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Abstract

This paper studies a fully Bayesian algorithm for endmember extraction and abundance estimation

for hyperspectral imagery. Each pixel of the hyperspectral image is decomposed as a linear combination

of pure endmember spectra following the linear mixing model. The estimation of the unknown end-

member spectra is conducted in a unified manner by generating the posterior distribution of abundances

and endmember parameters under a hierarchical Bayesian model. This model assumes conjugate prior

distributions for these parameters, accounts for non-negativity and full-additivity constraints, and exploits

the fact that the endmember proportions lie on a lower dimensional simplex. A Gibbs sampler is proposed

to overcome the complexity of evaluating the resulting posterior distribution. This sampler generates

samples distributed according to the posterior distribution and estimates the unknown parameters using

these generated samples. The accuracy of the joint Bayesian estimator is illustrated by simulations

conducted on synthetic and real AVIRIS images.
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I. INTRODUCTION

Over the last several decades, much research has been devoted to the spectral unmixing

problem. Spectral unmixing is an efficient way to solve standard problems encountered in

hyperspectral imagery. These problems include pixel classification [1], material quantification

[2] and subpixel detection [3]. Spectral unmixing consists of decomposing a pixel spectrum

into a collection of material spectra, usually referred to as endmembers, and estimating the

corresponding proportions or abundances [4]. To describe the mixture, the most frequently

encountered model is the macroscopic model which gives a good approximation in the reflective

spectral domain ranging from 0.4µm to 2.5µm [5]. The linearization of the non-linear intimate

model proposed by Hapke in [6] results in this macroscopic model [7]. The macroscopic model

assumes that the observed pixel spectrum is a weighted linear combination of the endmember

spectra.

As reported in [4], linear spectral mixture analysis (LSMA) has often been handled as a two

step procedure: the endmember extraction step and the inversion step, respectively. In the first

step of analysis, the macroscopic materials that are present in the observed scene are identified

by using an Endmember Extraction Algorithm (EEA). The most popular EEAs include PPI [8]

and N-FINDR [9], that apply a linear model for the observations with non-negativity and full-

additivity1 constraints. This model results in endmember spectra located on the vertices of a

lower dimensional simplex. PPI and N-FINDR estimate this simplex by identifying the largest

simplex contained in the data. Another popular alternative, called Vertex Component Analysis

(VCA) has been proposed in [10]. A common assumption in VCA, PPI and N-FINDR is that they

require pure pixels to be present in the observed scene, where pure pixels are pixels composed of

a single endmember. Alternatively, Craig has proposed the Minimum Volume Transform (MVT)

to find the smallest simplex that contains all the pixels [11]. However, MVT-based methods (e.g.

ORASIS [12]) are not fully automated techniques: they provide results that strongly depend on

i) the algorithm initialization, ii) some ad hoc parameters that have to be selected by the user.

More generally, these previous EEAs avoid the difficult problem of direct parameter estimation

on the simplex. The interested reader is invited to consult [13] and [14] for a recent performance

comparison of some standard EEAs.

1The full-additivity constraint, that will be detailed in the following section, refers to a unit `1-norm.
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The second step in LSMA, called the inversion step, consists of estimating the proportions of

the materials identified by EEA [15]. The inversion step can use various strategies such as least

square estimation [16], maximum likelihood estimation [17] and Bayesian estimation [18].

The central premise of this paper is to propose an algorithm that estimates the endmember

spectra and their respective abundances jointly in a single step. This approach casts LSMA

as a blind source separation (BSS) problem [19]. In numerous fields, independent component

analysis (ICA) [20] has been a mainstay approach to solve BSS problems. In hyperspectral

imagery, ICA has also been envisaged [21]. However, as illustrated in [15] and [22], ICA may

perform poorly for LSMA due to the strong dependence between the different abundances [23].

Inspired by ICA, dependent component analysis has been introduced in [24] to exploit this

dependance. However, this approach assumes that the hyperspectral observations are noise-free.

Alternatively, non-negative matrix factorization (NMF) [25] can also be used to solve BSS

problem under non-negativity constraints. In [26], a NMF algorithm that consists of alternately

updating the signature and abundance matrices has been successfully applied to identify con-

stituent in chemical shift imaging. In this work, the additivity constraint has not been taken into

account. Basic simulations conducted on synthetic images show that such MNF strategies lead

to weak estimation performances. In [27], an iterative algorithm called ICE (iterated constrained

endmembers) is proposed to minimize a penalized criterion. As noted in [24], results provided

by ICE strongly depend on the choice of the algorithm parameters. More recently, in [28], Miao

et al. have proposed another iterated optimization scheme performing NMF with an additivity

constraint on the abundance coefficients. However, as this constraint has been included in the

objective function, it is not necessarily ensured. In addition the performances of the algorithm

in [28] decrease significantly when the noise level increases.

The joint Bayesian model uses a Gibbs sampling algorithm to efficiently solve the constrained

spectral unmixing problem without requiring the presence of pure pixels in the hyperspectral

image. In addition, to our knowledge, this is the first time that non-negativity constraints for

endmember spectra as well as hard additivity and non-negativity constraints for the abundances

are jointly considered in hyperspectral imagery.

