
IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 57, NO. 12, DECEMBER 2009 4765

Information Theoretic Feature Extraction for
Audio-Visual Speech Recognition

Mihai Gurban, Member, IEEE, and Jean-Philippe Thiran, Senior Member, IEEE

Abstract—The problem of feature selection has been thoroughly
analyzed in the context of pattern classification, with the purpose
of avoiding the curse of dimensionality. However, in the context
of multimodal signal processing, this problem has been studied
less. Our approach to feature extraction is based on information
theory, with an application on multimodal classification, in partic-
ular audio–visual speech recognition. Contrary to previous work in
information theoretic feature selection applied to multimodal sig-
nals, our proposed methods penalize features for their redundancy,
achieving more compact feature sets and better performance. We
propose two greedy selection algorithms, one that penalizes a pro-
portion of feature redundancy, while the other uses conditional
mutual information as an evaluation measure, for the selection of
visual features for audio–visual speech recognition. Our features
perform better than linear discriminant analysis, the most usual
transform for dimensionality reduction in the field, across a wide
range of dimensionality values and combined with audio at dif-
ferent quality levels.

Index Terms—Audio–visual speech recognition, feature selec-
tion, mutual information.

I. INTRODUCTION

M ULTIMODAL signal processing analyzes a physical
phenomenon through several types of measures, or

modalities. This leads to the extraction of higher-quality
and more reliable information than that obtained from
single-modality signals. The advantage is two-fold. First,
as the modalities are usually complementary, the end-result of
multimodal processing is more informative than for each of
the modalities individually. This is true in all application do-
mains: human-machine interaction, multimodal identification
or multimodal image processing. The second advantage is that,
as modalities are not always reliable, it is possible, when one
modality becomes corrupted, to extract the missing information
from the others, leading to a more reliable system.

To offer an example for the first advantage of multimodal sys-
tems, the complementarity of information, in multimodal med-
ical image analysis [1], [2], information that is missing in one
modality may be clearly visible in another. The same is true for
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remote sensing [3]. Here, by missing information we mean in-
formation that exists in the physical reality but was not captured
through one of the particular modalities used. By using several
different modalities we can get closer to the underlying phenom-
enon, which might not be possible to capture with just one type
of sensor.

Another example could be audio–visual speech recognition
(AVSR), which is a method of improving automatic speech
recognition results through the use of information from the
visual modality (the motion of the speaker’s lips) [4]. This
works particularly well when the audio modality is corrupted by
noise, but it can also bring a slight improvement when the audio
is clean. The reason is that some phonemes are more easily
distinguishable in video than in audio, and humans themselves
use this subconsciously, as proven by the McGurk effect [5].

For the second advantage, the improved reliability of mul-
timodal systems, consider the case of a three-modal biometric
identification system, based on face, speech and mouth motion
[6]. When one of the modalities is unreliable, the system might
still be able to identify the person correctly based on the other
modalities. AVSR [4] can also be given as an example, since,
if for some reason the video becomes unavailable, the system
should seamlessly revert to audio-only speech recognition.

There are two essential challenges in multimodal signal pro-
cessing. The first one is that features used from each modality
need to be as relevant and as few as possible. The fact that mul-
timodal systems have to process more than just one modality
means that they can run into errors caused by the curse of di-
mensionality much more easily than mono-modal ones since
the dimensionality of the combined multimodal signal is higher
than each of the individual modalities. Originally, the term curse
of dimensionality was introduced by Bellman to show that the
number of points necessary to uniformly sample a volume of
space grows exponentially with the dimensionality [7]. This has
important implications in the classification domain, since accu-
rate models can only be obtained if an adequate number of sam-
ples is available, and obviously this required number of samples
grows with the dimensionality of the features.

Traditionally, the constraining assumption of joint Gaus-
sianity was used to simplify the modeling of multimodal
signals [8]–[10]. However, the results were unsatisfactory,
since the relations between signals from different modalities is
quite complex, as for example the dependency between mouth
movement and sound for speech, so a Gaussian model is not
appropriate. More complex models require a lower dimen-
sionality or a much higher number of samples. To avoid this
problem, the projection of multimodal data to low-dimensional
subspaces has been proposed [11], although by performing a
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costly optimization of the mutual information between modal-
ities in the transformed space.

Most machine learning models need to attribute some param-
eters to cover the variability in the input features. The more pa-
rameters, the higher the complexity or capacity of the classifier.
If some of the features are just noise, the capacity allocated for
them is practically wasted. It is also possible that false regular-
ities are found in the unneeded features, also leading to a waste
of capacity. Dimensionality reduction is thus a necessary step in
any application which requires modeling complex signals, and
is achieved through selection, transforms or the combination of
the two.

The second essential challenge is multimodal integration.
Since the signals involved do not necessary have the same rate,
range or even dimensionality, combining information coming
from such different sources is not straightforward. This can be
done at different levels, starting from the basic signal level by
combining the signals themselves, if they are compatible, up to
the highest decision level, where only the individual decisions
taken based on the signals are combined.

In this paper, we will focus on the first topic, dimensionality
reduction for multimodal signals. Feature selection is important
in multimodal signal processing, where the dimensionality of
the data can get particularly high.

Our application is AVSR [4], where the visual modality only
contributes in a small part to the final result, however, its dimen-
sionality can surpass several times that of the audio stream. Ex-
tracting only the relevant information from the visual modality
in a low-dimensional vector is then very important here, not only
for a good recognition accuracy, but also when taking into ac-
count the efficiency of the system.

