4100

Accurate Distributed Range-Based Positioning Algorithm
for Wireless Sensor Networks

Frankie K. W. Chan and H. C. So

Abstract—Localization of sensor nodes is a fundamental and important
problem in wireless sensor networks. In this correspondence, a recursive
distributed positioning algorithm is devised with the use of range measure-
ments. Computer simulations are included to contrast the performance of
the proposed approach with the conventional semi-definite relaxation posi-
tioning method as well as Cramér-Rao lower bound.

Index Terms—Distributed algorithm, position estimation, range-based
measurements, wireless sensor networks.

I. INTRODUCTION

The rapid advances in microelectromechanical systems and wireless
communications increase the importance of wireless sensor network
(WSN) for a wide variety of applications in inventory control, home
and building automation as well as battlefield surveillance [1]-[3]. In
WSNss, a large amount of low-cost, self-powered sensors are deployed
to generate collaborative networks. Nevertheless, determining the co-
ordinates of the sensor nodes is crucial for efficient functioning of these
applications. Employing global positioning system which requires ex-
pensive hardware is not an appropriate solution for indoor sensor local-
ization [4]. Instead, localization algorithms based on connectivity and
distance measurements among sensors can produce better position es-
timates at lower operational cost.

Node localization methods can be generally categorized as the
range-free and range-based approaches. One simple range-free
method is that each sensor finds the high-connectivity anchors whose
positions have already been known and then takes the centroid of the
connected anchors to be its location [5]. Approximation point-in-tri-
angulation [6] finds triangles formed by any three anchors which
include the unknown sensor and then takes the center of gravity of
the intersection of all these triangles to be the position estimate.
On the other hand, range-based algorithms exploit distances/angles
between nodes obtained from the pairwise time-of-arrival (TOA),
time-difference-of-arrival (TDOA), received signal strength (RSS),
and/or angle-of-arrival measurements. These algorithms can provide
more reliable sensor positioning. Under white Gaussian noise assump-
tion, nonlinear least squares estimator [7]-[9] can provide optimum
estimation accuracy but sufficiently close initial guess is required due
to the multimodality of the corresponding cost function. Utilizing the
pairwise distance measurements constructed from the TOA or RSS
information, the classical multidimensional scaling (MDS) [10], [11]
is a computationally attractive range-based positioning technique but
the requirement of fully connected scenario and centralized processing
are the main drawbacks. Given the pairwise distances, the semi-def-
inite relaxation (SDR) algorithm [12] transforms the sensor network
localization problem to a convex optimization problem with the use
of relaxed constraints. It can provide global solutions and has higher
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accuracy compared with MDS but the relaxation of the matrix rank
affects the estimation performance. Another advantage of the SDR
approach is that it can tackle partially-connected WSNs.

All these methods cannot be applied to environments in which cen-
tral processor is unavailable or the computational capability is insuffi-
cient. In these situations, distributed algorithms for cooperative local-
ization are employed and they can be classified as network mutlilatera-
tion and successive refinement [13]. In the former algorithms, sensors
estimate the multi-hop range to the anchors found by, say, counting
the number of hops and multiplying the average distance of a single
hop. After that, multilateration is applied to estimate the sensor posi-
tions [14], [15]. On the other hand, positioning algorithms based on
successive refinement recursively update the sensor positions through
exchanging position information with neighbors [16]-[18]. In general,
the position estimates of the latter are more reliable than the former at
the expense of extra computations. However, in the above-mentioned
distributed algorithms, the estimated sensor positions containing esti-
mation errors are assumed to be exact and utilized for localization of
their connected sensors or neighbors. In light of this, we develop a more
suitable approach which includes the variances of positions in sensor
positioning to enhance the estimation accuracy.