In many works, Bayesian estimation approaches have been adopted to solve BSS problems

(see for example [29]) like LSMA. The Bayesian formulation allows one to directly incorporate

constraints into the model such as sparsity [30], non-negativity [31] and full additivity (sum-
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to-one constraint) [32]. In this paper, prior distributions are proposed for the abundances and

endmember spectra to enforce the constraints inherent to the hyperspectral mixing model. These

constraints include non-negativity and full-additivity of the abundance coefficients (as in [18])

and non-negativity of the endmember spectra. The proposed joint LSMA approach is able

to solve the endmember spectrum estimation problem directly on a lower dimensional space

within a Bayesian framework. We believe that this is one of the principal factors leading to

performance improvements that we show on simulated and real data in Sections V and VI. By

estimating the parameters on the lower dimensional space we effectively reduce the number of

degrees of freedom of the parameters relative to other methods (e.g. [31]), translating into lower

estimator bias and variance. The problem of hyperparameter selection in our Bayesian model is

circumvented by adopting the hierarchical Bayesian approach of [18] that produces a parameter-

independent Bayesian posterior distribution for the endmember spectra and abundances. To

overcome the complexity of the full posterior distribution, a Gibbs sampling strategy is derived

to approximate standard Bayesian estimators, e.g. the minimum mean squared error (MMSE)

estimator. Moreover, as the full posterior distribution of all the unknown parameters is available,

confidence interval can be easily computed. These measures allow one to quantify the accuracy

of the different estimates.

The paper is organized as follows. The observation model is described in Section II. The

different quantities necessary to the Bayesian formulation are enumerated in Section III. Sec-

tion IV presents the proposed Gibbs sampler for joint abundance and endmember estimation.

Simulation results obtained with synthetic and real AVIRIS data are reported in Sections V

and VI respectively. Section VII concludes the paper. An appendix provides details on our

parameterization of the simplex and selecting relevant and tractable priors.

II. LINEAR MIXING MODEL AND PROBLEM STATEMENT

Consider P pixels of an hyperspectral image acquired in L spectral bands. According to the

linear mixing model (LMM), described for instance in [4], the L-spectrum yp = [yp,1, . . . , yp,L]T

of the pth pixel (p = 1, . . . , P ) is assumed to be a linear combination of R spectra mr corrupted

by an additive Gaussian noise

yp =
R∑
r=1

mrap,r + np, (1)
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where mr = [mr,1, . . . ,mr,L]T denotes the spectrum of the rth material, ap,r is the fraction

of the rth material in the pth observation, R is the number of materials, L is the number

of available spectral bands and P is the number of observations (pixels). Moreover, in (1),

np = [np,1, . . . , np,L]T is an additive noise sequence which is assumed to be an independent and

identically distributed (i.i.d.) zero-mean Gaussian sequence with covariance matrix Σn = σ2IL,

where IL is the identity matrix of dimension L× L

np ∼ N (0L,Σn) . (2)

The proposed model in (2) does not account for any possible correlation in the noise sequences

but has been widely adopted in the literature [33]–[35]. However, some simulation results reported

in paragraph V-D will show that the proposed algorithm is robust to the violation of the i.i.d.

noise assumption. Note finally that the model in (1) can be easily modified (see [36]) to handle

more complicated noise models with different variances in each spectral band as in [37], or by

taking into account correlations between spectral bands as in [18].

Due to physical considerations, described in [3], [18] or [38], the fraction vectors ap =

[ap,1, . . . , ap,R]T in (1) satisfy the following non-negativity and full-additivity (or sum-to-one)

constraints:  ap,r ≥ 0, ∀r = 1, . . . , R,∑R
r=1 ap,r = 1.

(3)

In other words, the p abundance vectors belong to the space

A = {a : ‖a‖1 = 1 and a � 0} , (4)

where ‖·‖1 is the `1 norm ‖x‖1 =
∑

i |xi|, and a � 0 stands for the set of inequalities

{ar ≥ 0}r=1,...,R. Moreover, the endmember spectra component mr,l must satisfy non-negativity

constraints:

mr,l ≥ 0, ∀r = 1, . . . , R, ∀l = 1, . . . , L. (5)

Considering all pixels, standard matrix notations yield:

Y = MA + N, (6)

where
Y = [y1, . . . ,yP ] , M = [m1, . . . ,mR] ,

A = [a1, . . . , aP ] , N = [n1, . . . ,nP ] .
(7)
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In this work, we propose to estimate A and M from the noisy observations Y under the

constraints in (3) and (5). Note that the unconstrained BSS problem for estimating M and A from

Y is ill-posed: if {Y,A} is an admissible estimate then
{
YH,HTA

}
is also admissible for any

unitary matrix H. In the LSMA problem, this non-uniqueness can be partially circumvented by

additional constraints such as full-additivity, which enables one to handle the scale indeterminacy.

Consequently, these unit `1-norm constraints on the abundance vectors avoid using more complex

strategies for direct estimation of the scale [39]. Despite the constraints in (3) and (5), uniqueness

of the couple {M,A} solution of the LSMA (6) is not systematically ensured. To illustrate this

problem, 50 admissible solutions2 have been depicted in Fig. 1 for R = 2 endmembers involved

in the mixing of P = 2500 pixels [40]. In the following section, the Bayesian model used for

the LSMA is presented.

Fig. 1. Range of admissible solution for two endmember spectra : construction concrete (left) and red brick (right). The actual

endmember (red lines) are mixed according (1) under the constraints in (3) with random proportions to obtain P = 2500 pixels.

50 admissible solutions (blue lines) of the BSS problems in (6) are generated using [40].

