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Abstract

We consider principal component analysis (PCA) in decorablesGaussian graphical models. We
exploit the prior information in these models in order totdlmite its computation. For this purpose,
we reformulate the problem in the sparse inverse covarigooecentration) domain and solve the
global eigenvalue problem using a sequence of local eideavaoblems in each of the cliques of the
decomposable graph. We demonstrate the application of ethradology in the context of decentralized
anomaly detection in the Abilene backbone network. Basethernopology of the network, we propose

an approximate statistical graphical model and distriltheecomputation of PCA.

. INTRODUCTION

We consider principal component analysis (PCA) in Gausgiaphical models. PCA is a classical
dimensionality reduction method which is frequently usedtatistics and machine learning [11], [1]. The
first principal components of a multivariate are its orthegldinear combinations which preserve most of
the variance. In the Gaussian case, PCA has special pepeiiich make it especially favorable: it is the
best linear approximation of the data and it provides inddpat components. On the other hand, Gaussian
graphical models, also known as covariance selection rmpgedvide a graphical representation of the
conditional independence structure within the Gaussiatridution [16], [7]. Exploiting the extensive
knowledge and literature on graph theory, graphical moalidsv for efficient distributed implementation
of statistical inference algorithms, e.g., the well knowaliéf propagation method and the junction tree
algorithm [20], [13]. In particular, decomposable grapalso known as chordal or triangulated graphs,
provide simple and intuitive inference methods due to tapealing structure. Our main contribution is
the application of decomposable graphical models to PCAlwhie nickname DPCA, where D denotes

both Decomposabl@nd Distributed
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The main motivation for distributed PCA is decentralizethdnsionality reduction. It plays a leading
role in distributed estimation and compression theory ireless sensor networks [23], [19], [21], [9],
[18], and decentralized data mining techniques [14], [2F]] It is also used in anomaly detection in
computer networks [15], [6], [12]. In particular, [9], [L®foposed to approximate the global PCA using
a sequence of conditional local PCA solutions. Alterndyivan approximate solution which allows a
tradeoff between performance and communication requinésn@as proposed in [12] using eigenvalue
perturbation theory.

DPCA is an efficient implementation of distributed PCA baseda prior graphical model. Unlike the
above references it does not try to approximate PCA, butlgiah exact solution up to on any given
tolerance. On the other hand, it assumes additional priowledge in the form of a graphical model
which previous works did not take into account. Althouglisiinteresting to note that the Gauss Markov
source example in [9], [18] is probably the most celebrattbdthposable graphical model. Therefore, we
now address the availability of such prior information. Bngral, practical applications do not necessarily
satisfy any obvious conditional independence structuresuch scenarios, DPCA can be interpreted as
an approximate PCA method that allows a tradeoff betweenracg and decentralization by introducing
sparsity. In other problems it is reasonable to assume thahknown structure exists and can be learned
from the observed data using existing methods such as [B][48]. Alternatively, a graphical model
can be derived from non-statistical prior knowledge on tbectfic application. An intuitive example is
distributed networks in which the topology of the networkygests a statistical graph as exploited in [5].
Finally, we emphasize that even if a prior graphical modelvailable, it does not necessarily satisfy a
decomposable form. In this case, a decomposable approsimedn be obtained using classical graph
theory algorithms [13].

PCA can be interpreted as maximum likelihood (ML) estinmatid the covariance using the available
data followed by its eigenvalue decomposition. When a pgraphical model is available, PCA can still
be easily obtained by adjusting the ML estimation phasedoriporate the prior conditional independence
structure using existing methods [16], [7], and then conmguthe eigenvalue decomposition (EVD). The
drawback to this approach is that it does not exploit thecttine of the graph in the EVD phase. This
disadvantage is the primary motivation to DPCA which is dpeadly designed to utilize the structure
of Gaussian graphical models. Decomposable covarianeetssi models result in sparse concentration
(inverse covariance) matrices which can be estimated incardealized manner. Therefore, we propose
to reformulate DPCA in the concentration domain and soheglobal EVD using a sequence of local

EVD problems in each of the cliques of the decomposable graibha small amount of message passing.
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This allows for distributed implementation according te topology of the graph and reduces the need
to collect all the observed data in a centralized processmg When the algorithm terminates, each
cligue obtains its own local version of the principal compots.