Our contribution is a method of selecting visual features and
thus reducing the dimensionality of the visual feature vector for
audio–visual speech recognition. The novelty of the presented
work consists in the way a redundancy penalty was introduced
in the measure used to select features in the particular con-
text of AVSR. Our method is based on maximizing mutual
information (MI) between the features and the class labels,
while also minimizing their redundancy with respect to the
same class labels. Although methods of penalizing redundancy
for feature selection are well-known in the general classification
domain, to our best knowledge, they were not applied before
to the AVSR problem. The MI feature selection methods used
in AVSR [12], [13] only maximize MI without penalizing for
redundancy.

Another contribution is the fact that we present an extensive
evaluation of our proposed feature selection methods based on
MI, showing both monomodal and multimodal results, for a
wide range of dimensionality values. Similar work in the lit-
erature typically uses visual features having a dimensionality
around 40, which we prove could be too high for some appli-
cations. For example, in [14] the visual features dimensionality
is 35, while in [15] it is 41. We present results for dimension-
ality values varying between 4 and 192 features, and show how,
because of the curse of dimensionality, small feature sets can
perform better than larger ones.

This paper continues and expands our previous work pre-
sented in [16].

II. FEATURE SELECTION FOR CLASSIFICATION

In this section we will present a short overview of feature
selection for classification in general, while the application to
AVSR will be detailed in the next section. A good overview of
dimensionality reduction methods in the context of classifica-
tion can be found in [17].

A. Feature Extraction

Feature extraction is the process of deriving useful informa-
tion from an original signal, information that is relevant for the
task and also has a more compact representation, suitable for use
in a classifier. This can be achieved simply through selection, in
which elements of the original data vector are kept, or through
a transform, which will project the original data in a different,
lower-dimensional space.

In unsupervised feature extraction, no class information is
used, only statistical information of the features. On the other
hand, if class information is included, the dimensionality reduc-
tion process is supervised.

The simplest supervised feature extraction methods are fil-
ters, where the criterion to assess the quality of a feature subset
is some measure computed directly on the features. A second
category are the wrappers, which use the final accuracy given by
the classifier itself as a measure, requiring for this the complete
training and testing of a classification system for each subset
of features taken into consideration. This requires significantly
more resources, but potentially will lead to feature sets which
are better adjusted to the specific classifier used.

We will focus now on filters which perform feature selec-
tion, as they lead to a good balance between the quality of the
obtained features and the resources, both time and computing
power, which are required. Assume that we have a set of
features, out of which we want to select a subset of features.

The total number of possible subsets , is very high,

so processing every possible subset is typically impossible. The
goal here is to obtain a subset which retains as much from the
information in as possible. This could be achieved without
being exhaustive, if the subset is built iteratively with a greedy
algorithm [18]. Such an algorithm works by selecting the “best”
feature at each step, according to some measure of the quality
of the features. In this way, a suboptimal solution is found, but
hopefully one that is close to the overall optimum.

The quality measure used in the filter can be anything from
statistical variance or correlation with the class labels to the mu-
tual information (MI) between the feature and the labels. The
search method can also vary, as there are other alternatives to
sub-optimal greedy search. One example is the “branch-and-
bound” algorithm [19], however, its effectiveness is limited by
the requirement of monotonicity on the optimality measure.

Our method of choice is greedy search using MI as a fea-
ture quality measure. There are two reasons for this. The first
comes from the definition of MI, as it can expose a dependency
between two random variables, even when that dependency is
nonlinear. This makes MI a powerful measure of dependency.
The second reason is Fano’s inequality [20], which can be in-
terpreted in a way that shows that the bound on the probability
of classification error can be lowered by choosing feature sets
with higher MI with the class label.
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B. Selection With Information-Theoretic Criteria

In general mutual information represents the reduction of un-
certainty in one random variable when the value of another (re-
lated) random variable is known. In particular, if is the
mutual information between a feature and the class labels ,
it represents the amount of information gained about the class
if the feature is used. A high mutual information here shows
that the feature is relevant for the classification task and should
be part of the subset of selected features.

The justification for using MI comes from Fano’s inequality
[20], written in this form:

(1)

where is the number of classes, is the feature set and is
the entropy. Note that the expression contains the MI between
the class labels and a whole set of features, not just one, as in
the example above. The equation gives a lower bound for the
probability of error, but does not guarantee that this lower bound
will be reached by the classifier. It is clear that with a “bad”
feature set, one which has a low mutual information with the
class label, the bound on the probability of error will be high,
forcing it to be high itself. However, when the bound is low, it
is up to the actual classifier to come as close as possible to this
bound. This shows that bad features lead to bad classification,
but good features do not necessarily lead to good classification.

This shows that a feature set with a high mutual information
with the class labels is desirable. However, computing mutual
information from data is not trivial. The estimation of proba-
bility density functions is required, which is not practical in high
dimensions, because it requires an unfeasible number of sam-
ples and a long training time. This is why most feature selec-
tion algorithms that use mutual information actually use two or
three-dimensional measures [11]–[13], [21]–[25], never more.
This means that at most two features are used together with the
class label to compute the joint probability density.

We will present now a few information-theoretic feature
selection methods. First, let us introduce the formal framework
for these algorithms. Let be the initial
set of features. Let be a permutation on a
subset of dimension of the set of feature indexes .
Then the set of selected features can be written as

.
The simplest way to obtain a subset iteratively would be to

pick at each step the feature with the highest mutual information
with the class labels. Formally, this means choosing at step
the feature [17], [26]

(2)

where is the set of features selected at step
. This is equivalent with assuming that the mutual information

that we want to maximize, , can be approximated with
the sum of individually computed mutual information values

, with .
However, this does not take into account any redundancy that

may be present in the features. At the extreme, if two features

have identical values and a high mutual information with the
labels, they will both be chosen, even if the second feature does
not bring any new information. So, in order to keep the set of
relevant features small, redundancy should be penalized.