III. BAYESIAN MODEL

A. Likelihood

The linear mixing model defined in (1) and the statistical properties in (2) of the noise vector np

result in a conditionally Gaussian distribution for the observation of the pth pixel: yp|M, ap, σ
2 ∼

2Admissible solutions refer to couples {M,A} that satisfy (3) and (5) and that follow the model (1) in the noise-free case.
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N (Map, σ
2IL). Therefore, the likelihood function of yp can be expressed as

f
(
yp
∣∣M, ap, σ

2
)

=

(
1

2πσ2

)L
2

exp

[
−‖yp −Map‖2

2σ2

]
, (8)

where ‖x‖ =
(
xTx

) 1
2 is the `2 norm. Assuming the independence between the noise sequences

np (p = 1, . . . , P ), the likelihood function of all the observations Y is:

f
(
Y
∣∣M,A, σ2

)
=

P∏
p=1

f
(
yp
∣∣M, ap, σ

2
)
. (9)

B. Prior model for the endmember spectra

1) Dimensionality reduction: It is interesting to note that the unobserved matrix X = MA =

Y −N is rank deficient under the linear model (1). More precisely, the set

SM =

{
x ∈ RL; x =

R∑
r=1

λrmr,
R∑
r=1

λr = 1, λr ≥ 0

}
(10)

is a (R − 1)-dimensional convex polytope of RL whose vertices are the R endmember spectra

mr (r = 1, . . . , R) to be recovered. Consequently, in the noise-free case, X can be represented

in a suitable lower-dimensional subset VK of RK without lost of information. To illustrate this

property, P = 1000 pixels resulting from a noise-free mixture of R = 3 endmembers are

represented in Fig. 2. As noted in [4], this dimensionality reduction is a common step of the

LSMA, adopted by numerous EEAs, such as N-FINDR [9] or PPI [8]. Similarly, we propose to

estimate the projection tr (r = 1, . . . , R) of the endmember spectra mr in the subspace VK . The

identification of this subspace can be achieved via a standard dimension reduction procedure. In

the sequel, we propose to define VK as the subspace spanned by K orthogonal axes v1, . . . ,vK

identified by a principal component analysis (PCA) on the observations Y [41]:

VK = span (v1, . . . ,vK) . (11)

The first two principal axes are identified in Fig. 2 for the synthetic hyperspectral data. In

the following paragraph, the PCA is described. Note however that this PCA-based dimension

reduction step can be easily replaced by other projection techniques, such as the maximum noise

fraction (MNF) transform [42] that has been considered in paragraph V-D.
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Fig. 2. Example of hyperspectral data observed in 3 spectral bands. The mixed pixels (blue points) belong to the R-dimensional

convex polytope SM (red lines) whose vertices are the endmembers spectra m1, . . . ,mR (red stars). The first two principal

axes estimated by a PCA appear in dashed lines and define the projection subset VK .

2) PCA projection: The L× L empirical covariance matrix Υ of the data Y is given by:

Υ =
1

P

P∑
p=1

(yp − ȳ) (yp − ȳ)T (12)

where ȳ is the empirical mean:

ȳ =
1

P

P∑
p=1

yp. (13)

Let D = diag (λ1, . . . , λK) ,

V = [v1, . . . ,vK ]T
(14)

denote respectively the diagonal matrix of the K highest eigenvalues and the corresponding

eigenvector matrix of Υ. The PCA projection tr ∈ RK of the endmember spectrum mr ∈ RL

is obtained as follows:

tr = P (mr − ȳ) , (15)
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with P = D−
1
2 V. Equivalently,

mr = Utr + ȳ, (16)

with U = V†D
1
2 where V† ,

(
VTV

)−1
VT is the pseudo-inverse of V. Note that in the

subspace VR−1 obtained for K = R − 1, the vectors {tr}r=1,...,R form a simplex that standard

EEAs such as N-FINDR [9], MVT [11] and ICE [27] try to recover. In this paper, we estimate

the vertices tr (r = 1, . . . , R) of this simplex using a Bayesian approach. The Bayesian prior

distributions for the projections tr (r = 1, . . . , R) are introduced in the following paragraph.

3) Prior distribution for the projected spectra: All the elements of the subspace VK may not

be appropriate projected spectra according to (15). Indeed, the K × 1 vector tr has to ensure

non-negativity constraints (5) of the corresponding reconstructed L × 1 spectra mr. For each

endmember mr, straightforward computations establish that for any r = 1, . . . , R

{ml,r ≥ 0, ∀l = 1, . . . , L} ⇔ {tr ∈ Tr} , (17)

where the set Tr ⊂ VK is defined by the following L inequalities

Tr =

{
tr; ȳl +

K∑
k=1

ul,ktk,r ≥ 0, l = 1, . . . , L

}
, (18)

with ȳ = [ȳ1, . . . , ȳL]T and U = [ul,k]. A conjugate3 multivariate Gaussian distribution (MGD)

NTr (er, s
2
rIK) truncated on the set Tr is chosen as prior distribution for tr. The probability

density function (pdf) φTr (·) of this truncated MGD is defined by:

φTr

(
tr
∣∣er, s2

rIK
)
∝ φ

(
tr
∣∣er, s2

rIK
)

1Tr (tr) , (19)

where ∝ stands for “proportional to”, φ (·|u,W) is the pdf of the standard MGD N (u,W)

with mean vector u and covariance matrix W, and 1Tr (·) is the indicator function on the set

Tr:

1Tr (x) =

 1, if x ∈ Tr ;

0, overwise.
(20)

The normalizing constant KTr (er, s
2
rIK) in (19) is defined as follows:

KTr

(
er, s

2
rIK
)

=

∫
Tr

φ
(
x|er, s2

rIK
)
dx. (21)

3For the main motivations of choosing conjugate priors, see for instance [43, Chap. 3].
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This paper proposes to choose the mean vectors er (r = 1, . . . , R) in (19) as the projected

spectra of pure components previously identified by EEA, e.g., N-FINDR. The variances s2
r

(r = 1, . . . , R) reflect the degree of confidence given to this prior information. When no additional

knowledge is available, these variances are fixed to large values: s2
1 = . . . = s2

R = 50.