To illustrate DPCA we apply it to distributed anomaly detectin computer networks [15], [12]. In
this context, DPCA learns a low dimensional model of the radriraffic behavior and allows for simple
outlier detection. This application is natural since théwoek’'s topology provides a physical basis for
constructing an approximate a graphical model. For exaroplesider two nodes which are geographically
distant and linked only through a long path of nodes. It isoaable to believe that these two sensors are
independent conditioned on the path, but a theoreticdfiaion of this assertion is difficult and depends
on the specific problem formulation. We examine the validifythis claim in the context of anomaly
detection in the Abilene network using a real-world datagég propose an approximate decomposition
of the Abilene network, enable the use of DPCA and obtain g flistributed anomaly detection method.

The outline of the paper is as follows. Decomposable grapheasy to explain using a special graph
of two cliques which is their main building block. Therefore begin in section Il by introducing the
problem formulation and solution to DPCA in this simple ca¥be generalization to decomposable
graphs is presented in section lll which consists of thaihmécal definitions followed by a recursive
application of the two cliques solution. We demonstrateutbe of DPCA using two numerical examples.
First, in Section IV we simulate our proposed algorithm inyatketic tracking scenario. Second, in
Section V we illustrate its application to anomaly detettising a real-world dataset from the Abilene
backbone network. Finally, in Section VI we provide condhgdremarks and address future work.

The following notation is used. Boldface upper case letlersote matrices, boldface lower case letters
denote column vectors, and standard lower case lettersalepalars. The superscriptg” and (-)~*
denote the transpose and matrix inverse, respectively.cihdinality of a setw is denoted bya|. The
matrix I denotes the identityig, ;, (X) is the minimum eigenvalue of square symmetric maiXix
uy,y (X) is a null vector ofX, eig, .. (X) is the maximum eigenvalue &, andX > 0 means thakX
is positive definite. Finally, we use indices in the subsclig), or [X], , to denote sub-vectors or sub-
matrices, respectively, ar{d(]w denotes the sub-matrix formed by thgh rows in X. Where possible,

we omit the brackets and usg or X, ; instead.

IIl. Two cLIQUE DPCA

In this section, we introduce DPCA for a simple case whicH él the building block for the general

algorithm.
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Fig. 1. Graphical model with two cliques modeling a 3 nodemaek in whicha andb are conditionally independent given

A. Problem Formulation

Letx = [xT x! xﬂ be a lengthp, zero mean Gaussian random vector in whigh, and [x], are
independent conditionally ofx]. wherea, ¢ andb are disjoint subsets of indices. For later use, we
use graph terminology and define two cliques of indi€gs= {a,c} andCy = {¢,b} coupled through
the separatolS = {c} (see Fig. 1). We assume that the covariance matrix @ unknown, but the
conditional independence structure (defined through irsgggC; and Cs) is known.

The input to DPCA is a set of independent and identically distributed realizations afenoted byx;
fori =1,---,n. More specifically, this input is distributed in the sensattthe first cligue has access to
[xi]¢, fori=1,---,n, whereas the second clique has access on[xip, fori=1,---,n. Using this
data and minimal message passing between the two cliqueSABBarches for the linear combination
X = u’x having maximal variance. When the algorithm terminateshedf the cliques obtains its own
local version ofu, i.e., the sub-vectorfu],, and[u].,

The following subsections present the proposed solutiodRCA. It involves two main stages:

covariance estimation and principal components compmutati

B. Solution: covariance matrix estimation

First, the covariance matrix of is estimated using the maximum likelihood (ML) techniqueielto
the known conditional independence structure, the ML esttinhas a simple closed form solution which
can be computed in a distributed manner (more details ab@uptocedure can be found in [16]). Each

cligue and the separator computes their own local samplariamce matrices

s = Z xile, [xile, (1)
z—l
. 1
S =~ [xilo, xile, (2)
n =1
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n

§95 = 1 belsbeilf @
=1

where the tilde and the superscripts are used to emphasiz¢htse are local estimates. Similarly, the

local concentration matrices, also known as precisionioesy are defined as

KOG _ (gCl,Cl)_l 4)
KC:Co (SCQ,CQ) -1 (5)
K55 _ (gs,s) -1 ’ (6)

where it is assumed that the matrices are non-singularr@ibe, the ML estimate does not exist). Next,

the global ML concentration matriK is obtained by requiring
Ko =Kj,=0 (7)

due to the conditional independencexgf andx; givenx.. The global solution is

ROhCh 0 0 00 0 0 O
— _ cS,S
K o |+ o P 0 K 0 |- (8)
oo O 0 0 0 O

It is easy to see that the sub-matrices associated with faesl are perturbations of to their local

versions:
- 0 O
Kl o, = KOO+ ©)
0o M,
- M, O
Kl e, = K&+ (10)
0O O
and require only message passing Mg and M,
_ [5G Co _ 15,8
M, = [K ]S,s K (11)
_  [gCi,0 _ 15,8
M, = [K ]s,s K59 (12)

