers tailored
for CRs is an interesting future research direction, but goes
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beyond the scope of this work.

D. On-line overhead

Since the allocation algorithms developed are to be imple-
mented on-line, the involved overhead is a critical issue. Table
I summarizes the feedback requirements and the complexity
of the three schemes presented in Section V. Note that the
feedback rate B is typically a small number for practical CRs.
For instance, with one primary and three secondary users,
each supporting Mj,k = 30 AMCP modes and Lj,k = 4
quantization regions only 2, 7, and 4, feedback bits per
subcarrier are required to implement the schemes in Sections
V-A, V-B, and V-C, respectively. Regarding computational
complexity, the number of operations remains linear in all
cases and the load is particulary small at the users’ side.
Consider the number of operations at the access point in
Section V-C (last row and central column of Table I). To
implement the three steps in (oc.5), the access point needs
the following number of operations. In step (i): KLJ for the
quantization; KMJ to find the set of active modes in (6);
with M ′ denoting the number of active modes; M ′KJ to find
the optimum transmit-mode; and, KJ for finding the optimum
user. In step (ii): KJ summations for each dual price; and in
step (iii) there are no new calculations. The total number of
operations is, K(L + M + M ′ + 3 + 1)J < K(3M + 4)J ,
which is O(KMJ). The same logic can be followed to count
the calculations performed by the users, where the average
number of subcarriers a specific terminal utilizes is assumed
to be K/J (this is reasonable if users are homogeneous or J
is sufficiently large).

Assessment of the computational complexity is different for
the off-line algorithm of Section IV-A, specifically because
neither the access point nor the users have to implement an
on-line algorithm to find the dual prices. However, each time
the channel statistics or the user requirements change: (i) the
values of the dual prices must be recomputed at the access
point; and (ii) the access point has to broadcast these values to
the users. Complexity of the algorithm finding the dual prices
depends on the number of iterations required until convergence
(denoted by NI ) as well as the number of samples used
to estimate the expectations in (22)-(25) (denoted by NE).
The second parameter must be taken into account because in
most cases a closed-form expression for the expectations is
not available, and one has to rely on Monte Carlo runs to
obtain these expectations. The computational complexity of
the off-line algorithm is then O(NINEKMJ), with numerical
simulations suggesting that in practice NE ≈ 50 − 500 and
NI ≈ 200− 2000 are sufficient.

VI. NUMERICAL TESTS

To numerically test our designs, we consider a CR with
1 primary and 3 secondary users, i.e., J = 4 and Jp = 1.
Users transmit with OFDM over K = 256 subcarriers that
are modulated using uncoded QAM. The BER in each sub-
carrier can be approximated as εj,k,m(pj,k,m, rj,m|hj,k) =
0.2 exp[−pj,k,mhj,k/(2rj,k,m − 1)] [12]. The power profile
considered for the multipath channel corresponds to the test
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Fig. 1: Utility trajectories (as block index n varies) for different
allocation schemes (AS).

channel Vehicular A recommended by the ITU in [39, Table
5], and the average signal-to-noise ratio (SNR) for the dif-
ferent users is set to 6dB. The AMCP modes are designed
so that they correspond to the non-zero uniform random
samples of the continuous water-filling solution [20], i.e.,
rj,k,m = [log2(h/µ)]>0 and pj,k,m = [1/µ − 1/h]>0 with
the water-filling level µ ∈ [0.05, 20], and the channel gain
h ∈ [0.5, 5h̄j,k]. Unless otherwise specified, Mj,k = 36
∀(j, k). The default utility function for all users is Uj(r̄j) =
cj log(r̄j), with cj representing a priority constant. The QoS
constraints are set to: řT := [ř1, . . . , ř4] = [40, 15, 15, 40] bits
per channel use (b.p.c.u), p̌T := [p̌1, . . . , p̌4] = [20, 5, 5, 10],
and ε̌j = 0.001 for all j.