By assuming a priori independence of the vectors tr (r = 1, . . . , R), the prior distribution for

the projected endmember matrix T = [t1, . . . , tR] is

f
(
T | E, s2

)
=

R∏
r=1

φTr

(
tr
∣∣er, s2

rIK
)
, (22)

where E = [e1, . . . , eR] and s2 = [s2
1, . . . , s

2
R].

C. Abundance prior

For each observed pixel p, with the full additivity constraint in (3), the abundance vectors ap

(p = 1, . . . , P ) can be rewritten as

ap =

 cp

ap,R

 with cp =


ap,1

...

ap,R−1

 ,
and ap,R = 1−

∑R−1
r=1 ap,r. Following the model in [18], the priors chosen for cp (p = 1, . . . , P )

are uniform distributions on the simplex S defined by:

S =
{
cp; ‖cp‖1 ≤ 1 and cp � 0

}
. (23)

Choosing this prior distribution for cp (p = 1, . . . , P ) is equivalent to electing a Dirichlet

distribution D (1, . . . , 1), i.e a uniform distribution on A defined in (4), as prior distribution

for the full abundance vector ap [43, Appendix A]. However, the proposed reparametrization

will prove to be well adapted to the Gibbs sampling strategy introduced in Section IV.

Under the assumption of statistical independence between the abundance vectors cp (p =

1, . . . , P ), the full prior distribution for partial abundance matrix C = [c1, . . . , cP ]T can be

written

f (C) ∝
P∏
p=1

1S (cp) . (24)

As noted in [18], the uniform prior distribution reflects the lack of a priori knowledge about

the abundance vector. Moreover, for the BSS problem here, this imposes a strong constraint on
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the size of the simplex to be recovered. As demonstrated in the Appendix, among two a priori

equiprobable solutions of the BSS problem, this uniform prior allows one to favor a posteriori

the solution corresponding to the polytope in the projection subset VK with smallest volume.

This property has also been exploited in [11].

D. Noise variance prior

A conjugate prior is chosen for σ2:

σ2 |ν, γ ∼ IG
(ν

2
,
γ

2

)
, (25)

where IG
(
ν
2
, γ

2

)
denotes the inverse-gamma distribution with parameters ν

2
and γ

2
. As in previous

works ([44] and [45]), the hyperparameter ν will be fixed to ν = 2. On the other hand, γ will

be a random and adjustable hyperparameter, whose prior distribution is defined below.

E. Prior distribution for hyperparameter γ

The prior for γ is a non-informative Jeffreys’ prior [46] which reflects the lack of knowledge

regarding this hyperparameter:

f (γ) ∝ 1

γ
1R+ (γ) . (26)

F. Posterior distribution

The posterior distribution of the unknown parameter vector θ = {C,T, σ2} can be computed

from marginalization using the following hierarchical structure

f(θ|Y) =

∫
f(θ, γ|Y)dγ ∝

∫
f(Y|θ)f(θ|γ)f(γ)dγ, (27)

where f
(
Y
∣∣θ) and f (γ) are defined in (9) and (26) respectively. Moreover, under the assumption

of a priori independence between C, T and σ2, the following result can be obtained:

f
(
θ
∣∣γ) = f (C) f

(
T | E, s2

)
f
(
σ2 | ν, γ

)
, (28)

where f (C | E, s2), f (T) and f (σ2 | ν, γ) have been defined in Eq.’s (24), (22) and (25),

respectively.
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This hierarchical structure allows one to integrate out the hyperparameter γ from the joint

distribution f (θ, γ|Y), yielding:

f
(
C,T, σ2

∣∣Y) ∝ P∏
p=1

1S (cp)

×
R∏
r=1

exp

[
−‖tr − er‖2

2s2
r

]
1Tr (tr)

×
P∏
p=1

[(
1

σ2

)L
2
+1

exp

(
−‖yp − (UT + ȳ) ap‖2

2σ2

)]
.

(29)

Deriving the Bayesian estimators (e.g., MMSE or MAP) from the posterior distribution in (29)

remains intractable. In such case, it is very common to use Markov chain Monte Carlo (MCMC)

methods to generate samples asymptotically distributed according to the posterior distribution.

The Bayesian estimators can then be approximated using these samples. The next section studies

a Gibbs sampling strategy allowing one to generate samples distributed according to (29).

IV. GIBBS SAMPLER

Random samples (denoted by ·(t) where t is the iteration index) can be drawn from f (C,T, σ2 | Y)

using a Gibbs sampler [47]. This MCMC technique consists of generating samples
{
C(t),T(t),σ2(t)

}
distributed according to the conditional posterior distributions of each parameter.