Redundancy between features can also be expressed in
information-theoretic terms. Indeed, the redundancy between
features and is measured by their mutual information,

. However, as the set of selected features grows,
we need to compute the redundancy of the candidate feature
with the whole set of previously selected features, that is

. This again requires high-dimensional probability
density functions. The same approximation as for (2) can be
applied, that is, is the sum of individual mutual
information values with . An algorithm
that does just that is the MIFS algorithm [21]:

(3)

Here the redundancy is approximated not with the sum, but with
a proportion of the sum, which the authors recommend setting
to between 0.5 and 1.

A similar approach is to penalize the average redundancy
[27]:

(4)

where is the size of set . In the end, none of these methods
has a good theoretical justification, since the high-dimensional
mutual information values simply cannot be approximated with
lower-dimensional ones.

Perhaps a little better justified theoretically are the in-
formation-theoretic methods based on the conditional
mutual information, (CMI) as a measure [22], [25],

. This shows how
much the random variable increases the information we
have about when is given. The selection criterion is the
following:

(5)

using [20]. The for-
mula shows that, in fact, using CMI is also equivalent to pe-
nalizing redundancy, only it is redundancy of a different kind,

, which we could call relevant redundancy, since
it also depends on the class. For a certain , the particular
is found with which is most redundant, that is, which has the
minimum conditional mutual information with the class label.
By taking the maximum over this CMI, the feature that adds the
most relevant information to this feature, and, implicitly, to the
set , is found.

This is also an approximation, since, as the set grows, we
should compute the conditional mutual information with respect

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on January 20, 2010 at 03:22 from IEEE Xplore.  Restrictions apply. 



4768 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 57, NO. 12, DECEMBER 2009

to the whole set, not its one most redundant feature. However
this is impossible for the same reasons mentioned before.

In the end, the goal of all these algorithms is to maximize the
joint MI between the and , which could be expanded like
this (chain rule [20]):

(6)

An iterative algorithm could maximize the terms of this sum
one by one

(7)

Since is the particular that maximizes the th term of
the sum, all previously mentioned criteria (3), (4), and (5) can be
interpreted as approximations of this general optimization. They
all maximize the difference between and an approxi-
mation of the redundancy between and
the class labels , which can be regarded as a penalty for re-
dundancy. Several other algorithms follow this general path of
maximizing the difference between and a redundancy
penalty [23], [24]. However, nothing can be said about which
of these approximation is actually better, since it all depends on
the particularities of the high-dimensional probability density
which cannot be estimated.

III. FEATURE SELECTION IN AVSR

There are two major categories of visual features currently
used for speech recognition. The first one is derived from image
compression techniques, trying to represent the pixels of the
region of the mouth with a compact feature vector. This is done
through a transform, either the discrete cosine transform (DCT)
[28], principal components analysis (PCA), linear discriminant
analysis (LDA) [29], [30] or a cascade of these. The second
type of visual features that are widely used are features derived
from the extracted contour of the lips [14], [31]. However, due
to variations in illumination, skin color, facial hair and so on,
this contour is typically not robust enough for the task. We will
mainly focus on transform-based visual features.

A typical AVSR system with image transform features would
use DCT to compress the image [32], [33], keep only the low
spatial frequencies [32] and then apply LDA on the resulting co-
efficients, reducing the dimensionality even more [4]. Although
the classes do not have Gaussian probability density functions,
which is a basic assumption for the LDA, the transform per-
forms quite well. For example, a cascade application of LDA,
first on each modality separately, and then on a concatenated
multimodal feature vector, is the basis of the hierarchical LDA
(HiLDA) transform [4].

An alternative to LDA would be to use MI as a selection cri-
terion for DCT coefficients. Indeed, MI has been used before

in both audio-only speech recognition and AVSR. For audio-
only speech, both the maximum MI [34]–[36] and the CMI [37]
methods have been used to assess the quality of audio features.
The analysis in [34] shows that critical-band spectral energy ob-
servations are not Gaussian distributed, justifying the use of a
non-linear measure such as the mutual information.

In AVSR, mutual information was used to select the relevant
DCT coefficients from the visual modality. In [12] and [38], the
authors select the features used for visual speech recognition
based on either the mutual information between features and
class labels, or the joint mutual information between two fea-
tures and the class label. Formally, they use either

(8)

or

(9)

where is the number of elements in . The second term
in (9) comes from the joint mutual information .
Although proposed as an extension to MIFS [21], this algo-
rithm does not include redundancy, as the emphasis in (9) is
on with no penalty. Their findings show that the co-
efficients in the odd columns of the DCT have a much higher
relevance, because of the symmetry of the mouth, as confirmed
in [39]. We chose to exploit this property and use DCT coef-
ficients from the odd columns only, as will be detailed in the
following sections.

Another widely used transform for reducing the dimension-
ality of visual data is the PCA. Here, dimensionality reduction
is typically achieved by only choosing the features which cor-
respond to the largest eigenvalues. Selecting PCA coefficients
from mouth images based on mutual information gives rise to
“mutual information eigenlips” [13], leading to an improved
speech recognition performance.

In the following, we will present our two proposed methods
for visual feature selection in AVSR, both based on mutual in-
formation with a penalty for redundancy between the features
in the chosen set. This approach is novel to the field of AVSR
and leads to performance improvements compared to both the
simple maximum MI method and to the LDA transform.