The dimension of these messages is equalStowhich is presumably small. Thus, the global ML
concentration matrix can be easily found in a distributechmes.
The global covariance estimate is simply defined as the sevef its concentratios = K—!. It is

consistent with the local estimates of its sub-matrices:
Sle, o, = S (13)

Sley.c, = S, (14)
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but there is no special intuition regarding 8], , and[S], , sub-blocks.

C. Solution: first principal eigenvalue

Given the global ML covariance estima$e the PCA objective function is estimated as
u’'Su, (15)
which is maximized subject to a norm constraint to yield

max, u’Su
€igmax () = . (16)
s.t. u-u=1.
This optimization gives both the maximal eigenvalueSoand the its eigenvectat.

The drawback to the above solution is that the EVD computatimuires centralized processing and
does not exploit the structure &. Each clique needs to send its local covariance to a centragpsing
unit which constructsS and computes its maximal eigenvalue and eigenvector. WeneW provide
an alternative distributed DPCA algorithm in which eaclygé uses only local information along with
minimal message passing in order to calculate its localiamersf eig, ... (S) andu.

Our first observation is that DPCA can be equivalently solwethe concentration domain instead of

the covariance domain. Indeed, it is well known that
B 1
B eigmin (K) ’
when the inversd& = S—! exists. The corresponding eigenvectors are also idenfited advantage of

€igax (S) (17)

working with K instead ofS is that we can directly exploK's sparsity as expressed in (7).

Before continuing it is important to address the questiorsiafjularity of S. One may claim that
working in the concentration domain is problematic sitfenay be singular. This is indeed true but
is not a critical disadvantage since graphical models aflomwell conditioned estimates under small
sample sizes. For example, classical ML exists only i p, whereas the ML described above requires
the less stringent conditiom > max{|C|, |C2|} [16]. In fact, the ML covariance is defined as the inverse
of its concentration, and thus the issue of singularity isnéninsic problem of ML estimation rather than
the DPCA solution.

We now return to the problem of finding
A= €igmin (K) (18)
in a distributed manner. We begin by expressings a trivial line-search problem:

A=sup t st t<eigy, (K) (19)
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and note that the objective is linear and the constraintssepivex. It can be solved using any standard
line-search algorithm, e.g. bisection. At first, this reggnetation seems useless as we still need to evaluate
eig,i, (K) which was our original goal. However, the following progasi shows that checking the
feasibility of a givent can be done in a distributed manner.

Proposition 1: Let K be a symmetric matrix witK, ; = K}f’a = 0. Then, the constraint

Ka,a Ka,c 0
t< eigmin Kc,a Kc,c Kc,b (20)
0 K. Ky

)

is equivalent to the following pair of constraints

t < eignin (Kpp) (21)
0 0

t < eigmin KC1,C1 - (22)
0 M(t)

with the message matrixlefined as
M (t) = Kc,b (Kb,b - tI)_l Kb,c- (23)

Proof: The proof is obtained by rewriting (20) as a linear matrixguality
Koo Koe 0
Ko Kee Kep | —tI=0 (24)
0 K. Ky
and decoupling this inequality using the following lemma:

Lemma 1 (Schur's Lemma [4, Appendix A5.5et X be a symmetric matrix partitioned as

A B
X = . (25)
BT C
Then,X > 0 if and only if A = 0 andC — B"A~'B > 0.

Applying Schur's Lemma to (24) witA = K¢, ¢, and rearranging yields

tI < Kb,b (26)

0 0
tI < Kchcl— . (27)

0 M(t)

Finally, (21) and (22) are obtained by rewriting (26) and)(a% eigenvalue inequalities, respectivels.
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Proposition 1 provides an intuitive distributed solutian (L9). For any givernt we can check the
feasibility by solving local eigenvalue problems and megsspassing viaM (¢) whose dimension is
equal to the cardinality of the separator. The optimal dl@genvalue is then defined as the maximal
globally feasiblet .