Setting cj = 5 and βn = (10n)−4, Figure 1 shows the
time evolution of the total utility achieved by six different
allocation schemes: (AS1) the benchmark allocation based on
P-CSI, Mj,k = ∞ and the channel CDF assumed known;
(AS2) our optimum allocation using Mj,k = 36 AMCP modes
with known channel CDF (Section IV.A); (AS3) the quantized
version of (AS2) assuming that the number of regions per
subcarrier (i.e., the number of different AMCP modes) is
Lj,k = 8 (Section V.C); (AS4) our optimum allocation using
Mj,k = 36 AMCP, but without knowledge of the channel CDF
(Section IV.B); (AS5) the quantized version of (AS4) with
Lj,k = 8; and (AS6) a heuristic allocation that does not adapt
subcarriers and power but optimally adapts the transmission
rate (P-CSI is assumed at transmitters). The main observation
from Figure 1 is that the developed schemes perform very
close to the benchmark even for a small-moderate number of
AMCP modes. Furthermore, when the P-CSI assumption is
not realistic and/or the feedback rate from the access point
to the transmitters has to be reduced, the quantized schemes
(AS3) and (AS5) that require only log2(Lj,k) = 3 bits of
feedback per subcarrier, do not incur a big loss w.r.t. their
P-CSI counterparts and perform significantly better than the
heuristic allocation. This observation is confirmed by Table II,
where the total utility achieved by (AS3) for different values
of Lj,k is shown. It is worth noting that the gap w.r.t. the
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TABLE I: Number of feedback bits and operational complexity (OC) of the on-line algorithms.

Section Feedback bits OC at CU OC at each user
V.A BA = dK log2(J + 1)e O(KMJ) O(MK/J)

V.B BB = d∑K
k=1 log2(

∑J
j=0 Mj,k)e O(KMJ) O(K)

V.C BC = d∑K
k=1 log2(

∑J
j=0 Lj,k)e O(KMJ) O(MK/J)

TABLE II: Total utility achieved for different values of Lj,k (AS3).

# of regions Lj,k = 4 Lj,k = 8 Lj,k = 16 Mj,k = 36 Mj,k = ∞
# of bits 2 3 4 6 ∞

Total utility 51.3 55.7 58.8 60.5 61.8

TABLE III: Final values of average rate and power for different
allocation schemes (AS)

AS r̄1 p̄1 r̄2 p̄2 r̄3 p̄3 r̄4 p̄4

Constraints 40 20 15 5 15 10 40 10
(AS1) 41.6 20.0 15.0 5.1 14.9 6.0 25.0 10.0
(AS2) 40 20.0 14.7 5 15.1 10.1 20.2 10.0
(AS3) 38.1 21.8 8.1 4.9 14.8 10.3 14.4 10.0
(AS4) 40.1 20.1 14.8 5.2 15.2 9.8 20.3 10.1
(AS5) 38 22.1 8.7 5.3 14.9 10.1 15.0 10.0
(AS6) 6.99 20.0 2.2 5.0 2.4 10.0 2.4 10.0

water-filling benchmark could be further reduced if the set
Mj,k were optimally designed along the lines of e.g., [25].

To complete the description of the solution, the final values
of the average transmitted rate and power for each of the
allocation schemes considered are listed in Table III. The
results shown validate the proposed resource management
approach since the requirements are satisfied: the transmit-
power stays below the maximum value for all users, the
primary user transmits at a rate higher than its minimum
requirement while the transmit-rates of secondary users stay
below their maximum allowable levels.