IV. SELECTING VISUAL FEATURES FOR AVSR WITH

MUTUAL INFORMATION

In this section we will present our audio–visual speech recog-
nition system, the features we used and the method of selection
employed to reduce their dimensionality.

A. The Database

A review of audio–visual databases used for speech recogni-
tion can be found in [15]. We are using the CUAVE [14] data-
base for all our experiments. More precisely, we use the static
part of the “individuals” sequences, which consist of five rep-
etitions of the English digits from “zero” to “nine” by each of
the 36 speakers in the database, for a total of 1800 words from
a ten-word vocabulary. The video is frontal, showing the upper
part of the body, with little movement.
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This database was chosen because it offers us a good balance
between the variability in the data and the amount of time spent
to run experiments, with different selection methods, numbers
of features and levels of noise.

The words are spoken in sequence, with short silences in-be-
tween. Although the words are isolated, we treat the task like
a continuous speech recognition problem—the recognizer re-
ceives a whole sequence comprising of five repetitions of all the
digits, and has to recognize what is being said. We use a very
simple syntax, which allows any combination of digits and si-
lence, in any order.

The database was recorded in an isolated sound booth at a res-
olution of 720 480 with the NTSC standard of 29.97 fps [14].
The resulting video files are MPEG2 compressed. The audio
is 16-bit, stereo, at a sampling rate of 44 kHz. There is also
word-level labeling at millisecond accuracy, done manually, for
all sequences of the database.

As the videos in the database are filmed in NTSC, there are
some artifacts related to interlacing which are visible where
there is movement. Interlacing is a technique used in video ac-
quisition where the final frame is a blend of two fields acquired
one after the other, each of them a complete image of the scene
that is filmed, but at half the vertical resolution. Since we are
particularly interested in the movement in the image, we chose
to remove these artifacts through deinterlacing.

To obtain the original temporal resolution of 60 fps from the
30 fps video, we used adaptive deinterlacing, which is a method
that detects the areas of the image where there is motion and
separates the two fields only on those areas, leaving the rest of
the image at full vertical resolution. This results in both high
spatial and high temporal resolution. In the end, we can use the
higher temporal resolution for a finer analysis of the motion of
the mouth.

There are also some artifacts due to the MPEG2 compression,
consisting particularly in block edges, which are sometimes vis-
ible. These kind of artifacts are impossible to eliminate, as the
original detail has been lost.

B. Our AVSR System

Our speech recognition system is based on multi-stream
hidden Markov models (MSHMMs), which we chose for their
ability to vary the importance of each stream to the recognition.

Hidden Markov models (HMMs) [40] have the ability to
model sequences of data, making them particularly well-suited
for speech recognition. Multi-stream HMMs [41] have been
proposed to generalize this framework for multimodal pro-
cessing. They are similar to classical HMMs, with the partic-
ularity that each state contains not one, but several emission
probability models, one for each stream, which are combined
through a weighted product. In this way the emission likelihood

for state and observation at time is expressed as [42]

(10)

where denotes the value in of a multivariate
Gaussian with mean and covariance matrix . For each
stream Gaussians are used in a mixture, each weighted

by . In (10), the contribution of stream is weighted by an
exponent which in general can also depend on time and
state . The latter dependency is not considered in this paper.
For the experiments performed in this paper, is fixed
for each signal-to-noise ratio (SNR).

Each of our word models has 32 states, tied in pairs to better
model the duration of speech sound. Each Markov state is
modeled with only one Gaussian with diagonal covariance. For
the actual implementation we used the widely popular HTK
library [42]. The word recognition rate (WRR) is computed as
the number of correctly recognized words minus the number
of insertions, divided by the total number of words. The al-
ternative measure that will also be used is the word error rate

.
We run our experiments in a mismatched speaker-indepen-

dent scenario. Training is always done only on clean conditions,
while testing is done on all SNRs. We use leave-one-out cross-
validation to compensate for the variability between speakers,
which makes speaker-independent tests difficult. For each ex-
periment there are 36 runs, with one speaker left aside for testing
and 35 speakers used for training. At the end, we report the av-
erage of the 36 runs.

Training of the MSHMMs is done separately for each stream.
The models are then joined, with transition probabilities chosen
as a weighted sum of transitions from each stream, with weights
being the same as the ones used in testing. At test time, the
likelihood is computed as follows:

(11)

Testing is done with weights constant in time, or fixed, with
. We run experiments with several pairs of weights,

from to with step
0.05, and then choose the best weights for the particular con-
ditions of the test. Although this cannot be done in a practical
setup, it gives us a good estimate of multimodal performance in
practice, and our focus here is the quality of the features, and
not the multimodal fusion.

C. Audio and Visual Features

Our audio features are 13 mel-frequency cepstral coeffi-
cients (MFCCs) [43], [44], with first and second temporal
derivatives. Cepstral mean normalization (CMN) [45] was also
applied on the audio features, to reduce the influence of the
microphone and transmission system on the data, making the
recognition system more robust. This is a common setup for
all audio-only speech recognizers, and our focus was more on
improving the quality of the visual features.

We run our experiments with additive noise in the audio, at
various SNRs, from 25 dB to 10 dB. The noise that we use,
babble noise, consists of continuous speech added over the clean
signal. This is a particularly difficult case, as the noise has the
same characteristics of the original signal.

In order to extract visual features, the region of interest (ROI),
that is, a rectangle around the mouth of the speaker, needs to
be located first. The ROI is extracted based on the positions
of the corners of the mouth. A rectangular area is cut around
the mouth, in such a way that the mouth is centered, rotated
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and scaled relative to the average mouth width over each se-
quence. Bilinear interpolation is used to obtain the final images,
all having 128 128 (16384) grayscale pixels.