We note that the solution in Proposition 1 is asymmetric witBpect to the cliques. The global
constraint is replaced by two local constraints regardiigue C; = {a,c} and the remaindefb}.
Alternatively, we can exchange the order and partition tngices into{a} and Co = {c,b}. This
asymmetry will become important in the next section when wterad the results to general decomposable

graphs.

D. Solution: first principal eigenvector

After we obtain the minimal eigenvalue we can easily recover its corresponding eigenveatdfor
this purpose, we defin@ = K — A\I and obtainu = u,,; (Q). The matrixQ follows the same block
sparse structure aK, and the linear set of equatiolidu = 0 can be solved in a distributed manner.

There are two possible solutions. Usuallyy, is non-singular in which case the solution is

0 O

e, = wa | Qoo — (28)
0 M
[, = -Q;Qu.Mul., (29)
where themessageéM is defined as

M = QcsQ;p Qbc- (30)

Otherwise, ifQy is singular then the solution is simply
[u]cl =0 (31)
ul, = unn (Kpp)- (32)

This singular case is highly unlikely as the probability 81) in continuous models is zero. However, it

should be checked for completeness.

E. Solution: higher order components

In practice, dimensionality reduction involves the prdi@e of the data into the subspace of a few
of the first principal components. We now show that the atgoriin 1I-C can be extended to provide

higher order components.
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The j'th principal component is defined as the linear transfoiomatvhich is orthogonal to the
preceding components and preserves maximal variancela8imto the first component it is given
by X; = ufx whereu; is the j'th principal eigenvector oS. In the concentration domaim; is the
eigenvector associated witky, the j'th smallest eigenvalue dK.

In order to distribute the computation af, we adjust (19) using the following lemma:

Lemma 2:Let K be a symmetric matrix with eigenvalugs <, ---, < A, and eigenvectoray, - - - , u,.
Then,
j—1
Aj= sup t st t<eig,, | K+ Z vawgul | . (33)
{vi i;llvt i=1

The optimalv; are any values which satisty > A\; — \; fori=1,---,7 — 1.
Proof: The proof is based on the recursive variational charaetgoiz of of the j'th smallest

eigenvalué

Aj =9 s.t. uu=1 (34)
w'w,; =0, i=1,---,5—1
whereu; are the preceding eigenvectors, and the optimal solutipa- u is the eigenvector associated
with A;. A dual representation can be obtained using Lagrangetgusfe rewrite the orthogonality

restrictions as quadratic constraintéu;u? u = 0 and eliminate them using Lagrange multipliers:

j—1
Aj > tga?g] m&nt—i—uT K—tI—I—Jz:viuiuiT] u (35)
N Vifi=1 =1
where the inequality is due to the weak duality [4]. The inménimization is unbounded unless
7j—1
K-+ Z vauul = 0. (36)
i=1
Therefore,
J—1
Aj > tg}?ﬁl s.t. t < eiguin (K + Zviuiuf) (37)
N Vifi=1 i=1

Lagrange duality does not guaranty an equality in (37) si{i3d¢ is not convex. However, it is easy to
see that the inequality is tight and can be attained by chgosi= u;. Finally, (33) is obtained by

replacing the maximum with a supremum and relaxing the caimst [ |

1There is also a non-recursive characterization known asraBodrischer theorem which results in a similar maximin

representation [10].

May 30, 2018 DRAFT



10

Lemma 2 allows us to find; in a distributed manner. We replagé with K = K + UDU? where
U is ap x (j — 1) matrix with the preceding eigenvectors as its columnsBni$ a (j — 1) x (7 — 1)
diagonal matrix with sufficiently high constants on its diagl, and search for its principal component.
The matrixK does not necessarily satisfy the sparse block structuk€ sb we cannot use the solution
in Proposition 1 directly. Fortunately, it can be easilyustigd since the modification ¥ is of low rank.

Proposition 2: Let K be a symmetric matrix witlK, ; = KZ:a = 0. Then, the constraint
Ka,a Ka,c 0
t<eignn | | Kea Kee Koy | +UDUT (38)
0 Ky, Ky

is equivalent to the following pair of constraints

o< eigun (Kip+ (U], D[U]) (39)
) — — =T
t < elgmn <KCI,CI + 0], [T, ) (40)
where
U 0 41
.. = |, Uq @1)
— 0 0
D = — My (t) (42)
0D
and themessage matridMy (¢) is defined as
Kc,b T —1
My () = | (€0, DO 1) K U, D | @)
D [U]b,: 7
Proof: The proof is similar to that of Proposition 1 and thereforeitted. [ |