In this correspondence, a weighted least squares (WLS)-based algo-
rithm which converts distance measurements obtained from TOA in-
formation into linear equations is devised for WSN node localization.
The proposed algorithm belonging to the category of successive refine-
ment has the advantages of 1) distributed estimation, ii) able to work in
partially-connected scenario, and iii) able to provide a position estimate
as well as the covariance which shows the uncertainty of the estimate.
The rest of the correspondence is organized as follows. In Section II,
the problem formulation of sensor localization will be presented. Al-
gorithm development as well as some practical considerations will be
described in Section III. In Section IV, numerical examples will be
provided to demonstrate the performance of the proposed algorithm by
comparing with Cramér—Rao lower bound (CRLB) and the SDR algo-
rithm [12] which can provide high estimation performance compared
with existing distributed algorithms. Finally, concluding remarks are
given in Section V.

II. PROBLEM FORMULATION

We consider a WSN of M sensors on a two-dimensional (2-D) plane
with first & > 3 of them being anchors whose positions are already
known. Extension to three-dimensional (3-D) scenario is straightfor-
ward and the corresponding simulation is provided in Section IV. Let
é; = [z: y:]" be the position of the ith sensor where ” denotes the
transpose operator. In the absence of measurement error, the one-way
propagation time taken for the signal to travel from the :th sensor to the
jth sensor, denoted by t; ;, is

di,;

ti; = P

Lj=12,....,.M @)
where ¢ is the speed of signal propagation. The range measurement
based on t;_ ; in the presence of disturbance, denoted by r; ;, is modeled
as

rijg=rji=di;+q,; t,j=12,....,M 2)
where d; ; = ||¢; — ¢, is the noise-free distance between the ith
sensor and the jth sensor and ¢; ; ~ N(0,0?) is the additive mea-
surement noise in r;, ;. Here, || - || stands for the /> norm and A (p, %)
denotes the Gaussian distribution with mean y¢ and variance v>. Based
on the work of Patwari et al. [8], [13], the Gaussian noise model is

adopted. Note that the WSN is not necessarily fully connected because
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the distance of far apart sensors will exceed the communication range.
However, it is assumed that each sensor has at least three connections
to uniquely determine its position. The objective is to estimate the po-
sitions of the (M — k) sensors, namely, {¢; }:2 ;| based on the avail-
able distance measurements, {r; ;} as well as the positions of anchors,

{8}z

III. ALGORITHM DEVELOPMENT

In this section, a distributed positioning algorithm which can deal
with partially-connected WSNs will be derived. The basic operation
of the proposed algorithm will be firstly introduced. Communication
range and boundary constraints will then be incorporated for better po-
sition estimation.

A. Basic Algorithm

The basic algorithm is based on the two-step WLS approach by Chan
et al. [19]. Note that their algorithm utilizes TDOA measurements and
assumes the positions of the anchors are noise-free while the proposed
algorithm uses TOA measurements and the positions of neighbors, ex-
cluding the anchors, contain estimation errors. When {¢; ;} are suffi-
ciently small, squaring both sides of (2) and rearranging yields
3

2 2 2 2 2
—2xixy = 2yy; +xy fys R — X — Y.

Letj = 41,42,...,txn,, be the neighbor index of the ¢th sensor which
has NV; neighbors, (3) can be expressed in matrix form
where

A, =[-2®; 1n,]

T
¢ = [¢i1 ¢i> ¢iN7 ]
2 2
bi:[’r i1 ||¢L1|| 17N ||¢LN ” ]
Y, = [¢zl ¢z ”ﬂ]

Here, 1; denotes the ! X 1 vector with all elements equal to unity. The
WLS cost function to be minimized is

e; = (Ai; — b)) Wy (A, —by). ®)
Ignoring the constraint of [¢,]7 + [#,]5 = [#,]s where [¢,]; represents
the /th element of 9,, the WLS estimate of ¢, is

= (A Wy A)T'AT W, b; (6)
and the corresponding covariance is given by [19]
g -1

cov (¢,) = (Af W:piAi) %)

where ~' represents the inverse operator. The optimum weighting ma-
trix Wy, is obtained from the Markov estimate by expressing A; =
A; 4+ AA; and b; = b, + Ab, where A; and b; stand for the
noise-free values of A; and b;, respectively, while AA; and Ab; are
the corresponding perturbations. The inverse of W _ is derived as