Another interesting observation from Figure 1 is the faster
convergence of (AS2) and (AS3) that capitalize on the knowl-
edge of the channel CDF relative to the convergence of their
stochastic counterparts (AS4) and (AS5), respectively. This
is an expected behavior since (AS4) and (AS5) need time
to learn the channel statistics (hundreds of iterations). In
addition, convergence may suffer as the number of modes
increases. This is because: (i) for high values of Mj,k, the rate-
power relationship among modes can resemble the logarithmic
shape of its continuous counterpart; and (ii) if the relationship
between power and rate were logarithmic, then the maximum
rate constraints in (5) would be non-convex. This in turn could
render the subgradient iterations in (22)-(25) possibly non-
convergent. Note that since the values of Mj,k are always
finite, (5) is always convex; but from a numerical perspective,
problems may arise for high (yet finite) values of Mj,k.

To gain more insight on the convergence of our algorithms,
Figure 2a plots the trajectories of the sample average of the
rate ˆ̄rj [n] := n−1

∑n
q=1

∑K
k=1 r∗j,k[q], and sample average

of the power ˆ̄pj [n] := n−1
∑n

q=1

∑K
k=1 p∗j,k[q] when users

implement (AS4); while Figure 2b depicts the corresponding

trajectories of the dual prices λ̂rj [n], λ̂pj [n], and ŵj [n]. In
both figures each subplot corresponds to a different user.

Simple inspection of Figure 2a reveals that in order to
maximize the total utility, the optimal allocation assigns:
r̄j < řj and p̄j ≈ p̌j for j = 2, 4 (although in both cases
users were allowed to transmit at higher rate they do not have
enough power); r̄1 ≈ ř1 with p̄1 ≈ p̌1 (to ensure that the
primary user satisfies its minimum rate requirement, all its
power has to be used up); and r̄3 ≈ ř3 and p̄3 . p̌3 (user
3 has enough power to transmit at higher rate but this would
violate its maximum rate constraint).

With reference to Figure 2b, consider the optimal weighs
ŵj [n]. The main observation is that the value of ŵj [n] is higher
for the users with smaller average transmit-rate (namely, j =
2, 3). This shows that the optimal algorithm tries to promote
users who transmit less information, something reasonable
since the utility function implemented is Uj(r̄j) = c log(r̄j).
Logarithmic utilities are widely used in resource allocation
problems because they maximize the overall transmit rate
while keeping the rates among users as close as possible. (A
popular allocation scheme implementing this class of utilities
is the proportional fair scheduling algorithm of [32].)

Moving on to the analysis of dual-prices, numerical results
reveal that the behavior depends on the specific simulated
user. For the primary user j = 1, we observe that since
both rate and power constraints are satisfied as equalities, its
rate and power Lagrange multipliers take on positive values.
However, the role of those multipliers is different. Basically,
λ̂p1 [n] > 0 prevents user 1 from exceeding its power budget
(penalizing transmissions over channels entailing a high power
consumption). On the other hand, the rate multiplier turns
out to be active because ř1 is very demanding. This way,
λ̂r1 [n] > 0 increases the link quality indicator of the primary
user so that secondary users may receive lower priority even
when they have a good channel realization. For secondary
users j = 2, 4, it is observed that λ̂pj [n] > 0 (i.e., the
power constraints are active) while λ̂rj [n] ≈ 0 (i.e., the rate
constraints are slack). This means that when the optimum
allocation tries to maximize the total utility, the values of their
transmit-rates are below the maximum allowed and there is no
need for activating the corresponding Lagrange multipliers.
(Notice that, e.g., λ̂rj [n] is not always zero since it is updated
based on the instantaneous values of the transmit-rate and
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Fig. 2: Trajectories (as block index n varies) corresponding to (AS4). Each subplot corresponds to a different user.

power [cf. (26)], which implies that although ˆ̄rj [n] > řj ,∑K
k=1 rj,k can be less than řj for some n leading the multiplier

to a non-zero value). Finally, for the secondary user j = 3,
we have λ̂r3 [n] > 0 with λ̂p3 [n] ≈ 0. In this case, since p̌3 is
high enough, user 3 is not power-limited but rate-limited (as
a secondary user, its rate cannot exceed the maximum value
allowed by the CR). Note that although user 3 is rate-limited,
its power consumption is also very close to the maximum level.
This is because the optimal solution dictates user 3 to transmit
over “low-quality” channel realizations that require higher
values of transmit-power, so that reliable channel realizations
can be used by other (power-limited) users to increase the
overall system utility.