Thus, the solution to thg'th largest eigenvalue is similar to the method in Sectioi€lIThe only
difference is that the messages are slightly larger. Eadsage is a matrix of siz&|+;j—1x|S|+j—1.
In practice, dimensionality reduction involves only a fesinpipal components and this method is efficient
when|S| + j — 1 is considerably less tham (the size of the messages in a fully centralized protocol).
The higher order components can therefore be found in aildis#id manner as detailed in Section

I1-D above.
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I1l. DPCA IN DECOMPOSABLE GRAPHS

We now proceed to the general problem of DPCA in decompoggialehs. In the previous section,
we showed that DPCA can be computed in a distributed mantieisif priori known thatx, andx, are
conditionally independent givexr.. Graphical models are intuitive characterizations of scwhditional
independence structures. In particular, decomposablelnade graphs that can be recursively subdivided
into the two cliques graph in Fig. 1. Therefore, this secthomsists of numerous technical definitions
taken from [16] followed by a recursive application of theeyibus results.

An undirected graply is a set of nodes connected by undirected edges. A randommrwesatisfies the
Markov property with respect tg, if for any pair of non-adjacent nodes the correspondingg@aiandom
variables are conditionally independent on the rest of taments inx. In the Gaussian distribution, this
definition results in sparsity in the concentration doméinK is the concentration matrix of a jointly
Gaussian multivariate that satisfiegs, then[K], ; = 0 for any pair{s, j} of non-adjacent nodes.

Decomposable graphs are a specific type of graph which posseappealing structure. A graph is
decomposable if it can be recursively be subdivided intgoulis sets of nodes:, b and ¢, wherec
separates andb, andc is complete, i.e., there are no edges betweamdb and all the nodes withia
are connected by an edge. Clearly, the simplest non-triildabmposable graph is the two cliques graph
in Fig. 1.

A cligue is a maximal subset of nodes which is fully connectitds convenient to represent a
decomposable graph using a sequence of cligues- -, Cx which satisfy aperfect elimination order

An important property of this order is th&t; separatesi;_;\S; from R; where

Hj = C1UCyU---UCj, j=1,-,K (44)
Sj = Hj_lﬂCj, 7=2,---. K (45)
R; = Hj\H;_;, j=2- K. (46)

Note that this perfect elimination order induces an inheemymmetry between the cliques which will
be used in our recursive solution below. The two cliques lgrap Fig. 1 is a simple example of a
decomposable graph witt; = {a,c}, Ca = {c,b}, S2 = {c¢}, Hi = {a,c}, Hy = {a,c,b} and
Ry = {b}. Accordingly, So = {c} separatedd;\S2 = {a} from C3\S2 = {b}.

Similarly to the previous section, global ML estimation betconcentration matrix in decomposable
Gaussian graphical model has a simple closed form. It carobgueted in a distributed manner:

K 0o X 0
K=Y [KOC]" = 37 [KoS] 47)
k=1
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where the local estimates are defined as:

~ N —1
KCnCr — (Sck,Ck) k=1, K (48)
- _ 1
KSkSk — (Ssk,sk) . k=2 K, (49)
and
SCCk = ! Z [Xz]ck [Xz]gk , k=1, K (50)
ni
- 1
§%k5k = n > xilg, xilg, . k=2, K. (51)

=1
The zero fill-in operator[-]0 in (47) outputs a matrix of the same dimensionKisvhere the argument
occupies the appropriate sub-block and the rest of the xnh&$s zero valued elements (See (8) for a
two clique example, and [16] for the exact definition of thjgewator).
DPCA can be recursively implemented by using the previousdlique solution. Indeed, Proposition

1 shows that the eigenvalue inequality
t< eigmin (K) (52)

is equivalent to two adjusted local eigenvalue inequalitie

t < eigyin (K, (1)) (53)
o< eigun (K, , (1)) (54)
where
R () = Kry Ry (55)
e ) = Ky, () = Mg (0)]° (56)

where My, (t) is a message as in (23) ar[}qf is the zero fill-in operator. Next, we can apply Schur’s

Lemma again and replace (54) with two additional inequesiti

t < eigmin (K/RK (t)) (57)
o< cigumn (K, () (58)
t < eigmin (K}/{K72 (t)) (59)

whereK’, — (t) andK’;  (t) are similarly defined. We continue in an iterative fashiotilure obtain