A. Sampling from f (C|T, σ2,Y)

Straightforward computations yield for each observation:

f
(
cp
∣∣T, σ2,yp

)
∝ exp

[
−

(cp − υp)
T Σ−1

p (cp − υp)

2

]
1S (cp) , (30)

where: 
Σp =

[(
M-R −mR1TR−1

)T
Σ−1

n

(
M-R −mR1TR−1

)]−1

,

υp = Σp

[(
M-R −mR1TR−1

)T
Σ−1

n (yp −mR)
]
,

(31)

with Σ−1
n = 1

σ2 IL, 1R−1 = [1, . . . , 1]T ∈ RR−1 and where M-R denotes the matrix M whose Rth

column has been removed. As a consequence, cp
∣∣T, σ2,yp is distributed according to an MGD
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ALGORITHM 1:

Gibbs sampling algorithm for LSMA

• Preprocessing:

– Compute the empirical mean vector ȳ in (13),

– Compute the matrices D and V in (14) via a PCA,

– Set U =
(
VT V

)−1
VT D

1
2 ,

– For r = 1, . . . , R, choose the a priori estimated endmembers er ∈ VK in (19),

• Initialization:

– For r = 1, . . . , R, sample t(0)
r from (19),

– For r = 1, . . . , R, set m(0)
r = Ut(0)

r + ȳ,

– Sample σ2(0) from (25),

– Set t← 1,

• Iterations: for t = 1, 2, . . . , do

1. For p = 1, . . . , P , sample c(t)
p from (32),

2. For r = 1, . . . , R, for k = 1, . . . ,K, sample t(t)k,r from (37),

3. For r = 1, . . . , R, set m(t)
r = Ut(0)

r + ȳ,

4. Sample σ2(t) from (39).

5. Set t← t+ 1.

truncated on the simplex S in (23):

cp
∣∣T, σ2,yp ∼ NS (υp,Σp) . (32)

Note that samples can be drawn from an MGD truncated on a simplex using efficient Monte

Carlo simulation strategies such as described in [48].
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B. Sampling from f (T|C, σ2,Y)

Define T-r as the matrix T whose rth column has been removed. Then the conditional posterior

distribution of tr (r = 1, . . . , R) is:

f
(
tr|T-r, cr, σ

2,Y
)
∝

exp

[
−1

2
(tr − τ r)

T Λ−1
r (tr − τ r)

]
1Tr (tr) , (33)

with 
Λr =

[
P∑
p=1

a2
p,rU

TΣ−1
n U +

1

s2
r

IK

]−1

,

τ r = Λr

[
P∑
p=1

a2
p,rU

TΣ−1
n εp,r +

1

s2
r

er

]
,

(34)

and

εp,r = yp − ap,rȳ −
∑
j 6=r

ap,jmj. (35)

Note that mj = Utj + ȳ. As a consequence, the posterior distribution of tr is the following

truncated MGD:

tr | T-r, cr, σ
2,Y ∼ NTr (τ r,Λr) . (36)

Generating vectors distributed according to this distribution is a difficult task, mainly due to

the truncation on the subset Tr. An alternative consists of generating each component tk,r of tr

conditionally upon the others t-k,r = {tj,r}j 6=k. More precisely, by denoting U+
k = {l;ul,k > 0},

U−k = {l;ul,k < 0} and εl,k,r = ȳl +
∑

j 6=k ul,jtj,r, one can write

tk,r|t-k,r,T-r, cr, σ
2,Y ∼ N[t−k,r,t

+
k,r]
(
wk,r, z

2
k,r

)
, (37)

with 
t−k,r = max

l∈U+
k

−εl,k,r
ul,k

,

t+k,r = min
l∈U−k
−εl,k,r
ul,k

,
(38)

and where wk,r and z2
k,r are the conditional mean and variance respectively, derived from the

partitioned mean vector and covariance matrix [49, p. 324] (see [48] for similar computations).

Generating samples distributed according to the two-sided truncated Gaussian distribution in (37)

can be easily achieved with the algorithm described in [50].
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Fig. 3. Actual endmembers (black lines), endmembers estimated by N-FINDR (blue lines), endmembers estimated by VCA

(green lines) and endmembers estimated by proposed approach (red lines).

C. Sampling from f (σ2|C,T,Y)

The conditional distribution of σ2|C,T,Y is the following inverse Gamma distribution:

σ2|C,T,Y ∼ IG

(
PL

2
,
1

2

P∑
p=1

‖yp −Map‖2
)
. (39)

Simulating according to this inverse Gamma distribution can be achieved using a Gamma variate

generator (see [51, Ch. 9] and [43, Appendix A]).

To summarize, the hyperparameters that have to be fixed at the beginning of the algorithm are

the following: ν = 2, s2
1 = . . . = s2

R = 50 and {er}r=1,...,R are set to projected spectra identified

by a standard EEA (e.g., N-FINDR).

V. SIMULATIONS ON SYNTHETIC DATA

To illustrate the accuracy of the proposed algorithm, simulations are conducted on a 100×100

synthetic image. This hyperspectral image is composed of three different regions with R = 3

pure materials representative of a sub-urban scene: construction concrete, green grass and red
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TABLE I

ABUNDANCE MEANS AND VARIANCES OF EACH ENDMEMBER IN EACH REGION OF THE 100× 100 HYPERSPECTRAL IMAGE.

Region #1 Region #2 Region #3

mean var. mean var. mean var.

Endm. #1 0.60 0.01 0.25 0.01 0.25 0.02

Endm. #2 0.20 0.02 0.50 0.01 0.15 0.005

Endm. #3 0.20 0.01 0.25 0.02 0.60 0.02

brick. The spectra of these endmembers have been extracted from the spectral libraries distributed

with the ENVI software [52] and are represented in Fig. 3 (top, black lines). The reflectances are

observed in L = 413 spectral bands ranging from 0.4µm to 2.5µm. These R = 3 components

have been mixed with proportions that have been randomly generated according to truncated

MGDs reflecting the means and variances reported in Table I. The generated abundance maps

have been depicted in Fig. 5 (top) in gray scale where a white (resp. black) pixel stands for the

presence (resp. absence) of the material. The signal-to-noise ratio has been tuned to SNRdB =

15dB.