Interestingly, we also observe that although the dual-prices
converge for all users, the corresponding trajectories are differ-
ent. Those users with more demanding (selective) constraints
exhibit slower convergence. Last but not less important, Table
IV shows the final values of the dual-prices corresponding
to (AS2) and (AS4) after 2,000 iterations. The listed results
confirm that the stochastic iterations (26)-(29) converge to the
same point as the average ones in (22)-(25), thus corroborating
Theorem 2.

We close this section by presenting the utility trajectories
for two variations of the initial test case. In the first scheme,
the primary rate constraint ř1 is set to zero (see Figure 3a),
while in the second scheme the original utility functions are
replaced by Uj(r̄j) = cj(log(r̄j) + r̄j); see also Figure 4.
From Figure 3a we verify that convergence is faster than in
the original constrained case depicted in Figure 1. As pointed
out earlier, this slow convergence is due to the fact that the
original test case represents a very demanding scenario for
which even finding a feasible solution is difficult. Furthermore,
since no minimum rate requirement is imposed to the primary
user, the new solution achieves a higher total utility level
by allowing secondary users to increase their rate. On the
other hand, comparison of Figures 1 and 3b reveals that the
absolute value of the utility for the new scheme is higher than
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Fig. 4: Utility trajectories (as block index n varies) for different
allocation schemes (AS) when Uj(r̄j) = cj(log(r̄j) + r̄j) and
ř1 = 40.

the one obtained before (this was certainly expected since
cj(log(r̄j) + r̄j) ≥ cj(log(r̄j)); and, the relative utility gap
between the developed allocation algorithms and the heuristic
scheme is higher for the new test set. This is because the up-
dated utility function is more sensitive to average transmit-rate
(its derivative is higher), and therefore suboptimum solutions
entail higher penalty.

VII. CONCLUSIONS

Taking into account different priorities among users, specific
utility functions, individual QoS requirements, and physical
layer specifications based on limited-rate feedback, we de-
rived optimal channel-adaptive resource allocation parameters
(power, rate, and subcarrier) for OFDMA cognitive radios with
a primary-secondary user hierarchy. The resultant optimum
resource allocation depends on the current channel realization
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TABLE IV: Final values of dual-prices for (AS2) and (AS4).

AS vs. Dual price λr1 λp1 w1 λr2 λp2 w2 λr3 λp3 w3 λr4 λp4 w4

(AS2) 0.112 0.332 0.125 0.055 0.545 0.337 0.320 0.013 0.334 0.000 0.400 0.236
(AS4) 0.111 0.333 0.124 0.055 0.544 0.336 0.321 0.017 0.332 0.000 0.399 0.238
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Fig. 3: Utility trajectories (as block index n varies) for different allocation schemes (AS).

and optimally obtains dual prices. When the channel distri-
bution is known, a subgradient based iterative algorithm was
developed to find the optimum dual prices. In addition, when
the channel distribution is unknown, a provably convergent
stochastic dual algorithm was developed to learn the channel
statistics on-the-fly and approach the optimal off-line solution
with known channel statistics. Once the values of the dual
prices are obtained, the overall optimal solution is fairly simple
to implement, and amounts to a greedy-opportunistic access
whereby only one user gains access to a given subcarrier per
channel realization. Operating conditions were also identified
to facilitate partially distributed implementation, and reduce
the feedback overhead in both TDD and FDD modes of CR
operation. In both cases, the required complexity to implement
the novel algorithms as well as the amount of feedback are
affordable for most practical systems.7

APPENDIX A: DERIVATION OF EQUATION (17)

According to (10), we must maximize the constrained
Lagrangian w.r.t. τ (h), which amounts to solving the convex
minimization problem





min
τ (h)

−L(λ, τ )

s.to C4.1. − τj,k,m(h) ≤ 0, ∀k, m, j,h
C4.2.