For visual features we use the 2d-DCT of the mouth region,
having the same size, 128 128, as the original image. To re-
duce the computational cost of our selection algorithm, we will
only take into consideration a subset of the 16 384 coefficients.
We keep only the low-frequency coefficients which are con-
tained in the upper-left triangle of the 2d-DCT. Previous work
[32] uses the same technique, starting from the assumption that
only spatial frequencies with periods close to the size of the fea-
tures of the mouth are relevant, and high frequencies are only
noise. However, we take into account a much higher number of
coefficients, 64 compared to only 20, to ensure that all the rel-
evant information is contained in this feature set. Doubling this
number to 128 only increases the computational cost, not the
accuracy, showing that 64 features are indeed sufficient for the
task. The DC value is also discarded as insignificant.

Previous research [39] shows that the coefficients in the odd
columns of the DCT have a much higher relevance, because
of the symmetry of the mouth. Using only the odd columns is
equivalent to imposing horizontal symmetry to the image. Thus,
the even columns of the transform are removed as a way of im-
posing symmetry on the ROI. In the end, this leaves us with 64
DCT coefficients out of the original 16 384 pixels.

First and second temporal derivatives are computed on all co-
efficients, increasing the size of the initial feature set to 192.
Also, similar to CMN in the audio, the means of the visual fea-
tures are removed.

We always include monomodal results for comparison, and
also results with the LDA transform applied on the 192 DCT
coefficients with their temporal derivatives, since this is the most
commonly used method to further reduce the dimensionality of
the visual feature vector.

D. Our Feature Selection Algorithm

As shown in Section II-B, mutual information has been quite
extensively used as an evaluation measure for feature quality for
classification. There are two reasons for this. The first comes
from the definition of MI, as it can expose a dependency be-
tween two random variables, even when that dependency is non-
linear. This makes MI a much more powerful measure of depen-
dency than correlation. The second reason comes, as has been
mentioned before, from Fano’s inequality, which can be inter-
preted in a way that shows that the bound on the probability
of classification error can be lowered by choosing features with
higher MI with the class label.

A large majority of MI feature selection algorithms [12],
[21]–[25] aiming to find features from an initial set of
follow the greedy algorithm [18], which searches for a global
optimum by making the locally optimal choice at each step.
Applied to feature selection with MI, it leads to the following.

1) (Initialization) Start with a complete set of initial fea-
tures and an empty set of selected ones.

2) (MI computation) Compute , the MI between each
feature and the class variable .

3) (First choice) Choose , set

4) (Greedy selection) Repeat until :
4a) (Evaluation) Compute the evaluation measure as

for each based on the pre-
viously selected features and the class labels

4b) (Choice) Choose feature which maximizes the eval-
uation measure, set

5) (End) The set contains the best features according to
the evaluation measure.

The evaluation step, 4a), is the step that changes between dif-
ferent MI selection algorithms. As shown in Section III, most
algorithms try to maximize an approximation of the MI between
the set of chosen features and the class labels, a problem
which reduces to computing the redundancy between feature ,
the set and the class labels . This approximation of the re-
dundancy is used as a penalty on the class MI term .

The particular algorithms that we compare are maximum MI
(2), MIFS (3), and CMI (5). We follow the greedy method steps
detailed above, changing the redundancy penalty for each of the
three algorithms. With the notation above, for maximum MI,

, for MIFS , while for
CMI .

Out of these three algorithms and many others that exist, only
the simplest one has been previously applied to AVSR. Previous
approaches to the problem of feature selection for AVSR using
MI choose the features with maximum MI with the class la-
bels [12], [13], [38]. That is, the evaluation measure is simply

, and no measure of redundancy is taken into ac-
count. By contrast, we show that penalizing features for their
redundancy can improve the recognition accuracy.

In all our following tests, we use the greedy selection method
outlined here. We start by using maximum MI as an evaluation
measure, and then we propose two other measures which also
include a penalty for redundancy between features. Our contri-
bution here is twofold. First, we prove from our experiments
that reducing redundancy between features is essential when
building a feature set. Second, we make an extensive evaluation
of our proposed feature selection methods based on MI, showing
both monomodal and multimodal results, for a wide range of
dimensionality values. We compare our results to a common
method for dimensionality reduction in AVSR, the LDA, and
also the maximum MI method.

In all our experiments, MI values are approximated through
probability density estimation with histograms [46]. Only two-
dimensional (feature value and class variable) and three-dimen-
sional (two feature values and class variable) probability den-
sity functions (pdfs) are estimated this way, as we consider that,
with the limited number of samples available, higher-dimen-
sional pdfs are impossible to estimate reliably. The classes that
we use are groups of HMM states, which we consider to be close
to the true speech units. The number of bins to be used can be
estimated either with Sturges’ rule [47], [48] , as
a function of the number of training samples , or with Doane’s
rule [48], [49] , including the
skewness of the data . The ideal number of bins obtained with
Sturges’ rule is , while with Doane’s we get
for the audio, respectively for the video. Since in
our experiments there is little variation on the MI values with
the number of bins, we used 20 bins for all histograms. Such
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histograms are used to estimate marginal probabilities for each
feature, , joint probabilities and also
the three-variable joint probability . These, together
with the marginal P(C), are the building blocks used to compute
all MI values [20]:

(12)

(13)

(14)

where and are histogram bins for features and , while
are the individual classes. The probabilities are computed as the
proportion of occurrences in each bin relative to the total number
of occurrences. For example, is the number of occur-
rences of feature having a value in bin while the sample
has class , divided by the total number of samples.