W, ' =E {(Aﬂﬁi —bi) (A, — bi)j}
—E {(Aizp,-, + AA, — b, — Ab;)
x (A, + AAP, — b, — Ab,;)’T}
=E {(AA,vqp,; — Ab;)(AAY, — Abi)T}
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where
AA, — '—2A¢i1 —2A¢,, _2A¢i,\,7
) L 0l>< N;
2di, qi, + ¢5, — 2¢11A¢ - A¢; Ag,,
Ab; = 20,0, + 42, — 2., A, — AGL A,
~T:
[2diy diy, + @iy, = 26i, Db — D] NG,

with E, O;x ;, (;’): , A(bfl denote the expectation operator, ¢ X j zero ma-
trix, true position of the /th neighbor of the ith sensor and the corre-
sponding perturbation, respectively.

Ignoring the second order terms {¢7, }, as well as {Aqﬁi&d)il} and
replacing d; ;,, &5” by 744, ¢;,, respectively, W;: can be approxi-
mated as

w, !

i

~ 4E { {(IM ® ¢,T) Aa; + Riq, — (IM o @?)T Aal}

[l o) anema - (i 000) o]
—4 (IM o (¢i1’,{11_ - @3’))T Cs, (IM o (¢i1j{,.i _ @g’))

+4R;C, R

where
Al AT Al T
Aa; = [A(bil Ag;, A¢‘1Ni ]
R; = diag (Ti,m Tiligst s Tiin,
T
QG =[dii, s Giin, |
Ca, =cov (8], ol - ol 1")
C,, = cov ([r‘il iy Tiy ]T)

with ©, o and I; denote the Kronecker matrix product, Khatri-Rao ma-
trix product and the ! x [ identity matrix, respectively. Since the com-
putation of W, requires ¢,, an initial estimate is obtained by using
VV_l = 4R;C, R' Being non-negative, the last element of ¥,,

namely, [, is replaced by |[4,]3]. After obtaining 1, , the constraint

[.]7 + [¢,]3 = [#,]3 is imposed to obtain a more accurate position
estimate. The constraint is enforced by constructing
Gg, =~ h, 8)
where
10 11"
G =
[0 1 1]
hi = [[9)7 . Wils]"
B, = [lf yi ]1' :
The second step WLS estimate of 3, is given by
. T -1 _r
B, = (G WﬂiG) G W, b ©)

where
W' =E{(GB; —hi)(GB; —hi)"}
= E{(GB, —h; - Ah)(GS, —
= E{Ah;(Ah;)"}

h; — Ah;)"}
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where h; is the noise-free component of h; and Ah; = [2z;Ax; +
Az? 25;Ay; + Ay? Al,;]3]7 . Excluding the terms Az?, Ay? and
substituting &; and y; by x; and y;, respectively, W;1 can be approx-
imated as

2x; Ax; 2x; Ax;
W;ql ~ E 2y¢Ay,- ’_)yiAyi
Algls | LA[9]s

= diag (225, 2y;, 1) cov (¢,) diag(2x;, 2y, 1).

The WLS estimate of ¢, is given by
o= o ([ D)

where sgn(l) is the sign of {. Since the estimated and actual posi-
tions are very close if the SNR is sufficiently high, the covariance can
be approximated by substituting the position estimates and the corre-
sponding covariance to the CRLB with anchor positions uncertainty
(see the Appendix).

10)

B. Position Estimation With Less Than Three Neighbors

In some scenarios, sensors may only have connections with one to
two anchors or sensors with estimated positions. The basic algorithm
which needs the positions of at least three anchors initially cannot be
applied. Consider the case where the ¢th sensor connects to only two
anchors or sensors with estimated positions. Thus, (4) becomes

Aﬂﬁizb,‘ (11)
where
A — zi, Y, 1
' Tis  Yip 1

.2 .2 22 o2 o2
bi—[’i1 T Xy T Y Ty, — Xy T Yy

v, =[¢! ole]".