A. Endmember spectrum estimation

The resulting hyperspectral data have been unmixed by the proposed algorithm. First, the

space VK in (11) has been identified by PCA as discussed in paragraph III-B.2. The hidden

mean vectors er (r = 1, . . . , R) of the normal distributions in (19) have been chosen as the PCA

projections of endmembers previously identified by N-FINDR. The hidden variances s2
r have

all been chosen equal to s2
1 = . . . = s2

R = 50 to obtain vague priors (i.e. large variances). The

Gibbs sampler has been run with NMC = 1300 iterations, including Nbi = 300 burn-in iterations.

The MMSE estimates of the abundance vectors ap (p = 1, . . . , P ) and the projected spectra tr

(r = 1, . . . , R) have been approximated by computing empirical averages over the last computed

outputs of the sampler
{

a
(t)
r

}
t=1,...,NMC

and
{

t
(t)
r

}
t=1,...,NMC

, following the MMSE principle:

x̂MMSE = E [x|y]

≈ 1

NMC −Nbi

NMC∑
t=Nbi+1

x(t).
(40)
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Fig. 4. Scatter plot in the lower-dimensional space V2: projected dataset (black points), actual endmembers (black circles),

endmembers estimated by N-FINDR (blue stars), endmembers estimated by VCA (green stars) and endmembers estimated by

proposed approach (red stars). All pixel spectra do not lie inside ground truth simplex due to simulated measurement noise.

The corresponding endmember spectra estimated by the proposed algorithm are depicted in

Fig. 3 (top, red lines). The proposed algorithm clearly outperforms N-FINDR and VCA, as

shown in Fig. 3. The scatter plot in Fig. 4 provides additional insight. The N-FINDR and VCA

algorithms assume the presence of pure pixels in the data. However, as none of these pixels are

pure, N-FINDR and VCA provide poorer results than the proposed joint Bayesian algorithm. To

illustrate this point, the performances of the different algorithms have been compared via two

criteria. First, the mean square errors (MSEs)

MSE2
r = ‖m̂r −mr‖2 , r = 1, . . . , R (41)

are good quality indicators for the estimates. In addition, another metric frequently encountered

in hyperspectral imagery literature, known as the spectral angle distance (SAD), has been

considered. The SAD measures the angle between the actual and the corresponding estimated

spectrum:

SADr = arccos

(
〈m̂r,mr〉
‖m̂r‖ ‖mr‖

)
, (42)
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where 〈·, ·〉 stands for the scalar product. These performance criteria computed for the endmember

spectra estimated by the different algorithm have been reported in Table III. They show that the

proposed method performs significantly better than the others. The computation times required

by each of these algorithms are reported in Table II for a unoptimized MATLAB 2007b 32bit

implementation on a 2.2GHz Intel Core 2. Obviously, the complexity of the VCA and N-FINDR

methods are lower than the proposed approach. Note however that, contrary to the joint Bayesian

procedure, these standard EEA have to be coupled with an abundance estimation algorithm.

Moreover they only provide point estimates of the endmember spectra. Note finally that the

computational complexity of N-FINDR, because it is combinatorial, increases drastically with

the number of pixels and endmembers.

TABLE II

COMPUTATIONAL TIMES OF VCA, N-FINDR AND THE PROPOSED BAYESIAN METHOD FOR UNMIXING P = 32× 32

PIXELS.

Bayesian VCA N-FINDR

Times (s) 3250 1 23

B. Abundance estimation

The MMSE estimates of the abundance vectors for the P = 104 pixels of the image have

been computed following the MMSE principle in (40)

âp =
1

NMC −Nbi

NMC∑
t=Nbi+1

a(t)
p . (43)

The corresponding estimated abundance maps are depicted in Fig. 5 (bottom) and are clearly in

good agreement with the simulated maps (top).

Note that the proposed Bayesian estimation provides the joint posterior distribution of the

unknown parameters. Specifically, these posteriors allow one to derive confidence intervals

regarding the parameters of interest. For instance, the posterior distributions of the abundance

coefficients is depicted in Fig. 6 for the pixel #100. Note that these estimated posteriors are in

good agreement with the actual values of a100 depicted in red dotted lines.

May 29, 2018 DRAFT



19

TABLE III

PERFORMANCE COMPARISON BETWEEN VCA, N-FINDR AND THE PROPOSED BAYESIAN METHOD: MSE2 AND SAD

(×10−1) BETWEEN THE ACTUAL AND THE ESTIMATED ENDMEMBER SPECTRA.