However, it should be noted that, since we are always approx-
imating MI between high-dimensional pdfs with MI between
three-dimensional pdfs, it is also possible to overestimate the
redundancy between them. This means that there will be cases
when features are penalized too much. This is why a parameter
like from the MIFS algorithm may be useful.

A natural question that might arise is why not use all the avail-
able features for recognition. We will also answer this question,
showing that, due to the curse of dimensionality, multimodal
recognition performance decreases when the dimensionality be-
comes too big. In the end, practice confirms the intuition that
small sets of features with little redundancy perform better. Re-
dundancy needs to be reduced, as it is possible, when not adding
a penalty for it, to select features that contain the same informa-
tion, to the detriment of others which would bring complemen-
tary information.

V. RESULTS

In the following, we will first show the difference in infor-
mation content between the different types of features that we
use, and then we will present results with three feature selec-
tion algorithms, one based only on the maximum MI, and two
others which also include a penalty for redundancy between fea-
tures. We apply our selection algorithms on a set of 192 features
consisting of 64 DCT coefficients, deltas and delta-deltas, as de-
tailed in Section IV-C. From these, we select subsets going from
four features all the way to the full 192 feature set, to assess how
the dimensionality influences performance, and which selection
algorithms performs better.

A. Mutual Information as a Measure of Feature Quality

The only algorithm that has been used before for visual fea-
ture selection in AVSR is the maximum mutual information. Ba-
sically, it means features are selected only by their MI value with
the class, irrespective of previously selected features, as in (2).

Fig. 1. The amount of relevant information (MI between the feature and the
class label) for the best five features, for four types of features: clean audio,
noisy audio, DCT, and LDA.

The selection algorithm is reduced to sorting the features in
by their MI value and picking only the top part of the list for

inclusion in the subset .
Fig. 1 shows the first five MI values for the best features.

We analyzed four types of features: MFCCs from clean audio,
MFCCs from noisy audio, DCT features and finally LDA fea-
tures. What can be seen from the graph is that, as expected, the
clean audio contains the highest amount of information about
classes. However, when the audio is corrupted by noise, the
amount of information decreases drastically, and below the level
in any of the visual features. Between these visual features, the
LDA coefficients have the highest MI for the first few features.
However, the MI for the latter ones decreases faster in the case
of LDA coefficients than in the case of the DCT.

This hierarchy is also reflected in the monomodal classifica-
tion results, confirming that MI is a good measure for feature
relevance.

Note that, according to the data processing inequality, the in-
formation contained in the set of LDA features should be less,
or, in the best case, the same, as the information from the set
of DCT coefficients. Indeed, the LDA coefficients are obtained
directly through the application of a transform (the LDA) on the
DCT coefficients, the same which are shown on the graph. The
data processing inequality [20] claims that information cannot
be created when a transform is applied on the data. So, although
some of the LDA coefficients seem to contain more information
than the DCT ones, on the whole, the set of LDA features will
have the same information, or less.

B. Results With Maximum Mutual Information

Fig. 3(a) shows the visual-only recognition results for all MI
feature selection algorithms, for feature dimensionality ranging
from 4 to 192. Results for LDA are also included for compar-
ison. Looking only at the maximum MI results, we can see that
they outperform the LDA at higher dimensionality, but the LDA
is better between 4 and 20 features. The maximum MI method
obtains a maximum performance for around 60 features.

Fig. 3(b) shows the audio–visual recognition performance for
the same features, for an audio SNR of 10 dB with babble
noise. Although the audio-only accuracy in this case is only
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Fig. 2. Visual-only results with MIFS, using three different values for the pa-
rameter �, 0.5, 0.75, and 1.0.

22.3%, audio–visual recognition rates are in all cases better than
both audio-only and visual-only ones.

There is a larger gain from multimodality at lower dimension-
ality values compared to higher ones. For example, for ten vi-
sual features, 5.2% are gained, while for 100, the gain is of only
1.6%. This could mean that the curse of dimensionality is im-
peding any gains in performance with a high number of features.

C. MMI With Weighted Redundancy Penalty

The first algorithm that we propose for selecting visual fea-
tures, MIFS (mutual information feature selection) [21], penal-
izes features for their redundancy with other features in the se-
lected set. The equation used to select features at each step is (3).

The parameter is the proportion of the redundancy that is
penalized by this algorithm, and is recommended by the author
in [21] to be set between 0.5 and 1. The justification for this is that
we are trying to penalize the redundancy of the feature with
respect to the whole set , that is , which unfortunately
we cannot compute. The sum is actually an
upper limit for that redundancy, reached in the case when all the
features in the set are disjoint, that is, MI between any of them
is zero. Of course this is not the case, so the real penalty should
be lower then the sum, and hence the parameter . However, the
true value of the parameter depends on the particularities of the
data, and it fact, the optimal is different at each selection step.
We choose the parameter heuristically, as in [21].

Fig. 2 shows a comparison between the results of the algo-
rithm for visual-only recognition for three values of the param-
eter , 0.5, 0.75 and 1.0. As can be seen the best is ,
which outperforms the maximum MI and the LDA features as
well, as shown in Fig. 3(a).

In the audio–visual results with MIFS [Fig. 3(b)], the same
tendency is seen as with maximum MI, that is, results improve
more at low dimensionality than at high dimensionality when
moving from single modality to multimodal processing. For ex-
ample, for ten features with , the gain is 5.5%, while for
50 it is only 0.3%. For higher visual dimensionality values, mul-
timodal performance is close to the visual-only, or monomodal,
performance.