Instead of solving this underdetermined linear system, a simple geo-
metric technique is employed to obtain the position estimates. Given
two circles with centers (x1,y1) and (x2, y2) and corresponding radii
r1 and rz, the intersection point (x, y) is calculated from
; 2 /
g TIEVIE —don (12)
2

where oo = t3 + 15,7 = 2(yi1tats — t321 — tita),n = t3a7 + 1] —
2yitits + yits — rits t = v — vl el 4yt — 2l -yl te =
2(xy1 — x2),t3 = 2(y1 — y2). Similarly, y is computed using (12) by
substituting ' , 2, y1 and y2 by y1, y2, 21, and 2, respectively. If the
two circles have no intersections, (12) will produce complex numbers.
In this situation, the line passes through the two centers is first found.
There are four intersection points of this line with the two circles. The
midpoint of the two nearest intersection points is then chosen as the
position estimate.

If the 7th sensor only connects to one sensor with available posi-
tion, we assume that its position lies on the perimeter of the circle with
center ¢, and diameter r;;, . Then, we can take a set of points from
the perimeter as position estimates and compute the corresponding co-
variance by substituting all required information to the CRLB. Note
that in this case, pseudo-inverse will be used to calculate the Fisher in-
formation matrix (FIM) instead of the standard inverse since the FIM
is singular.
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After getting the position estimates, sensors obtain the covariances
by substituting the position estimates, positions of neighbors as well as
the distance and position covariances to the CRLB. Then, they transmit
all position estimates and corresponding covariances to neighbors. For
the ith sensor which receives several position estimates and covari-
ances, it computes its positions by substituting all combinations of
neighbors’ position estimates as well as corresponding covariances into
(10). After that, it calculates the error, ¢, (1), for each of its own position
estimate, (" and the position estimate with the smallest e; will be the
final solution.

C. Incorporation of Boundary and Communication Range
Constraints

By the algorithm in Section B, we can deal with scenarios when sen-
sors have less than three connections of sensors with available posi-
tions. However, utilizing all combinations of neighboring positions to
calculate locations is computationally demanding, especially the sen-
sors are sparsely deployed. In this situation, inclusion of boundary and
communication range constraints can reduce the computations and give
better estimates.

In some scenarios, the borders of the plane on which the sensors lie
are known. For instance, sensors in indoor applications are confined by
aroom. Each sensor removes the position estimates that are outside the
known boundary to reduce the computational complexity.

Besides, the communication range of sensors can be known a priori.
Sensors can transmit their neighbors’ identity numbers and their own
position estimates as well as covariances to neighbors. On receiving the
information, every sensor calculates the pairwise distances among its
neighbors to check whether any two of its neighbors are connected. If
this result contradicts with the information sent from the two neighbors,
then all the connection combinations involving these two sensors will
be deleted. In this way, the computational complexity will be reduced
by calculating just the distances instead of the performing the posi-
tioning estimation algorithm. In practice, tolerance, which depends on
the distance measurements and position uncertainty, is needed because
the information received from neighbors contains errors. The algorithm
is summarized as follows.

1) Anchors broadcast their positions to neighbors.

2) Sensors connecting to anchors estimate their positions and delete
those outside the boundary and calculate the corresponding co-
variances.

3) Sensors with estimated locations become anchors with position
uncertainty and they broadcast their locations, covariances as well
as the neighbors’ identity numbers.

4) After receiving the neighbors’ information, sensors calculates the
mutual distances among neighbors and delete those contradictory
combinations of neighbors’ positions with the use of the identity
numbers of neighbors and communication range.

5) Sensors then estimate their positions and delete those outside the
boundary and broadcast the one with the smallest error, together
with the corresponding covariance.

6) By successive propagation and update of positions using steps 3)
to 5), each sensor gets its final position estimate and covariance.

IV. NUMERICAL EXAMPLES

Computer simulation has been conducted to evaluate the perfor-
mance of the proposed algorithm using a PC with 2-GHz Pentium
dual core CPU and 1-GB RAM. Given the distance measurement
model of (2), the proposed method is compared with CRLB and SDR
algorithm with regularization [12]. The boundary and communication

Authorized licensed use limited to: CityU. Downloaded on September 15, 2009 at 23:54 from |IEEE Xplore. Restrictions apply.



IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 57, NO. 10, OCTOBER 2009

range constraints are incorporated in the proposed and SDR schemes
where they appear as inequality constraints in the SDR program. There
is no gradient-descent based refinement step [12] in the latter which
indicates that it is a purely semi-definite programming. Note that the
unconstrained CRLB is not affected by these inequality constraints
[20], [21].

Before proceeding to the numerical results, we follow [18], [22]
to analyze the communication and computational complexity of the
proposed and SDR algorithms. Assuming that packet-based multi-hop
communication model is adopted, the total energy consumed is

O x(xT

13)

where 6, ¢ and 7 are the number of transmitted packets, average number
of hops for communication and average transmission energy of one
packet over one hop, respectively. For the centralized SDR algorithm,
= re(M — k), = O((M — k)'/?), where & is the ratio of packet
size to measurement size, € denotes the average node degree and d = 2
and d = 3 for 2-D and 3-D spaces, respectively. For the proposed
distributed algorithm, § = re(M — k)T, where T is the number of
iterations and ¢ = 1 because sensors only communicate with their
one-hop neighbors. Furthermore, the average hop distance is the same
and hence 7 for both approaches as multihop communication model is
assumed. As a result, the energy dissipation ratio of the SDR program
to distributed algorithm is O((M — k)'/¥/T). It means that when T is
fixed, the required communication energy of the centralized algorithm
is (m;)r)e than that of the distributed algorithm by an order of (M —
Ey( /4

In the proposed algorithm, each sensor obtains its WLS position es-
timate using (6). The average size of A; is € X d, which means that
the computational complexity of all unknown-position sensors with 7’
iterations equals O(e*(M — k)T). Comparing with that of the SDR
scheme, namely, at least O((M — k)*) [23], the proposed algorithm is
more computationally attractive particularly when the sensor connec-
tivity of the WSN is low.

In the following, the mean square position errors (MSPEs), defined

as
. 2 . 2
{5y + 6 -0))

(M —=FE)o

are plotted in all scenarios where ¢ denotes number of runs. The av-
erage CPU time which is the mean of the time spent in all the indepen-
dent runs and noise power range is used to measure the computational
complexity. In our simulations, there are M = 54 sensors of which
k = 4 are anchors. The proposed algorithm is iterated for 30 times to
ensure convergence for all noise power ranges. All results are averages
of ¢ = 100 independent runs and we assume that the WSN is localiz-
able [24] in each run.

In the first scenario, the sensors are located on a 100 m x 100 m plane
enclosed by (0, 0) m, (0, 100) m, (100, 0) m and (100, 100) m. The an-
chor positions are (100/3, 100/3) m, (100/3, 200/3) m, (200/3, 100/3) m,
and (200/3, 200/3) m. The maximum communication range is set to 50
m. The unknown-position sensors have random positions within the
10*m? area while the anchor positions are fixed in each independent
run. As the sensor geometry is different in each trial, the corresponding
CRLB is not unique even when the noise condition is kept identical. As
aresult, we take the average CRLB value based on all runs as the perfor-
mance benchmark and denote it as mean CRLB. The MSPE:s for the 50
unknown-position sensors are plotted in Fig. 1 to show the overall per-
formance. It is observed that the proposed approach has smaller MSPEs
than those of the SDR algorithm. The MSPEs of the proposed algo-
rithms deviate from the mean CRLB by about 0.5 dB when o2 < 0
dB. The proposed method outperforms the SDR approach and is able

0 M
i=1 Z]:k+1

4103

20 T T T T T T
+ SDR
10 F O Proposed | : 1
Mean CRLB + h
o
R
m
o
@
<
>
=3
o
2
_50 i i i i i i i i i
-40 -3 -30 -25 -20 -15 -10 -5 0 5 10
10log, ,(6?) (dB)
Fig. 1. Mean square position error versus o2 in 2-D geometry.
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Fig. 2. Mean square position error versus o2 in 3-D geometry.

to attain the mean CRLB for sufficiently small noise power. The CPU
times of the proposed and SDR methods are 49 s and 176 s, respec-
tively, which agrees with our computational complexity analysis. Note
that the overall computational time of the 50 unknown-position sen-
sors is counted in the proposed algorithm, but the localization of each
sensor is performed simultaneously.