K decoupled eigenvalue inequalities. Thus, the feasibifty givent can be checked in a distributed
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manner with minimal message passing between the cliquesaay line-search can efficiently solve
DPCA.
Specifically, in Algorithm 1 displayed below we provide a pde code for DPCA that solves far

using the bisection method. Given initial bounds
L < eigmin (K) < U7 (60)

Algorithm 1 is guaranteed to find the minimal eigenvalue upny required tolerancewithin log2¥
iterations. Each iteration consists of upio—- 1 messages through the matridek; (¢) whose dimensions
are equal to the cardinalities 6f, for £ =2,---, K. A simple choice for the bounds & = 0 sinceK

is positive definite, and

U= k—mln]{{elgmin (ch,ck)} (61)

as proved in the Appendix.

Given a principal eigenvalug, its corresponding eigenvector can be computed by sol@ug= 0
whereQ = K — \I as detailed in Section II-D. Beginning with = K we partition H, into R, and
Hj,_, and test the singularity oQr, r,. If it is singular, then) is associated withR;. Otherwise, we
send the messadd;. (\) to H,_; and repartition it. We continue until we find the associaedainder
Ry, or reach the first clique. Then, we compute the corresporidicey null vector and begin propagating
it to the higher remainders as expressed in (29). A pseude obthis method is provided in Algorithm
2 below.

Algorithm 1 can be easily extended to compute higher ordgereialues through application of
Proposition 2. For this purpose, note that the inequality4@) has the same structure as (38) and
therefore can be recursively partitioned again. The onfigdince is that the rank of the modification is
increased at each clique and requires larger message esaffious, the algorithm is efficient as long as

the size of the separatorgSy,

), the number of cliquesK) and the number of required eigenvalug}p (
are all relatively small in comparison @ Given any eigenvalue (first or high order), Algorithm 2 finds

the associated eigenvector in a distributed and efficiemnaa

IV. SYNTHETIC TRACKING EXAMPLE

We now illustrate the performance of DPCA using a synthetimerical example. Specifically, we use
DPCA to track the first principle component in a slowly timeywiag setting. We define a simple graphical

model with305 nodes representing three fully connected networks witly Brdoupling nodes, i.e¢; =
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Algorithm 1: Bisection line search for DPCA
Input: K, L, U, ¢, clique tree structure

Output: ¢

whileU — L > e do
t={U+1L)/2

Q=K
for k=K, ---,2do

if t < eigmin (QRMRJC) then
M, (t) = Qs, -, (Qryre — D)7 Qrys,

Qs,.s5. = Qs;.5, — My (1)
else
U=t

break loop

end

end
if U >t then

if t < eigmin (QC’17C1) then
| L=t

else
| U=t

end

end

end

{1,---,100, 301, ---,305}, Cy = {101,---,200,301,---,305}, andC5 = {201, - - -, 300,301, - - -, 305}.

We generates500 lengthp = 305 vectorsx; of zero mean, unit variance and independent Gaussian
random variables. At each time point, we defliehrough (47)-(51) using a sliding window af = 500
realizations witht00 samples overlap. Next, we run DPCA using Algorithm 1. Duddavgime variation,

we define the lowerlf) and upper¥’) bounds as the value of the previous time point minus and(lus
respectively. We define the toleranceeas 0.001 corresponding to 8 iterations. Figure 2 shows the exact
value of the minimal eigenvalue as a function of time alonthvts DPCA estimates at th&th, 6'th and

8'th iterations. It is easy to see that a few iterations suffaretracking the maximal eigenvalue at high

accuracy. Each iteration involves three EVDs of approxatyat05 x 105 matrices and communication
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Algorithm 2: Eigenvector computation viQu = 0
Input: Q, clique tree structure

Output: u
u=20
Q=K
k=K

while (k > 1) & (QRr,,r, non singular) do
M, = st,Rle}iRkQRk,sk
Qs,.s. = Qs,,5. — Mg
k=k—1

end

u (Cr) = wnan (Qcy.c)

for k=k+1,---,K do

| u(Ri) = —Qp, z,Qr..5.1(Sk)
end

L L L L L L L L L
o 5 10 15 20 25 30 35 40 45 50

exact
* DPCA 8 iterations

Fig. 2. lIterations of the DPCA bisection line-search in adiwarying scenario.

through two messages of sizex 5. For comparison, a centralized solution would require sene
set of 100 length 305 vectors to a central processing unit which computes an EVB ofatrix of size

305 x 305.
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V. APPLICATION TO DISTRIBUTED ANOMALY DETECTION IN NETWORKS

A promising application for DPCA is distributed anomaly elgion in computer networks. In this
context, PCA is used for learning a low dimensional model rformal behavior of the traffic in the
network. The samples are projected into the subspace asswawith the first principal components.
Anomalies are then easily detected by examining the rekiauen. Our hypothesis is that the connectivity
map of the network is related to its statistical graphicaldelo The intuition is that two distant links
in the network are (approximately) independent conditiboe the links connecting them and therefore
define a graphical model. We do not rigorously support tragelbut rather apply it in a heuristic manner
in order to illustrate DPCA.