The results obtained with the MIFS method show how impor-
tant it is to eliminate the redundancy between features. However,

Fig. 3. Visual-only and audio–visual results with maximum MI, MIFS �� �
���� and CMI. The audio SNR is �10 dB with babble noise, and audio-only
accuracy is only 22.3%. (a) visual-only; (b) audio–visual.

the MIFS method has an important drawback, that is, the param-
eter needs to be chosen correctly for the method to give good
results. In the next section we present a method which does not
depend on any parameter to set the penalty for redundancy.

D. Selection With Conditional Mutual Information

Our second proposed method is to maximize the conditional
mutual information (CMI), that is, the information that is added
by a feature to what was already known about the class label
through the other features. The equation used by the CMI algo-
rithm is 5, which is equivalent to penalizing only relevant redun-
dancy, . This measure can be either positive or neg-
ative [20]. When it is positive, it can be interpreted as the infor-
mation about the class label that is shared, or redundant, between
two features. However, when this measure is negative, it can have
a different interpretation, as a measure of synergy, that is, how
much information about the class label is added by taking two
features together, compared to just taking them individually. This
interpretation comes from the development of the joint mutual
information for two features and the class label :

(15)
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Here the conditional mutual information (or
respectively ) is not necessarily smaller than its
unconditional counterpart (or ), which indeed
means that the three-way MI can be negative. When this is the
case, the joint mutual information between the pair
and the class label , is higher than the MI sum

, which means that there is synergy between
the variables.

The CMI algorithm works as follows. First, for a certain can-
didate feature which was not included in the selected fea-
ture set yet, a corresponding feature is found, the one that
is maximally redundant to it. This can be expressed either by
minimizing or by maximizing , as
can be seen from (5). The second step is choosing the feature
which adds the most information about to its most redundant
corresponding feature, . This basically assumes that if the
feature adds a lot of information even compared to its most
redundant counterpart, it will also add information not present
in the whole set .

The CMI represents the information about
that is brought by that is supplementary to what was al-
ready known through . Obviously the measure that should
be used in fact is , the information about brought
by that is complementary to the information in the whole
set of selected features, . However, because of the high di-
mensionality, this cannot be computed, so we have to rely on
approximations.

Visual-only results with the CMI selection algorithm are in-
cluded in Fig. 3(a). The performance is on the same level as the
LDA for the low dimensionality values. Compared to the max-
imum MI algorithm performance is better, however compared
to MIFS it is a little worse. The same tendencies can be seen on
the audio–visual performance graph [Fig. 3(b)].

Although the CMI algorithm only chooses features which are
complementary to the already selected set, it performs a little
worse than MIFS. It is possible that there are cases where the
CMI algorithm penalizes features too much, that is, it considers
them as having too much redundancy, although by themselves
they contain a lot of information.

E. Performance in Clean Conditions

The previous analysis was done only with corrupted audio,
with a SNR of 10 dB. However, our goal is to have a system
which performs well across all conditions. In the following, we
will present results at other SNRs as well.

Fig. 4 show audio–visual performance with all selection al-
gorithms and LDA, compared to audio-only. As can be seen, the
CMI method is the best in this case, although by a very slight
margin. For clean audio, the monomodal recognition accuracy is
already very high, at 98.3%. Multimodal recognition improves
this, irrespective of the visual features’ dimensionality. All MI
selection algorithms further improve performance compared to
the LDA, although by very little in absolute terms. However,
given the very small number of recognition errors, the relative
reduction in error is impressive, 16.6% passing from LDA to
MIFS for example. Although there is a lot of variability in the re-
sults, the same tendency is seen across all dimensionality values,
that is, MI-based methods are better than the LDA. Accuracy to

Fig. 4. Audio–visual results with clean audio, compared to audio-only.

one decimal place here is warranted since a small accuracy vari-
ation can have a large influence on the number of errors.

Between the MI-based methods, it is difficult to pick a clear
winner. The maximum performance is obtained with either CMI
or maximum MI, depending on dimensionality. However, it is
clear that the optimal dimensionality is between 15 and 25,
much less than for corrupted audio.

The fact that less visual features are necessary to obtain an
optimal performance for clean audio could be explained by the
redundancy between the audio and visual features, which is lost
when the SNR decreases. This means that, when the audio is
degraded, information that was common to audio and video is
now only present in the video, and more features are necessary
in order to include all this information in the feature set.

F. Performance at 20, 10, and 0 dB SNR

Having analyzed the influence of the feature extraction
methods at the two extreme SNRs, in this section we will also
show results three in-between SNR values: 20, 10, and 0 dB.
The results are presented in Fig. 5(a), (b), and (c).

At 20 dB, performance is still very high, mostly above 97%
for all MI methods, which all show better performance than
the LDA. Both CMI and MIFS show an improvement over
maximum MI, which, although small in absolute terms (0.7%),
amounts to an 8% relative reduction in the error rate. Here CMI
performs best, at a dimensionality of only 6.

At a SNR of 10 dB, the audio is quite corrupted and per-
formance decreases to 85.3% for monomodal recognition. The
gain from multimodal recognition is impressive, 6.7% in ab-
solute terms, or a relative reduction in the number of errors
of 45.6%. Again the best-performing method is MIFS. Both
MI-based methods are better then the LDA at all dimensionality
values.

The ideal number of visual features, the dimensionality that
gives the highest performance for AV recognition is here only 8.
This is true for the MIFS features, which, when used alone for
monomodal recognition, give the best results when the dimen-
sionality is 25. The reduction in the number of features which
give the best result compared to video-only may be explained
by the curse of dimensionality, but also, as mentioned before,
by the fact that there is redundancy with the audio, which means
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Fig. 5. Audio–visual results with three audio SNRs with babble noise, com-
pared to audio-only. (a) 20 dB; (b) 10 dB; (c) 0 dB.

that only a reduced number of features bringing complementary
information is actually required to augment the audio.