End.
Bayesian VCA N-FINDR

MSE2 SAM MSE2 SAM MSE2 SAM
SN

R
=

5
dB

R
=

3
#1 1.70 0.63 17.80 1.91 2.69 0.75

#2 6.56 1.49 10.87 1.80 10.87 1.80

#3 2.70 0.59 12.71 1.40 2.94 0.60

R
=

5

#1 0.70 0.01 64.47 3.93 49.16 3.46

#2 1.05 0.49 47.21 3.13 15.46 2.07

#3 1.04 0.49 17.11 1.81 17.11 1.81

#4 1.05 0.49 13.43 1.23 6.92 0.79

#5 1.04 0.49 16.12 1.45 4.92 0.88

SN
R

=
1
5

dB

R
=

3

#1 0.10 0.15 1.29 0.48 0.54 0.33

#2 2.68 0.92 15.59 2.12 5.19 1.26

#3 0.16 0.12 4.35 0.71 0.57 0.22

R
=

5

#1 0.12 0.17 0.70 0.40 0.70 0.40

#2 0.97 0.52 11.34 1.44 10.57 1.68

#3 0.26 0.22 4.07 0.72 0.43 0.25

#4 0.40 0.15 2.36 0.44 7.67 0.47

#5 0.24 0.18 1.54 0.43 2.93 0.60

SN
R

=
2
5

dB

R
=

3

#1 0.05 0.09 1.14 0.52 1.14 0.52

#2 2.19 0.83 5.65 1.33 5.65 1.33

#3 0.17 0.14 0.66 0.22 0.66 0.22

R
=

5

#1 0.42 0.29 7.62 1.32 7.62 1.32

#2 0.37 0.34 27.16 2.23 20.66 2.40

#3 0.46 0.29 6.75 1.10 2.26 0.65

#4 0.07 0.09 10.02 0.93 10.88 0.70

#5 0.35 0.20 3.73 0.61 3.71 0.62
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Fig. 5. Top: actual endmember abundance maps. Bottom: estimated endmember abundance maps.

Fig. 6. Posterior distributions of ap,r (r = 1, . . . , 3). The actual values are depicted in red dotted lines.

These results have been compared with estimates provided by the N-FINDR or VCA algo-

rithms, coupled with an abundance estimation procedure based on the Fully Constrained Least-

Squares (FCLS) approach proposed by Heinz et al. [16]. The global abundance MSEs have been
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computed following:

GMSE2
r =

P∑
p=1

(âp,r − ap,r)2 , (44)

where âp,r is the estimated abundance coefficient of the material #r in the pixel #p. These

performance measures have been reported in Table IV and confirm the accuracy of the proposed

Bayesian estimation method. Moreover, note that neither N-FINDR nor VCA are able to provide

confidence measures as those depicted in Fig 6.

TABLE IV

PERFORMANCE COMPARISON BETWEEN VCA, N-FINDR AND THE PROPOSED BAYESIAN METHOD: GMSE2 BETWEEN THE

ACTUAL AND THE ESTIMATED ABUNDANCE MAPS.

Bayesian VCA N-FINDR

Endm. #1 25.68 57.43 30.66

Endm. #2 29.97 74.48 46.45

Endm. #3 3.19 83.02 11.22

C. Other simulation scenarios

Simulations have also been conducted with different noise levels (SNRdB = 5dB, 25dB) and

when R = 3 or R = 5 endmembers are involved in the mixture. Estimation performances for

the VCA and N-FINDR algorithms, as well as the proposed approach, have been summarized

in Table III. These results expressed in terms of MSE and SAD corroborate the effectiveness of

our Bayesian estimation procedure.

D. Robustness to non-i.i.d noise models

In this paragraph, we illustrate the robustness of the proposed algorithm with respect to

violation of the i.i.d. noise assumption. More precisely, a so-called Gaussian shaped noise inspired

by [53] has been considered. The noise correlation matrix Σn = diag (σ2
1, . . . , σ

2
L) is designed

such that its diagonal elements σ2
l (l = 1, . . . , L) follow a Gaussian shape centered at band L/2

σ2
l = σ2 exp

[
−(l − L/2)2

2η2

]
. (45)
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TABLE V

PERFORMANCE COMPARISON BETWEEN VCA, N-FINDR AND THE PROPOSED BAYESIAN METHOD IN PRESENCE OF

GAUSSIAN SHAPED NOISE: MSE2 AND SAD (×10−1) BETWEEN THE ACTUAL AND THE ESTIMATED ENDMEMBER SPECTRA.

MNF + Bayesian HySime + Bayesian VCA N-FINDR

MSE2 SAD MSE2 SAD MSE2 SAD MSE2 SAD

Endm. #1 0.26 0.25 0.42 0.31 1.11 0.46 1.11 0.46

Endm. #2 1.99 0.79 4.35 1.16 5.78 1.33 5.78 1.33

Endm. #3 0.33 0.19 0.57 0.22 1.94 0.41 2.19 0.43

The parameter σ2 can be tuned to choose the SNR whereas the parameter η adjusts the shape

width (η → ∞ corresponds to i.i.d. noise). For this simulation, the parameters σ2 and η have

been fixed to 1.0× 102 and 50 respectively, leading to a noise level of SNRdB = 15dB.

When the noise is not i.i.d., dimensionality reduction methods based on eigen-decomposition

of observed data correlation matrix Υ introduced in (12) can be inefficient. In this case, other

hyperspectral subspace identification methods have to be considered. Here the PCA-based di-

mension reduction step introduced in paragraph III-B.2 was replaced by two techniques: the

well-known MNF transform [42] approach and the more recently introduced HySime algorithm

[53]. Both of them requires noise covariance matrix Σn estimation, which was implemented

following [53]. The estimation performances for the proposed Bayesian estimation procedure

coupled with MNF or HySime are reported in Table V and compared with VCA and N-FINDR.

These results show that the proposed method i) can be easily used with other dimension reduction

procedures, and ii) is quite robust to the i.i.d. noise assumption.