Following [15], [12], we consider a real world dataset of khie, the Internet2 backbone network.
This network carries traffic from universities in the Unit8thates. Figure 3 shows its connectivity map
consisting of 11 routers and 41 links (each edge corresptintigo links and there are additional links
from each of the nodes to itself). Examining the network ie&sy to see that the links on the east
and west sides of the map are separated through six couikg; IDNVR-KSCY, SNVA-KSCY and
LOSA-HSTN. Thus, our first approximated decomposable graenoted byJajiques, consists of two
cligues: an eastern clique and a western clique coupled ésetix links. Graplt.jiques COrresponds
to a decomposable concentration matrix with a sparsityl lek/®.33. Our second decomposable graph
denoted bygs.iques IS Obtained by redividing the eastern clique again into thigues separated through
the four coupling links: IPLS-CHIN and ATLA-WASH. Its cosponding concentration matrix has a
sparsity level 010.43. Finally, for comparison we randomly generate an arbitgmaphg;.nqom Over the
Abilene nodes, with an identical structure @giiques (three cliques of the same cardinalities), which is
not associated with the topology of the Abilene network.

In our experiments, we learn thig x 41 covariance matrix from a1 x 1008 data matrix representing
1008 samples of the load on each of the 41 Abilene links dufipgl 7-13, 2003. We compute PCA
and project each of th@008 samples of dimensiodl into the null space of the first four principal
components. The norm of these residual samples is plottetthe@ntop plot of Fig. 4. It is easy to
see the spikes putatively associated with anomalies. Nextexamine the residuals using DPCA with
Gacliquess F3cliques ANAGrandom- The norms of the residuals are plotted in the three lowels@bFig. 4.,
respectively. As expected, the topology based plots are @irnilar with spikes occurring at the times
of these anomalies. Thus, we conclude that the decompogadydical model for Abilene is a good

approximation and does not cause substantial loss of iEftiom (at least for the purpose of anomaly
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Fig. 4. Projection into anomaly subspace with and withoafpbical models.

detection). On the other hand, the residual norm using theom graph is a poor approximation as it does
not preserve the anomalies detected by the full non-digegtbPCA. These conclusions are supported in
Fig. 5 where we show the absolute errors of DPCA with respe®CGA using the different graphical
models. It is easy to see th@bjiques results in minimal errorGsqiques Provides a reasonable tradeoff
between performance and computational complexity (thmoitg) increased sparsity level), while graph

Grandom 1S Clearly a mismatched graphical model and results in it increase in error.

VI. DISCUSSION AND FUTURE WORK

In this paper, we introduced DPCA and derived a decentdlinethod for its computation. We
proposed distributed anomaly detection in communicatetwarks as a motivating application for DPCA

and investigated possible graphical models for such ggttin
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Fig. 5. Absolute error in projection into anomaly subspadth wifferent graphical models.

Future work should examine the statistical properties o€CBPFrom a statistical perspective, DPCA
is an extension of classical PCA to incorporate additiomalrpnformation. Thus, it would be interesting
to analyze the distribution of its components and quantigjrtsignificance, both under the true graphical
model and under mismatched models. In addition, DPCA isdasethe intimate relation between the
inverse covariance and the conditional Gaussian distobuf herefore, it is also important to assess its
sensitivity to non-Gaussian sources. Finally, altermativethods to ML in singular and ill conditioned

scenarios should be considered.
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APPENDIX

In this appendix, we prove that the minimal eigenvalue gf & p symmetric matrixK is less than
or equal to the minimal eigenvalue of any of its sub-matrices K, , for some set of indicesa. For
simplicity, we assume that = {1,---,p,} for some integep, < p. The proof is a simple application
of the Rayleigh quotient characterization of the minimgegivalues:

. . u’Ku
Cigmin (K) = min—-p—

(62)
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vl o7 | K
< (63)
Vv
VT OT
vIK, v
= % 64
Ty (64)
T
— nip 2 el Iia’au (65)
u u - u
= eigmin{Kma} (66)
wherev is the optimal solution to (65).
REFERENCES

(1]
(2]

(3]

(4]
(5]

(6]

(7]
(8]

(9]

[10]
[11]

[12]

[13]
[14]

[15]

T. W. Anderson.An introduction to multivariate statistical analysidohn Wiley and Sons, second edition edition, 1971.
Z.J. Bai, R. H. Chan, and F. T. LukAdvanced Parallel Processing Technologiebapter Principal Component Analysis
for Distributed Data Sets with Updating, pages 471-483.5200

O. Banerjee, L. El Ghaoui, and A. d’Aspremont. Model sélen through sparse maximum likelihood estimatidournal

of Machine Learning Research:485-516, March 2008.

S. Boyd and L. Vandenberghéntroduction to Convex Optimization with Engineering Apations Stanford, 2003.

M. Cetin, L. Chen, J. W. Fisher, A. T. lhler, R. L. Moses, NL Wainwright, and A. S. Willsky. Distributed fusion in
sensor networks: A graphical models perspectl#=EE Signal Processing Magazing3(4):42— 55, July 2006.

P. Chhabra, C. Scott, E. Kolaczyk, and M. Crovella. Distted spatial anomaly detection. Rroceedings of INFOCOM
April 2008.

A. P. Dempster. Covariance selectioBiometrics 28:157-175, 1972.

J. Friedman, T. Hastie, and R. Tibshirani. Sparse irv@®variance estimation with the LASS®iostat 9(3):432 — 441,
July 2008.

M. Gastpar, P. L. Dragotti, and M. Vetterli. The distrted Karhunen Loeve transformlEEE Trans. on Information
Theory 52(12):5177-5196, Dec. 2006.

G. H. Golub and C. F. Van LoarMatrix Computations John Hopkins, 1983.

T. Hastie, R. Tibshirani, and J. Friedmafhe elements of statistical learning: Data mining, inferenand prediction
Springer, New York, 2001.

L. Huang, X. Nguyen, M. Garofalakis, M. I. Jordan, A. Das&éph, and N. Taft. In-network PCA and anomaly detection.
In Proceedings of NIPS'200®ec. 2006.

M. 1. Jordan. Introduction to graphical modelsUnpublished, 2008.

H. Kargupta, W. Huang, K. Sivakumar, and E. Hohnson. tiitigted clustering using collective principal component
analysis.Knowledge and Information Systen®§4):422—-448, Nov. 2001.

Anukool Lakhina, Mark Crovella, and Christophe DiotiaQnosing network-wide traffic anomalieSIGCOMM Comput.
Commun. Reyv.34(4):219-230, 2004.

May 30, 2018 DRAFT



20

[16] S. L. Lauritzen.Graphical modelsvolume 17. Oxford Statistical Science Series, New YorlQ6lL9

[17] Y. Qu, G. Ostrouchovz, N. Samatovaz, and A. Geist. Bpedccomponent analysis for dimensions reduction in massiv
distributed data sets. IEEEE International Conference on Data Mining (ICDM3002.

[18] O. Roy and M. Vetterli. Dimensionality reduction forstlibuted estimation in the infinite dimensional regim&EE
Trans. on Information Theoryp4(2):1655-1669, April 2008.

[19] I. D. Schizas, G. B. Giannakis, and Z. Q. Luo. Distrilmistimation using reduced-dimensionality sensor obtensa
IEEE Trans. on Signal Processing5(8):4284-4299, Aug. 2007.

[20] Y. Weiss and W. T. Freeman. Correctness of Belief Prapiag in Gaussian Graphical Models of Arbitrary Topology.
Neural Comp. 13(10):2173—-2200, 2001.

[21] J.J. Xiao, A. Ribeiro, Z. Q. Luo, and G. B. Giannakis. fiilsuted compression-estimation using wireless senswvarks.
Signal Processing Magazin@3(4):27— 41, July 2006.

[22] M. Yuan and Y. Lin. Model selection and estimation in t@ussian graphical modeBiometrika 94(1):19-35, 2007.

[23] Y. Zhu, E. Song, J. Zhou, and Z. You. Optimal dimensidgaleduction of sensor data in multisensor estimationdusi
IEEE Trans. on Signal Processing3(5):1631-1639, May 2005.

May 30, 2018 DRAFT