Looking at the performance of the maximum MI algorithm,
we can see that here it is slightly lower overall than that of CMI
of MIFS. Although maximum MI has a higher performance for
60 and 80 features, this is irrelevant since the optimal perfor-
mance for this SNR is obtained for 15 to 25 visual features.

For 0 dB, performance decreases even more. Comparing
the MI selection methods, we see that overall the gap between
CMI and MIFS compared to maximum MI increases. There
is a difference of 3% between the best performance obtained
with CMI and MIFS compared to maximum MI. As was the
case before, maximum MI slightly outperforms the other two at

higher dimensionality, but at a lower accuracy than with small
dimensionality.

Overall, we see that the ideal number of visual features is
between 10 and 20, lower than the typical average number of
40 used in previous work. Our results show that with a good
selection algorithm it is possible to obtain better results with
less visual features, across a wide range of SNRs. For example,
the improvement in going from 40 to 15 features for MIFS is
an average of 9% relative reduction in WER. Having a lower
number of features has the additional advantage of requiring
less storage and computing resources, leading to a more efficient
application. Unfortunately, the ideal number of features depends
on the SNR, so it should be chosen on a held-out set recorded if
possible in conditions similar to those in which the application
will be deployed, that is, similar to those of the final test set.

The methods that we propose lead to an increase in perfor-
mance and a decrease in the required number of features com-
pared to LDA and maximum MI. This is because by including
the redundancy of the features as a penalty in the quality mea-
sure we obtain feature sets which are more compact and at the
same time more relevant to our classification problem. The fact
that the performance decreases for higher dimensionality with
all methods can be attributed to the curse of dimensionality, and
more precisely the fact that the number of samples available for
training is limited.

G. Performance Across All SNRs

Overall, we see that the two methods which penalize features
proportionally to their absolute redundancy perform better than
the others, across a wide range of SNRs. We will present now
results for all SNRs, from clean to dB, for babble noise.

As seen in the previous subsections, results vary quite a lot
with the dimensionality of the video features. The dimension-
ality that gives the best performance for clean audio is not the
same as the dimensionality that is optimal for noisy audio. To
have an even field for comparison, we chose a dimensionality of
15 for all the types of visual features we use. Fig. 6(a) shows the
audio–visual performance at all SNRs. Because the variations
in absolute accuracy values are very small for higher SNRs, it
would seem that all algorithms perform more or less the same.
However, when translated in relative error reduction terms, the
differences are significant.

In Fig. 6(b) we present the percentage reduction in WER of
each algorithm relative to the audio WER. This graph shows
much more clearly the gains of CMI and MIFS over LDA and
maximum MI, for all SNRs. Averaging over all SNRs, MIFS has
a 5.5% advantage in WER reduction over maximum MI, while
CMI has 4.6%. MIFS is best in very noisy conditions, from
dB up to 0 dB, while CMI features perform better when paired
with cleaner audio.

In the end, MIFS and CMI are clearly performing better than
the visual feature selection methods typically used in AVSR,
LDA and maximum MI, achieving significant reductions in
WER for almost all SNRs. The reason for their performance
is the fact that they lead to more compact feature sets, with
less redundancy between features. Still, some information
will be lost through this process, and this lost information
might explain the differences between CMI and MIFS. If
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Fig. 6. Audio-visual results at all SNRs, with babble noise. The dimensionality
of all visual features is 15. (a) Word accuracy by SNR, (b) Relative error reduc-
tion (%).

some information complementary to the audio is kept to the
detriment of information redundant with respect to the audio,
this would lead to better performance in clean conditions, and
worse performance with noise. This could be the reason why
CMI features perform better in clean conditions, while MIFS
features are better with noisy audio.

VI. CONCLUSION

Throughout this paper we strived to validate our results
through leave-one-out testing, by using varying noise levels
and also various selection methods and dimensionality values
for the features.

Our contribution here is two-fold. First, we propose two
methods of visual feature selection for AVSR, methods based
on maximizing mutual information with the classes while at
the same time minimizing redundancy. We proved that penal-
izing features for their redundancy is important and obtained
significant performance gains compared to the state of the art.

Second, we perform an extensive analysis of information the-
oretic feature selection methods applied on visual features for
AVSR, for different audio SNRs, with realistic babble noise.
As opposed to many approaches in the literature, where typi-

cally a visual feature vector of dimensionality 40 is used, we
present results across a wide range of dimensionality values.
We prove that, in many cases, a small feature vector can outper-
form higher-dimensional ones, proving that obtaining low-di-
mensional features is always desirable.

Our work shows that, for audio–visual speech recognition,
mutual information is not only a good measure for the relevance
of features, but also a good way of estimating the redundancy
between them. Penalizing features for their redundancy leads to
better sets of features, outperforming even the LDA. Of the two
proposed methods, CMI works a little better with clean audio,
while MIFS performs better in noisy conditions.

Knowing which features are relevant and which are not,
which features contain the same information and which com-
plement each other can be very useful not only for building
better feature sets, but also for our own understanding of the
problem. We could, for example, globally evaluate the quality
of feature extraction methods, and choose the one which gives
us features having the most information. The information theo-
retic analysis might also show that features obtained with two
different transforms are complementary, and using more than
one feature type might increase performance. It is common for
example in AVSR to use both appearance-based features and
shape features together, as they complement each other well.
MI is a tool that could be used to identify similar situations
where more than one feature type may be useful.
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