In the second scenario, the sensors are located on a
100 m x 100 m x 100 m space enclosed by (0, 0, 0) m, (0, 0, 100) m,
(100, 0, 0) m, (100, 0, 100) m, (0, 100, 0) m, (0, 100, 100) m, (100,
100, 0) m and (100, 100, 100) m and the anchor positions are (100/3,
100/3, 100/3) m, (200/3, 200/3, 100/3) m, (200/3, 100/3, 200/3) m
and (100/3, 200/3, 200/3) m. Similar to the previous simulation, the
maximum communication range is 50 m and the unknown-position
sensors have random positions within the 10° m® space while the
anchor positions are fixed in each independent runs. Fig. 2 shows that
the proposed approach has a threshold noise power of —5 dB and the
MSPEs of the SDR algorithm deviate the mean CRLB by at least
6 dB. It shows the superiority of the proposed method over the SDR
approach in 3-D WSN localization. The proposed method spends
119 s and the SDR approach needs 380 s.

In the third scenario, lower-connectivity WSNs are considered. The
simulation setting is the same as the first one except the communication
range is set to 30 m. The average node degree is now 11.7 which is 22%
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Fig. 3. Mean square position error versus o2 with lower connectivity.

of a fully connected sensor network. Fig. 3 shows that the threshold
noise power of the proposed method is —10 dB and the SDR approach
deviates from the mean CRLB by at least 5 dB. This means that the
proposed method outperforms the SDR approach in low-connectivity
WSNs in terms of estimation accuracy. The CPU times of the proposed
and SDR approaches are 27 and 126 s, respectively, indicating the com-
putational superiority of the former in low-connectivity WSNs.

V. CONCLUDING REMARKS

A distributed positioning approach is developed based on weighted
least squares. Based on limited numerical experiments, its performance
can attain Cramér—Rao lower bound when the noise power is suffi-
ciently small and is superior to the semi-definite relaxation estimation
method.

APPENDIX

In this Appendix, the Cramér—Rao lower bound (CRLB) for the po-
sition estimates with anchor position uncertainty is derived. The de-
velopment is an extension of [25] and [26] where the former considers
CRLB for WSN localization without anchor uncertainty while the latter
derives the CRLB for a single unknown position with receiver position
uncertainty using TDOA and frequency-difference-of-arrival measure-
ments. The joint likelihood function of the available distance measure-
ments and the noise-corrupted anchor positions are given by

p(algl.....0l, . 9) = N(ain2) (14)
where
a={[riiy Tii, Tiiin, ¢'iT1 45;{_, ¢?Nf_]1
~ ~ ~ ~ ~T ~ T
p= [l -l I6: =iy Il 63y - b0y ]

¥ = blkdiag (2., X4)
3, = diag (U?",;wafi,;],...,az )

LN,
%4 = blkdiag (24»1 PR P ) :

Here, ‘;52 stands for the ith noise-free anchor position, A'(a; u, ) de-
notes Gaussian density function with g and X represent the mean and
covariance and blkdiag( - ) represents the block diagonal matrix. The
CRLBs of position estimates are given by the diagonal elements of the
inverse of Fisher information matrix (FIM):

FIM =Lx®"'L” (15)
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where L is the Jacobian with the following form:

L=[L Lg] o
blkdiag fi;r{h ‘fzz"?i , Pin, =% )
6., =0l 110,,-¢.l I =9l
s )
9., 9.l Hg,wi,@?
Ly =[Ton, 02Ni><2]T

The covariance of éﬁi is given by the 2 X 2 block of the bottom right
corner of the FIM.
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On Error-Saturation Nonlinearities in NLMS Adaptation