∑J
j=1

∑
m∈M(hj,k) τj,k,m(h)− 1 ≤ 0,

∀k,h.

(31)

7The views and conclusions contained in this document are those of the
authors and should not be interpreted as representing the official policies,
either expressed or implied, of the Army Research Laboratory or the U. S.
Government.

To deal with the objective in (31), recall that the av-
erage rate (power) is a function of τ (h) since r̄j =
Eh

[∑K
k=1

∑
m∈Mj,k(hj,k) τj,k,m(h)rj,k,m

]
, and therefore

∂r̄j/∂τj,k,m = rj,k,mdFh(h), ∂p̄j/∂τj,k,m = pj,k,mdFh(h),
and ∂Uj(r̄j)/∂τj,k,m = U ′

j(r̄j)rj,k,mdFh(h). Using the ex-
pression of L(λ, τ ) in (9) and the definition of the quality
link indicators in (13) and (14), we can use those derivatives
to write ∂ − L(λ, τ )/∂τj,k,m = −ϕj,k,m(h)dFh(h). To
account for the constraints in (31), define ατj,k,m

(h) ≥ 0
and ατk

(h) ≥ 0 as the non-negative Lagrange multipliers
associated with C.4.1 and C.4.28. Based on the previous
expressions, the KKT conditions for the optimum solution of
(31) can be written as

−ϕj,k,m(h)fh(h) + α∗τk
(h)− α∗τj,k,m

(h) = 0,

∀h, ∀j, ∀m ∈M(hj,k); (32)
τ∗j,k,m(h)α∗τj,k,m

(h) = 0, ∀h, ∀j, ∀m ∈M(hj,k); (33)

[
J∑

j=1

∑

m∈M(hj,k)

τ∗j,k,m(h)− 1]α∗τk
(h) = 0, ∀h, ∀k; (34)

where (32) corresponds to setting to zero the partial derivative
of the Lagrangian of (31) w.r.t. τj,k,m(h), while (33) and
(34) are the slackness conditions associated with C4.1 and
C4.2, respectively [5, Sec. 5.5.2]. To find the optimum solution
τ∗k,m,l(h), we need the following lemmas.
Lemma 1: The solution of (32)-(34) consists of at most one
user accessing each subcarrier with a single AMCP mode.

Proof: Assume that τ∗j′,k,m′(h) > 0 for a specific
(j′,m′) pair. For this pair, (33) implies α∗τj′,k,m′

(h) = 0,

8The dependence of the multipliers on h was made explicit since the
constraints they correspond to hold for each realization.
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which can be substituted into (32) for (j′, m′) to find
that α∗τk

(h) = ϕj′,k,m′(h)dFh(h). Suppose now that
τ∗j′′,k,m′′(h) > 0 for a pair (j′′,m′′) 6= (j′,m′).
Repeating the argument, this requires α∗τj′′,k,m′′

(h) = 0
and therefore α∗τk

(h) = ϕj′′,k,m′′(h)dFh(h); i.e., to have
both τ∗j′,k,m′(h) and τ∗j′,k,m′(h) greater than zero, one needs
ϕj′,k,m′(h)dFh(h) = ϕj′′,k,m′′(h)dFh(h), which almost
surely is not true9. Therefore, per subcarrier k, it must hold
that τ∗j,k,m(h) > 0 for no more than a unique pair (j, m).

Based on Lemma 1, the next step finds the optimum user-
mode pair accessing each subcarrier.
Lemma 2: The optimal user-mode pair (jk,mk) assigned to
the kth subcarrier is the one whose subcarrier utility reward
is maximum, i.e., (jk,mk) := arg maxj,m{ϕj,k,m(h) : j =
1, . . . , J, m ∈M(hj,k)}.