VI. REAL DATA

This section illustrates the proposed algorithm on real hyperspectral data. The considered

hyperspectral image was acquired over Moffett Field (CA, USA) in 1997 by the JPL spectro-

imager AVIRIS [54]. This image has been used in many works to illustrate hyperspectral signal

processing algorithms [55], [56].

A 50×50 sub-image depicted in Fig. 7 (right) has been unmixed using the proposed Bayesian

approach. The number of endmembers has been estimated as in [18]. More precisely, we retain
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Fig. 7. Real hyperspectral data: Moffett Field image acquired by AVIRIS in 1997 (left) and the region of interest (right)

represented in synthetic colors.

the first R − 1 eigenvalues identified by PCA that capture 95% of the energy contained into

the dataset. As detailed in III-B.1, we use also PCA to choose the subset VR−1 defined in (11).

After a short burn-in period Nbi = 50, estimates of the parameters of interest are computing

following the MMSE principle in (40) with Nr = 450. The R = 3 endmembers recovered by

the proposed joint Bayesian LSMA algorithm are depicted in Fig. 8 (top). These endmember

spectra are represented in L = 189 spectral bands after removing the water absorption bands4.

These endmembers are characteristic of the coastal area that appears in the image: vegetation,

water and soil. The corresponding abundance maps, shown Fig. 8 (bottom), are in agreement

with the previous results presented in [18].

VII. CONCLUSIONS

This paper presented a Bayesian model as well as an MCMC algorithm for unsupervised

unmixing of hyperspectral images, i.e. estimating the endmember spectra in the observed scene

and their respective abundances for each pixel. Appropriate priors were chosen for the abundance

vectors to ensure non-negativity and sum-to-one constraints inherent to the linear mixing model.

Instead of estimating the endmember spectral signatures in the observation space, we proposed to

4The water vapor absorption bands are usually discarded to avoid poor SNR in these intervals.
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Fig. 8. Top: the R = 3 endmember spectra estimated by the algorithm. Bottom: the corresponding abundance maps (black

(respectively, white) means absence (respectively, presence) of the material).

estimate their projections onto a suitable subspace. In this subspace, which can be identified by a

standard dimension reduction technique such as PCA, MNF and HySime, these projections were

assigned priors that satisfy positivity constraints of the reconstructed endmember spectra. Due to

the complexity of the posterior distribution, a Gibbs sampling scheme was proposed to generate

samples asymptotically distributed according to this posterior. The available samples were then

used to approximate the Bayesian estimators for the different parameters of interest. Results

of simulations conducted on synthetic and real hyperspectral image illustrated the accuracy

of the proposed Bayesian method when compared with other algorithms from the literature.

An interesting open question is whether one can improve performance further by folding the

intrinsic dimension K of the projection subspace VK into the Bayesian framework, e.g., by

applying Bayesian PCA or Bayesian latent variable models. This question is a topic of our

current research. While this paper introduced a Bayesian method in the context of hyperspectral

unmixing, the method can also be used for other unmixing applications, such as blind source

separation, that satisfy positivity and sum-to-one constraints.
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APPENDIX

ON THE CHOICE OF UNIFORM DISTRIBUTIONS AS PRIOR DISTRIBUTIONS FOR ar AND THE

SIZE OF THE SIMPLEX SOLUTION OF THE BSS PROBLEM

In this appendix, we show that choosing uniform distributions as priors for the abundance

vectors allows one to favor a posteriori, among two a priori equiprobable polytopes that are

admissible solutions of the BSS problem, the solution corresponding to the smallest polytope.

Property: Let M(1) and M(2) be two R-dimensional convex polytopes of RL that are admissible

solutions of the BSS constrained problem, i.e.

∃A(1) =
[
a

(1)
1 , . . . , a

(1)
R

]T
⊂ AR,

∃A(2) =
[
a

(2)
1 , . . . , a

(2)
R

]T
⊂ AR,

(46)

such as Y = M(1)A(1) = M(2)A(2) where A has been defined in (4). Then

f
(
M(1)|Y

)
≥ f

(
M(2)|Y

)
⇔

vol (SM(1)) ≤ vol (SM(2)) ,

(47)

where vol (SM(i)) stands for the volume of the polytope SM(i) ⊂ RL introduced in (10) whose

vertices are the columns of M(i).

Proof : First note that, in absence of noise, as yp = Map,

ap ∼ U (A)⇔ yp|M ∼ U (SM) , (48)

where U (·) stands for the uniform distribution.

Consequently,

f (Y|M) =

[
1

vol (SM)

]P P∏
p

1SM (yp) , (49)

which can be simplified by

f (Y|M) =

[
1

vol (SM)

]P
, (50)
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since, by definition, the observed pixels yp (p = 1, . . . , P ) belong to the solution polytope SM.

Moreover, Bayes’ paradigm allows one to state:

f (M|Y) =
f (Y|M) f (M)

f (Y)
. (51)

Since the two solutions M(1) and M(2) are a priori equiprobable, from (50), it yields:

f
(
M(1)|Y

)
f (M(2)|Y)

=

[
vol (SM(2))

vol (SM(1))

]P
. (52)

It follows (47).

�

Note that the equiprobability assumption underlying the solutions SM(2) and SM(2) is not a too

restrictive hypothesis. Indeed if the variances s2
r (r = 1, . . . , R) had been chosen such that the

prior distribution in (22) is sufficiently flat, then:

f
(
M(1)

)
≈ f

(
M(2)

)
. (53)

Note also that the projection of the polytope SM(i) onto the subset VR−1 ⊂ RR−1 is the simplex

ST(i) whose vertices are the columns of T(i).
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