Neil J. Bershad

Abstract—The effect of a saturation-type error nonlinearity in the weight
update equation in normalized least mean-square (NLMS) adaptation is in-
vestigated for system identification for a white Gaussian data model. Non-
linear recursions are derived for the weight mean error and mean-square
deviation (MSD) that include the effect of an error function (erf) satura-
tion-type nonlinearity on the error sequence driving the algorithm. The
nonlinear recursion for the MSD is solved numerically and shown in excel-
lent agreement with Monte Carlo simulations, supporting the theoretical
model assumptions. The theory is extended to tracking a Markov channel
and accurately predicts the tracking behavior as well. The saturation be-
havior of the algorithm is easily studied by varying a single parameter in
the error function, varying from a linear device to a hard limiter. For the
white data case, the excess mean square-error (EMSE) is simply related to
the MSD. The tradeoff between the extent of error saturation, steady-state
EMSE, and algorithm convergence rate is studied using these results.

Index Terms—Adaptive filters, analysis, NLMS, nonlinear systems, sto-
chastic algorithms.

[. INTRODUCTION

Adaptive signal processing algorithms have found wide applica-
tion in situations where the statistics of the input are unknown or
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time-varying. The least mean-square (LMS) algorithm was most often
selected in many situations because of its simplicity and robustness.
The LMS algorithm often operated in a nonlinear manner because
of saturation or quantization acting upon the various signals in the
adaptation loop. Mathematical models were developed to study the
nonlinear behavior. Reference [1] is an early example of such analysis.
Subsequently, the effects of a saturation type non-linearity on LMS
adaptation for Gaussian inputs and Gaussian observation noise were
studied in a series of papers [2]-[4] in the middle of the 1980s.
The saturation nonlinearity was modeled as an erf function where
erf(x) = (2/y/7) [ exp(—1*)dt. This shape, coupled with Gaussian
data model, simplified the stochastic analysis of the nonlinear LMS
weight update recursion. The tradeoff between algorithm speed and
degree of saturation was studied in detail for these Gaussian models.
More recently the LMS algorithm has been replaced by the normalized
least mean-square (NLMS) algorithm [5], [6] for various reasons,
the most important being that the NLMS algorithm does not require
knowledge of the input power level for design purposes. Stochastic
analysis of the behavior of the NLMS algorithm is given in [7]-[9]
for example. However, for theoretical reasons, the stochastic analysis
of the effects of error nonlinearities in the NLMS weight update have
not been studied in very much detail. [10] has investigated the case
of nonlinear NLMS adaptation for a Huber function nonlinearity
operating on the error signal for the case of additive impulse noise.

This paper studies the stochastic behavior of the NLMS algorithm
with an erf function type nonlinearity operating on the error signal.
The erf function can model different degrees of saturation by varying a
single parameter, varying from a linear device to a hard limiter. Thus,
the analysis results are in terms of this parameter. The stochastic anal-
ysis evaluates certain conditional expectations in the NLMS weight
update recursion by combining 1) the approach in [7] for differenti-
ating under the expectation sign to remove the NLMS normalization
factor and 2) the approach in [4] to evaluate expectations of nonlinear
Gaussian functionals using Price’s theorem [11]. The approach of this
paper can be applied to other nonlinearities operating on the error signal
in the NLMS algorithm. In particular, this approach can be used to
correct the analysis errors for the Huber type saturation nonlinearity,
studied in [10].

The paper is organized as follows. Section II defines the system iden-
tification problem and states the assumptions needed for the analysis.
Section III derives deterministic recursions for the mean weight error
and the mean-square deviation (MSD). Section IV extends the theory
to tracking a Markov channel. Section V compares the theory derived
in Sections III and IV with Monte Carlo simulations for a wide variety
of system parameters. This section verifies the assumptions needed for
the theoretical model. Section VI contains the conclusions.

II. SYSTEM IDENTIFICATION PROBLEM

This paper focuses on the system identification problem shown in
Fig. 1. Initially, the unknown channel is assumed time-invariant. The
NLMS weight update for the weight vector W (n) with the erf function
nonlinearity is given by

g(e(n)X(n))

Win+1) =W+ 1570050

ey
where 0 < p < 1 is the algorithm step size

e(n)=d(n) = X" (n)W(n)=n,(n) + X" (n) (W,(n) = W(n))

@
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