Proof: Suppose that (j′k,m′
k) 6= (jk,mk) is the candidate

pair to utilize the subchannel k. Using the proof of Lemma 1,
this requires α∗τk

(h) = ϕj′k,k,m′
k
(h)dFh(h). Now writing (32)

for the pair (jk,mk) yields −ϕjk,k,mk
(h)dFh(h)+α∗τk

(h)−
α∗τj′

k
,k,m′

k

(h) = [ϕj′k,k,m′
k
(h) − ϕjk,k,mk

(h)]dFh(h) −
α∗τjk,k,mk

(h) = 0. Since α∗τj′
k

,k,m′
k

(h) ≥ 0, satisfying the
latter requires ϕj′k,k,m′

k
(h) ≥ ϕjk,k,mk

(h). This contradicts
the definition (jk,mk) := arg maxj,m{ϕj,k,m(h) : j =
1, . . . , J, m ∈ M(hj,k)} and proves that the only feasible
candidate to use the subcarrier is (jk,mk).

The optimal resource allocation in (17) follows readily from
Lemma 2.

There are two extreme cases where the validity of Lemmas
1 and 2 must be carefully analyzed: (i) when all link quality
indicators are non-positive; and (ii) when more than one user
attain the maximum value of all link quality indicators. The
first event can happen when the channel gains of all users are
so poor that the optimal solution has all of them deferring.
This is analogous to the optimum single-user power loading
dictated by the water-filling algorithm when the channel in-
verse is so high that no power (water) is allocated to that
channel. Lemmas 1 and 2 easily hold for this case since the
subcarrier is assigned to the fictitious user j = 0 who transmits
with zero power and rate (i.e., τ∗0,k,1(h) = 1).

The second event is unlikely for generic values of λ and w
but its probability increases when the values of the multipliers
are tightly self-adjusted to accurately satisfy the rate and power
constraints in (8). In this case, the solution of the Lagrangian
allows to implement time policies such that τj,k,m(h) > 0
for more than one users. For illustration purposes, consider
two users j1 and j2 having the same QoS levels, dual prices,
AMCP modes and equally favorable channel conditions so that
they tie, i.e., their link quality indicators are equal and larger
than those of any other user. For this case, if we define Htie

k :=
{h : ϕj1,k,m(λj1 , wj1 , hj1) = ϕj2,k,m(λj2 , wj2 , hj2) =
ϕj∗,k,m∗

j∗ (λ, w,h)}, then τj1,k,m(h) = τj2,k,m(h) = 1/2
∀h ∈ Htie

k is clearly an optimal solution. However, it is also

9Note that ϕj,k,m(h) depends on the local parameters wj , λrj , λpj ,
rj,k,m, pj,k,m as well as on the channel hj,k that corresponds to a realization
of a continuous random process.

clear that if we split Htie
k into two disjoint subsets Hj1

k and
Hj2

k so that the probability of h belonging to either one of them
is the same, the time policy τj1,k,m(h) = 1, τj2,k,m(h) = 0 if
h ∈ Hj1

k and τj1,k,m(h) = 0, τj2,k,m(h) = 1 if h ∈ Hj2
k , is

equivalent to the previous one, with the latter belonging to the
class covered by Lemmas 1 and 2. The specific value of this
probability has to be computed so that the active constraints
in (8) are tightly satisfied. It is also worth mentioning that
although for mathematical rigor we have shown that Lem-
mas 1 and 2 hold for the rare cases (i) and (ii), possible
suboptimum decisions will lead to small deviations in the
QoS requirements; and the probability of these events vanishes
exponentially as J , K or Mj,k increases. This means that from
a performance analysis perspective, they can be ignored in
most practical adaptive wireless systems.

APPENDIX B: PROOF OF THEOREM 1

Consider the constrained convex optimization problem




max
τ (h),x

∑J
j=0 Uj(xj)

s.to C1. r̄j(τ (h)) ≥ řj , j = 1, . . . , Jp

C2. r̄j(τ (h)) ≤ řj , j = Jp + 1, . . . , J

C3. p̄j(τ (h)) ≤ p̌j , j = 1, . . . , J

C4. τ (h) ∈ Fτ

C5. xj ≤ r̄j(τ (h)), ∀j

(35)

whose optimal solution solves also the original problem in (8).
The only differences between problems (8) and (35) are that
(35) includes: (i) an auxiliary variable x to replace r̄j(τ (h))
in the objective; and (ii) constraint C5 to enforce that at the
optimum both xj and r̄j are equal. (Note that since Uj(xj)
is an increasing function of xj , C5 can be written either as a
strict equality or as an inequality.) As it will be shown later,
the main purpose for introducing x is to decouple the optimum
primal variables, and thus facilitate numerical evaluation of the
optimum dual variables.

In this appendix, we will use the notation t̃ to emphasize
that the corresponding variable t̃ refers to the problem in
(35) and not to the original t in (8). The new constraints
C5 require defining the Lagrange multipliers λ̃xj ∀j and
incorporating those in the definition of the vector λ̃ :=
[λ̃r1 , λ̃p1 , λ̃x1 , . . . , λ̃rJ

, λ̃pJ
, λ̃xJ

]T . Proceeding as in Section
III, we can ignore temporarily the instantaneous constraints
C4, and write the Lagrangian as

L̃(λ̃, τ ,x) =
J∑

j=1

Uj(xj) +
Jp∑

j=1

λ̃rj (r̄j(τ )− řj)

−
J∑

j=Jp+1

λ̃rj (r̄j(τ )− řj)−
J∑

j=1

λ̃pj (p̄j(τ )− p̌j)

−
J∑

j=1

λ̃xj (xj − r̄j(τ )). (36)

The Lagrange dual function is

D̃(λ̃) = max
x,τ∈Fτ

L̃(λ̃, τ ,x). (37)
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Since L̃ is convex in the primal variables, we proceed as
in Appendix A using the KKT conditions to find the global
optimum w.r.t. x and τ as:

ϕ̃j,k,m(λ̃,h) :=
(
λ̃xj

+ (−1)I{j>Jp}
)

λ̃rj
rj,k,m − λ̃pj

pj,k,m

(38)

τ∗j,k,m(λ̃,h) =

{
1, if (j, m) = arg max

j,m
ϕ̃j,k,m(λ̃,h)

0, otherwise.
(39)

x∗j (λ̃) = U ′−1
j (λ̃xj ) = r̃(λ̃xj ) (40)

where r̃(·) denotes the rate-weight function introduced in
Section IV-A.

Substituting (39) and (40) into (37), the dual function is
completely characterized. The dual problem of (35) is

min
λ̃≥0

D̃(λ̃). (41)

where due to the convexity of (35) the duality gap is zero.
Since the problem in (41) is always convex, the optimum value
of the multipliers can be found using the following subgradient
iterations:

λ̃(i+1)
rj

=

[
λ̃(i)

rj
− β(i)

(
Eh

[
K∑

k=1

r∗j,k(λ̃
(i)

,h)

]
− řj

)]+

,

j = 1, . . . , Jp (42)

λ̃(i+1)
rj

=

[
λ̃(i)

rj
− β(i)

(
řj − Eh

[
K∑

k=1

r∗j,k(λ̃
(i)

,h)

])]+

,

j = Jp + 1, . . . , J (43)

λ̃(i+1)
pj

=

[
λ̃(i)

pj
− β(i)

(
p̌j − Eh

[
K∑

k=1

p∗j,k(λ̃
(i)

,h)

])]+

,

j = 1, . . . , J (44)

λ̃(i+1)
xj

=
[
λ̃(i)

xj
− β(i)(x∗j (λ̃

(i)
)− r̄j(τ ∗(h))

]+

,

j = 1, . . . , J (45)

with stepsize β(i) ↓ 0. By identifying λrj = λ̃rj , λpj = λ̃pj ,
and wj = λ̃xj ∀j, it is easy to see that (42)-(45) correspond to
the iterations (22)-(25). Moreover, convexity of (41) implies
[4, Sec. 6.2] that the subgradient iterations exhibit linear
convergence as claimed in Theorem 1.

APPENDIX C: PROOF OF THEOREM 2

To prove the wanted convergence, it is first useful to
recognize that the dual variable updates in (26)-(29) and
those in (22)-(25) can be seen as a pair of primary and
averaged systems [29, Chapter 7]. This is because the updates
in the former follow a stochastic subgradient direction, which
is an unbiased “instantaneous” estimate of the subgradient
direction used in the latter; i.e., taking expectation over fading
realizations h of the stochastic subgradient used in (26)-(29)
yields the subgradient used in (22)-(25). Relying on stochastic
approximation tools, we can then show that trajectories of
these two (primary and averaged) systems are close to each
other under regularity conditions.

The dual variable updates in (26)-(29) have similar forms
with the queue size updates of the greedy primal-dual (GPD)
algorithm in [30]. Following the fluid-limit approach detailed
in [30], we can define a fluid path (indexed by t) such that
λrj

(t) = λ̂rj
[tβ−1], λpj

(t) = λ̂pj
[tβ−1], and λwj

(t) =
λ̂wj [tβ

−1]. As β → 0 and upon letting n = tβ−1, we can
rewrite (26)-(29) as

λrj
(t + β)− λrj

(t)
β

= −
(

K∑

k=1

r∗j,k(λ(t), w(t),h)− řj

)
,

j = 1, . . . , Jp (46)

λrj
(t + β)− λrj

(t)
β

= −
(

řj −
K∑

k=1

r∗j,k(λ(t), w(t),h)

)
,

j = Jp + 1, . . . , J (47)

λpj
(t + β)− λpj

(t)
β

= −
(

p̌j −
K∑

k=1

p∗j,k(λ(t),w(t),h)

)
,

j = 1, . . . , J (48)

wj(t + β)− wj(t)
β

= −
(

r̃j (w(t))−
K∑

k=1

r∗j,k(λ(t),w(t),h)

)
,

j = 1, . . . , J. (49)

From this fluid path argument with β → 0, consider a
continuous-time (indexed by t) fluid sample path (FSP), whose
evolution satisfies the ordinary differential equations (ODEs)
(cf. [30, Lemma 19]):

dλrj (t)
dt

= −
(

Eh

[
K∑

k=1

r∗j,k(λ(t), w(t),h)

]
− řj

)
,

j = 1, . . . , Jp (50)

dλrj (t)
dt

= −
(

řj − Eh

[
K∑

k=1

r∗j,k(λ(t), w(t),h)

])
,

j = Jp + 1, . . . , J (51)

dλpj (t)
dt

= −
(

p̌j − Eh

[
K∑

k=1

p∗j,k(λ(t),w(t),h)

])
,

j = 1, . . . , J, (52)

dwj(t)
dt

= −
(

r̃j (w(t))− Eh

[
K∑

k=1

r∗j,k(λ(t),w(t),h)

])
,

j = 1, . . . , J. (53)

Interestingly, for stationary and ergodic wireless channels
and bounded transmit-powers and rates, it can be shown that
(cf. [30, Theorem 3]):
Lemma 3: The trajectory of the updates (26)-(29) converges
in probability to that of the corresponding FSP satisfying (50)-
(53) as β → 0.

On the other hand, the ODEs (50)-(53) also describe the
updates in the averaged system (22)-(25) as β → 0. Since
Theorem 1 guarantees convergence of the latter to λ∗ and w∗,
if follows readily see that the trajectory of the FSP satisfying
(50)-(53) converges to λ∗ and w∗ too. The theorem follows
from this fact together with Lemma 3.
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